
Quantum Science and Technology

PAPER

Emergent complex quantum networks in
continuous-variables non-Gaussian states
To cite this article: Mattia Walschaers et al 2023 Quantum Sci. Technol. 8 035009

 

View the article online for updates and enhancements.

You may also like
Atomic step-and-terrace surface of
polyimide sheet for advanced polymer
substrate engineering
G Tan, K Shimada, Y Nozawa et al.

-

Soft-molecular imprinted electrospun
scaffolds to mimic specific biological
tissues
Giuseppe Criscenti, Carmelo De Maria,
Alessia Longoni et al.

-

Imprinting Sensor Based on Honeycomb
Graphene Oxide for the Determination of
Echinacoside in Complex Samples
Jing Ma, YanPing Wang, Xiumei Zhu et al.

-

This content was downloaded from IP address 71.196.187.125 on 23/08/2023 at 20:09

https://doi.org/10.1088/2058-9565/accdfd
/article/10.1088/0957-4484/27/29/295603
/article/10.1088/0957-4484/27/29/295603
/article/10.1088/0957-4484/27/29/295603
/article/10.1088/1758-5090/aad48a
/article/10.1088/1758-5090/aad48a
/article/10.1088/1758-5090/aad48a
/article/10.1149/1945-7111/acb235
/article/10.1149/1945-7111/acb235
/article/10.1149/1945-7111/acb235


Quantum Sci. Technol. 8 (2023) 035009 https://doi.org/10.1088/2058-9565/accdfd

RECEIVED

22 November 2022

REVISED

27 March 2023

ACCEPTED FOR PUBLICATION

18 April 2023

PUBLISHED

4 May 2023

PAPER

Emergent complex quantum networks in continuous-variables
non-Gaussian states
Mattia Walschaers1,∗, Bhuvanesh Sundar2, Nicolas Treps1, Lincoln D Carr3,4
and Valentina Parigi1,∗
1 Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, 4 place Jussieu, F-75252 Paris, France
2 Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A 6020, Austria
3 Quantum Engineering Program, Colorado School of Mines, Golden, Colorado CO 80401, United States of America
4 Department of Physics, Colorado School of Mines, Golden, CO 80401, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: mattia.walschaers@lkb.upmc.fr and valentina.parigi@lkb.upmc.fr

Keywords: complex networks, quantum optics, continuous variables, cluster states, non-Gaussian quantum states

Abstract
We use complex network theory to study a class of photonic continuous variable quantum states
that present both multipartite entanglement and non-Gaussian statistics. We consider the
intermediate scale of several dozens of modes at which such systems are already hard to
characterize. In particular, the states are built from an initial imprinted cluster state created via
Gaussian entangling operations according to a complex network structure. We then engender
non-Gaussian statistics via multiple photon subtraction operations acting on a single node. We
replicate in the quantum regime some of the models that mimic real-world complex networks in
order to test their structural properties under local operations. We go beyond the already known
single-mode effects, by studying the emergent network of photon-number correlations via complex
networks measures. We analytically prove that the imprinted network structure defines a vicinity of
nodes, at a distance of four steps from the photon-subtracted node, in which the emergent network
changes due to photon subtraction. We show numerically that the emergent structure is greatly
influenced by the structure of the imprinted network. Indeed, while the mean and the variance of
the degree and clustering distribution of the emergent network always increase, the higher
moments of the distributions are governed by the specific structure of the imprinted network.
Finally, we show that the behaviour of nearest neighbours of the subtraction node depends on how
they are connected to each other in the imprinted structure.

1. Introduction

Large multiparty quantum systems are extremely hard to describe, although the complex behavior of their
quantum states is what makes them appealing resources for quantum information processing. Intensive
efforts have been dedicated to the direct representation of quantum states via numerical and analytical
approaches with the aim of classifying and detecting truly non-classical and useful quantum features, like
entanglement [1, 2].

In this work we focus on the complex behaviour of quantum states in continuous variable (CV) quantum
systems and we tackle it via complex network theory. Our work is motivated by all-optical platforms, based
on continuous quantum observables, that can already produce large entangled networks [3–5]. These
networks are made of traveling light fields with quantum correlations between amplitude and phase values of
different modes of the field, e.g. light at different colors. They have Gaussian measurement statistics for
amplitude and phase continuous variables, so that they can be easily simulated via classical computer. They
are essential resources for measurement-based quantum computing but, in order to perform quantum
protocols, they must acquire non-Gaussian statistics of the continuous variables. Non-Gaussian statistics can
be induced via mode-selective addition and subtraction of photons [6, 7], that are then called non-Gaussian
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operations. When the number of entangled systems—in our case optical modes—and the number of
non-Gaussian operations grow, these systems quickly become hard to benchmark [8–13].

In the most general scenario, even measurement outcomes of such systems become computationally hard
to simulate [14], so that the associated sampling problem is one of the many variations of bosons sampling
[15, 16]. This connection is made particularly clear when one considers a more general state preparation
framework based on photon-number-resolving detectors of which photon multi-photon-subtraction and
Gaussian boson sampling are limiting cases [17]. Such sampling setups have recently led to several
demonstrations of a quantum computational advantage [18–20]. It was shown that for bosonic sampling
setups the computational complexity is governed by the number photons that are detected or injected in the
setup [21]. This emphasises the potential importance of multi-photon-subtracted states and of finding way
to characterise them. Photon-number correlations have shown to be efficient tools to extract properties of
such intricate systems [18–20, 22–25]. Average values of photon-number correlations can be analytically
tractable, but they can only unveil global properties of the system. Yet, to acquire a more detailed image of
the state, we can use network theory to analyse distributions of photon-number correlations.

In this work, the use of network theory will be two-fold. First, the optical CV entangled networks can in
fact be easily reconfigured in arbitrary shape [26]. We can thus consider entangled networks which are
generated through models studied in network theory to reproduce the features of real-world networks. They
provide an excellent playground to explore whether mimicking real-world complex network structures
[27, 28] provides an advantage for quantum information technologies, including quantum simulation and
communication [26, 29] in a future quantum internet. Second, we will use network theory as a powerful tool
for benchmarking entangled networks when affected by local non-Gaussian operations by building weighted
networks of photon-number correlations. We can then study how different shapes of the initial entangled
network can support, enhance, spread or destroy the non-Gaussian features provided by local subtraction of
multiple photons. By subtracting all the photons in the same mode, we keep the problem computationally
tractable for a numerical study. To explore the scenario where many photons are subtracted in many modes,
one would require a quantum device because those systems cannot be efficiently simulated on classical
hardware.

1.1. Conceptual scheme
The conceptual scheme of our analysis is shown in figure 1. Large CV entangled networks have been
deterministically implemented via non-linear χ(2) optical processes. This operation entangles different
modes (be they spatial, spectral or temporal) of the fields via an appropriately engineered parametric
interaction [3–5, 26, 30, 31]. These processes are sketched in the left corner of the upper row of figure 1,
where the different modes are represented by different colors. The circuit representation of the generated
states is sketched in the second row of the figure: the non-linear optical process is equivalent to different
travelling optical modes occupied by squeezed vacuum states that are entangled via CZ gates. This generates
the cluster state [32, 33]. In the third row we show the graphical representation of the state: the different
optical modes are represented by different nodes of the network which are linked by CZ gate entangling
operations, counted by the entry 1 in the adjacency matrixA of the network. This structure is an imprinted
network, as it builds the initial quantum states. In the right side of the first column of figure 1 we picture the
action of multiple-photon subtraction, i.e. the repeated application of the photon annihilation operator â on
one specific mode of the field. The probabilistic implementation of this operation consists of a
mode-selective beam-splitter that sends a small fraction of light to a photon counter: when n photons are
detected an n-photon-subtracted state is heralded. The process can be implemented via non-linear
interaction with supplementary gate fields [6]. In the fourth row of the first column we show the network of
photon-number correlations between the different field modes that emerge from the imprinted network.
This is the emergent network. Its adjacency matrix A contains continuous values between 0 and 1, indicating
the strength of photon-number correlations between couple of nodes. In this work we are interested in
following the changes of this emergent network of photon number correlations after photon-subtractions on
one node as a benchmark of the desired non-Gaussian properties of CV quantum states.

1.2. Summary of the results
The entangling CZ-gates in the imprinted network generate short range correlations between nodes. Also,
the non-Gaussian operations we consider here—photon-subtractions—are applied locally on a single node.
Under such conditions the effect of photon subtraction on a regular graph is limited [34]. On the contrary,
here we probe imprinted networks constructed from complex network models, where typical distances
between nodes are short. Our results are as follows:
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Figure 1. Left column, first row: sketch of nonlinear multi-mode χ(2) optical processes that demonstrate the deterministic
implementation of large CV networks and mode-dependent multi-photon subtraction. Second row: circuit representation of the
two processes. Third row: graphical representation of the so-called cluster states (imprinted networks) where the nodes are the
different modes of the field and edges correspond to CZ gates between modes. Last and fourth row: emergent networks where
edges are photon-number correlations between modes. Right column: same as left but considering imprinted cluster with shapes
typical of complex network models.

• For imprinted complex networks we see highly connected emergent networks of photon-number correla-
tions.

• The imprinted network structure defines a vicinity of nodes around the photon-subtracted node in which
the emergent network changes due to photon subtraction.

• Some networks are more efficient than others in spreading the non-Gaussian features. This depends on the
amount of randomness and on the inhomogeneity of number of links in their structure.

• The properties of the emergent networks after photon subtraction are mainly dictated by the local network
structure in the vicinity of the photon subtraction node.

1.3. Structure of the paper
The Article is outlined as follows. Section 2 introduces the basic concepts of complex networks and CV
cluster states used in this work to make the Article accessible to readers with different backgrounds—readers
with one or both areas of expertise may choose to skip this section or particular subsections. We describe the
imprinted network structure and review non-Gaussian operations and their importance for getting
non-Gaussian CV cluster states. We introduce the emergent correlation networks and complex network
measures. Then in section 3 we look at emergent correlation networks for Gaussian cluster states when
different complex network models are used for the imprinted network. This section forms a baseline for the
ensuing non-Gaussian analysis. In section 4 we describe the evolution of the emergent correlation networks
when repeated photon subtractions are applied. We show that photon subtraction in a single node only
affects a certain vicinity of the subtraction node. We then analyse the global impact of the non-Gaussian
operation on the emergent network. In section 5 we analyse the local effects of photon subtraction. We show
that the sub-networks formed by nodes at different distances from the subtracting point have a different
influence on the statistics of the non-Gaussian graphs. We then reveal the driving mechanism for the
sub-networks composed by all the node at distance one from the subtracting point, i.e. all the nodes that
have a direct link with the subtracting node in the imprinted network. Finally, in section 6 we comment on
general features of non-Gaussian correlations in photon-subtracted networks and specific features
dependent on the imprinted network model.
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2. Quantum complex network theory and continuous variable quantum systems

2.1. Complex networks and quantum physics
In the last decades, network theory has made significant progress in describing collective features and
functionality of complex systems [35, 36]. Network-based descriptions are pivotal in social and biological
science as well as in technological infrastructures like power grids and information networks such as the
internet. The study of complex network structures has spread in physics [37, 38] helping in the description of
complex physical systems. Subfields in physics utilizing complex networks include statistical physics,
condensed matter and quantum physics with, e.g. the study of the Ising model and Bose Einstein
condensation [39–45]. More recently the study of complex networks has become relevant for quantum
systems and procedures employed in quantum information technologies [27, 28, 46–50] indicating that a
dedicated theory of quantum complex networks needs to be built, especially for networks with no classical
equivalent, like those based on quantum correlations or quantum mutual information. In particular,
emergent complex networks based on quantum mutual information have determined critical points for
quantum phase transitions [44, 51, 52]. Likewise, complex network theory has been successful in
determining self-similarity in entanglement structure of spin-chains [53] as well as new kinds of structured
entanglement emerging from quantum cellular automata [54] on qubit/gate/ciruit-based quantum
computers. Networks are naturally evoked in the quantum regime in relation to the quantum internet [55],
where it is not clear yet if the best arrangement of its components will take a complex shape like the classical
internet. Networks are however pivotal in all quantum technologies. Indeed, quantum information
algorithms and quantum transport can be mapped to quantum walks on regular and complex networks
[56–59]. Complex networks have also a crucial role in near-term quantum information processing because
they describe networked noisy intermediate-scale quantum computers [60, 61]. Thus complex network
theory provides a versatile toolbox, as it can be applied to different quantum features, and is very efficient in
revealing emerging collective structural mechanisms.

Here we apply, for the first time, complex network analysis to CV multipartite quantum states. We focus
on the ones that can be generated in the more advanced optical platforms, but the method can be applied to
general CV states.

Networks are a collection of nodes and links. This is a very versatile conceptual structure that can be
applied to any kind of relation between a collection of physical systems: receivers and senders in an
information network linked by physical channels; atomic spins interacting via magnetic forces; or physical
observables linked by correlation relations. The adjacency matrix is the central mathematical object of
complex network theory: a non-zero term in the matrix indicates a link between two nodes, where the
indices of the matrix determine the nodes. The work done in this Article is based on constructing the
adjacency matrices for relevant networks, and subsequently extracting relevant properties from them.

In quantum information, graphs define the structure of the so-called graph or cluster states5. They
correspond to multipartite quantum states with a specific entanglement structure introduced in the context
of measurement-based quantum computing [32, 33, 62, 63]. For such cluster states, a non-zero term in the
adjacency matrix indicates that an entangling gate has been applied between two qubits or between two
quantum fields in two different optical modes (where the information is encoded in discrete or continuous
variables, respectively). We first provide a brief introduction to CV quantum optics in section 2.2 and we
review the CV cluster states that are induced by the imprinted networks in section 2.3. Then in section 2.4 we
introduce the photon subtraction operation that creates non-Gaussian features in these quantum states. We
define the emergent network of photon-number correlations in section 2.5. Finally, in section 2.6 we review
network measures in the context of complex network models.

2.2. Continuous variable quantum optics
Am-mode light field [64] can be described as an ensemble ofm quantum harmonic oscillators with creation
and annihilation operators which obey the commutation relation [âj, â

†
k ] = δj,k. In the CV framework, we

focus on ‘position’ and ‘momentum’ variables of these harmonic oscillators, x̂k = â†k + âk and

p̂k = i(â†k − âk), also called quadratures. Generic quantum states of such quantum harmonic oscillators are
hard to characterize, but the subclass of Gaussian states is very well understood. These states are completely
described by the quadrature expectation values (the mean field) and covariance matrix V. To define the

latter, let us introduce the 2m-dimensional vector ⃗̂ξ = (x̂1, . . . , x̂m, p̂1, . . . p̂m)⊤, and introduce

5 Cluster is sometimes reserved for graphs allowing for universal quantum computing. In this work, however, we use the terms cluster
state and graph state as synonyms.
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V= Re 〈⃗̂ξ ⃗̂ξ⊤〉− 〈⃗̂ξ〉〈⃗̂ξ⊤〉, (1)

where 〈.〉 denotes the expectation value of the observables in the state ρ. If this state is Gaussian, all its higher
order correlations can be expressed in terms of V [65] (note that this property is explicitly used in
appendix A).

In this work, we will associate specific optical modes with the nodes of a network, as shown in figure 1.
Such networks are naturally realized in the cluster state formalism of CV measurement-based quantum
computing. It was experimentally demonstrated that such cluster states can be generated in arbitrary shapes
[26].

2.3. Clusters: imprinted quantum networks
In quantum optics ideal cluster states require infinite energy to produce, it is therefor common to consider
approximate cluster states, based on applying CZ gates on a set of squeezed vacuum modes. The finitely
squeezed states can be written as Ŝ(s)|0〉

⊗
N, where Ŝ(s) is the squeezing operator, and |0〉 the vacuum state.

The parameter s> 1 denotes the squeezing, which for simplicity is chosen to be the same in all N copies. The
unitary CZ gates that entangle these squeezed vacuum modes are given by CZ = exp(ıx̂i ⊗ x̂j).

This results in a Gaussian state with covariance matrix (1) given by Vs = diag[s, . . . , s,1/s, . . . ,1/s]. The
first N elements in the diagonal are the variances of the x quadrature of the N modes (nodes)
〈x̂2i 〉= s〈x̂2〉v = s where 〈x2〉v is the variance of the quadrature for the vacuum state which is taken equal to 1.
The last N elements are the variances of the p quadrature 〈p̂2i 〉= 1/s of the N modes. The approximate
cluster state that results by acting on Ŝ(s)|0〉

⊗
N with a network of CZ gates is then described by [66]:

V=

(
Vxx Vxp

Vpx Vpp

)
=

(
1 0
A 1

)
Vs

(
1 A
0 1

)
=

(
s1 sA
sA sA2 +1/s

)
. (2)

Here, V is a 2N× 2Nmatrix divided into four N ×N blocks. Vxx and Vpp describe the correlations among
the x- and p-quadratures, respectively, whereas Vxp and Vpx contain all correlations between x- and
p-quadratures. The presence ofA2 in Vpp highlights that correlations extend not only between nearest
neighbor nodes, but also between next-nearest neighbors of the imprinted network. The elements [A2]ij are
in fact known to correspond to the number of walks of exactly two steps from j to i of the networkA [33, 34].

The CZ gates, which create the entanglement, can be implemented according to any network shape,
i.e. any adjacency matrixA. When used in measurement-based quantum computing, cluster states are built
to ensure persistence of entanglement [67]. This means that a measurement on one node only locally affects
the state and the surviving entanglement links can be further exploited for the next steps in
measurement-based computing. To this end, some regular 2D graph structures, e.g. hexagonal or triangular
lattices, have been proven to allow for universal computing. That is, arbitrary unitary operations can be
performed via local operations and classical communication on the cluster. In contrast, others have been
discarded, e.g. the tree graph [68]. Here we go beyond such regular structures, motivated by the fact that CV
quantum networks in optical setups can be easily reconfigured to arbitrary shapes [26]. We want to indeed
replicate in the quantum regime some of the models that mimic real-world complex networks [27, 28] in
order to test their structural properties under local operations.

In the remainder of the Article we refer to the network that describes the patternA of CZ gates that are
applied to create the Gaussian cluster state as the imprinted network.

2.4. Non-Gaussian operations in continuous variable platforms
Cluster states are characterized by Gaussian statistics of quadrature measurements, which allows for a
compact statistical description even when they have a large size. However, for quantum computing protocols,
cluster states must also acquire non-Gaussian quadrature statistics via non-Gaussian operations. Unlike the
Gaussian case, the quantum features of such non-Gaussian networks are not trivial to classify [34, 69, 70].
Examples of non-Gaussian operations are the conditional implementation of single-photon subtraction and
addition, i.e. the action of annihilation and creation operators â and â† [6, 7, 71–75]. Such operations have
long been investigated as primitive for two important operations for quantum protocols: entanglement
distillation and the generation of Wigner negativity. Single-photon subtraction and addition can also be
combined to engender high-order non-Gaussian operations [9, 11, 76, 77].

In this Article, we focus on multi-photon-subtraction operations that can ideally be represented, in a
multimode case, by the following operation on a state ρ:

ρ 7→
âSn . . . âS1ρâ

†
S1
. . . â†Sn

tr[â†S1 . . . â
†
Sn
âSn . . . âS1ρ]

, (3)

5
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where Si denotes a particular mode. In general, equation (3) describes repeated subtractions from different
nodes, or even from superpositions of different nodes, that have recently been experimentally implemented
[6, 71]. When these operations are applied on multimode quantum states characterization of the resulting
states is not a trivial task. Recent results have depicted the rules of thumb for entanglement and Wigner
negativity [8, 34, 69, 70], indicating that a deeper structural analysis would be beneficial for a more
comprehensive picture.

Here, we specifically consider repeated photon subtractions from one single node of the cluster state in
equation (2). There are two main reasons for this choice. First, we focus on the simplest scheme providing
significant statistics. In fact, when multiple subtractions from an arbitrary superposition of nodes are
considered, the analysis becomes computationally hard [14]. Second, we aim at probing the extent of the
effect of photon subtraction in the most local way possible. In previous work, we have shown that photon
subtraction on a given node induces non-Gaussian features in its nearest and next-to-nearest neighbor nodes
[34]. This Article goes beyond single-point features such as local averages. Instead, we focus on the changes
induced in the correlations between those nodes, including beyond next-nearest neighbors. We then study
how different imprinted network shapesA spread or destroy the non-Gaussian features created by photon
subtraction. This is a problem that is very typical for classical information networks, studied here in the new
context of quantum correlations.

2.5. Emergent complex networks of photon number correlations
Covariance matrices are sufficient to explain the behaviour of Gaussian states. In the case of non-Gaussian
states expectation values of higher order operators are needed. In this Article, we focus on photon-number
correlations, that are simple non-Gaussian observables with a clear physical interpretation. Photon number
correlations can be written in terms of fourth moments of quadratures, which are sensitive to the
non-Gaussianity—i.e. departure from Gaussian shape—of the quadrature distribution [8].

To consider structural effects, we introduce a second network for each cluster state, composed by the
emergent structure of photon-number correlations between pairs of modes. As such, we define the
correlation matrix C:

[C]ij =
|〈n̂i n̂j〉− 〈n̂i 〉〈n̂j〉|√

(〈n̂2i 〉− 〈n̂i〉2)
(
〈n̂2j 〉− 〈n̂j〉2

) , (4)

where we take the absolute value of the correlation, since we are purely interested in the strength of the
correlation, rather than its sign. The values of |〈n̂i n̂j〉− 〈n̂i 〉〈n̂j〉| depend on the number of photons in the
system; it may be higher for two weakly correlated nodes with very high photon numbers, than for strongly
correlated nodes with very small photon numbers. Due to its conditional nature, photon subtraction locally
changes the photon number in the system, thus making it impossible to genuinely compare the resulting
values of |〈n̂i n̂j〉− 〈n̂i 〉〈n̂j〉| in the two cases. The denominator in equation (4) solves this problem by
renormalizing the correlation to be confined between zero and one, where one implies that both nodes
contain the same number of photons, regardless of how many photons there are.

Equation (4) ultimately allows us to look at the correlation network, as given by its weighted adjacency
matrix:

A= C−1. (5)

In the following we will characterize what kind of correlation networks (A) emerge, in the same spirit of
mutual information networks in [44], when photon-subtraction operations are applied on cluster states with
different shapesA.

2.6. Complex network measures in complex network models
Quantitative measures of network structures have been introduced by network theory [35, 36]. From the
adjacency matrix components we can calculate the degree Di for each node i, i.e. the number of links
connected to it, as

Di =
∑
j

Aij. (6)

The degree distribution p(D) gives the probability for a randomly picked node to have the degree D. Many
crucial properties of networks, like their robustness to perturbations and the spread of contamination, are
determined by the functional p(D) [36].
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A second quantitative measure of complexity is the local clustering coefficient. It gives information on
the connections between the neighbors of a specific node, thus keeping track of local correlations around a
point. A common way of defining the clustering coefficient is the number of triangles to which the node
belongs divided by the number of triplets. It can be recovered from A as

Cli =

∑
j ̸=kAijAjkAki∑
j ̸=kAijAik

(7)

for i 6= j 6= k.
Here we briefly review some of the paradigmatic models that have been proposed for real-world

networks: the random network model called Erdős–Rényi (ER), the Barabási–Albert (BA) model and the
Watts–Strogatz (WS) model. The ER model builds networks by randomly connecting nodes according to a
uniformly random probability pER for two nodes to be connected. The resulting networks exhibit a binomial
distribution of links per node. The ER model is able to reproduce the typical average shortest path distances
between nodes of real networks.

A second model that has been introduced to reproduce typical complexity signatures of real networks is
the BA model. It describes network formation processes based on the preferential attachment model: the
network grows by adding new nodes. These new nodes attach withm links to old nodes. The probability of
connection is proportional to the degrees of the existing nodes, such that the highest degree nodes are the
preferred ones. This model is able to reproduce the power-law distribution in the degree, and thus the
existence of ‘hubs’, i.e. nodes with very large degree, as in real-world networks.

Finally, the WS model is able to reproduce the small-world mechanism, where any node is a short path
from any other in the network. Specifically, the distance between any two nodes grows as the log of the total
number of nodes. It is built by starting from a regular network in which each vertex has a fixed degree k; for
instance, k= 2 would correspond to a lattice in tight binding approximation. Then nodes are rewired
according to a probability pWS. One interesting feature of this model is that it allows one to tune continuously
from regular (pWS = 0) to random (pWS = 1) networks.

To achieve reasonable statistics, we consider many realisations of networks made of 100 nodes for each
model. For every model we also explore different parameters. These networks are small compared to typical
real-world networks, but even for this small scale the different models exhibit visibly different features. In
figure 2, we show a BA network built by addingm= 2 new nodes at each step in network growth; a WS
network built starting from a regular network with degree per node k= 〈D〉= 2 and rewired with a
probability pWS = 0.2; and an ER network with connection probability pER = 0.04. One observes clear
differences between the three networks, with, for example, the emergence of easily visible hubs in the BA
model, shown as large blue discs in the figure. By taking 100 network realizations for each model one observes
that the resulting degree distribution, shown in figure 3, is distinct in the three cases, even if they have similar
average value. In particular, the logarithmic scale shows the power-law distribution for the BA networks.

In the rest of the Articlewe will consider only the BA and WS models as the ER network shows very
similar features as the WS models with high rewiring probability pWS → 1. With the probabilistic generation
of a statistically significant number of networks for each model, it will be possible to reveal specific features,
in this case quantum ones, that are determined by the structure of the network.

3. Emergent networks in complex Gaussian cluster states

In this section, we explore the emergent photon-number correlation networks for different imprinted
networks before any photon subtraction. The quantum state of such networks hence exhibits Gaussian
statistics of quadratures. The results of this section form a benchmark to compare with the effect of photon
subtraction in sections 4 and 5.

The imprinted networks are obtained by applying CZ gates to a set of squeezed vacuum modes according
to an adjacency matrixA for the BA and WS models defined in section 2.6. We then examine the emergent
network with adjacency matrix A. Throughout all our simulations, we fix the amount of squeezing to 15dB
(i.e. s≈ 31.6 units of shot noise) for each squeezed vacuum mode.

As described in section 2.3, the correlation between quadratures of different modes goes beyond the
graphical structure imprinted by the CZ gates, as they appear between nearest neighbours but also between
next-nearest-neighbors. We then expect photon number correlations to inherit the same behaviour.

The calculation of photon number correlations for the cluster before photon subtraction can be carried
out analytically by using the techniques of appendix A. We obtain the weighted adjacency matrix (as derived
in appendix A.2)

7
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Figure 2. Three complex networks of 100 nodes. Top: Barabási–Albert (BA) network built via preferential attachment with
m= 2 nodes added at each step. Middle: Watts–Strogatz (WS) network built via rewiring, with probability pWS = 0.2, a
regular network with degree per node d= 2. Bottom: Erdos–Renyi (ER) network with connection probability pER = 0.04. The
size of the nodes is proportional to their degree.

Figure 3.Histogram of the degree distribution for 100 networks of the three types shown in figure 2, BA (purple), WS (green), ER
(orange). On the left the linear scale is used while on the right the scale is double-logarithmic to emphasize the appearance of the
power-law tail for the BA networks. The average degree is ⟨D⟩= 4.44 (BA), 4.0 (WS) and 4.09 (ER).

[A]Gij =


s2

8 (([A
2]ij)

2+2Aij)√
N(s,Di)N(s,Dj)

, for i 6= j

0 for i = j
(8)

whereN(s,Dk) = (s2 + 1/s2 + s2(Dk)
2 + 2Dk − 2)/8 is a normalization factor depending only on the initial

squeezing value s and the degreeDk of the node k in the imprinted network. Recall from section 2.3 that [A2]ij
is the number of different walks of exactly two steps that connect nodes i and j in the imprinted structure.
Therefore, as anticipated, the links between nodes i and j in the emergent network are non-zero if either i and
j are connected in the imprinted network (Aij = 1) or when they are next-nearest neighbors ([A2]ij 6= 0).

So emergent networks of photon-number correlations have larger number of links than the imprinted
networks. Also, the number of walks of distance two between different nodes in complex networks are larger
than in regular structures (like grid shapes). Hence we expect to have a larger number of links for emergent
networks of cluster with complex imprinted network.

We now look at specific features dependent on the different network structures.
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Figure 4. Imprinted networksA (left column) give rise to emergent networks A (middle column), which can then further
undergo photon subtraction (right column). Photon subtraction at indicated red node; node sizes show the degree. Imprinted
networks include Barabási–Albert withm= 1 (top row) and Watts–Strogatz generated from a regular one-dimensional network
in which every node is connected to its k= 5 nearest neighbors with a rewiring probability pWS = 0.05 (bottom row).

Figure 5. Statistics for imprinted BA networks and emergent networks in the Gaussian case. Histogram of degree and clustering
for the imprinted BA network withm= 1 andm= 2 (top row) and associated emergent network of photon number correlations
(bottom row) in the Gaussian case, i.e. when no photon is subtracted.

3.1. Barabási–Albert networks—emergent triangles and clustering
The imprinted BA networks have a multitude of weakly connected nodes that are organized around a few
highly connected hubs. We collect statistics of 100 different networks of 100 nodes both for the parameter
m= 1 (e.g. top row of figure 4) and form= 2. In the example in figure 4, we see that the number of links in
the emergent network are larger when compared to the imprinted network, as told above. A more
quantitative understanding is acquired from the histograms of the degree and clustering coefficients in the
emergent network of figure 5 form= 1,2 in comparison with the original distribution of the imprinted
network. The emergent degree distributions inherit the features of the imprinted network, with a small
number of nodes with high degrees, although with larger variances. In contrast, the histogram of clustering is
dissimilar to the clustering in the imprinted network. The BA network withm= 1 is an excellent example to
illustrate the difference: this imprinted network’s tree-like structure combined with the randomness of the
BA growth process makes that many nodes have only one connection. In the emergent network, however, all
nodes have at least two connections due to what we discussed above, i.e. the presence of walks at distances
two in the imprinted network. So we have more triangles than in the imprinted network. Thus clustering is
zero for all nodes in the imprinted network while the emergent correlation network has non-zero values
quite uniformly distributed but only in the range of 0.0–0.4.

9



Quantum Sci. Technol. 8 (2023) 035009 MWalschaers et al

Figure 6. Statistics for imprinted WS networks and emergent networks in the Gaussian case. Histogram for the degree and
clustering for the imprinted networks (top row) and for the emergent network of photon number correlations in the Gaussian case
(when no photon is subtracted) (bottom row). Here results on the WS network model with pWS = 0.05,0.2 and 0.6 are reported.

3.2. Watts–Strogatz networks—more randomness for lower degree and clustering
For various choices of rewiring probability pWS, we implemented 100 WS networks as imprinted structures
to apply CZ gates6. As for the BA case we look at the statistics of degree and clustering.

The bottom row of networks in figure 4 shows a typical realization of a WS network with k= 5 and
pWS = 0.05. The imprinted network is therefore reasonably close to a regular network in which each node has
2k= 10 connections. We observe that the emergent network before photon subtraction, with a weighted
adjacency matrix A, has a richer structure in its connections. Nevertheless, we can still see a qualitative
resemblance between the imprinted and the emergent network.

In figure 6 we examine the difference in degree and clustering coefficient between imprinted and
emergent networks. We observe that the properties of the imprinted WS networks strongly influence the
structure of the emergent correlation networks. The degree distribution for the imprinted networks is always
centered around 2k= 10 with larger variances for larger pWS. The degree distributions for the emergent
networks are centered around different mean values for the three pWS cases. The pWS = 0.05 case shows a
broader and more skewed distribution of significantly higher degrees. Hence, for the emergent networks, in
contrast to the imprinted ones, the largest variance is for the lowest pWS. In general, we conclude that an
increased probability of rewiring (and thus more randomness) in the imprinted network decreases the
degree (which is essentially the total amount of correlation of every node) in the correlation network of
Gaussian clusters. The histogram for the clustering coefficient is qualitatively similar to that of the degree, in
the sense that increased rewiring leads to a decrease in clustering, and it is also very similar to the clustering
of the imprinted networks7.

4. The effect of non-Gaussian operations on emergent networks

In this section we study the effect of photon subtraction, introduced in section 2.4, on the emergent network
of photon-number correlations. Previous results show that repeated photon subtraction in the same node
may increase correlations in the system due to entanglement distillation [78]. Also we know that photon
subtraction in a given node creates correlations between previously uncorrelated nodes [69]. However, there
is no general result on how the structure of the correlation in the network is influenced by the topology of the
imprinted network.

To address this question, we monitor the effect of subtracting ten photons for the emergent
photon-correlation networks. Our procedure is the following: (i) we first provide analytical results on the
reach of the effect of photon subtraction. (ii) We then compare the qualitative features that are seen in the
histograms of numerically generated distributions of degrees and clustering coefficients. (iii) To get a
complementary quantitative view, we perform a moment analysis and probe the effect of the non-Gaussian
operation on the mean, variance, skewness, and kurtosis. Readers unfamiliar with these quantities can find
their definitions in appendix C. The results of this section will guide the analysis of distance -induced
structures in the follwing section 5. An overview of the path followed in our network analysis can be found in
figure 7. In the remainder of the Article we will explain each one of these steps in detail.

The number of photons to be subtracted (ten) is chosen in order to to have a large effect on the emergent
network, although we do not find qualitatively different results for somewhat larger or smaller numbers of
subtracted photons. However, increasing the amount of squeezing in the initial imprinted network or the
number of photon subtractions does quantitatively enhance the observed features.

6 The case where pWS = 0.05 forms an exception. Here we consider 74 realizations.
7 While the numerator in equation (8) increases with pWS, the denominator also increases in such a way that the overall C decreases. This
is related to the choice of the normalization as explained in section 2.5.
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Figure 7. Analysis and structures for an imprinted WS network. Generated from a regular one-dimensional network in which
every node is connected to its k= 5 nearest neighbors with a rewiring probability pWS = 0.05. Top row: imprinted complex
network (left, node with highest degree is highlighted in red); and emergent networks before subtraction (Gaussian, middle) and
after subtraction (Ten-photon subtracted, right) with their corresponding degree distributions. Middle row: degree distribution
of the photon-subtracted case (zoom on right) is broken up, in the central panel, according to the distance (0, 1, 2, or⩾ 3) of
nodes from the subtraction node. The color code used for different distances is adopted for the nodes in the imprinted network
(left). Lower row: Structure of the next-neighbor nodes (distance 1) is highlighted (left); zoom of the degree distribution at
distance one (middle); statistics is broken up according to the connectivity of the different nodes (right).

4.1. The effect of photon subtraction is strictly local
The subtraction of a single photon in a cluster state is known to only affect vertices in the vicinity of the node
of subtraction [34]. In appendix B, we extend this understanding to the correlations between observables
that are defined on different regions of the system: the correlation 〈X̂Ŷ〉− 〈X̂〉〈Ŷ〉 between two observables X̂
and Ŷ can only be influenced by photon subtraction when both observables have a support on modes that are
correlated to the mode of photon subtraction. This result applies regardless of the number of photons that
are subtracted.

For the networks in this work, we subtract photons in one specific node. In the initial Gaussian state,
equation (2) shows that this node is correlated to all nodes that are either nearest-neighbours (given byA) or
next-to-nearest neighbours (given byA2) in the imprinted network of CZ gates. We label S the node of
photon subtraction and introduce d(i, j) as the graph distance between node i and j, which counts the
number of links in the imprinted network that separate the nodes.

Before photon subtraction, we show from equation (8) that [C]ij is zero when d(i, j)> 2. Our general
result of appendix B then shows that in equation (4) the numerator is affected by photon subtraction if
d(i,S)⩽ 2 and d( j,S)⩽ 2. Meanwhile, the denominator is affected by photon subtraction if d(i,S)⩽ 2 or
d( j,S)⩽ 2. Combining these arguments, we find that Cij is affected by photon subtraction if d(i,S)⩽ 2 and
d(i, j)⩽ 2, i.e. j can be up to four steps away from S.

We therefore have proven that effects of photon subtraction in such a multimode system can only affect a
certain environment around the node of subtraction. Moreover, the number of nodes, in which the effect of
photon subtraction is felt, is independent of the number of subtracted photons. Hence, to study the effect of
photon subtraction, we can restrict ourselves to intermediate network sizes, that have a large fraction of the
nodes that lie in the vicinity of the photon-subtracted node.

Figures 8 and 9 show how the size of these neighborhoods increases with the size of the network. In
almost all cases we consider, we find that the size of the neighborhood grows much more slowly than the
number of nodes once we surpass∼100 nodes (note that the horizontal axis is a logarithmic scale). The
notable exception is the case of BA networks when we subtract a photon in the most highly connected node.
This observation is consistent with the fact that BA networks can have very high connectivities, as is also
shown by the power-law statistics in figure 3.

Note that for WS networks the size of the vicinity of the photon-subtracted node could also be changed
by increasing or decreasing the connectivity k of the initial regular network that is rewired. However,
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Figure 8. The nearest and next-to-nearest neighbours of the photon-subtracted node in imprinted WS network are counted and
represented as the vicinity of subtraction. The number of nodes in this vicinity is shown as a function of the total number of nodes
in the network. Every point shows the average of 100 realizations of the network, and the error bar shows the standard deviation
around the average. The WS networks are generated from a regular one-dimensional network in which every node is connected to
its k= 5 nearest neighbors with a varying rewiring probability pWS = 0.05, pWS = 0.2, and pWS = 0.6 for the different figures.
Each plot shows two possible scenarios: one where the photon is subtracted in a random node (light blue) and one where it is
subtracted in the node with the highest connectivity (dark red). Finally, we also show one explicit example of a distance-resolved
imprinted network of 1000 nodes, with the vicinity of the photon-subtracted node highlighted in darker green.

Figure 9. The nearest and next-to-nearest neighbours of the photon-subtracted node in imprinted BA network are counted and
represented as the vicinity of subtraction. The number of nodes in this vicinity is shown as a function of the total number of nodes
in the network. Every point shows the average of 100 realizations of the network, and the error bar shows the standard deviation
around the average. The BA networks are generated for parametersm= 1 andm= 2 in the different panels. Each plot shows two
possible scenarios: one where the photon is subtracted in a random node (light blue), and one where it is subtracted in the node
with the highest connectivity (dark red).

throughout our text we choose to keep it constant at k= 5. As such, for the types of networks and the
parameter ranges we consider a choice of∼100 nodes guarantees that most correlations in the system are
affected by photon subtraction in a single node.

We also arrive at another important conclusion: to induce non-Gaussian effects in vast cluster states, one
must subtract photons in many different nodes. However, in appendix A.3, we argue how the complexity of
this problem effectively makes it computationally hard to simulate. From a physical point of view, one would
subtract these photons by coupling a tiny amount of light from the subtracting nodes, into an auxiliary
mode. Then we need photon detectors on these auxiliary modes to fire at the same time. We can notice the
connections to Gaussian boson sampling [15, 17], where it is shown that simulating the clicks of photon
detectors mounted on a sufficiently complicated Gaussian states is computationally intractable. Similarly,
there is also a direct connection to the hardness of sampling continuous variables on a photon subtracted
state [14].

On a mathematical level, the problem at the basis of the computational complexity of these sampling
problems is finding perfect matchings [79]. As we argue in detail in appendix A.3, the problem of finding all
perfect matchings also appears when constructing the emergent network of photon-number correlations.
Hence, fully simulating such networks in detail is only possible when many photons are subtracted in many
modes.

Yet, when large states with photons subtracted in various modes are created in experiments, the
measurement and analysis of emergent correlation networks may well turn out to be an important tool to
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Figure 10. Histograms (A) and moments (B) for the degree distributions of the emergent correlation network obtained from a
WS imprinted structure with rewiring probabilities pWS = 0.05,0.2 and 0.6. Colors indicate degree data prior to (cyan, dots) and
after (red, squares) the subtraction of ten photons in the node with the highest connectivity. Data were each obtained by
combining 74 random realizations of a 100-node network. The WS imprinted network is obtained by starting from a
one-dimensional regular network where each node is connected to its k= 5 nearest neighbors. Both moments and histograms
show how photon subtraction changes the bulk of the distribution by increasing the mean degree and the width of the
distribution (i.e. variance). The higher moments and histograms also show that the finer structure in the tails of the degree
distribution depends strongly on the value of pWS.

characterise such states. Note that the same type of photon-number correlations have been used to
benchmark computationally intractable Gaussian boson sampling experiments [18, 19].

4.2. Photon subtraction inWatts–Strogatz networks—more randomness for larger effects
Figure 8 suggests that we can maximize the effect of photon subtraction by subtracting the photons in the
node with the highest connectivity in the imprinted network, i.e. the biggest hub. As such we probe network
environments in the imprinted WS structure with the highest correlations. For the considered network size
of 100 nodes, this choice has a small effect in the case of WS networks as most nodes have a similar
connectivity, unlike BA networks where a few nodes serve as highly connected hubs.

In figure 10 we choose rewiring probabilities pWS = 0.05,0.2,0.6, as for the Gaussian case, to probe the
effect of different imprinted network environments on the degree distribution in the emergent network of
photon-number correlations. The data for each value of pWS are obtained by combining 74 random
realizations of a 100-node network. The effect of photon subtraction is qualitatively similar in all cases. A
subset of nodes in the photon-subtracted cluster states retains degrees of the same order of magnitude as for
the Gaussian network state, whereas a second subset finds its degree considerably increased, resulting in a
bimodal distribution. This qualitative similarity translates to the moments in figure 10(B), in the sense that
photon subtraction shifts the distributions to higher means and variances, regardless of the value of pWS.
However, photon subtraction causes stronger increases in the mean and variance for larger values of pWS, and
the higher moments behave differently depending on pWS. These features are observed in figure 10, where an
increase in pWS lowers the overlaps between the histogram before and after photon subtraction.

In figure 11, we explore the role of photon subtraction on the clustering coefficients. The observed
difference between different values of pWS is even more profound: the clustering coefficients are only weakly
affected by photon subtraction for pWS = 0.05, whereas for pWS = 0.6 the histogram changes dramatically.
These drastic changes are also seen when comparing the moments before and after photon subtraction in
figure 11(B), where photon subtraction increases the skewness and kurtosis for pWS = 0.05, but strongly
decreases these moments for pWS = 0.6. Nevertheless, even though the clustering coefficients are not strongly
affected by photon subtraction in imprinted WS structures with pWS = 0.05, these clustering coefficients
remain much higher than those of the imprinted networks with higher values of pWS (which one can also
confirm in the moments).
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Figure 11. Histograms (A) and moments (B) for the clustering distributions for the same networks as figure 10. Colors indicate
degree data prior to (cyan, dots) and after (red, squares) the subtraction of ten photons in the node with the highest connectivity.
Photon subtraction shifts and widens the distribution, as shown by the histrograms and quantified by the mean and variance. The
higher moments and histrograms indicate that the finer structure of these distributions depend strongly on the value of pWS.

These observations coincide with the intuition that photon subtraction generally increases the
correlations in our system. However, it remains to understand which features of the network structure
associated with the different values of pWS determine the extent of the effect of photon subtraction.

4.3. Photon subtraction in Barabási–Albert networks—difference between random and highly connected
subtraction node
We now explore how photon subtraction affects the emergent network of a BA imprinted structure, both
when we subtract always from the most important hub (i.e. the node with the highest connectivity in the
imprinted network), and when we subtract in a randomly chosen node (likely a node with low connectivity).

Even before photon subtraction the moment analysis in figure 12(B) shows that for imprinted BA
structures the degree distributions of emergent correlation networks have a large variance and kurtosis, in
particular form= 1. Hence, the emergent networks inherit some of the power-law features of the imprinted
structures. In the top panels of figure 12 we therefore show the degree distribution on a log-log scale, for
m= 1 andm= 2, before and after subtraction of ten photons.

Form= 1 imprinted structures, the effect of photon subtraction manifests within the tail of the
distribution. We observe the power-law behaviour that is suggested by the moments, and we find that photon
subtraction in a hub tends to reduce the weight in the tail. Thus, photon subtraction in the most important
hub has a reasonably small effect on a large fraction of the network to make the degrees somewhat more
homogeneous. In contrast, photon subtraction increases the weight in the tail if it occurs in a randomly
picked node. This shows that, when the photons are subtracted in a node that is correlated to only a small
number of other nodes, it can very significantly increase these correlations, thus causing larger values to
appear in the tails. This behaviour is consistent with photon subtraction as a finite resource for entanglement
distillation. Yet, it must be stressed that photon-number correlation are not necessarily quantum
correlations. For nodes with a high connectivity, photon subtraction only weakly alters the individual
correlations. As a final comment for them= 1 case, we must note that the bulk of the distribution remains
largely unaffected, up to a point where the effect of photon subtraction is hardly visible when the histogram
is plotted on a linear scale—this is also reflected by a relatively small change in the mean degree.

Form= 2 imprinted structures, the distribution does not show typical power-law behaviour, which is
reflected in smaller values of kurtosis in figure 12(B). These moments, nevertheless, show a profound change
in the variance due to photon subtraction, which implies an overall widening of the distribution.
Figure 12(A) shows this feature, as now a larger fraction of the distribution grows to higher values of the
degree. Hence, form= 2 we can conclude that photon subtraction predominantly affects the bulk of the
distribution, which is qualitatively similar to what we saw for WS distributions.
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Figure 12. Logarithmically-scaled histograms (A) and moments (B) for the degree distributions of the emergent correlation
network obtained from a BA imprinted structure for networks generated withm= 1,2. Colors indicate degree data prior to
(cyan, dots) and after the subtraction of ten photons in the node with the highest connectivity (light red squares), or in a
randomly chosen (dark red diamonds) node. These histograms were each obtained by combining 100 random realizations of a
100-node network. Photon subtraction mainly affects the tails of the distribution as seen in the histograms and reflected in the
variance and kurtosis. The emergent networks form= 1 imprinted structures show power-law behaviour, which is reflected by
high values of the kurtosis.

Figure 13.Histograms (A) and moments (B) for the clustering distributions of the same networks as figure 12, and the same color
coding. Photon subtractions increase the tails of the distributions. Photon subtraction in a random node can create high
clustering coefficients for a reasonably small number of modes.

In figure 13 we observe that form= 1 the clustering coefficients in these networks can be increased up to
Cl= 0.8, though only for a small fraction of nodes. In other words, photon subtraction, again,
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predominantly affects the tails of the distribution form= 1 (which is confirmed by the moment analysis in
Panel (B) of figure 13). Therefore random tree networks (i.e. BA withm= 1) globally seem to be the most
resilient networks to local photon subtraction operations, even though photon subtraction in nodes with few
links can cause profound local changes in the correlations. Form= 2 we again see a larger overall impact of
photon subtraction, leading to more significant changes to the bulk of the distribution. This, too, is in line
with the degree statistics.

These results suggest that the environment of the subtracted node in the imprinted network plays an
important role in how the emergent network reacts to photon subtraction. To unravel this interplay between
the imprinted structure and the emergent network, we will investigate the behaviour of nodes depending on
their distance (in the imprinted network) to the node of photon subtraction.

Note that the power-law degree distribution of the imprinted networks can lead to very large vicinities of
the photon-subtracted nodes (in particular when we subtract photons in a hub). This means that the
number of non-Gaussian correlations in the networks can rapidly grow, as shown in figure 9. In our present
implementation of the code to simulate the correlation networks [80], this makes BA networks beyond 100
nodes numerically very challenging to treat.

5. Imprinted structure guides non-Gaussian effects

The results in section 4.1 and the more general theorem presented in appendix B show that the study of the
non-Gaussian correlations induced by photon subtraction is actually a study of sub-networks rather than the
study of the global state. In this section we go beyond the simple separation of affected (i.e. the vicinity of the
photon-subtracted node) and unaffected nodes, and explore more detailed sub-structures of the networks.

In section 5.1, we first explore how distances for the photon-subtracted node in the imprinted network
have an effect on the emergent correlations. This will notably highlight a different behaviour for nearest and
next-to-nearest neighbours. In section 5.2, we will then explore in detail how the structure of
nearest-neighbour sub-networks of the imprinted networks have a profound influence on the non-Gaussian
effects that manifest in the photon-number correlations.

5.1. Distance-induced structure
In section 4, we showed that photon subtraction induces additional structure in the emergent network. Here,
we take the first step toward understanding how the emergent structure in photon-number correlations is
influenced by the imprinted structure. We break up the statistics according to the imprinted distance
between the node in which the photons were subtracted and the nodes under consideration. This distance
between nodes is here understood to be the number of connections in the shortest path that connects the
nodes in the imprinted structure.

In section 4.1 we emphasised that the quantity 〈n̂i n̂j〉− 〈n̂i 〉〈n̂j〉 is only altered by photon subtraction
when nodes i and j are both in the vicinity of the point of photon subtraction. When at least one of the
vertices lies beyond, the features of its emergent correlations are only impacted via the denominator in
equation (4). For the degree statistics, this means that nodes at distances zero (point of subtraction), one
(nearest neighbours), and two (next-to-nearest neighbours) are very differently affected by photon
subtraction than the remaining nodes. This motivates the choice to separate the nodes into four groups: the
nodes where the photons are subtracted (distance 0); their nearest neighbors (distance 1); the next-nearest
neighbors (distance 2); and all the remaining nodes (distance 3 or more).

As an example of such a distance analysis, in figure 14 we show four histograms corresponding to our
four chosen groups of nodes. A complementary quantitative view can be obtained by studying the moments
of these distance-resolved histograms, as shown in the moments of the degree distribution in figure 15 for
imprinted WS structures and in figure 16 for imprinted BA network. A completely analogous analysis can be
carried out for the clustering coefficients.

The moments in figures 15 and 16 provide a range of important insights. First, we find that degree
distribution of nodes that lie beyond the next-nearest neighbors (⩾ 3) are generally unaltered by photon
subtraction. A notable exception is found for the imprinted BA network with photon subtraction in a
random node, where the higher moments, i.e. skewness and kurtosis, for these nodes are influenced. This is
consistent with the idea that, for an imprinted BA network with photon subtraction in a random node, the
non-Gaussian effects are confined to a smaller number of nodes, which in turn change more drastically.

As a second observation, we find that the distance-dependent effects in the skewness and kurtosis depend
strongly on the specific network-type and chosen parameters, in contrast to the mean and variance. This
implies that photon subtraction induces some general effects on the bulk of degree distributions (as
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Figure 14. Degree distribution of the emergent network of imprinted WS networks after the subtraction of ten photons, using the
same data as figure 10. Complete histograms (top) were each obtained by combining all the nodes of 74 random realizations of a
100-node network (see also figure 10). Distance-resolved histograms (bottom) are obtained by grouping nodes based on their
network distance (in the imprinted network) to the node of photon subtraction. Network distance is indicated by color code and
labeled by a number (zero being the node of subtraction). Photon subtraction shifts the degree distribution to higher values for
the nodes of photon subtraction (distance 0) and those at distance 2. At distance 3 and beyond, the effects are negligible. At
distance 1 the distribution is affected in a non-trivial way depending on pWS. The value of pWS also influences the relative
importance of distance-induced features, e.g. for pWS = 0.05 we find a larger fraction of nodes at distance 3 or beyond.

Figure 15. Distance-resolved moments for the degree statistics in the emergent photon-number correlation network, resulting
from imprinted WS networks with rewiring probabilities pWS = 0.05, pWS = 0.2, and pWS = 0.6. Gaussian states (cyan) and
ten-photon subtracted states (red). Photon subtraction mean and variance are affected in the same way for all networks, showing
that photon subtraction has the global tendency of increasing the degree and widening the distribution of nodes up to distance 2.
The effect on higher moments depends on the value of pWS, showing that photon subtraction also affects the fine structure of the
degree distribution in a more subtle way that depends on the network topology. At distance 3 and beyond we see no effect.

comprised by the first two moments), while the effect on the finer structure (as comprised by the higher
moments) of the degree distributions depends more strongly on the precise topology of the imprinted
networks.

As an important general effect, we find that both for the nodes in which photons are subtracted (0) and
their next-nearest neighbors (2) the mean and variance of the degree distribution always increase. The
behaviour of the nearest neighbors (1) is less systematic. For imprinted BA networks with photon
subtraction in a random vertex, the mean and variance are essentially unaltered for the nearest neighbors. In
contrast, for imprinted WS networks, and them= 2 BA network with photon subtraction in the node with
highest connectivity, the mean and variance increase for these nodes. For the imprinted BA network with
m= 1 and photon subtraction in the node with highest connectivity, we find that the mean and variance
decrease after photon subtraction. Hence, there must be other features in the topology of the imprinted
network that influence the degree distribution of the nearest neighbors. These features will be laid out in the
following subsection.
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Figure 16. Distance-resolved moments for the degree statistics in the emergent photon-number correlation network, resulting
from imprinted BA networks with parametersm= 1 andm= 2. Gaussian states (cyan) and ten-photon subtracted states (red).
The same observations hold as for the WS networks in figure 15, except for the distance 1 nodes in imprinted structures with
m= 1. The latter is explained in detail in section 5.2.

Figure 17. Nearest-neighbor (1) degree distribution of the emergent network after the subtraction of ten photons, using the same
data as figure 14. Top row: complete nearest-neighbor histograms. Bottom row: histograms obtained by grouping
nearest-neighbor nodes based on the number of other nearest-neighbor nodes they are connected to in the nearest-neighbour
subnetwork. The connectivity in the nearest-neighbor sub-network is highlighted by the nodes represented next to the histogram.
Nearest neighbors of the node of photon subtraction are more strongly affected by the non-Gaussian operation when they are
connected to other nearest neighbors. Nodes that are not connected to any other nearest neighbors (darkest purple) are shifted to
lower degrees as compared to the Gaussian distributions in figure 10.

5.2. Nearest-neighbors (1) subnetworks
In figure 17 we show that the effect on the degree of a nearest-neighbor node in the emergent correlation
network is influenced by the number of other nearest neighbors it is connected to in the imprinted networks.
This highlights the importance of the topology of the distance-1 sub-network, as compared to the total
imprinted network. Quantitatively, this connectivity can be obtained by analyzing the nearest-neighbor
sub-network. When we analyze all the nearest-neighbor sub-networks of our simulated WS networks, we
obtain the result in figure 17. The bottom row of figures clearly shows that the degrees (in the emergent
network) of nearest neighbors are more strongly affected by photon subtraction when these nodes have a
higher number of connections to other nearest neighbors. Thus, the different shapes of the nearest neighbor
distributions (1), for different values of the rewiring probability pWS, can be fully understood from the
nearest neighbor sub-network in the imprinted structure.

We note that photon subtraction shifts the histograms which group nearest-neighbor nodes according to
their connectivity in the distance-1 sub-network to higher mean values for higher connectivity. However, for
nodes that are not connected to other nearest neighbors, we witness a slight decrease in the average degree
due to photon subtraction.
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For pWS = 0.6 a significant fraction of nearest neighbors are not connected to any other nearest
neighbors. This provides a sharp contrast with the case for pWS = 0.05, where networks tend to form clusters,
such that nearest neighbors are more likely to be connected to each other. From figure 17, we can understand
how these features of the imprinted structure have a direct effect on the statistical features of the emergent
network.

Similar analyses have been carried out for the nearest neighbor networks of all simulated classes of
networks, leading to the same results. A particularly striking case is the BA network withm= 1: because
these networks are tree-like, nearest neighbors are never connected to one another. This explains why in
figure 16, form= 1, the means for nearest neighbors (1) are reduced by photon subtraction. Moreover, we
can now explain why in figure 16 the contribution of the nearest-neighbor sub-network for photon
subtraction from the highest degree node for BA withm= 2 is more important than in the case of
subtraction from a random node. In this latter case it is more likely to select one of the isolated nodes with a
surrounding nearest-neighbor sub-network also characterized by low connectivity. However, the analysis is
not sufficient to explain why the next-to-nearest neighbors (2) are so strongly affected by photon subtraction
from a random node in the BA network withm= 2.

6. Discussion and outlook

The key findings of this work were already summarised in section 1.2. These results prove that complex
network methods are useful for the theoretical investigation non-Gaussian cluster states. The
characterization of highly multimode non-Gaussian states is generally an arduous task, where standard tools
of CV quantum optics fall short. Typical experimental methods such as homodyne tomography lack the
necessary scaling properties to study these systems, and theoretical constructs such as Wigner functions
become hard to handle. To overcome this problem, one may look for global properties, e.g. Wigner negativity
of the full multimode states [12]. Such global features have the disadvantage that they gloss over the local or
neighborhood structures of the state, which are essential in multi-partite quantum platforms. Our results
show that network theory offers effective statistical tools for studying these states. At present, we are unaware
of any other method that allows us to describe the physical features that we deduced for these large
non-Gaussian states. They offer us a road map for more detailed bottom-up studies of particular features
such as the role of connections in the nearest-neighbor sub-network.
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Appendix A. Simulating cluster states and the evaluation of photon-number
correlations

A.1. Perfect matching
To execute the simulations presented in this article, we generated random complex networks using the
‘python-inetwork’ library. From these randomly generated networks, we extracted the adjacency matrixA to
generate the cluster state covariance matrices, as described in equation (2). After generating the covariance
matrix V of a Gaussian network state, we used it to evaluate the photon-number correlations [C]ij of
equation (4) for the photon-subtracted states in equation (3).

The main technique used to evaluate these correlations relies on the properties of Gaussian quantum
states. We previously used this method to fully characterize single-photon subtracted states in [8]. We
illustrate this method by highlighting the evaluation of the element 〈n̂i n̂j〉 in equation (4). For a
photon-subtracted state we find
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〈n̂i n̂j〉=
tr[â†Sn . . . â

†
S1
â†i â

†
j âjâiâS1 . . . âSnρ]

tr[â†Sn . . . â
†
S1
âS1 . . . âSnρ]

, (A.1)

where ρ denotes the density matrix of the Gaussian network state and i 6= j. We then use a general property
for Gaussian states, that allows us to express

tr[â†Sn . . . â
†
S1
â†i â

†
j âjâiâS1 . . . âSnρ] =

∑
P

∏
{p1,p2}∈P

tr[â#p1 â
#
p2ρ], (A.2)

where we introduce the label P to denote a ‘perfect matching.’ A perfect matching means any way of dividing
a set up into pairs, while maintaining the order. When we consider, for example the set {1,2,3,4}, one
possible perfect matching would be {{1,3},{2,4}}. In this example, the notation {p1,p2} ∈ P refers to
{1,3} and {2,4}. In equation (A.2), these perfect matchings are used to split the set of creation and
annihilation operators, â†Sn . . . â

†
S1
â†i â

†
j âjâiâS1 . . . âSn , in pairs: In total, we have 2n+ 4 creation and

annihilation operators, which we can associate with a set of indices {1, . . . ,2n+ 4}. The sum over P runs
over all possible perfect matchings of this index set. For every given perfect matching P , we then multiply all
the quantities tr[â#p1 â

#
p2ρ] for the different paired indices {p1,p2} ∈ P . The quantities p1 and p2 are indices in

the index set, and the quantity â#pj denotes the creation or annihilation operator that occurs at the pjth

position in the product â†Sn . . . â
†
S1
â†i â

†
j âjâiâS1 . . . âSn . Let us list some examples: tr[â#1 â#2 ρ] = tr[â†S1 â

†
S2
ρ],

tr[â#2 â#n+3ρ] = tr[â†S2 âjρ], and tr[â#1 â#n+5ρ] = tr[â†S1 âS1ρ].

What remains is now to evaluate the quantities tr[â#p1 â
#
p2ρ], and this can be done directly via the

covariance matrix V, by expressing the creation and annihilation operators in terms of quadrature operators
(see also [8, 24] for more details). We find the following identities:

tr[â†j â
†
kρ] =

1

4
[Vjk −Vj+N ,k+N − i(Vj ,k+N +Vj+N ,k)], (A.3)

tr[âjâkρ] =
1

4
[Vjk −Vj+N ,k+N + i(Vj ,k+N +Vj+N ,k)], (A.4)

tr[â†j âkρ] =
1

4
[Vjk +Vj+N ,k+N + i(Vj ,k+N −Vj+N ,k)− 2δjk]. (A.5)

These identities are expressed in the mode basis that corresponds to the nodes of the network state.
Using equations (2) and (A.3)–(A.5), we can calculate the weighted adjacency matrix of the emergent

network, Aij. In principle, it is possible to calculate Aij for both the cluster state as well as the
photon-subtracted state. However, as we will show, it is exponentially difficult to write a closed-form
expression for Aij in the photon-subtracted state. Below, we will first calculate Aij in the cluster state. Then
we discuss the photon-subtracted case.

A.2. Gaussian state
Since the cluster state ρ is Gaussian, one can evaluate the connected correlation cij ≡ tr[n̂in̂jρ]− tr[n̂i ρ]tr[n̂jρ]
by applying equation (A.2). Only two terms remain, giving

cij = tr[â†i âjρ]tr[âiâ
†
j ρ] + tr[â†i â

†
j ρ]tr[âiâjρ]. (A.6)

Each term on the right hand side of equation (A.6) can be evaluated using equations (2) and (A.3)–(A.5).
For i 6= j, we have

tr[â†i âjρ] = s(A2)ij/4,

tr[âi â
†
j ρ] = s(A2)ij/4,

tr[â†i â
†
j ρ] =−(s(A2)ij − 2isAij)/4,

tr[âi âjρ] =−(s(A2)ij + 2isAij)/4. (A.7)

Therefore

cij =
s2

8

(
(A2)2ij + 2Aij

)
(A.8)

where we used that (Aij)
2 =Aij.
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For i= j, we have

tr[â†i âi ρ] = (s+ 1/s+ sDi − 2)/4,

tr[âi â
†
i ρ] = (s+ 1/s+ sDi + 2)/4,

tr[â†i â
†
i ρ] = (s− 1/s− sDi)/4,

tr[âi âi ρ] = (s− 1/s− sDi)/4, (A.9)

where we used thatAii = 0 and (A2)ii =Di. Therefore

cii =
1

8

(
s2 +

1

s2
+ s2(Di)

2 + 2Di − 2

)
. (A.10)

One obtains equation (8) in the main text from equations (A.8) and (A.10), where cii is denoted in the main
text asN(s,Di).

A.3. Photon-subtracted states
For photon-subtracted states, the correlations quickly become hard to evaluate. At the basis of this
complexity lies the appearance of perfect matchings in equation (A.2). Finding all possible perfect matchings
is a computationally hard problem that belongs to the complexity class#P. It is also the problem which lies
at the basis of the hardness of Gaussian Boson sampling. Hence, when the number of subtracted photons
grows, correlation functions quickly become practically impossible to evaluate.

Generally speaking, the best algorithms for evaluating equation (A.2) use recursive techniques. In our
work, we greatly simplify this computational problem by subtracting all the photons in the same mode, i.e.
S1 = · · ·= Sn = S. In this case, expression (A.1) for 〈n̂i n̂j〉 only contains creation and annihilation operators

in three different modes. This greatly limits the different possible factors tr[â#p1 â
#
p2ρ] that can appear in

equation (A.2). Many different partitions will lead to equivalent contributions. The problem thus reduces to
that of identifying all the different classes of partitions, evaluating the contribution, and counting the
multiplicity.

Once we subtract more than three photons, the total number of different classes of terms remains fixed.
We evaluated these by hand and counted a total of 43 classes, each appearing with a certain multiplicity. The
correlation networks are then calculated by evaluating the contribution by multiplying relevant quantities
given by equations (A.3)–(A.5) for each of these 43 classes. Then we multiply each contribution with the
right multiplicity, which depends on the number of subtractions and can be calculated through
combinatorics. The quantities 〈n̂i〉 are evaluated using the same method. For more details, we refer to the
code that was used to carry out the simulations [80].

In appendix B, we prove analytically that the photon number correlations 〈n̂in̂j〉− 〈n̂i〉〈n̂j〉 only change
when nodes i and j are in the vicinity of of the photon-subtracted node (see appendix B for details). This
implies that we can first generate a full correlation network of Gaussian correlations by relying on the
analytical formula (A.8) and subsequently we can use (A.2) to update only the affected correlations. This
method is implemented in the second version of our code for simulating WS networks [80].

Appendix B. Correlations unaffected by photon subtraction

In this section of the appendix, we prove a general result for correlations in n-photon subtracted states:
photon subtraction can only change the covariance between observables, if both observables are initially
correlated to the mode in which the photons are subtracted.

Assume that we subtract n photons from Gaussian state ρ in a mode with label S and associated
annihilation operator âS. We denote the algebra of observablesAnear as those observables which are ‘near to
S’ in the sense thatAnear is generated by observables âk and â†k for which either tr[â†k âSρ] 6= 0 or tr[âkâSρ] 6= 0.
Following equations (A.3)–(A.5) we can equivalently defineAnear as the algebra of observables restricted to
the modes with labels k for which the matrix(

VSk VSk+N

VS+Nk VS+Nk+N

)
6=
(
0 0
0 0

)
. (B.1)

We then defineAfar as the complement ofAnear in the sense thatAnear ⊗Afar =A, whereA is the full
algebra of observables on the N-mode Fock space that describes the entire system.

Theorem B.1. For any observable X̂ ∈ Anear and another arbitrary observable Ŷ ∈ Afar, it holds that

〈X̂Ŷ〉− 〈X̂〉〈Ŷ〉= tr[X̂Ŷρ]− tr[X̂ρ]tr[Ŷρ], (B.2)
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where 〈. . .〉 denotes the expectation value in the n-photon subtracted state and tr[. . .ρ] is the expectation value in
the initial Gaussian state.

Proof. We first of all use that every observable X̂ ∈ Anear can be arbitrarily well approximated by a polynomial
in creation and annihilation operators inAnear. This implies that

X̂=
∞∑
j=0

∑
k

cj,kâ
#
1,k . . . â

#
j,k, (B.3)

where â#1,k can either be a creation or an annihilation operator. The sum over k takes into account that there
are many possible products of creation and annihilation operators, also known as Wick monomials, of length
j. And similarly for Ŷ we find

Ŷ=
∞∑
j=0

∑
k

cj,kb̂
#
1,k . . . b̂

#
j,k. (B.4)

To highlight that the creation and annihilation operators that build X̂ and Ŷ have different supports, we have
noted the the creation and annihilation operators forAfar as {b̂#j,k}.

The fact that any observable can be written as a series expansion of creation and annihilation operators
implies that our theorem can be proven by proving that

〈â#1 . . . â#j b̂#1 . . . b̂#j ′ 〉− 〈â#1 . . . â#j 〉〈b̂
#
1 . . . b̂#j ′ 〉= tr[â#1 . . . â#j b̂#1 . . . b̂#j ′ ρ]− tr[â#1 . . . â#j ρ]tr[b̂

#
1 . . . b̂#j ′ ρ].

(B.5)

First of all, let us consider the term

〈b̂#1 . . . b̂#j ′ 〉=
tr
[(

â†S

)n
b̂#1 . . . b̂#j ′ (âS)

n
ρ
]

tr
[(

â†S

)n
(âS)

n
ρ
] . (B.6)

Because b̂#1 , . . . , b̂
#
j ′ ∈ Afar, we find that tr[[ρ]b̂†k âS] = 0 and tr[[ρ]b̂kâS] = 0. An application of equation (A.2)

than shows that

tr
[(

â†S

)n
b̂#1 . . . b̂#j ′ (âS)

n
ρ
]
= tr

[(
â†S

)n
(âS)

n
ρ
]
tr
[
b̂#1 . . . b̂#j ′ ρ

]
. (B.7)

When we then take into account the denominator in equation (B.6), we find

〈b̂#1 . . . b̂#j ′ 〉= tr
[
b̂#1 . . . b̂#j ′ ρ

]
, (B.8)

it automatically follows that 〈Ŷ〉= tr[Ŷρ].
The expectation value 〈â#1 . . . â#j 〉 is much more intricate to evaluate since by construction either

tr[â†k âSρ] 6= 0 or tr[âkâSρ] 6= 0. We then find

tr
[(

â†S

)n
â#1 . . . â#j (âS)

n
ρ
]
=
∑
P

∏
{p1,p2}∈P

tr[â#p1 â
#
p2ρ] = tr

[(
â†S

)n
(âS)

n
ρ
]
tr
[
â#1 . . . â#j ρ

]
+ cross terms.

(B.9)

We therefore find that

〈â#1 . . . â#j 〉=tr
[
â#1 . . . â#j ρ

]
+ T . (B.10)

The cross terms T contain expectation values that combine creation or annihilation operators of the Wick
monomial â#1 . . . â#j with either âS or â

†
S as obtained from the perfect matching (equation (B.9)). For what

follows, it is useful to explicitly identify these cross terms as

T =〈â#1 . . . â#j 〉− tr
[
â#1 . . . â#j ρ

]
. (B.11)
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Finally, we can now consider 〈â#1 . . . â#j b̂#1 . . . b̂#j ′ 〉 and apply many of the same lines of reasoning. We
express

tr
[(

â†S

)n
â#1 . . . â#j b̂#1 . . . b̂#j ′ (âS)

n
ρ
]
=
∑
P

∏
{p1,p2}∈P

tr[â#p1 â
#
p2ρ],

where â#pi can either be a creation/annihilation operator of the type â or of the type b̂. A wide variety of terms
will appear in the set of perfect matchings (equation (B.12)). Generally speaking, we have the terms related to
â#1 . . . â#j , those related to photon subtraction, i.e. âS or â

†
S , and those related to b̂

#
1 . . . b̂#j ′ . The crucial element

is that tr[[ρ]b̂†k âS] = 0 and tr[[ρ]b̂kâS] = 0, which implies that any perfect matching that matches a subtraction

operator âS or â
†
S with a creation or annihilation operator that originates from b̂#1 . . . b̂#j ′ vanishes. In other

words, the subtraction operators âS or â
†
S can be matched only with creation and annihilation operators that

live onAnear. This implies that we can rewrite

tr
[(

â†S

)n
â#1 . . . â#j b̂#1 . . . b̂#j ′ (âS)

n
ρ
]

tr
[(

â†S

)n
(âS)

n
ρ
] = tr

[
â#1 . . . â#j b̂#1 . . . b̂#j ′ ρ

]
+

tr[b̂#1 . . . b̂#j ′ ρ]tr
[(

â†S

)n
â#1 . . . â#j (âS)

n
ρ
]

tr
[(

â†S

)n
(âS)

n
ρ
]

− tr[â#1 . . . â#j ρ]tr[b̂
#
1 . . . b̂#j ′ ρ]

= tr[â#1 . . . â#j b̂#1 . . . b̂#j ′ ρ] + tr[b̂#1 . . . b̂#j ′ ρ]〈â
#
1 . . . â#j 〉

− tr[â#1 . . . â#j ρ]tr[b̂
#
1 . . . b̂#j ′ ρ]. (B.13)

where the term tr[â#1 . . . â#j ρ]tr[b̂
#
1 . . . b̂#j ′ ρ] is subtracted to avoid double counting. We can then use the defin-

ition of the cross terms (B.11) to write

〈â#1 . . . â#j b̂#1 . . . b̂#j ′ 〉= tr[â#1 . . . â#j b̂#1 . . . b̂#j ′ ρ] + T tr[b̂#1 . . . b̂#j ′ ρ]. (B.14)

This provides us with the final ingredient we need to complete the proof.
When the results (B.8), (B.10), and (B.14) are combined, we find that all terms proportional to T drop

out. As such, we find indeed that the identity (B.5) holds. Because the identity holds for all possible Wick
monomials, it follows that

〈X̂Ŷ〉− 〈X̂〉〈Ŷ〉= tr[X̂Ŷρ]− tr[X̂ρ]tr[Ŷρ], (B.15)

for any par of observables X̂ ∈ Anear and Ŷ ∈ Afar.

In full analogy, one can prove a second theorem

Theorem B.2. For any observables X̂, Ŷ ∈ Afar, it holds that

〈X̂Ŷ〉− 〈X̂〉〈Ŷ〉= tr[X̂Ŷρ]− tr[X̂ρ]tr[Ŷρ], (B.16)

where 〈. . .〉 denotes the expectation value in the n-photon subtracted state and tr[. . .ρ] is the expectation value in
the initial Gaussian state.

Proof. The proof is fully analogous to theorem B.1. The only modification it that in the present case the cross
terms all vanish, such that T = 0.

Appendix C. Moment analysis

To provide a complementary quantitative grasp on the statistics of the degrees and clustering coefficients of
the emergent networks of photon-number correlations as defined in equation (4), we analyzed the moments
of these distributions. More specifically, we considered the first four non-trivial moments: mean, variance,
skew, and kurtosis. For an arbitrary stochastic variable X, these quantities are defined as

Mean= E[X], (C.1)

Variance= E[(X−E[X])2], (C.2)
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Skewness=
E[(X−E[X])3]

E[(X−E[X])2]3/2
, (C.3)

Kurtosis=
E[(X−E[X])4]
E[(X−E[X])2]2

, (C.4)

and thus they can be estimated from the data. Furthermore, we used error propagation methods to estimate
the standard statistical error on each of these quantities.
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