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Riversintegrate processes occurring throughout their watersheds and are
therefore sentinels of change across broad spatial scales. River chemistry
alsoregulates ecosystem function across Earth’s land-ocean continuum,
exerting control from the micro- (for example, local food web) to the macro-
(forexample, global carbon cycle) scale. In the rapidly warming Arctic, a

wide range of processes—from permafrost thaw to biological uptake and
transformation—might reasonably alter river water chemistry. Here we

use data from major rivers that collectively drain two-thirds of the Arctic
Ocean watershed to assess widespread change in biogeochemical function
within the pan-Arctic basin from 2003 to 2019. While the oceanward flux of
alkalinity and associated ions increased markedly over this time frame, nitrate
and other inorganic nutrient fluxes declined. Fluxes of dissolved organic
carbon showed no overall trend. This divergence in response indicates

the perturbation of multiple processes on land, with implications for
biogeochemical cycling in the coastal ocean. We anticipate that these findings
will facilitate refinement of conceptual and numerical models of current

and future functioning of Arctic coastal ecosystems and spur research on
scale-dependent change across the river-integrated Arcticdomain.

Large rivers are planetary linchpins, connecting vast swaths of ter-
restrial landmass to the world’s coastal oceans. Onland, riversintegrate
patchy landscapes and the variable biogeochemical processes that
theselandscapes host, as water moving through watersheds incorpo-
rates the chemical signature of its flow path. In the coastal ocean, the
chemical signature of water transported by rivers influences nearshore
biogeochemical*? and ecological®* function; over broader scales, river

water and its composition modify ocean physics*°. Nowhere is this
more consequential than inthe Arctic, where ~ 11% of Earth’s riverine
discharge drainsinto an enclosed basin containing ~ 1%of global ocean
volume®. This drainage occurs predominantly via six large rivers (Fig. 1
and Extended Data Table 1). As a result, quantifying trends in riverine
chemistry at a constrained series of downstream sites allows us to
diagnose change across much of the pan-Arctic watershed, better
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Fig.1| The six great Arctic rivers. Sampling locations are indicated by black dots. The 16.8 x 10° km? pan-Arctic watershed is delineated by the thick blue line. The
northern permafrost extent is indicated using blue shading. Data from Gruber*’, Natural Earth Data and Esri. Credit: Greg Fiske.

understand the current functioning of the connected land-ocean
Arctic system and predict what the future may hold for this rapidly
changing region’.

Past research on northern rivers has established significant
increases in discharge across the pan-Arctic since the early-mid
twentieth century®’, attributed to intensification of the hydrologic
cycle'. Such increases in water transport suggest that we should
expect long-term change in the riverine flux (that is, total riverine
transport, as mass per time) of biogeochemical constituents, particu-
larly for constituents such as organic carbon thatare transport-limited
rather thansupply-limited in the North'"2. Similarly, thereis abroadly
articulated expectation that permafrost thaw will increase the trans-
port of organic matter, nutrients and ions to aquatic networks, and
thus their delivery to the coastal ocean™ . However, change in the
North is multi-faceted', with processes such as shrubification';
temperature-induced increases in biogeochemical processing rates
by heterotrophicand autotrophic microbes'2; disturbances such as
wildfire”; and human modifications such as riverimpoundment* %,
changing land use” and changing deposition of elements such as
N and S$* often occurring simultaneously. Even for permafrost thaw,
the mode of thaw (thermokarst or active layer deepening) and compo-
sition of regional soils will shape the biogeochemical response”. Rivers
integrate all of these processes, providing a signal that reflects the
culmination of their effects. Thus, in the face of multi-faceted global
change, we should expect the integrated signature of river water to
provide a net response that ranges from antagonistic (dampened) to

additive’®, depending on the cohesion in directionality of individual
effects. Given the nested nature of fluvial networks, the response to
change may also be scale dependent, varying with catchment size,
transit downstream and the residence time of catchment-water
interactions”.

Here we examine a nearly 20-year record of coupled river dis-
charge and chemistry (Extended Data Fig. 1) collected from the six
largest rivers that drain to the Arctic Ocean. These rivers—the Ob’,
Yenisey, Lena and Kolyma in Russia, and the Mackenzie and Yukon
inNorth America—capture two-thirds of the Arctic Ocean watershed
area (Fig.1and Extended Data Table 1). Coordinated efforts to collect
chemistry data for these rivers started in 2003, whereas discharge
records extend much further back in time (Fig. 2). The chemistry
datarecordis theresult of our group’s ongoing efforts via the Arctic
Great Rivers Observatory (ArcticGRO; www.arcticgreatrivers.org),
which—given the challenge of collecting methodologically consistent
and seasonally representative samples across these diverse juris-
dictions and sites—represents an unparalleled resource for exploring
Arctic riverine change. Our analyses reveal trends at magnitudes
that signal broad-scale perturbation throughout the pan-Arctic
but with divergent trajectories that shed light on variable mech-
anisms of change. We use these insights to consider potential
drivers of effect and the consequences of observed change, and
to explore where knowledge gaps are hampering our ability to
understand current and future functioning of the land-ocean
Arctic system.
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Fig. 2 |Long-term discharge record for each of the six great Arcticrivers. Plots show the full data record for individual rivers, as measured by relevant federal
agencies. The time span of the ArcticGRO datarecord is indicated with blue shading. Trend analyses for the ArcticGRO period of record are provided in Fig. 4b.

Pronounced but divergent trends in Arctic
riverine flux

We focus our assessment on three chemical constituents that are
importantdrivers of biogeochemical function across theland-ocean
Arcticdomain and thatare also representative of broader constituent
classes. These are: dissolved organic carbon (DOC; representative of the
broader organic matter pool including organic-associated nutrients);
alkalinity (representative of many dissolved ions) and nitrate (NO;~;
representative of dissolved inorganic nutrients, including ammo-
nium (NH,") and silica (Si0,)) (relationships between constituents
in Extended Data Fig. 2). To assess constituent flux (the product of
concentration and discharge), we applied a modelling approach that
couplesdaily discharge data with more sporadic concentration meas-
urements and develops a relationship between concentration and
discharge that is then used to interpolate to dates where discharge
data, but not concentration, are available (Methods)%. Of our focal
suite, only alkalinity experienced a pan-Arctic (that is, six rivers com-
bined) increasein annual flux over our period of record (Fig. 3a). Nitrate
declined significantly, while DOC, which has often been afocus of study
givenitsroleasarapid-cycling component of the contemporary carbon
cycle, showed no discernable change at the pan-Arctic scale (Fig. 3b,c).
Change that did occur, however, was substantial, with a 32% decline
in NO;™ and an 18% increase in alkalinity over a period of 17 years. An
assessment of trends in flux across the broad suite of constituents
measured by the ArcticGRO programme (Extended Data Fig. 3) reveals

patterns within-constituent classes (thatis, Extended Data Fig. 2) that
generally track those for the focal constituents. For example, trends
in flux for ions closely affiliated with alkalinity (Ca*, Mg*', Li*, Sr*)
largely tracked that constituent; inorganic nutrients (SiO, and NH,")
showed a pan-Arctic decline similar to that for NO;; and patterns for
organic-associated nutrients (total dissolved phosphorus) were similar
to those for DOC. Given that these constituents are regulated by pro-
cesses ranging from chemical weathering® to biological uptake'®2°
on land and modify processes ranging from ocean acidification to
primary production® in the coastal ocean, the ecological and biogeo-
chemical ramifications of the changes we observe are likely profound.

Concentration and discharge direct changing
flux

In some cases, river-specific trends in constituent flux deviated from
the pan-Arctic sum. For example, NO;™ increased modestly in the
Yukon (p = 0.12) and showed little change in the Ob’ (p = 0.70) despite
the pan-Arctic decline described above; alkalinity patterns for the
Mackenzie (negative trend slope; p = 0.54) contrasted with clear
increases elsewhere; and DOC increased in the Ob’ and decreased
inthe Yenisey (p < 0.02) in the face of limited change in other rivers
(p=0.23-0.84); (Fig.4a).In part, these patterns appeared tobe driven
byriver-specific trendsindischarge, which decreased in the Mackenzie
(p=0.02)andYenisey (p = 0.09) over the17-yearlengthof our datarecord
(Fig. 4b) despite the longer-term increase in discharge established
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Fig.3 | Annual constituent flux for alkalinity, DOC and nitrate (NO, -N), summed across the six great Arctic rivers. Thiel-Sen slopes with p <0.05 are indicated as
lines within each panel. Trends for individual rivers are provided in Fig. 4a.
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Fig. 4| Annual trends for each of the six great Arctic rivers. Panels a-c show
constituent flux (a), discharge (b) and concentration (c), focused on the three
focal constituents. In each panel, the Sen’s slope (numerical value) and p value
of the trend (shading) are shown. Flux and concentration trends for the full

ArcticGRO constituent list are shown in Extended Data Figs. 3 and 4, respectively;
detailed statistical outputs are provided in Supplementary Tables1and 2. For
each panel, the trend analysis covers the 2003-2019 ArcticGRO period.

for the pan-Arctic domain®’. Examining the mechanisms underlying
these changes in constituent flux requires that we disentangle
inter-annual and long-term change inwater discharge from co-occurring
trends in concentration. This task is complicated by the fact that
constituent concentrations vary seasonally and with discharge itself.
We use two distinct approaches toresolve these two known concerns.

First, we use an approach to directly examine trends in meas-
ured concentrations, via trend analyses that are binned by season to
accountforseasonal variationin concentration unrelated to directional
change over time (Methods). We target this approach specifically to
account for changes to the within-year seasonality of sampling across
the two-decade time span of the ArcticGRO programme. Results from

thisdirect trend analysis for concentration (Fig. 4c and Extended Data
Fig. 4) are generally similar to those for flux, described above (Fig. 4a
and Extended Data Fig. 3). Increases in alkalinity are widespread
(p=0.00-0.14 in all rivers except the Yukon), NO,™ concentrations
declineacross most rivers and trends for DOC concentration are largely
absent (p = 0.73-0.96) in all rivers except for the Mackenzie, where DOC
concentration increases modestly over time (p = 0.16).

Second, we assess changes in flux controlled for inter-annual
variation in discharge via a flow-normalization modelling approach
that removes variation in discharge across years but retains within-
year (that is, day-to-day) seasonality. Although this method does
not generate an estimate of ‘true’ flux as provided in the section
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above (Figs. 3 and 4a), it is preferred when the analytical emphasis is
mechanistic in nature (Methods)* because it overcomes year-to-year
fluctuations in discharge that can obscure underlying change. These
flow-normalized fluxes (Extended Data Fig. 5) show trends that largely
reflect those for concentration presented above (Fig. 4c) with some
notable refinements: increases in alkalinity and decreases in NO;~
become more robust, and a decrease in DOC emerges for the Kolyma
while the DOC increase in the Mackenzie is maintained. Overall, pat-
terns for flow-normalized fluxes are remarkably similar to those for the
best estimates of true flux and concentration presented above, with
broad-scale increases in alkalinity and declines in NO5™ and variable
and modest trends for DOC. Takentogether, these broad but divergent
trends diagnose a multi-system perturbation within the pan-Arctic
domain, with effects profound enough to reach the mouths of large
northernrivers.

Divergent trends diagnose multi-system change
The array of factors that might reasonably enable long-term change
in riverine chemistry is diverse, varying regionally in magnitude
and across chemical constituents in effect (Fig. 5 and Supplemen-
tary Discussion). As just one example, permafrost thaw via thermo-
karst (that is, landscape collapse) is a regionally specific phenomena
dependent on the presence of ground ice* that is generally understood
to increase the transport of some constituents to riverine networks
(for example, inorganic nutrients)” but potentially decrease others
(forexample, DOC, in cases where landscape collapse promotes mineral
sorption or diverts hydrologic flow paths through mineral soils)*>>°.
As aresult, the variation in response that we describe above can be
used to diagnose drivers of change and develop approaches to assess
future functioning of theland-ocean Arctic system. Here we consider a
suite of well-documented factors of northern biogeochemical change
and the effect of within-constituent cohesion or antagonism on the
overall biogeochemical response. An expansion of this assessment
is provided in the Supplementary Discussion.

For some chemical constituents, known factors of change are
both relatively widespread and consistent in their directionality
(Fig. 5). In the case of alkalinity and associated ions (Extended Data
Fig. 2), for example, exposure to deeper soils via either active layer
deepening or thermokarst-associated permafrost thaw will typically
increase mineral weathering by increasing water contact with deeper
mineral soils*”*%, Acting additively, shrubification® and increased
temperature-driven organic matter processing*® will increase weath-
ering rates via processes such as increasing soil pore water acidity.
Because these processes are coherent in their directionality and geo-
graphically widespread, the net result appears as a cohesive increase
inalkalinity concentration and flux throughout the pan-Arctic domain.

For other constituents, variationin the directionality of factors of
change appearsto cause amuted overall response. In the case of DOC,
forexample, permafrost thaw caneither increase* or decrease® load-
ingto aquatic systems, depending on the composition of soils subject
to thaw®®. While shrubification will increase vegetation and litter sub-
strates for leaching and therefore the transport of organic matter to
aquatic networks*, temperature-drivenincreases in mineralization?***
and potential rapid processing of novel organic matter substrates* act
in opposition to this effect. Across these large Arctic rivers, the result
appears to be a dissipation of effect with transport through aquatic
networks, with factors of change that act antagonistically and enable
little net change in DOC delivery to the coastal ocean over the time
span of this assessment.

Finally, in some cases, geographically widespread processes
appear tooverwhelm counteracting drivers. For example, although we
broadly expect permafrost thaw toincrease inorganic nitrogen delivery
to aquatic networks”, our analyses reveal declines in the transport of
NO; (and associated inorganic nutrients; Extended Data Figs.2 and 3)
totheArctic Oceanfromlarge Arcticrivers. This suggests that factors
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.t N
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Fig. 5| A conceptual diagram illustrating select drivers of change of Arctic
riverine chemistry. Arrows indicate anticipated direction of effect for each of
the three focal constituents. The Supplementary Discussion provides a detailed
overview of literature evidence for this conceptual exercise, in additionto a
description of several drivers (acid deposition,impoundment, land use and
land cover change, wildfire) that are not included in this conceptualillustration.
Credit: Julianne Waite.

such as temperature-drivenincreasesinnitrogen cycling' or nitrogen
uptake and/orimmobilization'®* may be overwhelminglocal increases
in mobilization” when assessed at the large-river watershed scale.
These findings underline the importance of taking a systems approach
to understanding Arctic change, with an acknowledgement that bio-
geochemical cycles areinherently linked across elements and space.

Broad perturbation across the land-ocean Arctic
domain
Our analyses diagnose pervasive changes to the land-ocean Arctic
system, signalling domain-scale alteration to biogeochemical and eco-
system function. Onland, ecosystem models have predicted increases
in organic matter loading to fluvial networks in the changing North'.
The lack of this signal at river outflows, therefore, suggests possible
increases in carbon mineralization and associated outgassing dur-
ing transit through watersheds and thus an acceleration in carbon
cycling within Arctic catchments. Increasing alkalinity is suggestive
of increases in chemical weathering. In the pan-Arctic, however, a
predominance of carbonate over silicate weathering, coupled with
substantial sulfide oxidation in some watersheds, causes the ratio of
CO, consumption:alkalinity generation to be overall low relative to
the global mean®. As a result, increasing SO,* fluxes (Extended Data
Fig.3) in aregion where SO,* may be largely derived from sulfides
(documented for Yukon, Kolyma, Mackenzie*®) may in fact indicate
increasing bicarbonate liberation in the absence of CO, fixation™.
Inthe coastal ocean, riverine inputs of dissolved inorganic carbon
result in CO, outgassing to the atmosphere*. The magnitude of this
effect relative to weathering-induced CO, fixation on land, and its
change, will play a key role in determining the carbon balance of the
Arctic system. Acting concurrently, the declining NO,™ that we docu-
mentis consistent with negative feedbacks for Arctic Oceanbiological
productivity and CO, uptake from the atmosphere, which is generally
thought to be increasing as seasonal sea ice declines and nutrients
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become more available**. However, the Arctic Ocean also has globally
lowN:Pratios becauseits shelf sediments are a substantial nitrogen sink
through denitrification*’. As aresult, decreases in riverine NO;™ trans-
port coupled with increasing discharge will strengthen stratification
and decrease availability of nutrients for biological production. These
changes will play out alongside other co-occurring processes, such as
changesto the dilution effect of river water on ocean pH*° with increas-
ing alkalinity, which may also affect biological function®°.

Emergent priorities and considerations of scale
Inaddition toimplications for the current and future functioning of the
Arcticsystem, our findings point to severalimportant pathways forward
for understanding land-ocean Arctic change. We highlight several of
these here. First, particularly for bio-reactive constituents (DOC, nutri-
ents), thisworkillustrates theimportance of scale. Widespread declines
in constituents such as NO;™ in the face of local processes known to
increase land-water mobilization suggest a possible redistributionin
biogeochemical processing at the landscape scale, where localincreases
in biological uptake and transformation are decreasing the transport
of bio-reactive constituents downstream. How the balance between
local mobilization and broad-scale processing may shift for the smaller
catchments encircling the Arctic Ocean (for example, NO;™ trends in
refs.51,52), which are characterized by shorter in-river residence times
and different vegetation cover and soil characteristics****, remains an
open question. Determining oceanward flux in smaller, more northerly
catchmentsis thus a clear priority®. Nested studies to assess how Arctic
system change alters the propagation of biogeochemical constituents
through fluvial networks will also be helpful on this front. Second, teas-
ingapart therelativeimportance of various drivers of change, and how
these will vary with time and across constituents, will require invest-
mentinprocess-based models, as already developed for alkalinity*’ and
DOC, inaddition to models that are linked across elements and space®’.
These models must inherently co-consider multiple drivers of change,
including those notdirectly addressed here (broader assessment of driv-
ersisinthe Supplementary Discussion). An exploration of the effects of
changing seasonality, such as offsets between the temperature-driven
expansion of the thaw season relative to light-driven constraints on
primary production, might also be better resolved in this context™".
Third, while discharge records on large Arctic rivers began as early as
the1930s (Fig.2), the cohesive biogeochemical sampling reported here
was initiated in 2003. Given the known effect of discharge on biogeo-
chemical concentrationinlarge Arcticrivers'®, models that consider
the effects of longer-term change in discharge on biogeochemical flux
are a priority, particularly given the strong trends documented for
northern discharge at the end of the twentieth century?®,

While the datasets we draw on for our analyses are remarkable
for their geographic cohesion and their relative length, they also diag-
nose profound, rapid change. Our results clearly call for continued,
integrated observation of the land-ocean Arctic system across all
jurisdictions that constitute the pan-Arctic domain. Just asimportantly,
however, they reinforce the need for rapid attention to Earth’swarming
climate and its multiplicative effects in the North.
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Methods

Sample collection and dataset coverage

Water chemistry. We began sampling the six largest Arctic rivers
for water chemistry in the summer of 2003. The project was initially
called PARTNERS (Pan-Arctic River Transport of Nutrients, Organic
Matter and Suspended Sediments) and was expanded and renamed
the Arctic Great Rivers Observatory (ArcticGRO) in 2008. Sample
collection for the data presented in this study occurred five to seven
times per year, with the exception of ashort break during 2007-2008
(Extended Data Fig. 1). Water chemistry samples are collected as far
downstream on each of the six great Arctic rivers as logistically feasi-
ble, at Salekhard (Ob’), Dudinka (Yenisey), Zhigansk (Lena), Cherskiy
(Kolyma), Pilot Station (Yukon) and Tsiigehtchic (Mackenzie) (Fig. 1;
Extended Data Table1). Between 2003 and 2011, open-water sampling
was conducted using a D-96 sampler®® equipped with a Teflon nozzle
and Teflon sample-collection bag, which enabled depth-integrated
and flow-weighted samples. Samples were collected at five roughly
equalincrements across theriver channeland combinedinal4 | Teflon
churn, resulting in a single composite sample. Beginning in 2012,
open-water sampling was conducted by collecting three near-surface
samples on each of the left bank, right bank and mid-points of each
river and combining these to form a composite sample. Across the
full period of record, wintertime (under ice) samples were collected
by drilling ahole at the river’s mid-point and collecting asample from
below theice surface.

Withinyears, the timing of sample collection has changed sslightly
overthe ArcticGRO period of record. Early collection schemes (2003-
2006 and 2009-2011) focused on the spring freshet (three or more
samples per year), with further sample coverage through the more
broadly spread late summer (period of deepest thaw of the season-
ally frozen active layer; one to four samples) and winter (typically one
sample) periods. Given the paucity of cross-site comparable data for
theserivers at the outset of the ArcticGRO programme, this sampling
scheme was designed to maximize coverage during the high flows of
the spring, when constituent concentrations are changing rapidly and
the majority of constituent flux occurs®. In 2012, sampling shifted to
become evenly spread across the annual cycle, withsamples collected
bi-monthly (that is, six samples per year) and months of collection
alternating between years. Sample processing (filtering and preserva-
tion) occurs within 24 hours of sample collection. As described above
for sample collection, processing protocols were identical across all
sites. Processed and preserved samples were shipped to Woods Hole,
Massachusetts, USA, where they were distributed to specialized labo-
ratories forindividual analyses. Acomplete description of processing
and analytical methodologies is available on the ArcticGRO website
(www.arcticgreatrivers.org) and archived at the Arctic Data Center®’.
The focal constituents highlighted in this study were analysed as fol-
lows: for DOC, onaShimadzu TOC analyser, following acidification with
HCI, sparging and using the three of five injections that resulted in the
lowest coefficient of variation; for alkalinity, following acid titration
using a Hach digital titrator (2003-2009) and Mettler Toledo model
T50Mtitrator (2010 onwards); forNO,” (asNO; +NO,") colorimetrically
using Lachat Quickchem FIA + 8000 (2003-2011) and Astoria (2012
onwards) autoanalysers.

Discharge. All ArcticGRO discharge measurements are fromlong-term
gauging stations operated by Roshydromet, the US Geological Survey
and the Water Survey of Canada. On the Ob’, Yukon and Mackenzie
rivers, gaugingstationsareidentical to the ArcticGRO sample-collection
location. On the Yenisey, Lena and Kolyma rivers, proximate gauging
stations were used, at Kyusyur, Igarka and Kolymskoye, respectively.
The effect of this modest offset, and methods for correction, has
been described elsewhere®®. Continually updated concentration and
discharge datasets are available on the ArcticGRO website. Concentra-
tion and discharge data used for this analysis (2003-2019, inclusive)

have been archived at the Arctic Data Center as a fixed data package
(https://doi.org/10.18739/A2VH5CK43).

Uncertainty associated with discharge measurements in major
Arcticrivers varies withseason and flow rate, with largest error percent-
ages during winter low-flow conditions and smallest error percentages
during intermediate-flow conditions during summer. On an annual
basis, errorson discharge estimates are typically less than10% (ref. 62).
Onthe Yukon River, the US Geological Survey conducts a quality con-
trol assessment of daily discharge estimates, with accuracy reported
in quality bins®*. Daily discharge values on the Yukon River at Pilot
Station are typically rated as ‘fair’ (within 15% of the true value) during
open water and ‘less than fair’ on days when values are estimated,
which typically occurs under ice and during the spring freshet®*. On
the four Russian rivers included here, mean annual discharge errors
havebeenassessed torange from4.3t07.1%, for an assessment of data
from1955t02000 (ref. 62). Although declines in the frequency of direct
discharge measurements used to update Russian rating curves have
probably increased error in recent years®, an updated assessment of
proportional error on discharge for these sites has not been conducted.

Determination of constituent flux using the WRTDS-Kalman
approach

Determining constituent flux requires amodelling approach, because
discharge data are typically available at daily (or even more refined)
time steps, while concentration measurements are almost always col-
lected much more patchily over time. We used the Weighted Regres-
sions on Time, Discharge and Season (WRTDS) approach to estimate
constituent flux over the ArcticGRO period of record, actualized inthe
EGRET (Exploration and Graphics for RivEr Trends)®® package in the
Rstatistical platform®. This approach has been shown to provide more
accurate estimates of constituent flux than other common statistical
techniques used for flux estimation®, as a result of the use of weighted
regression (below) and the removal of the requirement for homo-
scedastic residuals for bias correction®. Similar to other flux estimation
techniques, the predictive equation takes the form of’:

In(c) = By + Pit + B>In (Q) + B3sin (2mt) + Bycos (2mt) + € (00

where cis concentration, Q is discharge, ¢t is time in decimal years
and ¢is the unexplained variation, with the sine and cosine functions
enabling seasonality within the model”. However, unlike most other
flux modelling approaches, the coefficients §,-f, are not static but
areallowed to vary graduallyin Q, ¢ space. Thisis accomplished viaan
approach that develops a separate model for each day of the obser-
vational record by re-evaluating the relationship between concentra-
tion and time, season and discharge, with a weighting that prioritizes
samples closest in Q, t space to the day of estimation®. For this work,
we use the WRTDS-Kalman modification, which furtherimproves upon
the above-described technique by using a first-order autoregressive
(AR1) model to capture residual autocorrelation’. An assessment
of measured vs modelled daily outputs via WRTDS-Kalman is pro-
videdin Supplementary Fig. 1. Daily WRTDS-Kalman flux outputs have
been archived at the Arctic Data Center (https://doi.org/10.18739/
A2VHS5CK43).

Calculation of flow-normalized flux and assessment of
flow-normalized trends

A complication of evaluating trends in flux is that a substantial amount
of variation in concentration is caused by year-to-year variation in
discharge, which adds considerable noise to the time series. To assess
changes in flux with year-to-year variation in discharge removed, we
use the WRTDS flow-normalization technique, which filters out the
influence of inter-annual variationin streamflow. Thisisaccomplished
by creating a probability density function of Q for each day of the
calendar year and producing flow-normalized concentrations and
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fluxes that integrates over this probability density function®. In this
way, discharge is normalized across calendar years, but intra-annual
variation (that is, seasonal variation, at a daily time step) is retained.
Given the statistical complexity of this smoothing approach, we esti-
mate uncertainty in change over the flow-normalized time series using
ablock bootstrap technique implemented in the R package EGRETci,
whichcreates aposterior mean estimate (ir) of the probability of atrend
and assesses trend likelihood as: highly likely (r < 0.05 or >0.95) very
likely (7r 0.05-0.10 or 0.90-0.95), likely (77 0.10-0.33 or 0.66-0.90) or
aboutaslikely as not (ir 0.33-0.66)*. Our results are provided as mean
and 90% confidence interval outputs from the block bootstrap
approach described inref. 33.

Assessment of trends in annual discharge and WRTDS-Kalman
constituent flux

Daily dischargeand flux estimates weresummed withinyearstogenerate
an annual time series, and a Mann-Kendall test was used to analyse
thesignificance of annual trends over time. Within this analysis, trend
slopes were calculated using the Theil-Sen method. Trend analyses and
the calculation of slopes were conducted using the trend package” in
RY.WereportKendall’'s p value and Sen’s slope in the main and Extended
Datafigures and report additional statistical outputs in Supplementary
Tablel.Inall cases (thatis, including for discharge), our trend analysis
spanned the ArcticGRO (2003-2019) analytical window.

Assessment of trends in concentration

To allow us to examine trends in concentration directly but account for
seasonal variation in concentration measurements that may skew trend
detection, we used a Seasonal Kendall test’’. This approach accounts
for seasonality by calculating the Mann-Kendall statistic for each of
pseasonsdirectlyand then combinesthe test statistic for each season
(S,) to create an overall seasonal Kendall statistic (S"):

We used amodification of the original Seasonal Kendall test, which
accounts for serial dependence by using an autoregressive moving
average (1:1) approach”. We defined seasons as spring (May—-June),
summer (July-October) and winter (November-April), as has been
previously established for the ArcticGRO dataset>>”*, We further used
a Seasonal Kendall slope estimator to determine the magnitude of
trends, following the Theil-Sen approach as modified for the sea-
sonal Kendall test”. Results are reported in Extended Data Fig. 4 and
Supplementary Table 2.

Ethics andinclusion

Thisresearch hasbeen conducted in accordance with the Global Code
of Conduct for Research laid out by the TRUST Equitable Research
Partnerships. Local researchers have been instrumental throughout
the ArcticGRO research process, including during initial project plan-
ning; thisinvolvementis reflected in the manuscript’s authorship list.
Local partners who do not meet Nature authorship criteria are listed
inthe acknowledgements section. Sampling is undertaken in accord-
ance with local permitting requirements, including via the acquisition
of aNorthwest Territories Scientific Research License for sampling on
the Mackenzie River. Results and progress for this ongoing project are
communicated via regular interactions with local partners, periodic
in-person visits to partner locations in Alaska, Canada and the Russian
Federation and broad dissemination of results on the project website
(www.arcticgreatrivers.org).

Data visualization
Figures 2-4, Extended Data Figs. 1 and 3-5 and Supplementary Fig. 1
were actualized in R® using ggplot2 (ref. 75). The correlation cluster

analysis shownin Extended Data Fig. 2 was carried out using the func-
tion ‘heatmap.2’ in the gplots package™inR.

Data availability

Data used for our analyses and daily Kalman outputs are provided as
afixed package at the Arctic Data Center (https://doi.org/10.18739/
A2VH5CK43). More recent updates of the ArcticGRO water quality and
discharge datasets can be found at the project website (www.arcticgre-
atrivers.org) and through the Arctic Data Center®’.
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Extended Data Table 1| Characteristics of the six largest Arctic watersheds

Watershed Areaat Distance Mean Runoff Permafrost® Continuous  Discontinuous Tundra’ Forest' Regulated® Meanannual Meanannual Population
Area gauge to Arctic discharge® (2003-2019) Permafrost®  Permafrost® temperature precipitation  Density?
Ocean® (2003-2019) (2003-2019)°  (2003-2019)"
10°km? 10°km?  km km?y! mmy’ (%area) (% area) (% area) (%area) (%area) (%area) °C mmy’ people km?
Ob’ 2.99 295 287 409 139 26 2 4 01 48.2 14.6 -07 604 9.07
Yenisey 2.54 244 433(697) 595 244 88 33 n 05 679 50.5 -4.4 619 2.85
Lena 246 243 754 (211) 599 247 99 79 n 12 625 72 -8.9 548 0.45
Kolyma 0.65 053 120(283) 108 205 100 100 0 3.2 16.7 18.9 -107 546 0.2
Yukon 0.83 0.83 200 mnm 254 99 23 66 01 68.4 0.0 -4.8 571 017
Mackenzie 178 168 260 295 176 82 16 29 0.0 74.2 4.3 -3.6 547 0.25
Sum 1.25 - 2,217 - - - - - - - - -
Pan-Arctic" 16.8 = = ~3710' ~220 = = - - - - = = -

2Distance from the water chemistry station (discharge gauge) to the Arctic Ocean, including transit distance through river mouth deltas. Where only one value is presented, water chemistry
and discharge data collection are co-located. Data for Russian rivers are from the Hydrometeorological Service of the USSR”’. Data for North American rivers are estimated from Google

Earth. "Mean annual discharge over the study period. °From Holmes et al. (2013)’®. Permafrost extent and classification from the International Permafrost Association’s Circum-Arctic Map

of Permafrost and Ground Ice Conditions. “Vegetation classes from the 20-class GLDAS/NOAH product’, based on a 30 arc second MODIS vegetation data that uses a modified IGBP
classification scheme. Tundra is the sum of mixed and bare ground tundra. Forest is the sum of evergreen, deciduous, and mixed forest, and wooded tundra. °Regulated area at the end of the
study period, from Lehner et al. (2011)*°. Includes impoundments that were completed on the Kolyma (2013) and Yenisey (2012) rivers. ‘Mean annual temperature and precipitation from the
MERRA2 reanalysis product®. °Population density from the Center for International Earth Science Information Network (2018)*? gridded population of the world. "Watershed area of 16.8 x 10° km?
corresponds to the area demarcated in Figure 1, which does not include drainage to Hudson Bay. The pan-Arctic watershed including Hudson Bay, but excluding the Greenland Ice Cap, covers
an area of 22.4 x 10° km? (from Lammers et al. [2001]%). 'Estimate derived from Shiklomanov et al. (2021)%, for the period covering 1980-2018.
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Extended Data Fig.1| Time-series of discharge and concentration measurements across the six great Arctic rivers. Discharge is shown as a continuous record for
allrivers. Dates of sample collection for concentration measurements used in this analysis are shown with red circles; hollow circles indicate ongoing data collection.
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Extended Data Fig. 2| Correlation between constituents for the full blue. Black boxes within the correlation plot and grey shading along axes indicate
ArcticGRO dataset. Shading indicates the Pearson correlation coefficient, which  clusters associated with each focal constituent. Analysis is visualized via a cluster
was used as the distance metric for hierarchical clustering. Focal constituents heatmap, for correlations on individual concentration data points.

(alkalinity, nitrate [NO,™-N], and dissolved organic carbon [DOC]) are bolded in
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Extended Data Fig. 3| Annual trends in constituent flux across the full
ArcticGRO dataset. Trend analysis is viaa Mann-Kendall analysis; the Thiel-Sen
slope (numerical value) and p-value of the trend analysis (shading) are shown.

Corresponding trends in concentration are provided in Extended Data Fig. 4.
Grey bars illustrate groupings from Extended Data Fig. 2. Units (Ggy " orMgy™)
are provided in Supplementary Table 1.
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Extended Data Fig. 4 | Trends for constituent concentration across the full shown. Corresponding trends in constituent flux are provided in Extended Data
ArcticGRO dataset. Trend analysis is via a seasonal Mann-Kendall analysis; the Fig.3. Grey barsillustrate groupings from Extended Data Fig. 2. Units (mgLyor
Thiel-Sen slope (numerical value) and p-value of the trend analysis (shading) are pgL'y ™) areprovided in Supplementary Table 2.
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Extended Data Fig. 5| Flow-normalized trends in annual constituent flux.
Trends are provided for the three focal constituents (alkalinity, dissolved organic
carbon[DOC], and nitrate [NO,-N], for each of the six great Arctic rivers. The
solid line indicates the mean, and shading indicates 90% confidence interval
from the block bootstrap analysis. Asterisks indicate block bootstrap-assessed
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(71 0.33-0.66).
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trends that are: ***highly likely (posterior mean estimate i <0.05 or >0.95); **very
likely (fr 0.05-0.10 or 0.90-0.95); or *likely (7t 0.10-0.33 or 0.66-0.90), with
percentage change in constituent flux indicated for the period of record. Where
no percentage change is shown, trends were assessed to be about as likely as not
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