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ABSTRACT  

We present a novel data-driven approach of learning traffic flow patterns of a transportation 

network given that many instances of origin to destination (OD) travel demand and link flows 

of the network are available. Instead of estimating traffic flow patterns assuming certain user 

behavior (e.g., user equilibrium or system optimal), here we explore the idea of learning those 

flow patterns directly from the data. To implement this idea, we have formulated the traditional 

traffic-assignment problem (from the field of transportation science) as a data-driven learning 

problem and developed a neural network-based framework known as Graph Convolutional 

Neural Network (GCNN) to solve it. The proposed framework represents the transportation 

network and OD demand in an efficient way and utilizes the diffusion process of multiple OD 

demands from nodes to links. We validate the solutions of the model against analytical solutions 

generated from running static user equilibrium-based traffic assignments over Sioux Falls and 

East Massachusetts networks. The validation results show that the implemented GCNN model 

can learn the flow patterns very well with less than 2% mean absolute difference between the 

actual and estimated link flows for both networks under varying congested conditions. When 

the training of the model is complete, it can instantly determine the traffic flows of a large-
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scale network. Hence this approach can overcome the challenges of deploying traffic 

assignment models over large-scale networks and open new directions of research in data-

driven network modeling. 

Keywords: Traffic assignment problem, Data-driven method, Deep learning, Graph 

convolutional neural network 

 

1. INTRODUCTION 

The traffic assignment problem (TAP) is one of the key components of transportation planning 

and operations. It is used to determine the traffic flow of each link of a transportation network 

for a given travel demand based on modeling the interactions among traveler route choices and 

the congestion that results from their travel over the network (Sheffi, 1985). Traditionally 

traffic assignment problems have been formulated as mathematical programs and solved based 

on user equilibrium (UE) principles (Wardrop, 1952). The UE solution relies on several 

assumptions on user behavior and knowledge such as: (i) drivers have perfect information and 

knowledge about the underlying network; (ii) drivers make rational choices when choosing a 

route; and (iii) all drivers are homogeneous (Kim et al., 2009). Although some of these 

assumptions may not hold in a real-world scenario, this approach has been providing the most 

reasonable solutions of the traffic assignment problem (Bar-Gera, 2002; Jafari et al., 2017; 

LeBlanc et al., 1975; Leurent et al., 2011; Mitradjieva and Lindberg, 2013; Tizghadam and 

Leon-garcia, 2007). One of the major issues with the static traffic assignment solution is that it 

assumes constant OD demand whereas traffic demand may significantly change over time, 

which makes it unsuitable to deploy for real world traffic scenario.  

Static traffic assignment problem fails to capture traffic dynamics of a network, which 

motivated researchers to move towards dynamic traffic assignment methods. Dynamic traffic 

assignment (DTA) has become a state-of-the-art solution method to capture traffic network 
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dynamics in a more realistic way. Numerous formulation and solution approaches have been 

introduced ranging from dynamic programming to variational inequality to simulation-based 

approaches (Abdelfatah and Mahmassani, 2002; Ban et al., 2008; Barthélemy and Carletti, 

2017; Ben-Akiva et al., 2012; Boyles et al., 2006; Foytik et al., 2017; Friesz et al., 1989; He et 

al., 2010; Janson, 1989; Ji et al., 2016; Jiang et al., 2011a, 2011b; Liu et al., 2007; Lo and Szeto, 

2002; Mahmassani, 2001; Merchant and Nemhauser, 1978; Nie and Zhang, 2010; Peeta and 

Mahmassani, 1995; Peeta and Ziliaskopoulos, 2001; Primer, 2011; Ran et al., 1993; Shafiei et 

al., 2018; Ukkusuri et al., 2012; Waller et al., 2013; Watling and Hazelton, 2003). In a smaller 

model with less complexity, the DTA process works well in converging to a point of 

equilibrium. As the scale of a model grows in size, complexity, and congestion, the DTA 

procedure may become more difficult and require more computational time making it less 

suitable for a real-time deployment. Researchers are exploring to develop efficient solution 

methods for traffic assignment problem (TAP) which can be deployed for real-time 

transportation operation purposes. 

Optimization of a transportation network largely depends on how accurately we capture 

the traffic dynamics of the network to forecast traffic in real-time. In particular, active traffic 

management requires a system that can estimate and forecast traffic in real-time. Over the last 

decade, traffic sensing technologies and emerging connected vehicles environment with added 

computational power has created an opportunity towards developing a data-driven approach as 

an alternative to traditional approaches of solving traffic assignment problems. Roadway 

sensors and devices provide us information on instantaneous travel time variation for different 

links indicating the congestion propagation throughout the network. Moreover, OD demand 

can be extracted from emerging data sources such as mobile phones, GPS observations, and 

social media posts. As such, we now have real-world O-D demand and traffic flow data 

available at large-scale over many days. However, one challenge is how to develop a data-
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driven framework at a network scale to learn the relationship between OD demand and link 

flows. 

To overcome this challenge, in this paper, we present a novel data-driven approach of 

learning traffic flow patterns of a transportation network given that many instances of OD 

demand and traffic flow of the network are available. Instead of estimating traffic flow patterns 

assuming certain user behavior (e.g., user equilibrium), here we explore the idea of learning 

those patterns from large-scale training data by developing a neural network architecture. In 

particular, we use the Graph Convolutional Neural Networks (GCNN) which generalize 

traditional neural networks to work on structured graphs (Kipf and Welling, 2016). GCNNs 

utilize an adjacency matrix or a Laplacian matrix to represent the structure of a graph. Recently, 

several studies have utilized the concept of graph convolution to represent traffic network as a 

generalized graph for traffic state prediction (Cui et al., 2018a; Li et al., 2018). Moreover, 

Graph Convolution Neural Network has emerged as a new approach to overcome the challenge 

of high dimensionality when predicting travel demand for a large-scale network (Kim et al., 

2019; Lin et al., 2018).  

However, this is the first time, we developed a GCNN model to learn the traffic flow 

pattern of a transportation network through learning the diffusion process of multiple OD 

demands from nodes to links. In this work, we seek to answer the question: can a deep learning 

model learn the flow patterns of a network without relying on the assumptions of user behavior 

for assigning traffic in the network? If positive, this will offer a learning-based traffic 

assignment solution, which means that the model can learn the interaction between demand 

and supply purely from data given that real-world data of O-D demand and traffic flows are 

available. Apart from assigning traffic in a purely data-driven way, this can open new directions 

in transportation network modeling research offering data-driven approaches for solving 

dynamic traffic assignment, network design, and many other problems with real-world 
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applications. Thus, this study makes several contributions:  

(i) It formulates the traffic assignment problem from the field of transportation science 

as a data-driven learning problem considering the underlying transportation network 

and available instances of OD demand and link flows.    

(ii) It develops a novel neural network architecture that can solve the learning problem 

to determine link flows based on OD demand and traffic flow data. 

(iii) It provides rigorously tested experimental evidence that such a neural network 

architecture can learn the user equilibrium traffic flow assignment of a transportation 

network only from data. 

2. DATA DRIVEN METHODS IN NETWORK LEVEL TRAFFIC MODELING 
 

With the emergence of big data and scalable data processing technologies data-driven 

modeling of complex system is gaining more attention. In transportation data-driven 

approaches have widely been applied to solve traffic prediction problems. These involve 

forecasting traffic speed (Cai et al., 2016; Ma et al., 2015; Polson and Sokolov, 2017; Rahman 

and Hasan, 2018), volume (Luo et al., 2019; Yasdi, 1999), and travel time (Billings and Jiann-

Shiou, 2006; Chien and Kuchipudi, 2003; Elhenawy et al., 2014; Innamaa, 2005; Myung et al., 

2011; Wu et al., 2004; Zhang and Haghani, 2015). Traditional data-driven methods such as 

Support vector regression (SVR), K-nearest Neighbor regression (KNN), Kalman Filtering 

(KF), Autoregressive Integrated Moving Average (ARIMA), Decision Tree, Artificial Neural 

Network (ANN), and Long Short Term Neural Network (LSTM) have been applied for short-

term traffic prediction over only one or multiple segments of highways, but not at the scale of 

a network (Billings and Jiann-Shiou, 2006; Cai et al., 2016; Chien and Kuchipudi, 2003; 

Deshpande and Bajaj, 2016; Elhenawy et al., 2014; Innamaa, 2005; Lee, 2009; Luo et al., 2019; 

Ma et al., 2015; Myung et al., 2011; Polson and Sokolov, 2017; Rahman and Hasan, 2018; Wu 

et al., 2004; Yu et al., 2016; Zhang and Haghani, 2015). Moreover, they do not consider network 
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wide travel demand variations while predicting future traffic. As such, these approaches 

consider traffic prediction as a simple time series problem and predict the traffic state for a 

shorter time horizon (e.g., next 5 to 15 min). However, to estimate traffic for an entire network 

similar to the solution of a traffic assignment problem, we need to understand traffic evolution 

and congestion propagation for an entire road network rather than on a single road. Hence, 

researchers are investigating new data-driven methods to estimates network scale traffic which 

can be deployed for real-time transportation operation purposes. 

Network level traffic prediction is more challenging due to the higher computational 

complexity required by the network topology. Such a problem requires (i) to capture the travel 

demand variation in the network, (ii) to capture the correlation of traffic in interconnected roads 

and mapping it in a spatial network (Polson and Sokolov, 2017), and (iii) to reflect drivers’ 

route choice and associated congestion propagation inside the network. Convolutional Neural 

Network (CNN) methods are the initial attempt to model spatial and temporal correlation 

among the traffic states for network level traffic prediction. A few studies (Liu et al., 2017; Ma 

et al., 2017), have implemented the CNN and its variants such as CNN-LSTM model for 

network level traffic prediction. Although this model outperforms existing state-of-the-art data-

driven models, in a CNN model, the traffic network is considered as an image and network 

information is extracted using a convolution filter, which is then fed into a fully connected layer 

or an LSTM layer to predict future traffic state. While traffic network is converted into an 

image, a certain amount of noise is included into the spatial relationships of traffic state causing 

erroneous results in prediction. Moreover, CNN cannot capture the long-term congestion 

propagation inside the network for long term traffic forecasting. Hence, it fails to capture the 

stochastic nature of traffic dynamics of a transportation network. 

Recently, graph theory coupled with generalized neural network architecture has been 

utilized to model the dynamics between the structural properties and the functions of a network 
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(Atwood and Towsley, 2015; Defferrard et al., 2016; Li et al., 2018; Sanchez-Gonzalez et al., 

2020; Zhang et al., 2019; Zhou et al., 2018). Thereby, solving problems such as modeling 

physical systems, learning molecular fingerprints, predicting protein interface, and classifying 

diseases, which require that a model learns from graph-based inputs. Several studies have 

applied graph convolution-based approaches to learn spatiotemporal features of a 

transportation network (Atwood and Towsley, 2015; Cui et al., 2020, 2018b, 2018a; Guo et al., 

2021, 2020, 2019; Kim et al., 2019; Li et al., 2021, 2018; Lin et al., 2018; Peng et al., 2021, 

2020; Tang et al., 2020; Yu et al., 2018; Zhao et al., 2020). One of the main limitations of these 

studies is that they focused on learning traffic representation at a network scale rather than 

modeling the interaction between travel demand and traffic flow diffusion process. In other 

words—without including demand in the modeling framework—these methods disregard the 

fundamental concept of network flow modeling. Consequently, they fail to explain the working 

mechanism and support the reliability of these methods in network wide traffic flow estimation. 

In this study, we develop a data-driven method to model the interaction between network 

wide travel demand variations and links flows. Thereby, we formulate the traffic assignment 

problem as data-driven learning problem. To solve this problem, we proposed a novel deep 

learning architecture adapting the concept of graph convolution. 

 

3. DATA-DRIVEN TRAFFIC ASSIGNMENT 

In this section, first we formulate the data-driven traffic assignment problem. We then describe 

the Graph Convolutional Neural Network (GCNN) approach to model traffic flow propagation 

in the network.  

3.1 Problem Definition  

In a transportation network, all nodes are connected, and each link is associated with 

information such as distance, speed limit, capacity etc. Here, we consider the transportation 
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network as a weighted directed graph 𝒢(𝑣, ℰ, 𝑨𝒘)  where 𝑣  denotes the set of nodes and ℰ 

denotes the set of links between nodes (𝑖, 𝑗). 𝑨𝒘 represents the connectivity between nodes as 

a weighted adjacency matrix, where weights are based on free flow travel time between any 

two nodes (𝑖, 𝑗), defined as follows: 

                                                 𝑨𝒘(𝒊, 𝒋) = {

𝑡𝑖,𝑗
0        𝑖𝑓 𝑖 → 𝑗

𝑡𝑗,𝑖
0        𝑖𝑓 𝑗 → 𝑖

0,          𝑖𝑓 𝑖 = 𝑗

                                                   (1)                         

where, 𝑡𝑜 denotes the free flow travel time between the origin and the destination nodes. The 

proposed data-driven formulation of the traffic assignment problem aims to learn the flow 

patterns of a transportation network based on the network structure and the instances available 

on origin to destination (OD) travel demand and link flows (Fig.1). Also, we have the 

information on network characteristics, such as location of each node with respect to other 

nodes, travel distance or free flow travel time between different nodes. From this information, 

we develop a data-driven method to estimate the link flows for given travel demands. During 

the estimation process, we also learn the traffic flow propagation from origin nodes toward 

destination nodes in a transportation network. Let, 𝑿  be the demand matrix for the 

transportation network 𝒢, where each element of a row indicates the travel demand between 

origin node (𝑖) and the destination node (𝑗).  

The traffic assignment problem aims to learn a function ℱ(. ) that maps 𝑚 instances of 

OD demand matrix (𝑿𝟏, 𝑿𝟐, 𝑿𝟐 … … … . . , 𝑿𝒎)  to 𝑚  instances of flow (𝐹1, 𝐹2, 𝐹3 … … … 𝐹𝑚) , 

defined as follows,   

            ℱ([𝑿𝟏, 𝑿𝟐, 𝑿𝟐 … … … . . , 𝑿𝒎]; 𝓖(𝑣, ℰ, 𝑨𝒘)) = [𝐹1, 𝐹2, 𝐹3 … … … 𝐹𝑚]                          (2) 

 where, 𝑨𝒘 indicates the weighted adjacency matrix, ℰ indicates the set of links of the network, 

and the vector 𝐹𝑚 contains the link flows for each link of the network for a given OD demand 

(𝑿𝒎). In this formulation, OD demands and network properties are input variables and link 

flows are the target variables. 
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Fig. 1. A Schematic View of the Data-Driven Traffic Assignment Problem  

Table 1 List of notations 

Notation Description 

 𝓖 Transportation network 

𝑣 Set of nodes in 𝒢 with size of |𝑣| = 𝑁 

ℰ Set of links in 𝒢 with size of |ℰ| = 𝐸 

𝑨𝒘 ∈ 𝑹𝑵×𝑵  Weighted adjacency matrix of 𝒢, defined by Equation (1) 

I ∈ 𝑹𝑵×𝑵 Identity matrix  

𝑨̅𝒘 ∈ 𝑹𝑵×𝑵 Neighborhood matrix defined by Equation (7) 

𝑫𝒘 ∈ 𝑹𝑵×𝑵 Degree matrix of 𝒢 , a diagonal matrix where diagonal elements (𝑖, 𝑖) 
indicate the number of links coming out from a node  

𝑳𝒘 ∈ 𝑹𝑵×𝑵 Laplacian matrix represents the structural properties of a network, defined 
by the equation (12) 

𝑡𝑖,𝑗
0  Free flow travel time between nodes 𝑖 and 𝑗 

𝑿 ∈ 𝑹𝑵×𝑵 OD demand matrix  

F ∈ 𝑅𝐸 Flow vector contains flows for each link of the network for a given OD 
demand 𝑿 
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Notation Description 
𝓟 ∈ 𝑹𝑵×𝑵 Routing matrix indicates the probability of diffusion of flow from node 𝑖 

to node 𝑗 
𝒈𝛉 Convolutional filter to learn the network features along with network 

function 
𝑓(. ) Activation function 

𝚯 ∈ 𝐑𝑵×𝑵 
 

Learnable parameters for the convolution filter 

𝑾𝒒, 𝑾𝑭 Learnable parameters for link flow estimation 

q Flow distribution matrix indicating the propagation of flow from a given 
node to different links of the network 

H Indicates the outputs from different layers of the proposed neural network 
architecture 

All the bold letters denote a matrix  

3.2 Graph Convolution Neural Network for Flow Pattern Learning 

We develop a Graph Convolution based Neural Network (GCNN) architecture to assign traffic 

in the transportation network. We use graph convolution operation to learn the network 

properties and the flow diffusion process from origin nodes toward destination nodes. To 

estimate link flows, we model how this flow diffusion process is contributing to link flows. In 

other words, the model considers how flows are coming to a specific link from adjacent nodes 

while diffusing from origin nodes towards destination nodes. In the proposed GCNN model, a 

convolution filter is derived based on the network structure (position of the nodes and links) 

and the flow diffusion process inside the network. Hence, GCNN model captures changes in 

traffic states of a transportation network by modeling the flow diffusion from origin nodes 

toward destination nodes. As such, the GCNN model simultaneously learn the features (each 

node and link are embedded with valuable information) and function of the network.  

Once the model learns the flow diffusion process, we can feed this information into a 

feed forward neural network to estimate the traffic flows at different links. In the following 

section, we describe the final architecture of the proposed deep neural network model to 

estimate traffic flows at different links.  
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Fig. 2. GCNN architecture for traffic flow pattern learning 

Fig. 2 shows all the layers and matrix operations in each layer for the proposed GCNN 

architecture. In the first layer, we define the graph convolutional operation to learn the network 

properties and demand distribution for different nodes. We derive the graph convolution filter 

from weighted adjacency matrix where weights are assigned based on the free flow travel time 

of a link (see equation 1). We perform the convolution operation between the OD demand (𝑿) 

and graph convolution filter ( 𝒈𝜽) . The convolutional filter ( 𝒈𝜽)  represents the diffusion 

process of the traffic flows from the origin node towards destination nodes. While training the 

model, we estimate the parameters ( 𝜣)  for this convolutional filter. We define the graph 

convolution layer as follows:  

                                                       𝐇𝟏 = 𝑓1(𝒈𝜽 ∗ 𝑿) = 𝑓1(𝚯𝒈𝜽𝑿)    (3) 

here, 𝑓1(. ) denotes the nonlinear activation function for the convolution layer and 𝐇𝟏 ∈ 𝑅𝑁×𝑁 
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indicates the output from the graph convolution layer (1st layer). From this layer, we obtain a 

convoluted demand matrix (𝐇𝟏) representing the flow diffusion process (from origin nodes 

towards destination nodes) inside a network.  

The convoluted demand matrix is then fed into the 2nd layer of the GCNN, where we 

model traffic flow distribution from origin nodes towards adjacent links. In this layer, we create 

a simple neural network model with parameters 𝑊𝑞, which maps the convoluted demand matrix 

to a 𝑁 × 𝐸  dimensional space (same size as the link-node adjacency matrix) via matrix 

multiplication. In this way, the GCNN captures how flow diffusion process will assign traffic 

at different links of the network. We define the 2nd layer of the model as follows, 

                                                       𝐇𝟐 = 𝐪 = 𝑓2 (𝑾𝒒𝐇𝟏)                                                       (4) 

here, 𝑓2(. ) denotes the nonlinear activation function for the second layer and 𝐇𝟐(= 𝒒) ∈ 𝑅𝑁×𝐸 

indicates the output from the second layer representing distributed link flows from adjacent 

origin nodes (N) of the network. Which means, each row of the matrix 𝒒,  indicates the 

distributed link flows for all the links (𝐸) associated with an origin node.  

Finally, the distributed link flow matrix (𝒒) is transposed and fed into the output layer 

(see Fig. 2). Inside the transposed matrix (𝒒𝑻 ∈ 𝑅𝐸×𝑁) each row indicates the distributed link 

flows for a given link from all the origin nodes (𝑁). In the output layer, we assign a linear 

activation function (𝑓3(. )) with 𝑁 parameters, which aggregates the distributed link flows and 

outputs assigned traffic flow for a given link. We define the output layer as follows,  

                                                      H3 = F = 𝑓3(𝑊𝐹(𝐇𝟐)T) = 𝑓3(𝑊𝐹𝐪T)                              (5) 

Here, 𝑓3 denotes the linear activation function and H3(= 𝐹)  ∈ 𝑅𝐸  denotes the assigned traffic 

flows for all the links. From the output layer (H3), we obtain link flows (𝐹) for a given OD 

demand (𝑿). So, the mathematical formulation of the GCNN model to estimate the link flows 

can be generalized as follows,  

                                                 𝐹 = 𝑓3((𝑓2(𝑓1(𝚯𝒈𝜽𝑿)𝑾𝒒)
𝑇

𝑊𝐹)                                          (6) 
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here, we select the hyperbolic tangent function 𝑡𝑎𝑛ℎ =
𝑒(𝑥)−𝑒(−𝑥)

𝑒(𝑥)+𝑒(−𝑥)
 as the nonlinear activation 

function (𝑓1(. ) = 𝑓2(. ) = 𝑡𝑎𝑛ℎ) for the model.  

 In the following section, we describe the graph convolution operations and the 

parameters associated with graph convolution filter in details.  

3.3 Modeling Traffic Flow using Diffusion Graph Convolution 

In a transportation network, the traffic flow pattern changes in response to the changes in travel 

demand. We represent this relationship via flow diffusion process from origin nodes towards 

destination nodes. To capture the stochastic nature of traffic flow variation at a network level, 

we consider the flow diffusion process by a random walk (random movement into adjacent 

neighboring nodes) in the network, 𝒢 with restart probability 𝛼 ∈ [0,1] and a state transition 

matrix 𝑫̅𝒘
−𝟏𝑨̅𝒘, where 𝑨̅𝒘 is the neighborhood matrix. In the neighborhood matrix, we add an 

identity matrix (𝑰) with the adjacency matrix (𝑨𝒘). By adding the identity matrix, we create a 

self-loop for each node; for a given diffusion step it will capture the traffic flows having same 

node as origin and destination; in other words, it captures that the traffic flow remains in the 

origin node rather than diffusing from origin node to destination nodes. The neighborhood 

matrix 𝑨̅𝒘 is defined as,   

                                                           𝑨̅𝒘 = 𝑨𝒘 + 𝑰                                                                (7) 

The restart probability indicates the probability of starting of a random walk from node 𝑖. From 

the starting node such random walks take multiple steps (diffusion steps, 𝐾) to traverse the 

adjacent nodes until reaching the destination node 𝑗 . After many time steps, such diffusion 

process converges to a stationary distribution 𝓹 ∈ 𝑹𝑵×𝑵   where 𝑖 th row of 𝓹  indicates the 

probability of flow diffusion from node 𝑖 towards 𝑗.  The stationary distribution of the diffusion 

process can be represented as a weighted combination of infinite random walks on the graph 
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(Teng, 2016) and be calculated in closed form, 

                                                𝓟 = ∑ α(1 − α)𝑘(𝑫̅𝒘
−𝟏𝑨̅𝒘)∞

𝑘=0
𝑘                                              (8) 

where 𝑘 is the diffusion step. In practice, we can consider a finite number of diffusion steps 

and assign a trainable weight at each step. Similar diffusion processes have been adopted in 

previous research (Atwood and Towsley, 2015; Li et al., 2018). Based on that we can define 

the diffusion convolution over the network features (e.g., OD demand) 𝑋 as follows,  

                                                 𝒈𝜽 ∗ 𝑿 = ∑ Θk(𝑫̅𝒘
−𝟏𝑨̅𝒘)𝒌 𝑿𝐾−1

𝑘=0                                             ( 9) 

If we consider a 2-step diffusion process the above equation becomes, 

                                               𝒈𝜽 ∗ 𝑿 = Θ0𝑿 + Θ1(𝑫̅𝒘
−𝟏𝑨̅𝒘)𝟏𝑿                                            (10) 

where, Θ0 and Θ1are the weights for each of the steps. While modeling the traffic flow pattern 

of transportation network, we can consider different number of diffusion steps to reach to a 

stationary distribution. However, as the network grows, this process becomes computationally 

expensive, since for a larger network the value for the diffusion step will be higher. Hence, 

such diffusion processes are only applicable for small scale networks, where flow diffusion 

occurs among the nearest neighbors (Li et al., 2018; Wang et al., 2020).   

In our problem, we propose an alternative approach to represent the diffusion process. 

Instead of selecting a value of the diffusion step (𝐾) and assigning parameter to each step, we 

assign parameters (𝚯  ) to locally learn the stationary probability distributions (probability 

matrix). So, while the training the model we estimate the parameters (𝚯 ) to learn the stationary 

probability distribution for the flow diffusion process. In other words, we obtain a routing 

matrix (Leon-Garcia and Tizghadam, 2009) which indicates the probability of diffusion of flow 

from node 𝑖  to node 𝑗 . The resulted diffusion convolution over the OD demand 𝑿  can be 

written as follows: 

                                                    𝒈𝜽 ∗ 𝑿 = 𝚯(𝑫̅𝒘
−𝟏𝑨̅𝒘)𝑿                                                      (11) 

where, 𝚯 ∈ 𝑹𝑵×𝑵  are the parameters of the convolution filter and 𝑫̅𝒘
−𝟏𝑨̅𝒘  represents the 
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transition probability matrix of the diffusion process. In the demand matrix 𝑿 , each row 

indicates travel demand from origin node 𝑖 to destination node 𝑗. So, when we perform the 

matrix multiplication between the operator Θ(𝑫̅𝒘
−𝟏𝑨̅𝒘) and 𝑿, we obtain a convoluted feature 

matrix which captures the influence all OD pairs on link flows associated with origin node.  

We can also model the diffusion process using a normalized Laplacian matrix. 

Laplacian matrix better represents the structural properties of a network: the diagonal elements 

indicate the number of links originating at a given node, while the other elements indicate the 

connection between the origin and destination nodes. We define the Laplacian matrix as follows,  

                                                       𝑳̅𝒘 = 𝑫̅𝒘 − 𝑨̅𝒘                                                               (12) 

Normalizing the Laplacian matrix with degree matrix, 

                               𝑫̅𝒘
−𝟏𝑳̅𝒘 = 𝑫̅𝒘

−𝟏(𝑫̅𝒘 − 𝑨̅𝒘) = 𝑰 − 𝑫̅𝒘
−𝟏𝑨̅𝒘                                             (13) 

Now, the convolution over OD Demand matrix, 𝑿 can be written as follows, 

                                              𝒈𝜽 ∗ 𝑿 = 𝚯(𝑰 − 𝑫̅𝒘
−𝟏𝑨̅𝒘)𝑿                                                   (14) 

where, 𝚯 ∈ 𝑹𝑵×𝑵 are the parameters of the convolution filter, in other words, the coefficient 

matrix of the diffusion equation. During the training of deep learning model, we learn these 

parameters, which capture the flow diffusion process inside the network.  

In this study, we focus on a probabilistic approach to model the flow diffusion by 

estimating transition probability matrix in two ways: using a random walk on adjacency matrix 

(equation 11) and Laplacian matrix (equation 14). We also compare these approaches with 

spectral graph convolutional neural network (Kipf and Welling, 2016) to learn traffic flow 

patterns. In a spectral graph convolutional approach, the convolutional filter is estimated by 

decomposing the adjacency matrix into its eigenvalues to represent different properties of the 

graph such as strength of a node, shortest path distance etc. In Appendix A, we provide the 

details of the concepts of spectral graph convolution to learn traffic flow patterns of a 

transportation network. 
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4. DATA GENERATION 

Although we propose this method for real-world traffic data, recent sensing technologies are 

not densely distributed yet to provide us data necessary to test this approach. Especially, for 

large networks the OD demand variations are not accessible to us, though such OD demand 

data exist due to the availability of mobile phone data (Alexander et al., 2015; Gundlegård et 

al., 2016). In addition, we seek to verify if the proposed approach works across different 

congested conditions and to measure the gaps between the actual traffic assignment solutions 

(i.e., analytical solutions) and the solutions obtained from the proposed neural network-based 

approach. Thus, to verify our approach, we generate synthetic traffic data based on user 

equilibrium (UE) solutions of static traffic assignments over two networks: Sioux Falls network 

(24 nodes and 76 links) and East Massachusetts Network (74 nodes and 258 links). It should 

be noted that our approach is not an alternative method to determine UE solutions. We use the 

UE based traffic assignment mainly to generate the data to verify our approach.  

We obtained the OD demand and information on network characteristics from 

(Transportation Networks for Research Core Team, 2016). To generate multiple OD demand, 

we multiplied the OD demand matrix by random factors collected from a uniform distribution 

which varies 0.1 to 1.0. To test our approach in different scenarios, we consider three conditions: 

uncongested, moderately congested, and fully congested. We generate 5,000 OD matrices for 

each condition and solve both networks using the Frank Wolfe algorithm to obtain user 

equilibrium traffic flows. To represent the prevailing traffic condition, we estimate the flow 

over capacity ratio. We assume that, for uncongested condition the flow-capacity ratio remains 

less than 0.5, for moderate condition the flow-capacity ratio varies between 0.4 and 0.8, and 

for uncongested condition, most of the cases the flow-capacity ratio is greater than 1.0. Fig. 4 

shows the traffic flow variations for different links of Sioux Falls Network. 
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Fig. 3. Transportation Networks (a) Sioux Falls Network (Transportation Networks for 

Research Core Team, 2016) (b) East Massachusetts Network (US Census Bureau, 2015) 

(Huang and Kockelman, 2019)  

 

 

(a) Uncongested Condition 
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(b) Moderately Congested Condition 

 

 

(c) Congested Condition 

Fig. 4. Illustrates the distribution of flow-capacity ratio for different traffic conditions  
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5. RESULTS AND DISCUSSION 

We implemented all the models using PyTorch (“PyTorch,” 2016) library and train our model 

with dual NVIDIA Tesla V100 16GB PCIe GPU.  Among the OD demand matrices, we use 

70% (n=3,500) for training, 20% (n=1,000) for validation, and rest 10% (n=500) for testing the 

model. We train the model on training data and check the accuracy for the model on validation 

data set. Based on the validation accuracy, we tune the hyperparameters such as learning rate, 

types of activation functions (i.e., tanh, sigmoid etc.) and maximum number of iterations. We 

also check whether the model is overfitting or not. Once the final model is fixed, we test it on 

the test data set. We calculate Root Mean Squared Error (RMSE) and Mean Absolute Error 

(MAE) as performance measures to check the accuracy of the implemented model. 

Performance metrics are defined as,  

                       𝑅𝑀𝑆𝐸 = √ 1

𝑚
∑

∑ (𝐹𝑚
ℰ −𝐹̂𝑚

ℰ )2𝐸
ℰ=1

𝐸
𝑚
𝑚=1                                                                          (15) 

                       MAE =
1

𝑚
∑

∑ |𝐹𝑚
ℰ −𝐹̂𝑚

ℰ |𝐸
ℰ=1

𝐸
𝑚
𝑚=1                                                                                (16) 

In Table 2, we report the performance of model on the test dataset. From the result, we 

find that both diffusion convolution and spectral convolution have similar accuracy, which is 

expected, since the spectral convolution operation is a special case of the diffusion convolution 

(Li et al., 2018). Based on performance metrics values, we can conclude that the proposed 

approaches are performing well to capture the flow diffusion. RMSE and MAE values provides 

aggregated information (average over all the outputs) on the performance of the models, hence, 

we also estimated 𝑅2  score. As shown in Table 2, for each model the 𝑅2  score is nearly 1, 

indicating the accuracy of the model to learn traffic flows in the network. We have also 

compared between actual and estimated link flows for a given OD demand. Fig. 4 and Fig. 5 

show that for both Sioux Falls and East Massachusetts networks the difference between actual 

and estimated link flow is quite low. 
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Table 2 Model accuracy on the test datasets. 
 

N
et
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k Flow 
Propagation 
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Minimum 
Flow 
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Flow 
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Flow 

MAE RMSE % 
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Flow 
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x 
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Random 
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642.8 7001.4 2447.4 
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Laplacian 
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8.5 11.8 0.346 0.9999 

Spectral 
Graph 

8.6 11.9 0.353 0.9999 
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 Random 

Walk 

0 8220.1 1762.0 

25.5 44.6 1.444 0.9991 

Laplacian 
Graph 

25.2 44.5 1.431 0.9991 

Spectral 
Graph 

25.5 44.6 1.449 0.9991 
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n 

Si
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x 
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Random 
Walk 

2562.9 16394.4 6704.5 
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Laplacian 
Graph 

23.1 31.7 0.345 0.9998 

spectral 
Graph 

23.4 32.1 0.350 0.9998 

Ea
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ch
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 Random 

Walk 

0 10858.7 2337.9 

33.6 59.5 1.436 0.9991 

Laplacian 
Graph 

33.5 59.4 1.431 0.9991 

Spectral 
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33.6 59.5 1.438 0.9991 
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Random 
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7 
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36.9 49.2 0.355 0.9999 
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Graph 
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Spectral 
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From the results, we observe that: (i) a neural network can capture the traffic assignment 

of a network without any prior knowledge on user behavior; (ii) we can achieve a better 

accuracy with an appropriate representation of the physical process of flow propagation.  

 

           (a) Uncongested Condition                            (b) Moderately Congested Condition 

 

(c) Congested Condition 

Fig. 4. Comparison between actual and estimated link flows for a given OD demand in Sioux 

Falls Network  
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              (a) Uncongested Condition                            (b) Moderately Congested Condition 

 

(c) Congested Condition 

Fig. 5. Comparison between actual and estimated link flows for a given OD demand East 

Massachusetts network  

5.1 Result interpretation 

To understand how well the model has learned the flow propagation for the given networks, 

we perform network topology analysis for the Sioux Falls network based on the betweenness 

centrality of the nodes and correlate them with the variations in trained parameters. 

Betweenness centrality of a node indicates the fraction of the total number of shortest paths 

passing through that node (Brandes, 2001), which means a node with a higher value of 

betweenness centrality will have a higher number of shortest paths incidence on that particular 

node.  

For a given OD demand matrix, to estimate betweenness centrality values we need to 
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find the shortest paths for all pairs of origin-destination nodes at user equilibrium. However, 

the shortest path for a pair of origin and destination nodes depends on link travel times. In our 

analytical solutions (i.e., using Frank-Wolfe algorithm), we use BPR travel time function (see 

equation 17) to update link travel times. Based on the updated travel time, we find the shortest 

paths for assigning traffic to the network. These steps continue iteratively prior to reaching an 

user equilibrium solution, when travel time for all the used paths remain same for a given O-D 

pair. Hence, we use the same function to estimate user equilibrium travel time (𝑡𝑖,𝑗) for all the 

links of the network.  

                                           𝑡𝑖,𝑗 = 𝑡𝑖,𝑗
0 (1 + 0.15 (

𝑓𝑖,𝑗

𝐶𝑖,𝑗
)

4

)                                                       (17) 

where  𝑓𝑖,𝑗

𝐶𝑖,𝑗
 indicates the flow-capacity ratio for a given link. Based on the estimated links’ travel 

time from equilibrium link flows we find the shortest paths and estimate the betweenness 

centrality for all the nodes. We apply this approach on all the training OD demand samples. 

Fig. 6 shows the distribution of betweenness centrality values for each node of the Sioux Falls 

Network across different traffic conditions. From the figures we find that except nodes 1, 2, 9, 

and 23, all the nodes have higher betweenness centrality values. Nodes 6, 8, 12, 15, 16, and 18 

are the most critical for the Sioux Falls network. Moreover, we find that for congested condition 

(i.e., higher demand), variations of betweenness centrality values are higher compared to 

moderately and uncongested conditions. 

 

 



 
 

24 

                   (a) Congested Condition                                    (b) Moderately congested Condition 

 

(c) Uncongested Condition 

Fig. 6. Variations of Betweenness Centrality for different nodes at different traffic condition 

(Sioux Falls network) 

From the BPR function, we find that, if flow capacity ratio is less than 1.0, there will be no 

significant change in travel time with link flow variations or demand variations. However, 

when the flow capacity ratio is greater than 1.0, travel time will vary significantly with demand 

variations (i.e., link flow variations). Consequently, the shortest paths will change abruptly (i.e., 

shortest path are nor stable) leading to significant variations in betweenness centrality for all 

the nodes. In our case, for congested condition, the flow capacity ratio mostly varies from 1.0 

to 2.0, thereby we observe a significant variation of betweenness centrality for different nodes. 

Whereas for moderately congested and uncongested conditions, since the flow capacity ratio 

is mostly less than 1.0 so we, do not see significant variations in Betweenness Centrality.  

In the proposed model, we assign parameters (𝑾𝒒) to learn the flow propagation from 

nodes into adjacent neighboring links. We assume that the weight parameters associated with 

critical nodes will be higher and will vary significantly due to the changes in betweenness 

centrality of nodes. In other words, the weight parameter associated with a node is likely be 

correlated with the betweenness centrality value of the node.  

In Fig. 7, we plot the weight distributions for node-link flow propagation inside Sioux 

Falls network at different traffic conditions. Since for uncongested and moderately congested 
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conditions, the variations of betweenness centrality for different nodes are similar, the 

distributions of weight parameter (𝑊𝑞) are also similar. In both cases, the critical nodes 6, 8, 

15, and 16 have high positive weights (Fig. 7 (a) & (b)). For congested condition, the variation 

of betweenness centrality over different nodes are higher, thereby the weight parameters vary 

significantly compared to uncongested and moderately conditions (Fig. 7(c)). In a congested 

condition, the model cannot identify the critical nodes from all nodes to pass the traffic 

efficiently. This could be a possible reason that the model does not give higher positive weights 

for critical nodes similar to uncongested and moderately congested conditions.  

5.2 Stability of the Solution 

We train the model using mean squared error as the loss function. At each iteration, the model 

estimates the mean squared error for the estimated flows (𝐹̂𝑚
ℇ ) and the actual flows (𝐹𝑚

ℰ ) of the 

network. Afterward, the gradient of the loss function is backpropagated to adjust the weights 

to reduce loss function value. The loss function can be defined as,  

                                                       𝐿𝑚 = 𝐿𝑜𝑠𝑠(𝐹𝑚
ℰ , 𝐹̂𝑚

ℇ )                                                       (18) 

where, 𝐿𝑜𝑠𝑠(. )  is the function to estimate the error between the actual (𝐹𝑚
ℰ )  and estimated 

values (𝐹̂𝑚
ℰ) and ℰ denotes the set of links for the network. In this study, we estimate mean 

square error (MSE) as a loss function.                                                     
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Fig. 7. Distribution of weight (𝑤𝑞) over different traffic conditions (Sioux Falls network) 

 To check the stability of solution, we observed the training and test loss values for the 

model (Fig. 8). We train each model for 10,000 iterations to check variation of train and 

(a) Uncongested Condition 

(b) Moderately Congested Condition 

(c) Congested Condition 
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validation loss values. We find that it takes about 2000 iterations for the model to converge to 

a stable solution, after that there are merely any variations in loss values. Moreover, after 

10,000 iterations the loss function value for the validation data gradually start increasing. From 

2,000 to 10,000 iterations the difference in MSE values varies from 4 to 9, indicating a stable 

solution with minimal variance. We experimented with two different optimizers to train the 

model: root mean square propagation (RMSProp) and adaptive moment estimation (ADAM) 

optimizer. Among these two, RMSProp takes less iterations (~1500 iterations) to converge (i.e. 

similar train and validation error) compared to ADAM optimizer (~2000 iterations). However, 

ADAM optimizer gives more stable solutions, which means MSE values for train and 

validation data almost remain same after convergence (i.e., after 2000 iterations). Whereas, for 

RMSProp optimizer we observe slight variations in MSE values for both train and validation 

data samples even after convergence (i.e., after 1500 iterations).    

We also check the computation time required to train the models. It takes about 19 

minutes to train the models on Sioux Falls network for 10,000 iterations, while for East 

Massachusetts network it takes 30 minutes. So, our approach performs reasonably well to 

estimate network level traffic flows with less computation time.   
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(a) Congested Condition 

  

(b) Moderately Congested Condition 

 

(c) Uncongested Condition 

Fig. 8. Loss Function Values for Laplacian Spectral Graph (Sioux Falls network)  

6. CONCLUSIONS 

In this study, we present a data-driven formulation of traffic assignment problem based on 
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learning traffic flow patterns of a transportation network from origin destination (OD) travel 

demand variations. Adapting graph convolution approach, we develop a deep learning 

architecture to solve this traffic assignment problem by capturing the diffusion of OD demand 

inside the network. To efficiently represent the diffusion process of multiple OD demands from 

nodes to neighboring links, we customize the traditional graph convolutional neural network 

and introduce the concept of learning-based assignment (i.e., routing matrix) of OD demands 

to generate link flows. Finally, we provide experimental evidence on the validity of the 

approach by training the model to learn the user equilibrium traffic flows for Sioux Falls and 

East Massachusetts networks. The experiment results show that the implemented GCNN model 

can capture the user equilibrium traffic flow of the network very well with less than 2% mean 

absolute difference between the actual and estimated link flows under varying congested 

conditions. Moreover, when the training of the model is complete, it can instantaneously 

determine the traffic flows of a large-scale network. Hence this approach can overcome the 

challenges of deploying traffic assignment models over large-scale networks. Furthermore, this 

method is completely data-driven without requiring any assumption on user behavior. Thus, it 

will improve the reliability and stability of traffic assignment solutions.  

To extend this framework towards a data-driven dynamic traffic assignment method, 

we need to consider the representation of the physical process of flow propagation to account 

travel time variations. In addition, existing data sources are not widely available to researchers 

to infer travel demand at a higher spatiotemporal resolution. Alternative data augmentation 

approach can be explored to prepare the travel demand data. Future research should consider 

these issues to develop a framework that can solve the dynamic traffic assignment problem and 

prepare demand data that can be fed into such frameworks. 

A data-driven network modeling approach is warranted in the era of big data. 

Ubiquitous use of mobile phones, availability of GPS based vehicle trajectory data, emerging 
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connected and automated vehicle data, and so on will give us the opportunities to model travel 

demand and traffic flows at a high spatio-temporal resolution. The proposed deep learning 

architecture for solving a traffic assignment learning problem is an initial step towards 

exploiting such high-fidelity data for data-driven network modeling research.  
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Appendix A. Modeling Traffic Flows using Spectral Graph Convolution 

In spectral graph convolution, a spectral convolutional filter is used learn traffic flow patterns 

inside a transportation network in repose to travel demand variations. The spectral filter is 

derived from spectrum of the Laplacian matrix, which consist of eigenvalues of the Laplacian 

matrix.  So, to construct the spectrum, we must calculate the eigenvalues of` the Laplacian 

matrix. For a symmetric graph, we can compute the eigenvalues using eigen decomposition of 

the Laplacian matrix. In this problem, we consider the transportation network as a symmetric 

directed graph; same number of links getting out and getting inside a node, which means the in 

degree and out degree matrix of the graph is similar. Thus, the Laplacian matrix of this graph 

is diagonalizable as follows using eigen decomposition, 

                                                         𝑳𝒘 = 𝑼𝜦𝑼𝑻                                                                  (19) 

where,  𝜦 is a diagonal matrix with eigenvalues, 𝜆0, 𝜆1, 𝜆2,  .  .  .  , 𝜆𝑁 and 𝑼 indicates the eigen 

vectors, 𝑢0, 𝑢1, 𝑢2,  .  .  .  , 𝑢𝑁. Eigen values represent characteristics of transportation network 

in terms of strength of a particular node based on its position, distance between adjacent nodes, 

dimension of the network. The spectral graph convolution filter can be defined as follows,  

                                                               𝒈𝜽(𝜦) = ∑ 𝜃𝑘𝜦𝒌

𝐾−1

𝑘=0

                                                               (20) 

where, 𝜃 is the parameter for the convolution filter shared by all the nodes of the network and 

𝐾 is the size of the convolution filter. Now the spectral graph convolution over the graph signal 

(𝑿) is defined as follows, 

𝒈𝜽 ∗ 𝑿 = 𝒈𝜽(𝑳𝒘)𝑿 = 𝒈𝜽(𝑼𝜦𝑼𝑻)𝑿 = 𝑼𝒈𝜽(𝜦)𝑼𝑻𝑿 = ∑ 𝜃𝑘𝑼𝜦𝒌𝑼𝑻𝑿

𝐾−1

𝑘=0

 

                                                      𝒈𝜽 ∗ 𝑿 = ∑ 𝜃𝑘𝑳𝒘
𝒌 𝑿

𝐾−1

𝑘=0

                                                                  (21) 

According to spectral graph theory, the shortest path distance i.e. minimum number of links 
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connecting nodes 𝑖  and 𝑗  is longer than 𝐾 , such that 𝐿𝐾(𝑖, 𝑗)  =  0  (Hammond et al., 2011). 

Consequently, for a given pair of origin (𝑖) and destination (𝑗) nodes, a spectral graph filter of 

size K has access to all the nodes on the shortest path of the graph. It means that the spectral 

graph convolution filter of size 𝐾 captures flow propagation through each node on the shortest 

path. So, the spectral graph convolution operation can model the interdependency between a 

link and its 𝑖 th order adjacent nodes on the shortest paths, given that 0 ≤ 𝑖 ≤ 𝐾.  

The computational complexity of calculating 𝑳𝒘
𝒌  is high due to K times multiplication 

of 𝐿𝑤 . A way to overcome this challenge is to approximate the spectral filter 𝑔𝜃  with 

Chebyshev polynomials up to (𝐾 − 1 )th order (Hammond et al., 2011). Defferrard et al. 

(Defferrard et al., 2016) applied this approach to build a K-localized ChebNet, where the 

convolution is defined as, 

                                                       𝒈𝜽 ∗ 𝑿 ≈ ∑ 𝜃𝑘  𝑇𝑘(𝑳̅)𝑿                                                 𝐾−1
𝑘=0  (22) 

in which, 𝑳̅ = 𝟐𝑳𝒔𝒚𝒎/𝛌𝒎𝒂𝒙 − 𝑰  . 𝑳̅  represents a scaling of graph Laplacian that maps the 

eigenvalues from [0,  λ𝑚𝑎𝑥 ] to [-1,1].  𝑳𝒔𝒚𝒎  is defined as symmetric normalization of the 

Laplacian matrix 𝑫𝒘
−𝟏/𝟐𝑳𝒘 𝑫𝒘

−𝟏/𝟐.  𝑇𝑘 and θ denote the Chebyshev polynomials and 

Chebyshev coefficients. The Chebyshev polynomials are defined recursively by 𝑇𝑘(𝑳̅) =

2𝑥𝑇𝑘−1(𝑳̅) − 𝑇𝑘−2(𝑳̅)  with 𝑇0(𝑳̅) = 1  and 𝑇1(𝑳̅) = 𝑳̅ . These are the basis of Chebyshev 

polynomials. Kipf and Welling (Kipf and Welling, 2016) simplified this model by 

approximating the largest eigenvalue 𝜆𝑚𝑎𝑥 of  𝐿̅ as 2. In this way, the convolution becomes, 

                                  𝒈𝜽 ∗ 𝑿 = 𝜃0𝑿 − 𝜃1𝑫𝒘
−𝟏/𝟐𝑨𝒘 𝑫𝒘

−𝟏/𝟐𝑿                                            (23) 

where, Chebyshev coefficient, 𝜃 = 𝜃0 = −𝜃1, All the detail about the assumptions and their 

implications of Chebyshev polynomial can be found in (Hammond et al., 2011). Now the 

simplified graph convolution can be written as follows,  

                                    𝒈𝜽 ∗ 𝑿 =  𝜃(𝑰 + 𝑫𝒘
−𝟏/𝟐𝑨𝒘 𝑫𝒘

−𝟏/𝟐)𝑿                                            (24) 

Since 𝑰 + 𝑫𝒘
−𝟏/𝟐𝑨𝒘 𝑫𝒘

−𝟏/𝟐 has eigenvalues in the range [0, 2], it may lead to exploding or 
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vanishing gradients when used in a deep neural network model. To alleviate this problem, Kipf 

et al. (Kipf and Welling, 2016) use a renormalization trick by replacing the term 𝑰 +

𝑫𝒘
−𝟏/𝟐𝑨𝒘 𝑫𝒘

−𝟏/𝟐  with  𝑫̅𝒘  −𝟏/𝟐𝑨̅𝒘 𝑫̅𝒘
−𝟏/𝟐 , with 𝑨̅𝒘 = 𝑨𝒘 + 𝑰 , similar to adding a self-

loop. Now, we can simplify the spectral graph convolution as follows, 

                                           𝒈𝜽 ∗ 𝑿 = 𝚯 (𝑫̅𝒘
−𝟏/𝟐

𝑨̅𝒘 𝑫̅𝒘
−𝟏/𝟐

) 𝑿                                        (25) 

here, 𝚯 ∈ 𝑹𝑵×𝑵 indicates the parameters of the convolution filter to be learnt during training 

process. From Equation 21, we can observe that spectral graph convolution is a special case of 

diffusion convolution (Li et al., 2018), only difference is that in spectral convolution we 

symmetrically normalized the adjacency matrix.  
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