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This paper discusses the potential of two computational modeling approaches in
moving students from simple linear causal reasoning to applying more complex
aspects of systems thinking (ST) in explanations of scientific phenomena. While
linear causal reasoning can help students understand some natural phenomena,
it may not be sufficient for understanding more complex issues such as global
warming and pandemics, which involve feedback, cyclic patterns, and equilibrium.
In contrast, ST has shown promise as an approach for making sense of complex
problems. To facilitate ST, computational modeling tools have been developed,
but itis not clear to what extent different approaches promote specific aspects of
ST and whether scaffolding such thinking should start with supporting students
firstin linear causal reasoning before moving to more complex causal dimensions.
This study compares two computational modeling approaches, static equilibrium
and system dynamics modeling, and their potential to engage students in applying
ST aspects in their explanations of the evaporative cooling phenomenon. To make
such a comparison we analyzed 10th grade chemistry students’ explanations of
the phenomenon as they constructed and used both modeling approaches. The
findings suggest that using a system dynamics approach prompts more complex
reasoning aligning with ST aspects. However, some students remain resistant to
the application of ST and continue to favor linear causal explanations with both
modeling approaches. This study provides evidence for the potential of using
system dynamics models in applying ST. In addition, the results raise questions
about whether linear causal reasoning may serve as a scaffold for engaging
students in more sophisticated types of reasoning.

systems thinking, computational system modeling, system dynamics, linear causal
reasoning, static equilibrium models

1. Introduction

Systems thinking (ST) has gained recognition as a necessary approach for addressing
complex problems in various domains (Assaraf and Orion, 2005; Jacobson and Wilensky, 2006;
Meadows, 2008). Although much of the research in ST was in disciplines such as biology and
Earth science (Yoon et al., 2018), lately there has been a growing awareness and advancement
in integrating ST in chemistry education (Flynn et al., 2019; Orgill et al., 2019; York et al., 2019),
moving the field forward in an effort to apply ST across disciplines. In recent years, the
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integration of ST into science education standards has been adopted
by a number of countries (National Research Council, 2012; Reynolds
etal, 2018; Chiuetal., 2019). According to Meadows (2008), a system
is an interconnected set of elements that demonstrates behavior that
cannot be understood by examining individual elements in isolation.
There have been numerous efforts to operationalize ST and develop
frameworks for evaluating its application (Richmond, 1993; Assaraf
and Orion, 2005; Hmelo-Silver et al., 2007b).

Despite various approaches in developing students’ understanding
of ST, educators continue to face challenges in its application. Many
students explain complex phenomena using simple linear cause and
effect relationships (Sweeney and Sterman, 2000; Chi, 2005; Chi et al.,
2012; Grotzer et al., 2013; Tripto et al., 2013). However, simple linear
cause and effect mechanisms cannot account for phenomena that
involve equilibrium, feedback, cyclic patterns, and perturbations
(Richmond, 1993). Hence, there is a need to facilitate student
understanding of non-linear system behaviors to cultivate scientific
reasoning and produce scientifically literate citizens (Meadows, 2008;
Ke et al., 2021). Despite attempts to engage students in mechanisms
that go beyond linear causal thinking, students have shown resistance
to adopting an ST approach (Assaraf and Orion, 2005; Chi, 2005;
Hmelo-Silver et al., 2007a; Chi et al., 2012).

It has been nearly four decades since scholars began attempting to
utilize technology to enhance students’ understanding of ST
1987; 1989; Metcalf et al, 2000).
Computational modeling tools have emerged as a promising avenue.

(Costanza, Mandinach,
There are three main approaches in the field: static equilibrium
modeling, system dynamics modeling, and agent-based modeling.
Static equilibrium modeling is a computational approach that
facilitates the creation of linear and/or branching cause and effect
relationships such that changes to one variable are instantly reflected
by changes in the values of related linked variables (Bielik et al., 2018).
Unlike static equilibrium modeling, system dynamics modeling allows
representation of changes in a system over time (Sterman, 2002;
Martinez-Moyano and Richardson, 2013), opening the door for
representing dynamic equilibrium and feedback. Agent-based
modeling, another time-based modeling system, enables users to
explore the actions of individual agents in the system and observe the
impact of their interactions on the emergent behavior of the system
(Wilensky and Resnick, 1999; Jacobson and Wilensky, 2006). All of
the approaches enable users to test and evaluate their models (Bielik
etal., 2018). In this paper, we focus on static equilibrium and system
dynamics modeling. There are two main reasons to prioritize these
two approaches. Firstly, both approaches share similar underlying
affordances that enable the setting of causal relationships between
variables. Secondly, from a practical standpoint, there is a software
tool that we will discuss in detail later, which facilitates seamless
switching between these approaches. This feature significantly reduces
the learning curve associated with adapting to a new
digital environment.

Few studies have compared the effects of various modeling
approaches on students’ application of ST (Carolyn and Lee, 2019). In
this study, we advance our understanding of how to support students
in system modeling by analyzing the effects of static equilibrium and
system dynamics modeling on students’ explanations and the
mechanisms they use to understand complex phenomena. We also
explore to what extent engagement in a simpler modeling approach
serves as a scaffold to support students in applying more complex
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aspects of ST. Our goal is to gain insights into computational tools and
scaffolds that can expand students’ ideas from linear to more complex
non-linear thinking.

2. Theoretical framework
2.1. Linear causal reasoning

Linear causal reasoning is a fundamental way in which individuals
explain the world and make sense of their surroundings from a young
age (Driver et al., 1985; Leslie and Keeble, 1987). This method of
explanation is commonly used in science to describe mechanisms,
such as the direct linear relationships between mass, acceleration, and
force in Newton’s third law. Science education often teaches students
to reduce complex mechanisms to simple cause and effect
relationships, leading to a reductionist approach across disciplines.
This has been observed in various areas of study, such as Earth science
(Raia, 2005), biology (Gilissen et al., 2019), and chemistry (Tiimay,
2016). Additionally, linear causal reasoning often leads to assigning a
central agent in a domino-like mechanism (Resnick, 1996; Galea et al.,
2010; Kahneman, 2011). While appropriate for understanding topics
such as Newton’s third law, this method of explanation is particularly
problematic for phenomena with dynamic features such as erosion,
evolution, disease spread, and global average temperature rise (Sander
et al., 2006).

In this paper, we use the term “linear causal reasoning” as coined
by Driver et al. (1985) to refer to thinking about sequential chains of
causes and effects. This tendency has further generated more nuanced
terminologies. Chi et al. (2012) made a distinction between a direct-
causal schema and an emergent-causal schema. Accordingly, the
direct causal schema relies on linear, narrative-like cause and effect
scripts that when applied in the context of complex and non-sequential
processes often result in developing non-canonical understandings.
Perkins and Grotzer (2005) suggested evaluating students’
explanations according to dimensions of causality, differentiating
between various levels of causal explanations in each of these
dimensions. Grotzer et al. (2013) differentiated students’ explanations
as event-based or process-based. For example, they noticed that
students interpret ecosystems as distinct events with linear cause and
effect explanations (event based), instead of a dynamic time-based
mechanism (process based), which is more appropriate in that context.

2.2. Systems thinking

Although students need to develop linear causal reasoning, having
access to only this type of reasoning restricts the types of problems
and phenomena students can explore. Enabling students to familiarize
with non-linear reasoning prepares them to be scientifically literate
citizens equipped with the intellectual tools to understand and address
complex issues and phenomena such as global warming, the spread of
diseases, and the impact of invasive species on ecosystems (Liu and
Hmelo-Silver, 2009; Yore, 2012).

To support students in developing a more comprehensive
understanding of the world, scholars examined the reasoning
processes used by experts when facing complex problems (Hmelo-
Silver et al., 2007b). This line of inquiry has led to the recognition of a
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broad range of reasoning skills commonly referred to as ST (Senge and
Sterman, 1992; Richmond, 1993; Sterman, 2002; Assaraf and Orion,
2005; Meadows, 2008). Despite the variations in ST approaches, there
is a general agreement about the key aspects that support students in
solving complex problems and understanding complex phenomena
(Sweeney and Sterman, 2000; Hmelo-Silver et al., 2007b; Assaraf et al.,
2013). A recent literature review (Shin et al., 2022) summarized ST
aspects that are commonly found across various studies on the topic,
including framing problems or phenomena in terms of behavior over
time (Richmond, 1993; Forrester, 1994), engaging in causal reasoning
(Stave and Hopper, 2007; Meadows, 2008), and identifying
interconnections and feedback (Richmond, 1993; Sweeney and
Sterman, 2000; Haraldsson, 2004; Zuckerman and Resnick, 2005).
Perkins and Grotzer (2005) devised a framework that identifies
dimensions of causality and characterizes each dimension’s complexity
level. This framework can be used to evaluate the application of
systems thinking in student explanations of phenomena. The
agency, mechanism,

dimensions are interactive

and probability.

patterns,

o Agency refers to the attribution of the cause given for a
phenomenon. The complexity of this causal dimension can range
from centralized agents with intentional cause to decentralized
agents with non-intentional cause such as self-organizing or
emergent systems.

Interactive patterns describe the complexity of the causal
relationship between components in the system. Interactive
patterns range from sequential patterns (e.g., A causes B) to
simultaneous patterns (e.g., patterns that include feedback
and cycles).

o Mechanism refers to the scale or level used to explain a
phenomenon. Mechanisms range from an explanation that
includes macroscopic entities to an explanation that includes
microscopic entities and underlying laws.

Probability denotes explanations that range from deterministic to
random behavior of the components in the system.

Utilizing the more complex levels within each causal dimension
is essential to make sense of complex phenomena that are often
characterized by steady states, feedback, cyclic patterns, dynamic
relationships, and occasional perturbations (Meadows, 2008). In
addition, ST has recently been recognized in K-12 science curriculum
guides (National Research Council, 2012). The challenge researchers
have experienced is devising strategies to support students in applying
ST. One of the most promising avenues is in the use of computational
models (Sterman, 2002; Gilissen et al., 2019).

2.3. Computational systems modeling

Computational systems modeling offers a valuable tool for students
to develop their problem-solving skills and explain complex scientific
phenomena (Stratford et al., 1998; Sins et al., 2009; Chandrasekharan
and Nersessian, 2015; Shin et al, 2022). Particularly, it provides
students the opportunity to explore the interconnected relationships
between multiple variables in a system and gain a deeper understanding
of the underlying processes that drive a particular phenomenon
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(Ainsworth, 2008; Linn and Eylon, 2011). Computational models often
have simulation features that allow the manipulation of variables in
these models. These simulation features provide students with the
ability to generate outputs, which they can then compare with data
obtained from external sources, such as empirical studies or their own
investigations (Lorenz, 2009; Damelin et al., 2017; Hassanibesheli et al.,
2020). If the model’s output does not match the external data, students
can revise their model or question the validity of the data source. This
iterative process of refining the inputs and relationships between
variables can help students to improve their models over time
(Weintrop et al., 2016; Shin et al., 2022).

Several approaches to computational system modeling exist, each
with its own affordances that support learning about complex systems.
Because this research focuses on static equilibrium and system
dynamics modeling, we will focus on these two approaches.

The first, static equilibrium modeling, provides a computational
representation of a system that consists of a set of variables linked by
relationships that define how one variable influences another. Any
change to an input variable is immediately reflected in new values
calculated for each variable in the system (Shin et al., 2022). While
enabling users to construct models with cause and effect relationships
between system elements, the approach encourages students to go
beyond simple linear causal chains and create models with long
branching structures and mediating causes (Metcalf et al., 2000;
Perkins and Grotzer, 2005); however, static equilibrium modeling does
not consider time as a factor.

The second approach, system dynamics modeling, enables the
representation of change over time and includes interactions between
system components that include stocks and flows (Sweeney and
Sterman, 2000; Ossimitz, 2002). Stocks refer to system components
that accumulate or deplete over time while flows refer to system
components that decrease or increase the amount in the stocks.
System dynamic models allow the user to construct nonlinear
interactions and structures such as feedback loops and to produce an
output that represents change over time (Richmond, 1993, 1994;
Forrester, 1994; Sweeney and Sterman, 2000). This approach addresses
two major aspects of ST that the static equilibrium modeling approach
cannot. The first aspect, feedback present in complex systems
(Richmond, 1993, 1994; Forrester, 1994; Sweeney and Sterman, 2000)
refers to any action that causes an effect back to the starting point of
the action (Haraldsson, 2004). For example, an increase in greenhouse
gasses (including methane) causes an increase in global temperatures.
Warmer temperatures cause the permafrost in Earth’s Northern
regions to thaw. The thawing of the permafrost causes the release of
methane, which further adds to the rise in global temperatures. This
in turn exacerbates the thawing of the permafrost, which releases
more methane to the atmosphere, and so on. The second aspect
addresses how a system can change over time. Many phenomena
require the consideration of change over time in which a time lag
between the cause and effect exists. In some cases, the delay is
negligible, as in certain chemical reactions while in others, the time
delay is thousands or millions of years, as in evolution or the formation
of a canyon (Kali et al., 2003; Assaraf and Orion, 2005; Meadows, 2008).

Researchers have studied students’ use of static equilibrium
models constructed to support sensemaking of scientific phenomena
(Metcalf et al., 2000; Bielik et al., 2018; Shin et al., 2022), and system
dynamics modeling (Fidin et al., 2023), but have not tested the use of
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both in the same curriculum context. Both static equilibrium and
dynamic modeling approaches involve applying aspects of
ST. Although using system dynamics has the potential to engage
students in additional ST aspects, such as identifying feedback and
framing problems in terms of change over time, it does not guarantee
that using a system dynamics approach gives rise to different reasoning
and growing causal complexity. Despite its potential, constructing
system dynamics models remains challenging and it is not clear to
what extent their use can benefit students compared to other
approaches (Mandinach, 1989; Sweeney and Sterman, 2000; Eidin
etal., 2023).

In this work, we investigate the complexity in students’
explanations from an ST perspective as they construct and interpret
static equilibrium and system dynamics models. In addition,
we examine if static equilibrium models, which engage students in
cause and effect reasoning but are considered simpler and more
straightforward, could serve as a scaffold for constructing dynamic
models that include feedback and thinking in terms of change over
time, two of the most challenging aspects of ST.

3. Research question

How do students’ explanations of static equilibrium and system
dynamics models reflect aspects of systems thinking as indicated by
the presence of various levels of complexity in multiple dimensions
of causality?

4. Context
4.1. Curriculum

The present study was part of a six-week project-based learning
chemistry unit that incorporated five investigations. The unit was
designed to align with the Next Generation Science Standards (NGSS)
performance expectations HS-PS1-3, “Plan and conduct an
investigation to gather evidence to compare the structure of substances
at the bulk scale to infer the strength of electrical forces between
particles” and HS-PS3-2, “Develop and use models to illustrate that
energy at the macroscopic scale can be accounted for as a combination
of energy associated with the motion of particles (objects) and energy
associated with the relative positions of particles (objects)” (NGSS
Lead States, 2013). The study took place in a school setting, where
students participated in two to three lessons per week, each
lasting 80 min.

The unit was centered around a driving question: “Why do
I feel colder when I am wet than when I am dry?’ In an introductory
activity, students engaged in a tactile experience by placing
droplets of water, ethanol, and acetone on their hands, followed by
a group discussion to generate questions and hypotheses using a
driving question board (Weizman et al., 2008). To facilitate the
process of defining the key components underlying the
phenomenon, students worked in small groups of three to four
members to develop paper-pencil models, depicting the
interrelationships among the variables. This step served as a
foundation for a subsequent discussion comparing and contrasting
the relative strengths and limitations of paper-pencil versus
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computational models. Students were introduced to the affordances
of computational models, such as their ability to simulate and
validate models using real-world data.

After the aforementioned discussion, students were instructed to
represent their paper-pencil models as a static-equilibrium model
using SageModeler, a free web-based modeling tool to facilitate both
static equilibrium and system dynamics modeling (Damelin et al.,
2017). Since students had some experience in building static
equilibrium models using SageModeler during a previous unit, they
were provided with a brief exercise to refresh their memory before
constructing models to address the driving question.

Throughout the unit, students took part in various learning
experiences, such as conducting hands-on experiments, working with
computer simulations, and analyzing real-world data, which they
used to iteratively revise their models. Initially, the focus of the unit
was on modeling what factors would affect the evaporation rate and
“coldness” of an evaporating liquid. These concepts were appropriately
modeled using a static equilibrium approach. For example, an
increase in intermolecular attractions between the molecules of a
liquid would mean a decrease in evaporation rate and a decrease in
the “coldness” felt when the liquid evaporated from your skin.
Students completed an activity where they used sensors to measure
the change in temperature over time, creating a cooling curve for
each liquid. This activity led to a plenary discussion on the limitations
of static equilibrium models in representing changes over time, as
illustrated by the evaporative cooling processes, and created a need
for a system dynamics modeling approach.

To support students in constructing dynamic models, they
completed an introductory tutorial, which guided them in
constructing a simple system dynamics model of their own while
learning about the unique features of system dynamics modeling.
After that experience, students built a dynamic model to address the
driving question while considering the change over time of
components in the system.

To validate their system dynamics model, students compared the
simulation output from the dynamic models with their experimental
results. This process allowed students to test the validity of their
models and refine them.

The phenomenon of evaporative cooling presents significant
challenges from an ST perspective. Understanding why one feels
colder when wet than when dry requires a high level of performance
in all dimensions of causality. The transfer of kinetic energy to
potential energy, a dynamic process that affects multiple components
in a system simultaneously, is a fundamental aspect that must
be considered (Chen et al, 2014). In addition, a comprehensive
mechanism should address the microscopic and macroscopic entities
involved in the process, explaining how interactions between
intermolecular forces result in emerging patterns (Ben-Zvi et al., 1986;
Dori and Hameiri, 2003; Krist et al., 2019). Moreover, the cooling
effect that emerges as a result of the random movement of molecules
requires a departure from the use of linear causal reasoning and the
attribution of a central causal agent. Research demonstrates that
explaining emergent properties at the macroscopic level as a result of
interactions at the microscopic level is extremely challenging (Chi,
2005; Tiimay, 2016).

The exponentially shaped cooling curve resulting from
evaporation cannot be explained by a simple linear cause and effect
mechanism. Rather, it involves feedback, which is a prominent ST
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aspect. The shape of the graph is also a result of the random movement
of particles which accounts to an uneven distribution of kinetic energy
among the molecules. Molecules with the highest kinetic energy leave
the system first, causing the average kinetic energy (and thus
temperature) to drop, lowering the evaporation rate. This feedback
causes the liquid to evaporate and cool quickly at first, but over time
both evaporation rate and cooling slow down as more molecules with
the highest energy leave the system. However, explaining such
behavior through feedback mechanisms has been documented as
particularly challenging for students (Haraldsson, 2004; Tripto et al.,
2013). Further details about the unit and the implementation of the
evaporative cooling phenomenon using SageModeler can be found in
Shin et al. (2022).

Figure 1 shows an example of an appropriate static equilibrium
model of the evaporative cooling phenomenon. Figure 2 shows an
example of an appropriate system dynamics model of the same
phenomenon. The static equilibrium model represents an outcome
behavior that accounts for why different liquids have different degrees
of “coldness” as they evaporate from the skin at different rates. For
example, one can notice in Figure 1 the intermolecular forces variable
eventually affects the mass of the liquid evaporated and the final
temperature of the liquid. Figure 2 shows a system dynamics model
simulation output in which temperature and evaporation rate steeply
drop at the beginning and then taper off in an exponential decay
trend. This the
feedback relationship.

behavior  requires construction of a

4.2. SageModeler
SageModeler' is a web-based open-source tool designed to

support student learning by facilitating engagement in ST through

1 https://sagemodeler.concord.org/
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constructing, evaluating, revising, and using models (Damelin et al.,
2017). SageModeler allows students to construct static equilibrium
and system dynamics models. The tool has two major modeling
affordances: representation of variables and relationships and
supporting model validation.

4.2.1. Representation of variables and
relationships

SageModeler allows learners to represent components of the
system as nodes in a system diagram. The nodes represent variables
that are linked together, forming a visible network of cause and effect
relationships. For example, consider the evaporative cooling
phenomenon. In a static equilibrium model, one can set relationships
in which an increase in intermolecular forces causes an increase in
the energy required to overcome the intermolecular forces (IMFs)
(Figure 1). In a system dynamics model, with one variable
representing ‘amount of liquid’ and another representing ‘amount of
gas particles, the user can set a different type of relationship, called
a transfer link, to represent a flow from the liquid state to the gas
state (Figure 2). By focusing on an explicit representation of the
components and their relationships, SageModeler provides an
accessible way for students to create an instantiation of their
conception of the system.

To scaffold students in developing system models, SageModeler
includes pull-down menus and graphs that students set to describe
semi-quantitatively how one variable influence another. This
eliminates the need for students to write complex mathematical
equations or learn how to code, thus reducing cognitive load (Metcalf
et al., 2000). We are not arguing that the use of mathematical
equations or programming is not important for 21st century citizens;
however, a viable strategy for making computational modeling more
accessible is to reduce such barriers. In SageModeler, the relationship
setting appears in the form of a sentence, such as, An increase in
[variable X] causes [variable Y] to increase by about the same.” To
define the relationship, students choose words with associated graphs.
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For example, a linear graph is associated with the about the same
relationship while an exponential graph is associated with the more
and more relationship (Figure 3).

4.2.2. Supporting model validation

SageModeler allows users to simulate their model and test it by
comparing their model behavior to real-world data. SageModeler
facilitates that comparison by integrating the Common Online Data
Analysis Platform (CODAP), which offers graphing and data
analysis tools (Finzer and Damelin, 2015) and supports data
imported from various sources. Students can import real-world and
experimental data or output from other expert models and compare
it to data generated from a SageModeler simulation. The software
allows users to create graphs from various datasets and make
decisions about the validity of their model.

Frontiers in Education

4.3. Participants

Twenty-six 10th grade students from two chemistry classes in a
magnet school from a rural-urban fringe district in the Midwestern
U.S. participated in this study. Each class consisted of 24 students. The
students were selected from the two classes, one taught by Mr. H, a
chemistry teacher with 15years of experience, and the other one
taught by Mr. M, a chemistry and environmental science teacher with
6years of experience. The sample, representative of the two classes,
included 12 female and 14 male students, with a mixture of high- and
low-achievers. The sample of participants was a convenience sample,
based on students’ and their parents’ agreement to participate in
human subject research. No data was collected on the students’
socioeconomic background. Among the participants, two identified
as Black, one as Asian, and the rest as White. Both teachers had prior
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experience using SageModeler and teaching both modeling
approaches in their classes, although in a different context than the
evaporative cooling unit. Mr. H and Mr. M had several meetings with
the authors to walk through the activities and experiments in the unit
and to discuss strategies for supporting students in constructing
models using SageModeler. These meetings, which totaled seven
hours, served as a preparatory step before the start of the unit.

5. Methodology

To answer the research question, we utilized two primary sources
of data: student interviews and screencasts. The interviews served as
the main data source, enabling us to compare the differences in
students’ explanations as they used both modeling approaches to
explain evaporative cooling. The screencasts enabled a valuable insight
into students’ reasoning as they constructed models using each
modeling approach. We utilized both the screencasts and interview
transcripts to capture student reasoning and application of ST through
the analysis of dialog and discussion.

5.1. Interviews

Student interviewees included 11 students, 5 female and 6 male,
with each interview lasting 45-60 min. Students were asked to explain
the phenomenon as they walked the interviewer through their static
equilibrium model and then their system dynamics model. These
interviews were semi-structured and included questions such as “Can
you walk me through your model?” and “what does your model tell us
about the evaporative cooling phenomenon?” The full interview
protocol can be found in the Supplementary material. During the
interview students were shown their models on a laptop; their
responses to questions and references to their model were recorded.
The interviews were fully transcribed. Conducting interviews in which
students walk the interviewer through their model has been shown to
be an efficient strategy to elicit students’ understanding and reasoning
(Schwarz et al., 2009; Eidin et al., 2023; Stephens et al., 2023). We coded
and analyzed students’ utterances that followed questions asking them
to use their model to explain the evaporative cooling phenomenon.

Interviews were analyzed using the dimensions of causality
framework described by Perkins and Grotzer (2005), as it provided a
means to assess the complexity of students’ explanations of the
evaporative cooling phenomenon and make a fine-grained
differentiation between linear causal explanations and more complex
types of explanations that address ST aspects. We applied three of the
dimensions of the framework (agency, interactive pattern, and
mechanism). We established that only two levels of the probability
dimension were applicable in the context of the phenomenon, and
during the coding and analysis of the interview data, we found that
the probability dimension exhibited significant overlap with the levels
of the agency dimension. Therefore, we determined that the inclusion
of the probability dimension did not yield any additional insights into
the evaluation of students’ reasoning, so we decided not to include it
in our analysis. Table 1 provides an overview of the different levels of
causal dimensions and specific examples of each level in the context
of the phenomenon. Table 2 shows which levels of complexity of each
causal dimension align with which ST aspects.
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A scientific explanation for evaporative cooling using the causal
dimension framework suggests that the agency in the system emerges
due to the random collisions of particles. This leads to an uneven
distribution of energy, creating a reentrant interactive pattern. In this
pattern, particles with the highest kinetic energy overcome
intermolecular forces and leave the system, which lowers the average
kinetic energy of the remaining particles in the liquid phase.
Additionally, as the particles overcome intermolecular forces to
evaporate, the increased distance between attracting particles results
in an increase in potential energy at the expense of some of the kinetic
energy of the particles. This process results in a decreasing temperature
and evaporation rate. The explanation also describes a mechanism that
accounts for the random collision between particles and the
conservation of mass and energy.

Two authors coded the data after two cycles of discussions. The
first cycle had a 75% agreement. The second cycle had a 90%
agreement. The coders discussed their differences to achieve 100%
agreement. Further analysis conducted using Atlas.ti software, focused
on differences in the dimensions of causality in students’ explanations
of the phenomenon in the static equilibrium and system dynamics
models. Each dimension was analyzed separately, allowing for the
detection of specific differences in students’ reasoning between the
two modeling approaches. Of note, the time allotted during the
interviews for students to explain the phenomenon using each type of
model was relatively equal for both models.

The following excerpt from student KY offers an example of how
we utilized the dimensions of the causality framework when coding
the interview transcripts.

“The average kinetic energy is transferring into potential energy.
And the spacing of particles and IMF is affecting that transfer.
Potential energy is the spacing of particles when you are talking
about evaporation. So as the spacing particles increase, so is the
potential energy. And then IMF is the opposite of that, because the
IMF is the attraction between the particles and it wants to keep the
particles together and it does not want them to space out. So, if the
IMF is keeping the particles from spacing out, then if that was high,
the particles would not be spacing out as much and there would
be less potential energy. And then it's showing that the transfer from
kinetic energy to potential energy affects the rate of evaporation.”

To code the excerpt above, we identified various dimensions of
causality. It is noteworthy that not all dimensions are necessarily
present in each student’s remarks. To determine the level of agency in
the student’s explanation, we first identified the variables within the
explanation: intermolecular forces, potential energy, kinetic energy,
and the rate of evaporation. The student mainly focused on
intermolecular forces as a significant variable affecting different
variables in the system, albeit not as a central cause that accounts for
the evaporative cooling phenomenon. Therefore, we assigned a level
2 to the agency dimension. Moreover, intermolecular forces were also
identified as a mediating variable that regulates the transfer from
kinetic to potential energy and, accordingly, the rate of evaporation.
Consequently, we assigned a level 3 to the interactive pattern
dimension. Additionally, since the student addressed the particle
level and illustrated the impact of intermolecular forces on the flow
of energy within the system, we assigned a level 6 to the
mechanism dimension.

frontiersin.org


https://doi.org/10.3389/feduc.2023.1173792
https://www.frontiersin.org/journals/education
https://www.frontiersin.org

Eidin et al.

TABLE 1 Dimensions of causality (Perkins and Grotzer, 2005).
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Agency Interactive pattern

Level 1 Central agents with immediate influence: | Simple linear causality: A impinges on, pushes, Surface generalization: Simply describes the
One or a very small number of key factors | influences B. A is seen as not affected. (e.g., A pushes, | regularity under consideration in a generalized way
fairly directly yield the result. May pulls, initiates, resists, supports, stops B. A is typically = (“When it is hot and it rains, there is lightning”) or
be interwoven with intentional causality. seen as active as in pushing but can be passive as in confuses correlation with causation. (“Heat and rain
Example in the context of the evaporative- resisting). cause lightning”)
cooling unit Example in the context of the evaporative-cooling unit | Example in the context of the evaporative-cooling unit
“Adding thermal energy to the liquid “Thermal energy increases Kinetic energy and potential | “When water evaporates of your hand your hand feels
causes evaporation. energy” colder”

Level 2 Nonobvious central agents: with a passive Multiple linear causality: Multiple unidirectional Token Explanation: Some entity or phenomenon,
role or spatially delayed (e.g., causes and/or effects: Multiple immediate causes and/ | intentional or not, made things come out that way.
intermolecular forces) or multiple immediate effects; Domino casualties in Entity/phenomenon’s behavior parallels outcome, no
Example in the context of the evaporative- | which effects in turn become causes as in simple real differentiation. | (“Static electricity makes it
cooling unit causal chains like A causes B causes C or branching happen. )

‘Adding thermal energy causes the increase | patterns; Necessary and sufficient causes, etc. Often Example in the context of the evaporative-cooling unit
in kinetic energy that causes the increase of | includes previously neglected agents of lower saliency = “Thermal energy makes evaporation happen”

space between particles, which causes an in the causal story.

increase in potential energy. Intermolecular | Example in the context of the evaporative-cooling unit

forces of the substance affect this process “The amount of thermal energy increases the amount

and have an impact on the rate of of potential energy which increases the rate of

evaporation.” evaporation”

Level 3 Additive causes: Cumulative effects over Mediating cause: At least three agents in play, M Functional explanation: Explains in terms of purpose
time (e.g., erosion). mediates the effect of A on B but not simply in the (Giraffes have long necks so that they can eat the
Example in the context of the evaporative- sense of A causes M causes B (e.g., M is a barrier to A | leaves on the top of the tree.)
cooling unit affecting B, or a catalyst, or an enabling condition). Example in the context of the evaporative-cooling unit
“There is a decrease in the temperature of Example in the context of the evaporative-cooling unit | “In order to evaporate a substance, you need more
the evaporating substance over time, as “The transfer from kinetic energy to potential energy is | kinetic energy”
molecules with higher kinetic energy controlled by the intermolecular forces of each
continue leaving the system.” substance as it dictates how much kinetic energy is

required to eventually cause evaporation.”

Level 4 Emergent entities and processes-The Interactive causality: Two-Way Causality: Interactive Commonplace elements: Constructs explanations
actions of many individual agents at a causation with a mutual effect (as in particle with familiar elements of the system in question
lower level converge to give rise to new, attraction); Mutual cause with two outcomes (as in rather than those underlying it.
complex patterns that are not easily symbiosis); Relational causality where the outcome is =~ Example in the context of the evaporative-cooling unit
anticipated based on the lower order due to the relationship between two variables, (as in “The temperature of the substance is decreasing as it
actions pressure or density differentials). evaporates”

Example in the context of the evaporative- | Example in the context of the evaporative-cooling unit
cooling unit “The molecules with the highest kinetic energy leave the
“The random collisions between particles liquid substance first, leaving the rest of the system with
set the average kinetic energy of the system, | a low kinetic energy”

that will affect overcoming the

intermolecular forces between the particles

of the substance that eventually result in

evaporation.”

Level 5 Reentrant causality: Simple causal loops as in Analogical model: System explains target

escalation and homeostasis. phenomenon by analogy and analogical mapping
Example in the context of the evaporative-cooling unit | (e.g., electricity as fluid flow).

“As the molecules with the highest kinetic energy

leave the liquid, average kinetic energy decreases, and

as a result evaporation rate decreases, this process

repeats itself causing evaporation rate to decrease

over time.”
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TABLE 1 (Continued)

Agency

Level 6

Interactive pattern

10.3389/feduc.2023.1173792

Mechanism

Underlying mechanism: Properties, entities and rules
introduced that are not part of the surface situation
but account for it (explanation refers to laws like
conservation of mass and energy, collision of
particles).

Example in the context of the evaporative-cooling unit
“The increase of collisions between the particles means
that the average kinetic energy increases. The growing

collisions result in overcoming the interactions between

particles”

5.2. Screencasts

We conducted a screencast analysis of 10 groups engaged in
constructing models using SageModeler. The groups were
composed of the same individuals who participated in the
interviews, along with their modeling partners. The screencasts
recorded both the screen and voices of the participants, and varied
in length among the different groups, with an average screen time
of 120 min per group. The analysis focused on the discussions that
transpired between the students, between the students and their
teacher, and among students in neighboring groups. Notably, such
episodes of discussion were infrequent and heterogeneous across
the groups.

The analysis specifically targeted three aspects of ST: cause and
effect, change over time, and feedback mechanism (Richmond, 1993;
Orgill et al., 2019; Shin et al., 2022). To assess the level of cause and
effect, we utilized the interaction pattern causal dimension from
Perkins and Grotzer’s (2005) framework. The levels of the interaction
pattern provided insight into usage of cause and effect and feedback.
To assess thinking in terms of change over time, we utilized the
agency dimension with a focus on discussions about processes and
aggregative effects. Particular attention was paid to terminology that
indicated such thinking and included phrases such as ‘first A happens
then B; ‘it starts fast, but it slows down, and ‘over time as this change
and goes down, the other changes and goes up. We compared
students’ reasoning as reflected at the time they constructed their
model and at the time they interpreted their model in the interview.
We specifically looked for congruence between the type of reasoning
students applied as they constructed the static equilibrium and
system dynamics models and the reasoning they applied when they
used their model to explain the phenomenon during the interview.
For example, we examined correlations between discussions about
change over time during the model construction process and the
levels of dimensions of causality elicited in students’ explanations
during the interviews (Table 3).

6. Results

Student utterances were coded for levels of causal dimensions
when providing explanations using their static equilibrium models
and compared with those made when using their system dynamics
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models of evaporative cooling. The differences indicated by the
level of causal dimensions revealed three distinct categories
of students:

(a) those who demonstrated a consistently low level in dimensions
of agency and interactive pattern in both modeling approaches, (b)
those who maintained a high level of agency and interactive pattern in
both static equilibrium and system dynamics models, and (c) those
who showed an increasing level of complexity in dimensions of agency
and interactive pattern, starting with a low level in the static
equilibrium modeling approach and shifting to a higher level in the
system dynamics approach.

To present a detailed differentiation between students’ reasoning
while using the two modeling approaches to explain the evaporative
cooling phenomenon, we conducted separate analyses for each causal
dimension. This fine-grained approach allows us to gain unique
insights into students’ application of the ST aspect in each modeling
approach. The figures below provide a visualization of the level of the
three causal dimensions as elicited from students’ explanations during
the interview as well as the number of utterances assigned to each
level. The different color of the dots in the figure indicates the category
each student fell under; consistently low, consistently high, and
increasing in complexity. In the following sections, we discuss the
results for each dimension.

6.1. Agency

According to the patterns illustrated in Figure 4, 90% of the
students’ utterances who utilized their static equilibrium models to
explain the evaporative cooling phenomenon, demonstrated a lower
level of complexity in the agency dimension. It was the maximum level
achieved for 9 out of 11 students during the interviews, as opposed to
when they used system dynamic models. In the system dynamic
model, 64% of students utterances confined themselves to a
lower level.

Levels 1 or 2 were used as cutoffs for determining lower levels as
they both describe simplistic agency.

Figure 4 shows students falling into three groups as previously
mentioned: one student who's max utterances were high for both
modeling approaches (ER), five students who demonstrated a
consistent lower level in both modeling approaches (CA, GR, LU, TR,
TY), and four students who exhibited an increasing level of complexity
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TABLE 2 An alignment between higher levels of complexity of causal dimensions and ST aspects.

Higher levels of causal dimension  Alignment with ST aspects

Agency Additive causes

Aligns with thinking in terms of change over time, which includes the recognition of time-related patterns within and
across the system (Tripto et al., 2013). It also entails the determination of the time frame relevant to the phenomenon

under concern (Richmond, 1993; Sterman, 2002)

Emerging entities and

processes

Aligns with considering an explanation that addresses the interactions between individual components within the

system which results in a behavior different from the components” properties (Chi et al., 2012; Tiimay, 2016).

Interaction pattern Reentrant causality

Aligns with considering a feedback mechanism in which the interaction between system components results in an

effect that loops back, causing a change in the magnitude of that effect (Wilensky and Resnick, 1999; Haraldsson, 2004).

Mechanism Underlying mechanism

Aligns with thinking across levels (Wilensky and Resnick, 1999), which includes the consideration of components and

laws that underlie the emergent behavior and those that are manifested in it.

TABLE 3 List of students who participated in the screencasts and
interviewees.

Screencasts Interviewees

KY and AD KY
BE and AL BE
CH and SU CH
KA and MA KA
ER and AU ER
TR and JU TR
CA and NA CA, NA*
TY and BR TY
LU, FR, and DR LU
GRand AN GR

*Students were interviewed separately.

when explaining the phenomenon using system dynamics models
(BE, CH, KA, KY). The increase in levels refers to explanations that
address aggregative effects and emergent behavior which align with
these particular aspects of ST.

The data suggests that the use of system dynamics models
increases the likelihood of students moving from a view that
emphasizes a single prominent factor as the central agent affecting all
other variables to a view that recognizes the cumulative effects of
multiple factors over time.

Figure 5 shows the total number of utterances within each level of
the agency causal dimension. We interpret this graph as indicating that
the system dynamics model approach, (1) reduces the tendency to
explain the phenomenon with a central component that has an
instantaneous effect on the system and (2) encourages explanations
with higher levels of complexity that consider accumulation over time
and an emergent behavior.

Next, we present student quotes to illustrate the different levels of
the agency causal dimension as revealed in the context of this research.

6.1.1. Level 1: salient central agent

GR: “I would say the key variable would probably be the temperature
because we determined that thermal energy was like the starting point
of evaporation. So, then that would be like the main thing”

In the statement above, GR posits that the addition of thermal
energy to the system is the primary variable responsible for initiating
the evaporation process and, in turn, induces a cooling effect. In this
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sense, thermal energy serves as a salient central agent, warranting an
evaluation at level 1.

6.1.2. Level 2: non-obvious central agents with
long causal chains and branching structures

BE: “So as intermolecular force increases, the time for evaporation
also increases. And then you have the amount of the substance.
Obviously, the more substance you have, the longer it will take to
evaporate. And then you have the kinetic energy. So an increase in
kinetic energy of the substance causes the time for evaporation to
decrease. Also, we said the same for potential energy. Because potential
energy is a measure of energy, when the particles are getting farther
apart, that means that they are more likely to evaporate.”

BE’s explanation of her static model is characterized by individual
cause and effect relationships and shorter causal chains, rather than a
prominent variable that directly influences a specific output. Due to
the absence of a salient central agent and a more complex causality
relationship considering the influence of different components in the
system on each other, this explanation is evaluated at level 2.

6.1.3. Level 3: additive causes, causes with
cumulative effect over time

KY: “The average kinetic energy should decrease over time and then
the potential energy should increase, which would increase the rate
of evaporation.”

KY describes the accumulating change over time for kinetic and
potential energy as one type of energy transfers to another. Therefore,
this explanation is evaluated at level 3.

6.1.4. Level 4: emergent entities and processes,
interaction of system components at a lower
level interacting that produces new behavior

CH: “The particles that are being evaporated are taking away the
kinetic energy of the surface area by bumping into each other and
transferring the kinetic energy. Since they are bumping into water
particles, they are just transferring kinetic energy. It’s not like there if
I put water on the table, it’s not like the table’ gonna evaporate with the
water. Its just that the table is going to get cold. Like your hand
got colder”

CH explains that the random collisions between particles
eventually lead to an uneven distribution of kinetic energy that leads
to the evaporative cooling phenomenon. Considering how random
behavior of components in the system lead to an emergent behavior
at the macroscopic level warrants this explanation at level 4.
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FIGURE 5

Students’ level of agency causal dimension. Each column represents
the total number of utterances in each modeling environment. The
level variable stands for the level of complexity, from the lowest
value of 1 to the highest value of 4.

6.2. Interactive pattern

According to the patterns illustrated in Figure 6, 73% of the
students’ utterances who utilized their static equilibrium models to
explain the evaporative cooling phenomenon, demonstrated a lower
level of complexity in the interactive pattern dimension. It was the
maximum level achieved for 6 out of 11 students during the interviews,
as opposed to when they used system dynamic models. In the system
dynamic model, 48% of students’ utterances were evaluated as
lower level.

Levels 1 or 2 were used as cutoffs for determining lower levels as
they both describe simple linear causal patterns.
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Figure 6 shows students falling into three groups as previously
mentioned: 4 students who's max utterances were high for both
modeling approaches (ER,CH,CA, KY), 4 students who demonstrated
a consistent lower level in both modeling approaches (GR, LU, TR,
TY), and 2 students who exhibited an increasing level of complexity
when explaining the phenomenon using system dynamics models
(BE, KA). The increase in levels refers to explanations that demonstrate
more complex causal patterns like those that address mediating
variables and feedback, which align with aspects of ST. Of note, the
same students who demonstrated low level in the interactive pattern
dimension also demonstrated a low level in the agency dimension.

Five students exhibited a relatively high level of interactive patterns
while using static equilibrium to explain the phenomenon (CA, CH,
ER, KY, NA). A causal explanation that included a mediating variable
characterized those explanations. Notably, the use of a system
dynamics approach appeared to have a significant impact on the
inclusion of feedback (Level 5) of four students’ explanations.

Figure 7 shows the total number of utterances within each level of
the interactive patterns causal dimension. It strengthens the notion
that the system dynamics modeling approach is more conducive to
addressing feedback mechanisms in students’ explanations. In
addition, the data presented reveals a reduction in the frequency of
simple cause and effect utterances (Level 1) in the system dynamic
context. It is interesting to note that many students included feedback
as part of their explanations even if their system dynamics model did
not include a feedback loop as part of the model’s structure.

Next, we present student quotes to illustrate the different levels of
the interactive pattern causal dimension as revealed in the context of
this research.

6.2.1. Level 1: simple linear causality, A affects B

TY: “So as the strength of the intermolecular forces increases, the
amount of liquid particles also increases. And the amount of gas particles
decreases because the stronger the intermolecular forces are in the liquid,
the harder it is for the particles to get away.”
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Students’ level of interactive pattern causal dimension. The level
variable stands for the level of complexity, from the lowest value of 1
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TY provides a simple linear relationship in which variable A
increases variable B and A decreases variable C, in which B and C are
the amount of substance in liquid and gas phase, respectively. Given
the explanation’s simple linear cause and effect pattern, it was
evaluated at level.

6.2.2. Level 2: multiple linear causality, A affects B
affects C, may also include a branching pattern
TR: “What our model is saying is that the more thermal energy
in particles that you have, the more kinetic energy the particles have.
And then when they move around more, they’ll bounce around more,
causing molecular forces to get weaker and increase the chances of
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breaking and then these breaking increases the amount of
potential energy”

This student describes a pattern where A leads to B and then to
C. TR characterizes intermolecular forces as extrinsic rather than
intrinsic properties of a substance and explains that they become
weaker due to particle collisions instead of being overcome by them.
However, this simplified representation of a dynamic process does
not accurately align with the scientific consensus and may result
from the difficulty of representing a complex concept within a static
equilibrium model. The rather detailed causal chain warranted a
level 2 evaluation.

6.2.3. Level 3: mediating cause, M mediates the
effectof Aon B

KY: “Right. So like I said earlier, the average kinetic energy is
transferring into potential energy, and the spacing of particles and
intermolecular forces is affecting that transfer.... So if the intermolecular
forces is keeping the particles from spacing out, then if that was high, the
particles would not be spacing out as much and there would be less
potential energy. And then it’s showing that the transfer from kinetic
energy to potential energy is the rate of evaporation, which is affected by
intermolecular forces.”

KY refers to intermolecular forces as the mediating factor that
controls the transfer from one type of energy to another. The ability to
create a transfer link and set a relationship that mediates this transfer
in the shape of a valve (Figure 3) supported students in including a
mediating cause to their explanations. This explanation was coded at
level 3.

6.2.4. Level 4: interactive causality, two-way
causality

BE: “So, as the particles gain kinetic energy, the higher energy
particles are evaporating, and as they are evaporating, they are taking
the kinetic energy with them, and that’s decreasing the temperature of
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the water on your hands. So, when you have water on your hands, it
makes you feel colder because that puddle of water is actually
losing heat.”

BE describes how the evaporation affects the temperature of the
liquid remaining and how this in turn affects the evaporation. This
description of interdependency warranted a level 4 evaluation.

6.2.5. Level 5: reentrant causality, simple causal
loops

ER: “So as the temperature goes down, the rate of evaporation is
going to go down as well because it's going to have less high kinetic
energy because the average kinetic energy is going down. Well, we are
going to have some particles with high, some with low kinetic energy, but
if the average going down as the molecules with high kinetic energy leave
the system, that means you are losing higher kinetic energy molecules
and you are not replacing them with anything. So it just keeps going
down slower [temperature].”

In this example, ER addresses the relationship between the
distribution of kinetic energy within the particles of a substance and
the rate at which its temperature decreases over time. Addressing the
gradual change in the rate of evaporation (“keeps going down slower”)
distinguishes ER’s explanation from BE’s. ER describes a feedback
mechanism where the leaving of particles with high kinetic energy
from the system results in a decrease in the average kinetic energy
within the system. This, in turn, leads to a reduction in evaporation
and a slower decrease in temperature, thus causing a further slowdown
in the rate of temperature drop over time.

6.3. Mechanism

The findings presented in Figure 8 reveal that most students
reached the highest level in which they mention an underlying

10.3389/feduc.2023.1173792

mechanism to explain the phenomenon in both modeling approaches.
Yet a deeper examination of the explanations shows a difference
between the static equilibrium and system dynamics context. In the
static equilibrium approach, students explain the evaporative cooling
phenomenon by referring to the particle level and describing
interactions between molecules. In the system dynamics model
approach, in addition to addressing the particle level, students also
address underlying laws like the conservation of mass and energy. For
example, in the context of static equilibrium modeling, NA says, “Um,
I think that because as the number of collisions increases, it increases the
ability for the fastest particles to leave the system. So, as more collisions
occur, more of those particles are going to be having that high speed,
giving them the potential to leave the system in the form of vapor.”

In the context of system dynamics modeling, CH says, “Well,
I believe kinetic energy does transfer into potential energy when it phase
changes because energy cannot be created or destroyed, so when gas
changes into a liquid and then into a solid, the energy has to be stored
somewhere, and it cannot be stored as kinetic, so then it has to be stored
as potential.”

Besides those differences the patterns demonstrated in Figure 9
indicate no significant difference in the level of complexity with
regards to the mechanism causal dimension between static equilibrium
and system dynamics modeling approaches. Therefore, we do not
provide examples of quotations for lower levels regarding the
mechanism causal dimension as they were rare and insignificant.

To summarize the findings so far, we outline three salient patterns
in the students’ explanations pertaining to the agency and interactive
pattern dimensions as they use the model they constructed in each of
the modeling approaches to explain the evaporative cooling
phenomenon. Additionally, we observed patterns in students’
utterances within each dimension, with more complex levels of
explanations being prevalent as students used their system dynamics
model to explain the phenomenon.
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6.4. Transitioning from static equilibrium to
system dynamics modeling

The interviews solicited descriptions of the students’ experiences
during the transition from static equilibrium to dynamic modeling.
Six of the 11 students reported a positive experience, stating that the
shift from one approach to the other enabled them to better convey
their understanding of the underlying processes. Following is a
representative comment from a student.

KY: “I think the whole time we were doing the static model, it was
hard because we all wanted to explain it dynamically and we had to
refine it to a static model where it wasn’t changing over time. But then
with the dynamic model, we got to show how it changed over time and
explain the situation (the phenomenon). It makes more sense to look at
a dynamic model because it’s easier to look at a situation from this
starting point and then this is the ending point. You can say like,
you start with kinetic energy and then it transfers into potential energy.
So, I feel like it’s easier to understand a situation looking at a dynamic
model and it was easier in some ways to put our ideas into it, so it helped
[the transition from static equilibrium to system dynamic modeling].”

The quote shows how student KY perceived the transition as
supporting her in expressing her understanding of the phenomenon
better in the dynamic model. She also describes a sense of frustration
with the static equilibrium’s limitations. Additionally, three students
mentioned that the affordances of system dynamics modeling
supported their understanding of the phenomenon. Below is a
representative quote from student ER.

ER: “But actually seeing the effect of intermolecular forces on the
evaporation rate was a really big connector for me because I did not
understand how it changes through time because at first, I thought the
rate of evaporation was constant the entire way through the process.”

The data analysis uncovered two recurring themes in the
responses of students who reported positive attitudes about the
transition. First, these students displayed a greater degree of
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sophistication in the agency and interactive patterns causal dimensions
as evidenced by their interview responses. Second, the screencasts of
these students showed that they included time-related variables, such
as ‘time, ‘time for evaporation; and ‘process of phase change; while
constructing their static equilibrium models. In many instances, the
inclusion or exclusion of these variables was accompanied by
discussions regarding limitations in accurately representing the
evaporative cooling phenomenon, such as the phase change from
liquid to gas or the transfer of kinetic energy to potential energy. A
summary of these findings can be found in Table 4.

For example, KY and her partner integrated in their static
equilibrium model variables they named ‘time’ and ‘phase change’
When Mr. M approached them and asked about those variables, KY
answered, ‘We tried to represent the phase change! When BE was
asked by her peers about their static equilibrium model and the
variable they named ‘time for evaporation, BE answered, ‘We tried to
represent the process of evaporation and the time it takes the substance
to evaporate.

At some point, Mr. M noticed that some students tried to
represent a process in their static equilibrium models, so he addressed
the whole class, noting, “With the tool given to us, we cannot model a
process. We can only model position. If you got things that are procedural,
you may want to remove them. You cannot set up a relationship like A
becomes B.”

On the other hand, the students who did not perceive that the
transition to a different modeling approach supported their
understanding of the phenomenon showed a tendency to think of the
phenomenon in a linear cause and effect fashion, as evidenced in their
interviews and screencasts. CH and NA are a representative example
of a group for whom the transfer to dynamic modeling was not
sufficient to shift to a more complex explanation and model. The
discussion during the construction of their static equilibrium model
mostly concerned specific single relationships, even as the teacher was
trying to get them to zoom out’ and consider the overall interaction
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TABLE 4 The table summarizes three criteria: (1) students’ positive
attitudes about shifting to system dynamic modeling as elicited in the
interviews, (2) students’ inclusion of a ‘time’ component during the
construction of their static equilibrium models, (3) students’ engagement
in a discussion which addressed process or change over time during the
construction of their static equilibrium models.

Students’ Positive Time Discussion
name attitude component about
about in the static  process and
shifting to equilibrium  change over
system model time
dynamics
KY + + +
BE + + +
CH + + +
KA + + +
ER + + +
JU + - +
CA - - -
NA - - _
TY - - -
LU - - -
GR - - _

Regarding the first criteria, the plus sign indicates at least one utterance in which students
expressed a positive attitude toward the transition from static equilibrium to system
dynamics modeling approach. Regarding the second criteria, the plus sign indicates at least
one event in which students included a time related variable during the construction of their
static equilibrium model. Regarding the third criteria, the plus sign indicates at least one
episode in which students engaged in a discussion about change over time as they were
constructing their static equilibrium model.

between the system’s components. As they were working on their
dynamic model, the pair continued to define linear causal chain
relationships and interpreted the dynamic components (i.e., stocks
and flow) in the system as cause and effect relationships.

While analyzing students’ dialog and discussion in the screencasts
that recorded the construction and revision of their models,
we noticed how the limitations of static equilibrium modeling in
representing simultaneous events created a confusion about setting
relationships between variables. The following quote in which CA,
NA, and ER have a discussion is a representative example for such a
confusion (While working as a pair, CA and NA talk with ER, who is
from a different group).

ER: So you start off with your temperature affecting potential
energy, but temperature does not directly affect potential energy.

NA: Yeah, it does.

ER: That’s, well, I mean, temperature affects how far apart the
particles are, which affects potential energy.

NA: No, because potential energy affects the spread of particles.

ER: Well, I mean, yes. So, temperature, how does it affect
potential energy?

NA: I mean, looking at this yesterday when we put all that heat in
it measured the potential energy increasing because of the temperature,
it could be related to...

ER: I'm pretty sure that it does not affect the potential energy like it.
I'm pretty sure temperature affects the spread of particles.

CA: Yeah eventually.

ER: I am pretty sure the spread of particles is affected by, no,
potential energy is affected by the spread of particles.
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An analysis of this dialog from a causal dimension perspective
reveals a rather low level with both the agency and interactive pattern
dimensions. With regard to the agency dimension students perceive
temperature as a salient agent serving as a precursor impacting the
other variables in the system, hence aligning with a lower level of the
agency causal dimension. Examining the interactive pattern causal
dimension, it is apparent that students employ a linear causal
mechanism to explain the increase in potential energy. The assumption
of a single variable driving the behavior of the system with a simplistic
linear reasoning impedes students’ ability to consider simultaneous
changes. Specifically, they overlook a simultaneous perspective in
which kinetic energy converts to potential energy as it overcomes
intermolecular forces. This dialog excerpt is an exemplar of how linear
causal tendencies can constrain explanations of complex, feedback-
oriented phenomena. It suggests that static equilibrium modeling may
not be effective in breaking these patterns of thinking.

7. Discussion

Modeling is an essential practice within scientific disciplines,
which is crucial to engage students from a young age (Gobert and
Buckley, 2000; Matthews, 2007; Schwarz et al., 2009; Louca and
Zacharia, 2012). However, modeling tools, particularly those with
different computational modeling approaches, have distinct
affordances that can support various learning objectives. Therefore, it
is imperative to examine to what extent these affordances facilitate
students’ application of higher levels of causal complexity and ST to
make sense of a phenomenon.

The present study addresses this need by comparing students’
explanations of a phenomenon as they constructed and used two
computational modeling approaches to comprehend evaporative
cooling. Specifically, this study investigates the extent to which the
static equilibrium and system dynamics modeling approaches support
explanations that surpass simple linear causal reasoning and apply ST
aspects, such as thinking in terms of change over time and identifying
feedback. We specifically used the dimensions of causality framework
to assess the application of ST in students explanations, as higher
levels of dimension of causality align with ST aspects, and the
identification of these allowed to assess the application of ST.

Based on our findings, the utilization of both static equilibrium
and system dynamics models evoked variations in the rationales
provided by students regarding the causal dimensions of agency and
interactive pattern as they used the two modeling approaches. Notably,
our investigation demonstrated that more complex levels of those
dimensions were found in students’ responses when employing system
dynamics models compared to static equilibrium models. We do not
believe that those results are due to students’ gaining more experience
in SageModeler as they progressed throughout the unit, as those
students had prior experience with constructing static equilibrium
models before the implementation of the unit. If anything, they were
lacking more experience with system dynamics models.

Though the discrepancy in the level of explanations and the
application of ST between the two modeling approaches does not
seem surprising as static equilibrium modeling is not designed to
support change over time, one must keep in mind that at the time
students were interviewed they had already completed the unit, which
included activities that aimed to support them in explaining the
evaporative cooling phenomenon in terms of change over time. Also,
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no additional information was provided to them except the models
they constructed during the unit. Hence, we did not expect such a
divergence in students’ explanations as our assumption was that the
experience from the unit would have caused an overlay of the static
equilibrium model explanations with higher level utterances. In that
sense the findings are intriguing, because they show that each
modeling approach prompts certain types of explanation and
reasoning, with the use of system dynamics modeling more likely
prompting explanations that address ST aspects. These findings align
with prior empirical studies that have established the utility of system
dynamics models in fostering reasoning that accounts for temporal
transformations (Eidin et al., 2023).

The findings suggest that when utilizing either modeling approach,
students interchangeably apply high and low levels of causality to explain
phenomena. These results align with the cognitive theory proposed by
Chi etal. (2012), which posits two competing causal schemas: direct and
non-direct. The former is characterized by a linear narrative script while
the latter is characterized by non-linear causal patterns. Notably, Chi
(2005) and Chi et al. (2012) demonstrated that students can provide
explanations based on both linear directionality and self-organization
simultaneously. This theoretical framework corresponds with the work
of other cognitive scientists who argue that two types of cognitive
processing—one that is more intuitive and the other that is more
logical—exist (Anderson, 1996; Kahneman, 2011). Our results
corroborate these findings in cognition by demonstrating the presence
of reductionist reasoning, which is based on a salient agent and simple
linear causal chain, as well as a more complex reasoning that is based on
thinking in terms of change over time and feedback. Based on these
findings, we argue that a system dynamics approach has the potential to
encourage a more complex causal schema of the phenomenon, which
the static equilibrium model was unable to support.

The present study reveals that students who incorporated high
level dimensions of causality into their explanations, and hence
applied ST aspects while utilizing the system dynamics model,
engaged in deliberations about change over time while constructing
static equilibrium models. Conversely, students who did not
incorporate such high levels did not engage in such deliberations.
We suggest that the dynamic nature of the phenomenon and the
requirement to represent it in a static equilibrium environment may
lead to a cognitive dissonance for some students, as a static
representation in which variables have an instantaneous effect on one
another did not align with the consideration of the system’s change
over time. As such, shifting to a system dynamics approach may have
reduced that dissonance. However, the factors that prompted such
deliberations and the cognitive dissonance that some students
experienced are unclear. One possibility is that the extensive time
spent working on the static equilibrium models reinforced pre-existing
tendencies to think in simple linear causal patterns, perpetuating a
linear narrative schema.

This study demonstrates that the use of system dynamics models
facilitated some students’ ability to incorporate high levels of agency,
such as including cumulative effects over time and addressing
emergent behavior in their explanations. Such reasoning, based on the
order that emerges from chaos and the random behavior of system
components, is not intuitive and often conflicts with prevalent human
reasoning across disciplines, which emphasizes salient components
that instantaneously affect system behavior (Assaraf and Orion, 2005;
Hmelo-Silver et al., 2007b; Chi et al., 2012). Our contribution to the
field lies in providing evidence that system dynamics models can
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prompt students to consider both emergent behavior and change over
time, thereby serving as a promising tool for engaging students in
these aspects of system thinking.

We also found that both modeling approaches had the potential
to elicit high level explanations with regards to the interactive pattern
dimension with a high frequency of explanations of multiple linear
causality. These results align with previous research that has
demonstrated the ability of static equilibrium models to support and
encourage multiple linear causality in students’ explanations (Bielik
etal, 2018; Shin et al., 2022). Our findings expand upon this previous
work by demonstrating the affordances of system dynamics modeling
in supporting students in considering a feedback mechanism. Users
can represent feedback structures using both modeling approaches,
and despite the fact that none of the students included a feedback
structure in their static equilibrium or system dynamics models, their
dynamic models prompted an explanation based on a feedback
mechanism. The results lead us to conjecture that the model’s output
that represents change over time elicits more sophisticated causal
mechanisms. This claim is based on research that argues that thinking
in terms of change over time and accounting for a feedback
mechanism are inextricably linked, as the feedback requires the
consideration of time delays (Richmond, 1993; Haraldsson, 2004).
We acknowledge that the limited amount of evidence collected does
not support a substantive generalization; however, the evidence and
findings do point to the potential of system dynamics models in
considering feedback as an explanatory mechanism of the evaporative
cooling phenomenon. In that sense, this work advances the field in
supporting students in applying feedback mechanisms, a challenge
that has been well documented (Haraldsson, 2004; Hmelo-Silver et al.,
2007b; Martinez-Moyano and Richardson, 2013; Tripto et al., 2013).

Our findings also show no notable differences between the two
modeling approaches regarding the mechanism causal dimension. This
observation can be attributed to the design of the unit, which effectively
integrated macroscopic and microscopic levels (Dori and Hameiri,
2003) and used various simulations that illustrate the behavior of
particles. Additionally, the simulations allowed the students to explore
abstract concepts such as kinetic energy, potential energy, and
intermolecular forces, supporting students in understanding the
underlying components that explain the system’s behavior.

Our work also contributes to the field of chemistry education, as it
addresses some of the questions posed by York et al. (2019) about the
potential implications for integrating ST into chemistry education. For
example, by analyzing students’ level of the agency causal dimension in
their explanation, we reveal that though the use of thermal energy as
an external cause of the evaporative cooling phenomenon is prevalent,
such misunderstanding can be mitigated by the use of a system
dynamics modeling approach. An implication for chemistry education
suggests that the use of system dynamics models can support students
in focusing on the system’ variables and distinguish those from
external components students may use to make their explanation of the
phenomenon more complex than necessary. Furthermore, we show
that students’ adopting thinking in terms of change over time, which
has also been recognized as a significant component in integrating ST
into chemistry education (Flynn et al., 2019; Orgill et al., 2019; York
etal, 2019), is pivotal to understanding a phenomenon in which rate
is integral. Therefore, we suggest that chemistry educators should
be aware of the importance of thinking in terms of change over time,
especially when exploring phenomena and concepts that relate to rate,
such as chemical kinetics and equilibrium. Using system dynamics
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models could be a promising approach to meet those goals. Our work
suggests that a promising avenue in supporting students in
understanding such phenomena and concepts is to engage students in
tasks that promote thinking in terms over time, and refrain from
encouraging a reductionist approach based on simple cause and effect
relationships that might hinder further progress.

7.1. Research limitations

We acknowledge that the sample size of students in this study is
small, and, therefore, caution must be exercised when generalizing the
findings to a broader population of students. The population of students
was also unique as the research was conducted in a magnet school
serving students who excel in science from 16 surrounding districts.
Furthermore, we acknowledge that the order in which students were
asked to use each modeling approach, starting with a static equilibrium
and then moving to a system dynamics model, might have an impact
on the results. It might be that starting with a system dynamics modeling
approach would impact students’ ST in a manner that would render no
discernable difference in their explanations when subsequently using
their static equilibrium models. Additionally, this study was conducted
within the context of the evaporative cooling phenomenon, which
involves understanding the emergence of phenomena from
microscopic-level interactions among entities. It is possible that different
phenomena involving interactions between macroscopic entities, such
as those related to ecosystems or geology, may have yielded greater
opportunities for the application of ST aspects in both modeling
approaches. While the teachers played a crucial role in facilitating
students’ understanding, this study did not focus specifically on the
teachers’ supporting strategies due to the limited scope of the research.
Moreover, both teachers deviated from the curriculum, particularly by
the time the students constructed their dynamic model. A greater
adherence to the curriculum may have resulted in a higher proportion
of students demonstrating complex ST aspects.

7.2. Conclusion

Our study provides evidence of both modeling approaches
supporting students in ST, though to different extents. We showed that
system dynamics modeling promotes more complex aspects of ST
compared to static equilibrium modeling. Our findings demonstrate
that system dynamics modeling can support students in shifting from
a reductionist, centralized view, in which a major variable dominates
the system’s behavior or a simple linear cause and effect relationship
accounts for the whole system’s behavior to a more comprehensive
perspective that considers the dynamic changes of variables over time
and the emergence of patterns from interaction between system’s
components. Our contribution lies in elaborating on the potential of
using system dynamics models to enhance ST learning and in raising
new questions about the use of tools that support cause and effect
reasoning as scaffolding for applying ST aspects. We also show
evidence that engaging students in linear causal relationships in a
context of which a phenomenon is experienced as evolving over time
may hinder further application of ST aspects. Given that forming
causal relationships is fundamental to science education, our findings
open an avenue to further investigation regarding the necessity of
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striking a balance in which linear causal thinking does not hinder the
application of ST aspects.

Moreover, further research is needed to explore the potential of
system dynamics modeling in different contexts, including those that
exclusively involve macroscopic entities as well as those that involve
both macroscopic and microscopic entities. Finally, more research is
necessary to better understand whether scaffolding students’
development of complex reasoning skills can facilitate their future
adoption of ST practices.
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