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A B S T R A C T   

Energy sector decarbonization will play a critical role in society's attempt to minimize climate change. This 
transition will unavoidably involve economic disruption to communities that rely on fossil fuels for jobs and 
economic activity. In this work, we assess the economic vulnerability of counties across the contiguous United 
States to the energy transition using a novel methodological approach that combines exposure through reduction 
in energy employment and socio-economic sensitivity due to a lack of adaptive capacity during the energy 
transition. Using machine learning clustering, we first identify county-level exposure to negative employment 
shocks. We then develop and implement the Resilience during the Energy Transition Index (RETI) to measure 
county-level sensitivity and adaptive capacity and compared this Index across employment clusters. We find that 
counties in coal mining clusters are significantly – and uniquely – less able to cope with economic distress. We 
also apply our framework to a case study focused on three of the states in Marcellus-Utica shale plays: Penn
sylvania, Ohio and West Virginia. The results of this case study support the argument that financial and infra
structure boosts from non-renewable energy extraction and utilization build resilience only if they are used to 
building capital for the post‑carbon economy, providing further evidence of the conditions required for fossil 
fuels to serve as bridge fuels towards a low-carbon economy.   

1. Introduction 

Over the past two decades the United States (US) energy sector has 
experienced substantial shifts in the fuel mix and the number of people 
employed in it. From 2002 to 2017, employment in the energy sector 
grew by 33 % (from 1.72 to 2.62 million full time equivalents - FTEs). 
This growth was largely driven by the oil and gas industry, nearly 
doubling the number of people employed within the sector, with a 96 % 
increase. However, despite this overall growth, the coal mining, fossil- 
fuel power and hydropower generation sub-sectors lost more than 
137,000 net FTEs in this period [1]. These employment trends mimic the 
production of these sub-sectors with natural gas production growing 
from 18.9 to 27.3 Tft3 and coal production peaking in 2008 at 1172 M 
short tons, before falling to 775 in 2017 [2]. For electricity generation, 
the share of coal in the US grid fuel mix fell from 50 % in 2002 to 30 % in 
2017, while natural gas rose from 18 % to 32 %. 

In the absence of full-scale deployment of carbon capture technolo
gies, electricity sector decarbonization will require continuing this 
decline in coal extraction – and reversing the growth of natural gas – as 
we move away from carbon-intense fuels. These shifts away from fossil 
fuels will have uneven economic impacts across the US with negative 
impacts likely to be highly concentrated in communities that rely on 
fossil fuel industries for their economic well-being. There were 17,741 
fewer net FTE in coal mining nationwide in 2017 when compared to 
2001; these losses were concentrated in a handful of states like Kentucky 
(7801 representing 44 % of the net lost FTE), West Virginia (2898 or 16 
%), Pennsylvania (2304 or 13 %), Virginia (1864 or 11 %) and Ohio 
(1014 or 6 %). The net growth of renewable jobs (12,120 new FTE in 
2017 compared to 2001) is also geographically concentrated with 
almost two-thirds of new FTEs located in Texas, California, Illinois, 
North Carolina and Florida [1]. This highlights that while energy sector 
employment is growing, this growth is not evenly distributed. 
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The just transition framework offers a way to conceptualize the 
benefits and costs for individuals and communities during energy 
decarbonization and how impacts are distributed across society. Origi
nally developed to reconcile green development with the needs of 
workers [3], it has since expanded to include coordination between 
climate, environmental and energy justice [4]. As the concept of the just 
transition has matured, it has highlighted the need to respect principles 
of: (1) equitability of impact in the distribution of benefits and costs, (2) 
meaningful engagement and fair representation in decision-making and 
(3) deliberate efforts to repair past harms to historically minoritized 
communities [5]. Given these principles, there are two dominant defi
nitions of a just transition in the literature: one that calls for protection 
and investment in minoritized communities during decarbonization and 
a second that argues for attention to be paid to those communities that 
currently depend on fossil-fuels for their economies [6]. 

Leveraging analysis of employment data to investigate vulnerability 
at the county-level can reconcile these different just-transition dis
courses. However, existing county-scale employment analyses are 
focused on specific industries, regions, or short periods with vulnera
bility or resilience components. Haerer and Pratson [7] found no cor
relation between counties losing jobs and those gaining from growing 
renewable industries between 2008 and 2012. However, their economic 
input-output (I-O) analysis of the electricity sector excluded non-fossil 
dispatchable generation, meaning their work misses the decline of hy
dropower. Other county-scale work has studied localized socio- 
economic effects like the relationship of coal and poverty [8], eco
nomic spillover effects to neighboring areas during coal booms and busts 
[9] and culture-based adaptation processes to the transition [10] in the 
Appalachian region. Similar work has explored the economic effects of 
concentrated coal production cycles in Western Canada [11]. Taken 
together, this literature indicates that employment in fossil fuel in
dustries reflects exposure to the transition and can be further analyzed in 
comprehensive vulnerability studies. 

Contrasting county-level, energy employment across sub-sectors is 
critical in creating a just transition framework capable of capturing 
impacts that top-down I-O analyses or bottom-up, technology-focused 
studies are likely to miss. In an I-O study across the US, Garrett-Peltier 
[12] found that investing in renewables and energy efficiency can 
generate around three times as many short- and medium-term jobs as 
investing in fossil fuels. Energy employment meta-studies describe that 
bottom-up employment analysis typically focus on only one technology 
or sector (e.g., installing wind turbines or retiring coal-fired power 
generators), so they do not study interactions across sectors [13]. Other 
bottom-up analytical models do not typically account for indirect jobs 
[14]. Both bottom-up and I-O methods miss spatial variation and inter- 
sectoral/technology interactions that well-designed county-level studies 
can account for. Furthermore, as highlighted in the meta-study per
formed by Wei et al. [13] there are substantial difficulties in aggregating 
and comparing cross-technology analysis from different sources and 
methodologies. In addition to accounting for geographical disparities 
and technology disaggregation, county-scale analyses of energy sub- 
sector employment also respond to growing interest in subnational 
studies of the just energy transition [15] and to recommendations that 
focus on the perspective of individual households in the measurement in 
sustainable development studies [16]. 

Machine Learning (ML) can provide efficient tools to discover pat
terns and trends over multiple periods in the large datasets that are 
required to study employment or economic dependence at the county- 
level. Data at this spatial and sectoral resolution can contain tens to 
hundreds of features (e.g., employees or revenue by economic activity) 
in sets of more than 3000 elements (i.e., the US counties) for different 
years. While ML has previously been used to analyze the structure of the 
energy economy (e.g., effects of interventions on consumption patterns), 
its main applications in energy policy have focused on supervised ML to 
predict prices or model the market [17]. Unsupervised ML (e.g., clus
tering) is less frequently used for energy analysis than supervised ML 

and has almost exclusively been used for demand response scheduling 
[18], energy efficiency, assessments of consumption patterns [19] and 
anomaly detection in infrastructure operation [20]. In the energy policy 
field, Csereklyei et al. [21] used Gaussian Mixture (GM) clustering to 
compare changes in national electricity fuel mixes across the European 
Union over time. As part of that work, Csereklyei et al. identified a 
relationship between being a high-income country and having an energy 
mix with more highly desirable energy sources (e.g., electricity gener
ation or natural gas vs coal and biomass). In the economic development 
field, Khalaf et al. [22] use unsupervised ML to categorize US counties to 
create a novel and more nuanced classification of rurality. The authors 
used hierarchical clustering to identify groups of counties with similar 
potential economic development strategies, based on their natural re
sources, opportunities and challenges – including industrial de
pendency. By using ML to study potential employment losses during the 
energy transition, we propose to create a framework for county-level 
assessment of vulnerability during energy transitions. 

County-scale vulnerability scoping assessments can inform models of 
local community resilience and guide transition policy interventions. 
These assessments focus on three dimensions of vulnerability to a 
disruptive event: exposure, sensitivity and adaptive capacity [23,24]. 
Exposure is defined as the potential to be negatively affected by a 
disruptive event. Sensitivity describes the magnitude of impact from the 
disruptive event. Adaptive capacity is a measure of the ability to resist 
and recover from the shock of the disruptive event. Researchers and 
decision makers frequently build vulnerability assessment models that 
measure local- and county-level elements to identify disparities and 
analyze state and federal policy interventions. However, few studies 
have assessed the dimensions of vulnerability in the context of the en
ergy transition. Raimi et al. [25] map county-level exposure and sensi
tivity based on fossil-fuel economic activity and a climate and economic 
justice index, respectively [26]. They identify locations that should be 
targeted by policy makers for interventions to further develop adaptive 
capacity as the transition advances. Carley et al. [27] evaluate vulner
ability to energy price increases due to renewable portfolio standard 
implementation and regional disparities in vulnerability. Snyder [28] 
produces first-order, county-level estimates of vulnerability to decar
bonization while arguing that such work can guide investments to high- 
risk areas. Many vulnerability assessments (especially those in assessing 
climate change vulnerability) use demographic and household economic 
variables (e.g., age distribution, ethnicity, unemployment and trans
portation) that influence short-term responsiveness following a disrup
tive event [29–31]. To measure these variables, past work has used 
socio-economic metrics that describe components of economic devel
opment, social capital, communication infrastructure and access, self- 
determination and community engagement [32]. In this paper, we 
propose to use data on socio-economic conditions and renewable energy 
to describe sensitivity and adaptive capacity during the energy 
transition. 

In this work, we reconcile two of the leading frameworks in the just 
transition literature in a novel vulnerability assessment combining job- 
loss exposure with socio-economic resilience. To integrate the vulnera
bility scoping assessment with the exposure clustering algorithm, we 
have created the Resilience during the Energy Transition Index (RETI), a 
framework capable of providing county-level insight on the ability of 
counties to benefit from the transition away from fossil fuels. The RETI 
framework is based on socio-economic, policy and renewable electricity 
resource data. With this framework, we capture patterns of exposure and 
characterize differences in economic resilience during the transition 
away from a fossil energy-dependent economy. Finally, we analyze the 
level of resilience associated with different transition paths and energy 
policy interventions to effectively build resilience for the energy tran
sitions. Our methodology allows us to identify typologies of counties 
based on how they rely on energy employment and to contrast the 
evolution of socio-economic resilience to shifts in energy production and 
use (e.g., the shale gas boom and the decline of coal). 

D. Hincapie-Ossa et al.                                                                                                                                                                                                                        



Energy Research & Social Science 100 (2023) 103099

3

2. Methods 

We synthetize energy dependence with county resilience into an 
assessment of vulnerability in the face of the energy transition. The core 
of our analysis (Fig. 1) is the application of the RETI metric on clusters of 
counties that are similarly exposed to economic disruption during the 
energy transition. To do this, we analyzed employment data from four 
years over a 16-year period (2002, 2007, 2012 and 2017) to analyze the 
decline of carbon-intense energy extraction and utilization activities 
across 12 different energy sub-sectors. We then created and normalized 
indicators of sensitivity and adaptability based on socio-economic, 
policy and renewable resource data into the RETI score for each 
county in the continental US. Finally, we compared cluster-specific RETI 
distributions to identify differences in county resilience between clusters 
that rely on fossil fuels and those that do not. 

2.1. Data description 

We analyzed data from five sources that describe county-level con
ditions for our exposure analysis in 2002, 2007, 2012 and 2017 and to 
create the RETI for 2017 in every county of the 48 states of the contig
uous US. Alaska and Hawaii were not considered for the RETI due to a 
lack of data availability on wind-powered generation potential and on 
existing renewable policy instruments – but are included in the clus
tering analysis. Further details of the data sources can be found in the 
Supporting Information (SI) Section 1 with the variables used in the 
RETI described in Table S1. 

2.1.1. State- and county-level economic data 
We use IMPLAN (IMPact analysis for PLANning), a state- and county- 

level dataset that reports the number of jobs and industry output, pro
prietor income and output volume in US dollars for 536 economic sec
tors. Using correlation analyses (details in SI Section 2 and Table S2), we 
chose an initial set of 18 energy-related sectors from which we down 
select to identify 12 representative sectors for our clustering model. 

These 12 sectors include activities in resource extraction (coal mining 
and oil and gas well drilling), power generation (nuclear, fossil fuel, 
wind, solar, biomass, hydropower, geothermal and other power gener
ation), transmission and distribution (T&D) and turbo-generator 
manufacturing. We base our analysis on the number of jobs for each 
county in these 12 sectors. 

2.1.2. Socio-economic variables 
The United States Census Bureau (USCB) provides county-level in

formation about population and economic conditions through its annual 
American Community Survey. We leverage this USCB survey for data on 
educational attainment, poverty, unemployment and household internet 
connectivity [33,34]. 

We also used percent change in gross domestic product (GDP) from 
2017 to 2018 as reported in Real Gross Domestic Product by County, 
2016–2019 dataset from the US Bureau of Economic Analysis [35]. 

2.1.3. Renewable resource potential 
We used the county average of rasterized data for wind speed at a 

100-m hub height and Direct Normal Irradiance (DNI), both datasets 
available from the National Renewable Energy Laboratory, as proxy 
measures of the amount of potential wind and solar power available in a 
county [36–39]. 

2.1.4. Renewable energy policy 
The Database of State Incentives for Renewables and Efficiency 

(DSIRE) is a source of information on renewable energy and energy ef
ficiency policies across the United States managed by the North Carolina 
Clean Energy Technology Center [40]. DSIRE tracks 45 types of federal-, 
state-, city-, county- and zip code-level policies, as well as incentives and 
programs from non-profits and utility companies. We selected 23 policy 
types that are most directly related to renewable energy development 
including renewable portfolio standards, tax incentives and net meter
ing policies. These policies are then disaggregated to the county-level 
(detailed information in SI Section 3 and Table S3). 

Fig. 1. Methods for the vulnerability assessment. The exposure dimension (yellow) relies on a machine learning clustering model based on type and degree of 
reliance on energy activities for employment. The RETI metric assesses the sensitivity and adaptability dimensions of vulnerability (red). We perform this analysis 
across the entirety of the contiguous US. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2.2. Clustering US counties on the basis of energy sectors employment 

We applied model-based clustering on normalized county-level 
employment data to identify groups of counties that depend on the 
same (or similar) energy sub-sectors for employment. We first normalize 
county-level employment data in energy sub-sectors relative to the 
largest employer sector in the county (Eq. (1)). 

ec,t,i =
Ec,t,i

Ec,t,max
(1)  

The normalized employment in county c in year t in energy sub-sector i 
(ec,t,i, unitless) is calculated as the ratio of the absolute number of people 
employed (in [FTE]) in energy sub-sector i (Ec,t,i) to the number of jobs 
(in [FTE]) in the sector with the highest employment (Ec,t,max) in county 
c and year t. The sector with the highest employment can be a non- 
energy sector, so ec,t,i acknowledges the relative importance of energy 
industries in the county's entire economy. We then used a GM clustering 
algorithm to sort the 3141 counties and county-level equivalents in all 
50 states based on ec,t,i. 

We selected the GM clustering technique and tuned the model based 
on its performance for our data. The GM technique is preferred when 
clusters may differ in shape, size and orientation in the feature space 
[41,42] and has previously been used when the variables are not 
necessarily normally distributed [21]. Furthermore, the GM type we 
selected (tied covariance) provided high clustering quality in our data 
according to the Silhouette index [43]. Finally, we calibrated the 
number of clusters to be 12 using the elbow criterion [44–46]. Details on 
the design, parameters and performance of our GM clustering model can 
be found in SI Section 4 and Figs. S1 and S2. 

We identified the cluster based on the type and intensity of the en
ergy employment. We labeled the clusters (e.g., “Coal – Medium”, 
“Natural Gas – Low”) after the most important energy sub-sector (i.e., 
the one with the highest normalized average) – defining archetypes that 
we tracked in later years. We labeled a cluster as “Low” if, on average, 
the most important energy sub-sector had less than one-third, as “Me
dium” if the number of people employed by the sector was between one- 
and two-thirds and as “High” if it employed more than two-thirds of the 
number of people employed in the county's highest employment sector. 

2.3. Modeling historic transitions in the energy sector 

We observed employment evolution patterns using an interpretable 
cluster tracking method and a Sankey diagram. As new clusters 
appeared over time, we checked for similarity with the archetypes 
defined in previous years [47] using the Fowlkes-Mallows similarity 
metric [48] between periods. Since our labeling method did not rely on 
an a priori rule, but instead on similarity, we had flexibility to distin
guish intra-cluster changes over time (e.g., if the average ec,t,i of the 
dominant energy sub-sector rose or declined) while identifying county 
migration between clusters [47,49]. Finally, we created a Sankey dia
gram to show cluster size and the movement of counties between clus
ters over our study period. 

2.4. Analyzing county-level sensitivity and adaptive capacity for the 
energy transition 

Finally, we characterized county-level sensitivity and adaptive ca
pacity with the RETI. The RETI combines eight variables that describe 
community sensitivity to economic shocks and ability to adapt to a 
renewable energy economy. The four community sensitivity variables 
included: (1) percent of children in poverty, h (in [%]), (2) annual GDP 
growth, g (in [%/yr]), (3) the unemployment rate of the labor force 16 
years or above, u (in [%]) and (4) the population over 25 without any 
college education, e (in [%]). The four variables that describe commu
nity ability to adapt to new renewable energy economic models 

included: (5) households with internet access, i (in [%]), (6) annual 
average DNI, s (in [W/m2]), (7) average wind speed at a 100 m hub 
height, w (in [m/s]) and (8) number of pro-renewable policy programs, 
p. The first five variables are standard metrics for community resilience 
[31,32,50] and the last three variables are specific to the energy 
transition. 

While we designed the RETI metric as a representation of community 
resilience specifically for the energy transition, we have drawn on the 
energy economy, hazard and climate literatures. The variables we have 
chosen are frequently used in these fields and include education 
[27,28,31,32,50,51], infrastructure and communication 
[23,28,31,51,52], household and infant poverty [28,29,31,52–54], un
employment [28,29,31,52] and economic growth [24]. We also use the 
number of policy mechanisms and renewable resource bases as a proxy 
for potential renewable job creation (rather than relying on highly un
certain future employment forecasts), given that jobs in renewable en
ergy generation are less likely to exist where renewable energy resources 
and supporting policy are limited. The number of policy instruments is a 
measure of likelihood for future developments and the resource vari
ables reflect a measure of the maximum achievable capacity by county. 
In SI Section 5 (and Table S4), we further describe the selection process 
of the RETI variables including a sample list of variables used in the 
literature to measure community sensitivity and adaptive capacity. 

To create the RETI, we first normalized each of the input variables to 
be between 0 and 1. This normalization assigns the lowest-observed 
value to be 0 and the highest-observed value to be 1 with remaining 
values interpolated between these extremes (Eq. (2)). 

x′
c,t =

xc,t − min(x)

max(x) − min(x)
(2)  

Here, xc,t is the variable of interest for county c in year t and x′
c,t is the 

normalized variable. We then calculate the RETI for every county in the 
contiguous 48 states (Eq. (3)). The RETI is a non-weighted metric that 
adds measures related to adaptive capacity and subtracts measures 
related to sensitivity. We do not add weights to individual variables in 
the RETI formula to avoid including additional parameters and their 
corresponding uncertainty in our model, consistent with the literature 
on building linear models [55]. 

RETIc,t = i′

c,t + s′

c,t + w′

c,t + p′

c,t − h′

c,t − g′

c,t − e′

c,t − u′

c,t (3)  

As the RETI metric is not normally distributed (results of the 
Kolgomorov-Smirnov tests in SI Section 6 and Fig. S3), we used a non- 
parametric Mann-Whitney-Wilcoxon (MWW) test to determine if there 
are significant differences in the distribution of county-level RETI scores 
between clusters [56]. 

3. Results 

3.1. County-level energy employment in 2017 

The 2.62 M energy jobs in the US in 2017 are highly diffuse and 
unevenly distributed across the country. Ninety-seven percent of 
counties have at least one person employed in the oil and gas industry 
(including drilling, extraction and distribution-related activities and 
manufacturing and other support activities sub-sectors). Conversely, 
renewable jobs tend to be concentrated in just a handful of counties. 
Hydropower is found in just 396 counties – the most counties of any 
renewable energy. The number of people employed in each county also 
substantially varies. While the median number of jobs in the oil and gas 
industry per county is 48 employees, Harris County, Texas has more jobs 
in this industry than any other county in the country (125,455 FTEs). It 
should be noted that Harris County is a clear outlier for energy 
employment as it has the largest economic output for 8 of the 18 pre- 
selected energy sub-sectors and is the largest employer in T&D 
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(9,014), wind generation (1157) and the related construction sector 
(16,801). The oil and gas industry is the largest employer in 151 
counties, while other energy sectors are the largest employer in few 
counties: coal mining in 12 counties, fossil fuel generation in six, nuclear 
in five and wind and turbine and generator manufacturing in one county 
each. County-level energy sector employment statistics are shown in 
Table S5 of the SI Section 7. 

The period from 2002 to 2017 saw a substantial shift in trends for 
energy employment. Employees of the traditional baseload generation 
sectors (i.e., hydropower, fossil fuel and nuclear) were present in fewer 
counties (a decrease of 237, 84 and 3 counties, respectively) and lost a 
significant number of jobs (61,233, 58,964 and 2043). The non- 
traditional renewables (i.e., wind, solar, biomass and geothermal) 
were present in fewer counties in 2017 (a decrease of 42, 118, 132 and 
237 counties, respectively), but overall created 11,791 jobs over this 
period with wind, solar and biomass growing (4806, 5128 and 2312 
jobs, respectively) and geothermal losing 237 FTEs. 

3.2. US energy economy clusters in the US 

Our GM models identified 14 distinct cluster archetypes, with a total 
of 12 clusters identified in each period (details in Table S5). Almost one 
in five US counties belonged to an energy cluster at least once, with 345 
counties on average being in a cluster in any given year. On average, 78 
% counties in a cluster were in an extraction or fossil generation cluster, 
while only 8 % were associated with nuclear and hydropower clusters 
and 12 % with a support industry clusters. The only two clusters for a 
renewable energy source consisted of 29 hydropower counties and only 
appeared in 2002 (Fig. 2A). 

The geographic location of clusters follows expectations for the dis
tribution of energy resources. Coal mining clusters (red shades in Fig. 2) 
are in the Appalachian (West Virginia, Virginia, Pennsylvania, Ohio, 
Kentucky and Alabama), Powder River (Wyoming, North Dakota, 
Montana, Colorado and Utah) and Illinois (Illinois, Indiana and Ken
tucky) coal basins. These maps (and the maps for 2007 and 2012 in 
Fig. S4 of SI Section 8) also show the shale gas boom corresponding to a 
growth in oil and gas drilling clusters (brown shades) as shale plays are 
explored over time. Counties in the nuclear (green) and fossil fuel (or
ange) generation clusters have documented electricity generation ca
pacity [57]. All this serves as a check for our clustering algorithm to 
boost confidence in our algorithm's results. 

3.3. Energy employment cluster dynamics from 2002 to 2017 

The oil and gas drilling clusters showed the largest growth over our 
time period, tripling in size by 2012 compared to 2002, as the shale gas 
revolution led to job growth in the Fayetteville (Arkansas) and 

Haynesville (Louisiana and Arkansas), Marcellus and Utica (Pennsyl
vania, West Virginia, Ohio) and Bakken (North Dakota) shale plays. 
Most of the newly clustered oil and gas extraction counties, 113 in total 
from 2007 to 2012, moved from low dependence on energy jobs to the 
low-intensity oil and gas cluster. However, as the shale gas boom wound 
down in these counties, many were once again reclassified in the low 
dependence cluster by 2017. 

Besides the shale revolution, other trends in the recent history of the 
energy sector are evident in the Sankey diagram (Fig. 3). The size of the 
coal mining and fossil fuel generation clusters fell by 28 counties (a 32 % 
decrease from its 2002 size) and 13 counties (a 21 % decrease from its 
2002 size), respectively. The number of counties in the high and low 
nuclear clusters fluctuated before stabilizing at 35 counties in 2012. The 
turbine and generator manufacturing cluster was at its largest in 2017 (6 
counties) and the transmission and distribution cluster is the most var
iable in size as counties move between it and the low dependence 
cluster. 

3.4. Sensitivity and adaptive capacity 

In general, counties in any energy employment clusters had a slightly 
lower RETI score compared to counties in the group with low depen
dence on energy jobs group (SI Section 9 and Table S7). However, this 
trend masks substantial variation between clusters. For instance, the 
coal-related clusters appear to have low RETI scores, unlike those with 
nuclear- and oil and gas-dominance which have higher scores. Overall, 
the least resilient county in any energy cluster for 2017 was McDowell, 
WV (RETI score of −0.75), a county in the high-influence coal mining 
cluster in all years. This is representative for the coal mining clusters, as 
seven of the ten least resilient counties in any energy-reliant clusters 
were associated with coal mining. The highest RETI score for any energy 
cluster was found in the low-nuclear clustered San Luis Obispo County, 
CA (RETI score of 1.78). Being classified into the oil and gas sector was 
also positively correlated with being socio-economically resilient as 
seven of the top ten most resilient energy clustered counties were 
associated with it in 2017. 

We plotted the cluster-specific cumulative distribution functions of 
the RETI scores to identify differences in distributions (Fig. 4). Coal 
mining clusters tend to have lower RETI scores and their median RETI is 
the lowest among all energy job clusters. We also see differences based 
on the intensity of reliance on coal mining as the median RETI of the 
high-coal mining cluster is substantively lower than that of the low-coal 
cluster. This indicates that being more reliant on coal mining is corre
lated with decreased resilience. The next least resilient cluster is the 
high-influence fossil fuel generation cluster. Turbine and generator 
manufacturing has the highest median RETI score of any energy-reliant 
cluster while (perhaps surprisingly) the median RETI scores for the oil 

Fig. 2. Clusters based on local energy employment in (A) 2002 and (B) 2017. In SI Section 8, we present the maps for 2007 and 2012 (Fig. S4) and cluster de
scriptions and counts (Table S6). The group of counties with low dependence on energy jobs–counties that had too few employees to be incorporated into an energy 
cluster – is the most common in all the studied years (colored in grey). 
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and gas drilling clusters also rank comparatively high in second (O&G- 
Low) and third (O&G-High) place. 

By quantitatively comparing county RETI scores using a MWW test, 
we found significant differences between counties. The MWW test re
sults indicate that the coal clusters with high and low influence are 
significantly less resilient to the transition than other clusters. This 
supports our qualitative conclusions based on Fig. 4. On the other end of 
the spectrum, the low intensity oil and gas and turbine and generator 
manufacturing clusters significantly outperformed five other clusters. 
However, we did not find significant difference between these clusters 
with respect to the group with low dependence on energy employment. 
This set of clusters was followed by the low-intensity nuclear cluster 
(and the low-dependence cluster) that showed significantly higher 
resilience than four other clusters. The results from the cluster com
parison at national and regional levels can be found in SI Section 10 and 
Fig. S5 and state-level differences in SI Section 11 and Fig. S6. 

4. Discussion 

We designed a regional case study in three states (Pennsylvania, 
Ohio and West Virginia) that have historically relied on energy extrac
tion industries (including the recent Marcellus-Utica shale gas boom) 
and have faced economic shocks in the past. As part of the ‘Rust Belt’, 
Ohio and Pennsylvania lost in total about 50,000 manufacturing jobs 
during the 1980s [58] and West Virginia lost more than 10,000 during 
the 2007–2009 Great Recession [59]. During the shale revolution, these 
three states became significant natural gas producers, accounting for 46 
% of the nation's shale gas in 2017 [2]. This led to substantial job growth 
as the six oil and gas sub-sectors created 44,080 jobs in these states 
between 2007 and 2017 – five times the net loss of jobs in coal mining 
[1]. Our clustering analysis results reflect this trend as well, as the 
number of counties in an oil and gas cluster grew from seven to 19 while 
the coal mining clusters shrank from 30 to 19. 

Despite economic growth associated with the shale gas boom, the 
socio-economic conditions on the ground in these states indicate 
continued, substantial economic risk during the energy transition. 
Compared to elsewhere, energy-dependent counties in PA, OH and WV 
had lower RETI scores in 2017 as the state-aggregated medians rank 
25th, 33rd and 41st, respectively, out of the 48 analyzed states. These 
ranks drop to 30th, 35th and 47th if the comparison includes all counties 
and not just energy-dependent ones. All three states in this region have 
low educational attainment and solar resources. West Virginia also has 
high levels of child poverty and unemployment, low levels of internet 
connection and wind resources and the lowest number of renewable 
policy instruments of any state in the US. 

These states have each taken different approaches to preparing for 
the energy transition. The number of renewable policy instruments was 
one salient differentiator for their RETI in the region with Pennsylvania 
having 52 instruments (ranked 10th overall), Ohio having a 33 in
struments (ranked 20th overall) and West Virginia having no relevant 
state-level policies (ranked 48th out of 48 overall). Policies that promote 
the development of renewable resources can create adaptive capacity by 
boosting local tax bases, diversifying the local economy and improving 
community services (e.g., infrastructure and education) [60]. It should 
be further noted that areas with moderate to low renewable resource 
potential (including parts of these states) can participate in the transi
tion through energy efficiency activities, grid modernization, environ
mental remediation [61] and manufacturing in the energy sector value 
chain [62]. 

In this region, trends in the differences in cluster-median RETI scores 
followed those of the continental US – with the exception of the oil and 
gas clusters (see the MWW rank-sum test results for this region in 
Fig. S5B). This indicates that, in general, counties with energy depen
dence are less socio-economically resilient than those with few energy 
jobs, coal mining clustered counties being the most vulnerable (and the 
only counties with RETI scores of less than −0.38 in any energy cluster) 
and the low nuclear generation cluster being the least vulnerable 
(Fig. 5). Critically, unlike for most of the US, counties in the oil and gas 
clusters in Ohio, Pennsylvania and West Virginia are not as resilient. It 
appears that the shale revolution has yet to contribute to the region's 
socio-economic resilience. 

The extraction of shale gas boosted the economy of many Ohio, 
Pennsylvania and West Virginia counties – including places that 
formerly depended on coal mining. However, oil and gas booms can 
have mixed economic and social effects. While natural resource 
dependence is frequently associated with low economic development 
[63], there typically is a rapid growth in employment in early stages of 
natural gas well development. However, the employment growth from 
oil and gas does not translate into rapid growth in employee earnings as 
the industry is more capital-intensive than labor-intensive [64]. 
Furthermore, the long-term impacts of these changes depend on the 
nature of the activities that were affected [65]. The employment growth 
in oil and gas also affects pre-existing economic activities in an area and 
its local social dynamics and shifts employment qualification profiles – 
all of which influences economic resilience [64,66]. Oil and gas devel
opment may crowd out labor from other industries with similar skillsets 
and the jobs that are generated may “leak” out of the county [67,68]. 
The cost of living may also rise and economic activities (like those based 
on natural capital) may be displaced. 

Economic growth in counties that transitioned from coal mining to 

Fig. 3. Evolution of the energy job clusters during our study period. The prominent increase of brown counties from 2007 to 2012 reflects the shale boom. This 
Sankey diagram shows the 590 counties that are in energy clusters at any point in our analysis. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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oil and gas extraction has not significantly improved socio-economic 
resilience. This is evidenced by the fact that the three counties that 
transitioned from the coal mining to the oil and gas extraction clusters 
still had low RETI scores. Armstrong, Pennsylvania and Upshur, West 
Virginia had RETI scores well below state medians (0.51 vs 0.68 for 
Armstrong County and −0.9 vs −0.2 for Upshur County). Belmont 
County, the county with the largest production of shale gas in Ohio in 
2016 [69], was also slightly below the Ohio median RETI (0.58 vs 0.60). 
In general, most RETI socio-economic variables in Belmont, Upshur and 
Armstrong counties were behind the region and the country after the 
shale gas boom (Fig. 6) and either decreased or grew slower than the US 
median from 2017 to 2020 (SI Section 12 and Table S8). In particular, 
the performance of these three counties does not appear to substantially 
differ from counties that continued to be classified in the coal-mining 
clusters. Greene County, Pennsylvania consistently relied in coal min
ing for every year in our study period and yet had a higher RETI in 2017 
(0.56) than Armstrong and a better trend in most socio-economic indices 
for the next three-year period. McDowell County, West Virginia had the 
lowest RETI in the region (−0.75) but is improving significantly faster 
than the US and the region thanks to its reduction of childhood poverty, 
education and lack of internet connectivity. This strongly suggests that 
short-term investments and economic growth from shale gas industries 
has yet to meaningfully improve socio-economic resilience compared to 
those counties that did not pursue shale gas. 

These results raise questions about the effects of non-renewable in
dustries on county-level resilience – and sustainability. Both resilience 
and sustainability aim to provide benefits to people under extreme 
conditions [70] like the distress caused from the losses of fossil-fuel 
industries in the energy transition. Therefore, the low RETI of oil-and- 
gas-reliant counties is also a sustainability problem. The framework of 
weak sustainability lets us address this problem by examining how oil 
and gas activities create wealth for future generations in the region [71]. 
According to the Hartwick's rule [72], a county would be (weakly) 
sustainable if productivity from other forms of capital created (e.g., 
human capital developed by education, manufactured capital in the 
form of infrastructure) by the oil and gas industry exceed the loss of 
natural capital via mineral extraction. 

To explore the possibility of weak sustainability enabled by the oil 
and gas industry, we can examine the sector's investments to improve 
roads and bridges and the property tax contributions towards education. 
In Belmont County, the oil and gas industry invested $62 M to improve 

Fig. 4. Cumulative Distribution Functions of county RETI by energy jobs 
cluster. Differences between groups were quantitatively evaluated using the 
Mann-Whitney-Wilcoxon rank-sum test (SI Section 10 and Fig. S5A). 

Fig. 5. Resilience and energy dependence cluster map in the Marcellus-Utica 
case study. The red clusters (i.e., high-intensity coal mining) tend to have 
denser hatching which indicates a lower resilience. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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93 miles of roads and bridges between 2011 and 2017. However, these 
improvements are associated with Road Use Maintenance Agreements 
and are for road segments related to gas well operations [73] with only 
indirect social benefits. On the other hand, approximately 60 % of 
collected property taxes ($16.8 M in between 2011 and 2017) are 
allocated to education [74]. These investments of tax revenue in edu
cation are more consistent with improving sustainability and promoting 
socio-economic resilience as future wealth in the form of human capital 
and is commonly considered in comprehensive wealth metrics [16,75] 
and value creation from education has been considered implicit in future 
earnings and productivity [76]. Given these facts, not all capital creation 
activities are guaranteed to produce a more sustainable and resilient 
society as the value of infrastructure investment depends on its use after 
the transition while education investments translate directly to future 
wealth. 

Like the extractive sub-sectors, power generation can also help build 
effective adaptive capacity in the region by investing in other types of 
reproducible capital. These forms of capital creation can increase socio- 
economic resilience depending on the level of alignment with the 
transition. Two nuclear-clustered counties, Ottawa County, Ohio and 
Beaver County, Pennsylvania (RETI scores of 0.89 and 0.85, respec
tively), demonstrate how this can be done as public and private stake
holders leverage the nuclear industry to further create capital suitable 
for a decarbonized future. Ottawa County is home to a research, 
development and deployment project on nuclear-based hydrogen 
financed by the US Department of Energy [77]. A Beaver County power 
utility is forming a long-term partnership to power a large data center 
[78]. These investments stand in stark contrast to investments made in 
Adams County, Ohio. In 2011, an electric utility opened a $4.5 M 
training center in Adams County for future fossil generation employees 
[79] requiring millions of dollars to be invested in training equipment to 
produce human capital. This investment failed to contribute to prepar
ing the county for the transition as it had the second lowest RETI in Ohio 
in 2017 (−0.21) and continued to be in particular need of human capital 
[22]. The financial and human capital created by that investment was 
stranded when the local coal-fired power plants, Killen and Stuart, 
closed in 2018 [80]. Its construction increased the Adams County's 
exposure to the energy transition – instead of increasing its adaptive 
capacity – as it attracted more people and more infrastructure to the 
fossil generation sub-sector. The coal plant closures were also a sub
stantial blow to the County's tax revenues, as utilities are the sole in
dustry in the state that is subject to the tangible personal property tax 
[81]. This unique tax structure could have intensified investment in 
technology rather than in human capital, exacerbating the reliance on 

capital-intensive industries [82]. 
Renewable energy manufacturing can also play a critical role in 

improving socio-economic resilience during the transition in the region. 
Manufacturing has historically been a provider of high-wage jobs, 
commercial innovation and a contributor to environmental sustain
ability [83]. A manufacturing-focused strategy can also take advantage 
of the fact that the sectors that produce services or products that are a 
net benefit for the environment (e.g., low-carbon energy) are more 
intense in manufacturing jobs compared to the economy as a whole (26 
% vs. 9 %) [84]. Current energy manufacturing capacities do not reflect 
the region's manufacturing Rust Belt past, as only one county in the 
region (Knox County, Ohio) fell into a relevant manufacturing for energy 
cluster, the turbine and generator manufacturing cluster. Development 
of heavy industries can link potential elements from this manufacturing 
past with the energy transition. This would allow manufacturing to serve 
as a bridge industry during decarbonization given similarities in labor 
skillsets between power plant and mineral extraction employees and 
maintenance and mechanics [81] and the opportunity to reconstruct 
labor and cultural identities [10]. However, developing policies to 
leverage these features of manufacturing industries will require future 
work to better understand underlying assumptions. 

Community-transition support complements policies on diversifica
tion, job creation and protection of workers as they target the same 
overarching goal of defending the living standards of individuals in 
vulnerable communities at relatively small costs [61]. Several 
community-oriented programs have already been implemented in the 
region to potentially address socio-economic vulnerability and shape the 
regional post-transition economy. One example of this is the Appala
chian Regional Commission's Partnerships for Opportunity and Work
force and Economic Revitalization (POWER) initiative that supports 
shrinking coal communities. This initiative coordinates efforts around 
the transition while embracing the region's sense of identity in energy 
and manufacturing activities. Since 2015, the POWER initiative has 
invested $316 M in activities like training, environmental remediation, 
broadband development and entrepreneurship. These interventions are 
well situated to address the three dimensions of vulnerability and are 
supported by just transition literature findings [85,86]. 

5. Conclusions 

We developed a methodological framework that incorporates county 
reliance on energy employment into a vulnerability assessment and use 
this framework to characterize the ability of each county in the conti
nental US to adapt to a low-carbon energy future and the relationship 

Fig. 6. Components of the RETI in the three counties 
that migrated from coal to oil and gas clusters. Panel 
(A) shows the eight normalized variables related to 
sensitivity (negative) and adaptive capacity (posi
tive). The hatched transparent bar represents the 
total of the RETI metric that results from adding the 
adaptive capacity measures (in the positive direction) 
and subtracting the sensitivity ones. Panel (B) depicts 
the trends of two socio-economic variables in these 
counties. The three of them had faster reduction in 
child poverty than the regional median, but Belmont 
and Upshur experienced a decline in the educational 
attainment. These three counties remain below the 
US median in 2020 in this variable.   

D. Hincapie-Ossa et al.                                                                                                                                                                                                                        



Energy Research & Social Science 100 (2023) 103099

9

between different energy-related sub-sectors and socio-economic resil
ience. We used ML to identify clusters of counties that are similarly 
exposed to the decline of fossil fuels given the fraction of jobs that rely 
on different energy extraction and utilization activities. The most 
frequent energy clusters were related to fossil energy extraction, while 
no clusters were defined by renewable energy except for hydropower 
(and only in the first year of our analysis). We further found significant 
differences in cluster-level socio-economic resilience as our results 
showed that coal mining-reliant counties were significantly more 
vulnerable than counties in other clusters. We also found that while oil 
and gas clusters had relatively high resilience across the country, this 
was not the case for oil and gas counties in the Marcellus-Utica shale 
plays. 

From our analysis of oil and gas-reliant counties in the Marcellus- 
Utica region, we do not find evidence that the shale expansion helped 
prepare counties for the transition to a low-carbon future. In particular, 
counties that shifted their dependence on coal mining to rely on shale 
gas do not show improvements in our resilience metrics compared to 
those that did not undergo this shift away from coal. Our results further 
the arguments that metrics of economic output need to be adjusted and 
scrutinized before being interpreted as indicating improvements to the 
welfare of society [16,76]. The low resilience in counties that depend on 
energy extraction and the lack of evidence that RETI grew during (or 
after) the shale gas boom suggests that current transfers from non- 
renewable industries to non-financial types of capital may not enhance 
sustainability and resilience – without meaningful policy interventions. 
Kelsey et al. [87] recommends economic policies to better collect the 
benefits from extraction-oriented economic booms including recog
nizing the temporal nature of the growth and leveraging transfers to 
create long-lasting local capabilities. Interventions that are designed to 
create non-financial capital from fossil industries should explicitly 
contribute to inclusive wealth measures (e.g., human, social and envi
ronmental capital) outside of the fossil-fuel sector to strengthen com
munities and their resilience more effectively. 

Interventions that serve non-renewable industries without creating 
other types of capital should be scrutinized to avoid the creation of 
stranded assets. Accounting for functional depreciation, in which an 
asset loses value due to technological obsolescence, is required to 
measure intergenerational well-being as part of a comprehensive wealth 
criterion [88]. It can determine if an intervention builds reproducible 
capital or capital assets that will become stranded after the transition. 
Policies and interventions that incentivize the natural capital con
sumption, even perhaps beyond environmentally-tolerable losses 
[89,90], can still be weakly sustainable if they support the transition by 
creating human, social and infrastructure capital that is valuable for a 
low-carbon economy. 

Our RETI framework meaningfully integrates exposure due to the 
presence of a fossil energy workforce with relevant measures of resil
ience during the energy transition. A vulnerability assessment based on 
our RETI metric can be used and improved upon to evaluate the effects 
from interventions and industrial shifts on community resilience during 
the transition. The RETI metric does not attempt to be a projection of 
future jobs in a county, instead it reflects relative county vulnerability 
and economic well-being. Tracking this metric across time can therefore 
be useful in identifying lasting effects from local events in energy sec
tors. A multi-decadal analysis of the RETI can uncover long-term com
munity impacts of “bridge” fuels (i.e., natural gas), policy interventions, 
investments and industrial trends. Assessments with finer spatial reso
lution (e.g., zip code-level) can be used to capture impacts with a focus 
on vulnerable populations within counties. Besides refining the frame
work in spatial or temporal scales, further work with the RETI can refine 
its design and variable selection to potentially allow it to measure other 
types of economic activity. However, our objective is not to design a 
comprehensive metric of resilience, but a meaningful one that captures 
significant elements of community sensitivity and adaptive capacity 
during the energy transition. Performing a thorough literature review 

and analyses of interdependence (e.g., correlation analysis between 
RETI components) can highlight any future needs to improve the RETI 
design. The use of econometric approaches and comparative analyses 
with other US coal mining or shale gas extraction regions can further 
explore the relationship between energy extraction and the growth of 
community resilience and sustainability. Furthermore, incorporating 
potential cultural, labor and infrastructure indicators and the state of 
produced capital for manufacturing and emerging energy industries (e. 
g., energy efficiency, digital services for energy and infrastructure and 
energy storage) can potentially enrich our RETI regional analysis and 
explore other sources of adaptive capacity. 

Symbols 

E Employment [FTE] 
e Normalized employment [−] 
RETI Resilience during the Energy Transition Index [−] 
s Average Direct Normal Irradiance [W/m2] 
w Average wind speed at 100 m [m/s] 
p Number of pro-renewable policy programs in a county [#] 
i Percentage of households with internet access [%] 
h Percent of children poverty [%] 
g Annual county GDP growth [%/yr] 
d Percent of population over 25 years without any college 

education [%] 
u Unemployment rate of labor force 16 years or above [%] 

Subscripts 

i Industry 
c County 
t Period 

Superscripts 

‘ Normalized variable 
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