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Abstract

In this work, we develop a new set of Bayesian models to perform registration of real-valued

functions. A Gaussian process prior is assigned to the parameter space of time warping

functions, and a Markov chain Monte Carlo (MCMC) algorithm is utilized to explore the pos-

terior distribution. While the proposed model can be defined on the infinite-dimensional func-

tion space in theory, dimension reduction is needed in practice because one cannot store an

infinite-dimensional function on the computer. Existing Bayesian models often rely on some

pre-specified, fixed truncation rule to achieve dimension reduction, either by fixing the grid

size or the number of basis functions used to represent a functional object. In comparison,

the new models in this paper randomize the truncation rule. Benefits of the new models

include the ability to make inference on the smoothness of the functional parameters, a

data-informative feature of the truncation rule, and the flexibility to control the amount of

shape-alteration in the registration process. For instance, using both simulated and real

data, we show that when the observed functions exhibit more local features, the posterior

distribution on the warping functions automatically concentrates on a larger number of basis

functions. Supporting materials including code and data to perform registration and repro-

duce some of the results presented herein are available online.

Introduction

Advances in data collection technology have made functional data prevalent in various applied

domains including biology, biometrics, medicine, computer vision, bioinformatics, and many

others. This, in turn, has prompted rapid development of functional data analysis (FDA) meth-

ods for estimation, alignment, summarization, and statistical modeling (and inference) for

such data. In this work, we specifically focus on the problem of Bayesian model-based align-

ment of two or more functions, termed pairwise and multiple registration, respectively. In par-

ticular, we elucidate the challenges arising from nonlinearity and infinite-dimensionality of

the representation spaces on which observation and prior models must be defined.

We consider the task of registration of real-valued functions defined on a subinterval of the

real line. The goal of registration is to separate two sources of variability in functional data

termed amplitude (y-axis variation) and phase (x-axis variation or time warping), and our aim
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is to temporally align (or warp) a set of functions, such that the amplitude variation in the

observed data is comparable (i.e., amplitude features like local extrema occur at the same time

along the x-axis, across all functions). The phase variation is then captured by a set of time

warping functions that achieve the alignment. Formal definitions of amplitude, phase and the

registration problem that are considered in this work are provided in subsequent sections.

Real data examples of the types of functions we consider are plotted in Fig 1. To motivate

the problem of function registration, we consider the widely-used Berkeley growth study data-

set [1]. The data is comprised of height measurements for boys and girls recorded from age 1

to age 18. To discover patterns of growth such as growth spurts, it is often preferable to analyze

growth rate functions, i.e., the time derivative of the height measurement functions, since peri-

ods of fast/slow growth result in local extrema. The growth rate functions for 54 girls are dis-

played in the third panel, top row of Fig 1. It is clear that the functions have very similar shapes

and exhibit one peak near the middle of the domain, corresponding to the pubertal growth

spurt. However, the pubertal growth spurt does not occur at the same time across all growth

rate functions since different children go through puberty at different times. Thus, it becomes

necessary to register the growth rate functions prior to statistical analysis such that the ampli-

tude variability (magnitude of pubertal growth spurts) and phase variability (timing of puber-

tal growth spurts) are separated.

To enhance statistical analysis, registration of functional data has been utilized in a wide

range of applications including biomechanical data [2–4], handwriting samples [5, 6], gene

expression and proteomics data [7, 8], neural spike trains [9], and gait data [10, 11]. Tradition-

ally, function registration is formulated as an optimization problem under a specific optimality

criterion, preferably a metric. We refer readers to standard FDA textbooks (e.g., [12, 13]) for

an overview of the many approaches that have been proposed. Recently, model-based or prob-

abilistic frameworks have become popular in formulating the registration problem. Specifi-

cally, the Bayesian modeling paradigm provides considerable flexibility as it allows the user to

Fig 1. Examples of the types of functions we consider. The value C represents the number of functions in each

dataset.

https://doi.org/10.1371/journal.pone.0287734.g001
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specify a prior distribution over the phase parameter space. Additionally, it yields a principled

approach for a more comprehensive exploration of the phase parameter space and provides

quantified uncertainty measures via the posterior distribution.

The literature includes multiple different Bayesian formulations of function registration.

Telesca and Inoue [7] use the B-spline basis to model functional parameters; Claeskens et al.

[14] decompose time warping functions into so-called warping component functions or war-
plets. Cheng et al. [15], Bharath and Kurtek [16], and Matuk et al. [17] use Dirichlet priors for

the time (increments of) a warping function. Finally, Earls and Hooker [18], Kurtek [19], and

Lu et al. [11] use Gaussian process priors on a transformed warping parameter space. We refer

the reader to Matuk et al. [20] for a general overview of Bayesian registration methods. As evi-

dent, the main differences among the aforementioned methods are in the specification of the

observation model, the prior model on phase, and the algorithms used for parameter space

exploration; we discuss benefits and drawbacks of the different choices later as we introduce

the proposed framework. Some of the methods (e.g., [16]) are additionally able to incorporate

information on landmarks (predetermined, user-defined points of interest) into the registra-

tion problem.

This work extends and improves the Bayesian models proposed in [11] to enable full explo-

ration of the functional parameter space. In [11], the authors specify a Gaussian process prior

over the infinite-dimensional phase parameter space and represent time warping functions

using a sequence of basis functions. However, at the implementation stage, the dimension of

the parameter space is reduced by choosing a fixed number of basis functions. Thus, the result-

ing model is not truly infinite-dimensional and is able to explore only a small subset of the

underlying parameter space. In practice, the main disadvantage of such a formulation is that

the dimension reduction is performed a priori and is thus not informed by the data. Further-

more, it is generally not obvious how many basis functions are needed to achieve satisfactory

registration results.

To remedy these issues, instead of using a fixed truncation, we allow the truncation to be

random. This is done by randomizing either (i) the number of basis functions or (ii) which
basis functions are used. We incorporate this random truncation as a separate parameter, lead-

ing to nonparametric, infinite-dimensional models in the sense that the prior distributions are

assigned on the entire functional phase parameter space. The proposed models with random

truncation have three advantages. First, the level of smoothness of the functional phase param-

eter is informed by the data, thus avoiding potential mis-specifications of the number of basis

functions. As we will show, under-specification of the number of basis functions can lead to

poor registration results. Second, one can flexibly incorporate prior beliefs or desired con-

straints on the shape of the functional phase parameter. For instance, how much shape-alter-

ation occurs in the observed functions can be controlled by the prior on the number of basis

functions. Third, our model allows one to make inference on the random truncation parame-

ter, which can provide additional information about the shapes of the functions in the data.

For instance, the posterior tends to keep a larger number of basis functions for the phase

parameter when the observed functions exhibit a lot of local features that must be registered.

Following ideas from [11, 21, 22], we develop algorithms that allow efficient sampling from the

posterior distribution of both the functional parameter and the random truncation parameter.

A key designing principle for our model is to treat the phase parameter space as infinite-

dimensional and to allow the data to dictate the amount of dimension reduction that is

needed.

The rest of the paper is organized as follows. We first introduce the statistical problem of

function registration, focusing on relevant function spaces, in Section Problem Formulation

and Function Spaces of Interest. The proposed Bayesian registration models are formally
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specified in Sections Pairwise Bayesian Registration Model with Random Basis Truncation

and Multiple Function Bayesian Registration Model with Random Basis Truncation. In Sec-

tions Simulation Study and Applications, we demonstrate the proposed method on a pairwise

simulation study and several real datasets.

Problem formulation and function spaces of interest

We formulate the task of function registration as a statistical problem by defining (i) the data

and the observation space, and (ii) the parameter(s) and their corresponding representation

spaces. As will be seen, it is essential to transform both the observation space and the parame-

ter space. The transformations we adopt here are developed in [23, 24] in the context of func-

tion registration and have been utilized for registration models in a host of recent manuscripts,

including [11, 17–19, 25, 26]. A comprehensive discussion of these transformations can be

found in [13]. Here, for brevity, we will only introduce the relevant notation and briefly state

the transformations. We refer the reader to the aforementioned references for more details.

We start with the simpler case of pairwise registration, where two real valued functions, f1
and f2, are observed. Without loss of generality, we assume that the domain on which the func-

tions are observed is [0, 1]. In this scenario, these two functions are regarded as data with the

corresponding observation space F ¼ ff : ½0; 1�7!R j f is absolutely continuousg . Suppose

our goal is to register f2 to f1. This is achieved by finding a warping function γ such that f2 � γ
and f1 are aligned. The role of γ is to warp the domain of f2 so that the amplitude variation of f2
is retained, but its phase variation is altered (ideally to match that of f1). The amount of alter-

ation, which quantifies the difference in phase variation between f1 and f2, is captured by γ.

The warping function γ is regarded as the parameter with the corresponding parameter space
Γ = {γ : [0, 1] 7! [0, 1] | γ(0) = 0, γ(1) = 1, 0 < γ0 < 1}. In the next two paragraphs, we sepa-

rately describe the transformations carried out on the (1) observation (data) space, and (2)

parameter space. More details on these transformations can be found in the S1 File.

Observation (data) space. For f 2 F , we use the square-root velocity transformation

Qðf ÞðtÞ ¼ signðf 0ðtÞÞ
ffiffiffiffiffiffiffiffiffiffiffi
jf 0ðtÞj

p
� qðtÞ; ð1Þ

where f 0 is the derivative of f. The resulting function, denoted by q for simplicity and referred

to as the square-root velocity function (SRVF), is an element of the transformed observation

space Q, which is a subset of L2
ð½0; 1�Þ [23]. The mapping Q is bijective up to a translation and

f 2 F can be recovered from q 2 Q using Q�1ðqÞðtÞ ¼ f ð0Þ þ
R t

0
qðsÞjqðsÞj ds. The SRVF of a

time warped function, f � g 2 F , is given by

Qðf � gÞðtÞ ¼ Qðf ÞðgðtÞÞ
ffiffiffiffiffiffiffiffiffi
g0ðtÞ

p
� ðq; gÞðtÞ: ð2Þ

Note that this is not the same as function composition q � γ, because of the additional term
ffiffiffiffi
g0

p
; for brevity, we denote this quantity by (q, γ).

Parameter space. For γ 2 Γ, we apply two transformations:

QðgÞðtÞ ¼ signðg0ðtÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
jg0ðtÞj

p
¼

ffiffiffiffiffiffiffiffiffi
g0ðtÞ

p
� cðtÞ; ð3Þ

exp�1
1

ðcÞ ¼
y

sinðyÞ
c � cos yð Þð Þ � g; where y ¼ cos�1

Z 1

0

cðtÞdt
� �

: ð4Þ

The first transformation is the square-root velocity transformation in Eq (1) (note that γ0(t) >

0 8 t). The second transformation is the inverse exponential map for a unit sphere that allows

us to linearize the space C, which is a transformed representation space of the warping

PLOS ONE Bayesian function registration with random truncation
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functions. The resulting function, denoted by g, belongs to a subset of a linear space, defined as

A � {g 2 T1(C)|exp1(g) > 0} (the notation T1(C) refers to the tangent space of C at the func-

tion 1; see S1 File for details). We can transform g back to γ via

gðtÞ ¼ Q�1ðcÞðtÞ ¼

Z t

0

c
2
ðsÞds ¼

Z t

0

exp2

1
ðgÞðsÞds;

where exp
1
ðgÞ ¼ cosðkgkÞ þ

sinðkgkÞ

kgk
g (k�k is the L2 norm). The warping of an SRVF, (q, γ),

can now be written in terms of the function g, which lies in a linear space, via

ðq; gÞðtÞ ¼ qðgðtÞÞ
ffiffiffiffiffiffiffiffiffi
g0ðtÞ

p
¼ q
�Z t

0

exp2

1
ðgÞðsÞds

�

exp1ðgÞðtÞ: ð5Þ

In summary, our approach is to perform statistical inference on the parameter g 2 A, using

the (SRVFs of) the observed data q1; q2 2 Q. Generalization to multiple function registration

is straightforward. Suppose we observe C > 2 functions, denoted by f1, . . ., fC. The goal is to

register them simultaneously to a template function, f *. In some applications, we can pre-spec-

ify a known function as the template (common choices include one of the observed functions

or their point-wise mean). Alternatively, we can treat f * as another unknown parameter to be

estimated. Registration is achieved via estimation of the warping functions, γi, i = 1, . . ., C, cor-

responding to each observed function. After applying the same transformations, we treat

q1; . . . ; qC 2 Q as data and g1, . . ., gC 2 A (the warping functions) and Qðf ∗Þ ¼ q∗ 2 Q (the

template function) as parameters.

Pairwise Bayesian registration model with random basis truncation

In the case of pairwise registration, the data consists of two functions f1 and f2, represented via

their SRVFs q1 and q2, observed on a finite grid of size N denoted by [t] = {t1, . . ., tN}. We use

the notation [t] to denote discretization of the domain [0, 1] throughout the rest of the paper.

Thus, f([t]) denotes evaluations of the function f at the domain points [t]; similarly,
R ½t�

0
hðsÞds

denotes the N-dimensional vector
� R t1

0
hðsÞds; . . . ;

R tN
0
hðsÞds

�
. We model the difference

between q1([t]) and (q2, γ)([t]) by a zero-mean N-dimensional Gaussian distribution. The

main parameter of interest is the warping function γ 2 Γ represented via g 2 A. At the imple-

mentation stage, dimension reduction is necessary, and this is achieved by an auxiliary variable

T. Specifically, we first represent g by an infinite sum using basis functions. Then, we use the

random variable T to truncate the infinite sum to a finite sum, which can be evaluated on a

computer. The truncated version of g will be henceforth denoted by ~g .

The pair (g, T) fully specifies ~g and we specify a prior distribution for ~g by assigning a joint

prior probability model for the pair (g, T). To that end, we use a Gaussian process to model g
and a general distribution τT that does not depend on g to model T. We further ensure that the

pair (g, T) results in a valid warping function by restricting the joint prior to the domain

B � fðg;TÞ : exp1ð~gÞ > 0g. The full model is given below.

Model 1.

q1ð½t�Þ � q2

�Z ½t�

0

exp2

1
ð~gÞðsÞ ds

�

� exp
1
ð~gÞð½t�Þ j g;T; s2

1
� Nð0N ; s2

1
INÞ;

g;T � fGaussianð0; CgÞ � tTgB;

s2

1
� IGðshape ¼ a; scale ¼ bÞ;
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where ~g is a function of g and T, Cg is a covariance operator for the Gaussian process prior, τT is
a prior distribution for T, {�}B denotes the truncation of the joint prior distribution to the set B,

IG(�, �) is the inverse-gamma distribution, and a and b are fixed constants.
The likelihood function is then given by

Lðg;T; s2
1

j q1; q2Þ ¼
1
ffiffiffiffiffiffi
2p

p

� �N
1

s2
1

� �N=2

exp
�

�
1

2s2
1

� SSEð~gÞ

�

; ð6Þ

where

SSEð~gÞ ¼
XN

i¼1

�

q1ðtiÞ � q2

�Z ti

0

exp2

1
ð~gÞðsÞds

�

exp1ð~gÞðtiÞ
�2

: ð7Þ

This likelihood is identical to that of [11, 19], except that the truncated parameter ~g replaces

the parameter g.

Random truncation mechanisms

We now discuss the following two mechanisms for the prior distribution of the random trun-

cation T, which is key to the proposed approach.

(1) Random Number of Basis Functions. In the first scenario, consider T � M, where M is

the number of basis functions used to represent the parameter g. In this case, πT � πM is a

prior distribution on the set of positive integers and ~gðtÞ ¼
PM

i¼1
xibiðtÞ, where {bi}i � 1 forms

an orthonormal basis for T1(C).

(2) Random Indicators. In the second scenario, we can randomly switch a basis function

on and off (called a sieve prior in [22]). This is done via the random sequence {χi}i = 1, . . ., 1,

χi 2 {0, 1}; we refer to this sequence simply as χ. This sequence controls which basis functions

are kept in the basis expansion of g. In other words, T � χ and ~g is calculated as

~gðtÞ ¼
P1

i¼1
wi � xibiðtÞ. Let Mmax be the maximum number of basis functions stored at the

implementation stage, and let Mon be the number of active basis functions (i.e.,

Mon ¼
PMmax

i¼1
wi). The domain of χ, denoted X , is the collection of vectors of the form

ðw1 2 f0; 1g; . . . ; wMmax
2 f0; 1gÞ, and πT � πχ is a prior on X .

Posterior distribution and sampling via Markov chain Monte Carlo

The posterior distribution is a probability measure μ on the product space T1ðCÞ �

ðdomain of TÞ � Rþ
and is dominated by the prior measure μ0. The Radon-Nikodym deriva-

tive is given by Bayes’ formula: dm

dm0
ðg;T; s2

1
Þ / Lðg;T; s2

1
jq1; q2Þ. We use a Metropolis-within-

Gibbs algorithm to sample from the posterior distribution of ðg;T; s2
1
Þ. To update the poste-

rior at each step, the algorithm iteratively draws from (i) the full conditional distribution of (g,
T), and (ii) the full conditional distribution of s2

1
. Details are given as follows.

Sampling of (g,T). We first update g. For this purpose, we use a Z-mixture pCN proposal

(see [11, 22] for details) by setting g0 ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � b
2

zÞ

q

þ bzx, where g is the current value, ξ is a

draw from the Gaussian process prior, and βz 2 (0, 1) is a tuning parameter drawn with proba-

bility pz satisfying
PZ

z¼1
pz ¼ 1. As an example, in the case of a 2-mixture pCN proposal, we

can draw β1 = 0.5 with probability 0.8 and β2 = 0.001 with probability 0.2, resulting in “big

jump proposals” approximately 80% of the time and “very small jump proposals” approxi-

mately 20% of the time. Sampling a new function ξ from Gaussianð0; CgÞ is done via the Kar-

hunen-Loève expansion. We specify the covariance operator Cg by its eigenpairs fðbi; l
2

i Þgi�1,
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where {bi(�)} forms an orthonormal basis for T1(C) and the sequence of coefficients satisfy
P

l
2

i < 1. While theoretically i = 1, . . ., 1, at the implementation stage, we store a large

number Mmax of basis functions. We thus sample independent random variables

xi � Nð0; l
2

i Þ; i ¼ 1; . . . ;Mmax. Then, xðtÞ ¼
PM

i¼1
xibiðtÞ if truncation mechanism (1) is

used, or xðtÞ ¼
PMmax

i¼1
wi � xibiðtÞ if truncation mechanism (2) is used.

We then independently generate a proposal, T0, according to a densityQTð�j�Þ, which

depends on the truncation mechanism. The pair (g0, T0) is accepted with probability 1 ^ ρ,

where

r ¼
Lðg 0;T0; s2

1
Þ � pTðT 0Þ �QTðTjT 0Þ

Lðg;T; s2
1
Þ � pTðTÞ �QTðT 0jTÞ

� Ifðg 0;T0Þ 2 Bg; ð8Þ

and πT is the density function (with respect to the Lebesgue measure) of τT. This acceptance

ratio is intuitive if distributions of g have densities with respect to the Lebesgue measure. In

that case, the form of ρ follows directly from the fact that Gaussianðg 0; 0; CgÞ �QpCNðgjg 0Þ is

symmetric in g and g0 (QpCN is the pCN proposal described earlier). Since a dominating Lebes-

gue measure does not exist on T1(C), we can derive the acceptance ratio formally using the

dominating prior Gaussian measure (given in the S1 File).

If truncation mechanism (1) is used,QTðTjT 0Þ ¼ QMðMjM0Þ, and we can use a K-step ran-

dom walk proposal of the form

M0 ¼

M w:p: p0

M � 1 w:p: p1

M � 2 w:p: p2

..

.

M � K w:p: pK

8
>>>>><

>>>>>:

where p0 þ
PK

k¼1
2pk ¼ 1. In other words, M0 can either stay at the current value, with proba-

bility p0, or move forward or backward up to K steps. This is a symmetric proposal and the

Metropolis Hastings (MH) acceptance ratio in Eq (8) simplifies to

r ¼
Lðg 0;M0; s2

1
Þ � pMðM0Þ

Lðg;M; s2
1
Þ � pMðMÞ

� Ifðg 0;M0Þ 2 Bg: ð9Þ

If the truncation mechanism (2) is used, thenQTðTjT 0Þ ¼ Qwðwjw0Þ, and we can use an on-
or-off proposal, where χ0 is proposed by either switching on a nonactive basis function, with

probability 0.5, or switching off an active basis function, again with probability 0.5. If all of the

basis functions are currently on, i.e., Mon = Mmax, we switch one of them off with probability 1.

On the other hand, if only one basis function is on, i.e., Mon = 1, we switch on another basis

function with probability 1. This is the form of proposal suggested in [22]. It is not a symmetric

proposal and the MH acceptance ratio in Eq (8) can be written as

r ¼
Lðg 0; w0; s2

1
Þ � pwðw0Þ

Lðg; w; s2
1
Þ � pwðwÞ

� aw;w0 � Ifðg 0; w0Þ 2 Bg; ð10Þ
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where

aw;w0 ¼

ðMmax � MonÞ=ðMon þ 1Þ if Mon 6¼ 1;Mon 6¼ Mmax;M0
on ¼ Mon þ 1

Mon=ðMmax � Mon þ 1Þ if Mon 6¼ 1;Mon 6¼ Mmax;M0
on ¼ Mon � 1

ðMmax � 1Þ=4 if Mon ¼ 1

Mmax=2 if Mon ¼ Mmax:

8
>><

>>:

The derivation of aχ,χ0 is given in the S1 File.

Alternatively, one can consider a symmetric, choose-k proposal, where χ0 is proposed via

the following steps: (i) sample k 2 {1, 2, . . ., K � Mmax} (for simplicity, we set the probability

for each value of k to be the same, but this is not required by the algorithm), (ii) randomly

select k entries from the vector w ¼ ðw1 2 f0; 1g; . . . ; wMmax
2 f0; 1gÞ, and (iii) propose χ0 by

switching (on to off, off to on) all of the selected entries. This proposal is symmetric. For exam-

ple, if χ = (0, 0, 1, 1) and χ0 = (0, 1, 0, 1), then

Qwðw0jwÞ ¼ Qwðwjw0Þ ¼ Pðselect 2nd and 3rd entriesjk ¼ 2ÞPðk ¼ 2Þ. As a result, the MH

acceptance ratio for this proposal is the same as the one given in Eq (10) with aχ,χ0 = 1.

Sampling of σ2
1. To update s2

1
, we draw directly from the conjugate inverse-gamma distri-

bution with shape parameter N
2

þ a and scale parameter 1

2
SSEð~gÞ þ b.

Multiple function Bayesian registration model with random basis

truncation

The model for multiple function registration is a direct extension of Model (1). Based on the

observed functions f1, . . ., fC, represented via the SRVFs q1, . . ., qC, we aim to make inference

on ~g 1; . . . ; ~gC, which are determined by the pairs (g1, T1). . ., (gC, TC). In addition, we treat the

template function q* as a parameter and consider the same truncation mechanisms as

described in the pairwise case. The truncated template function is denoted by ~q∗ and is deter-

mined by the pair (q*, Tq). We assign a Gaussian process prior to q* and a prior t∗T to the ran-

dom truncation Tq.

Model 2.

q1

 Z ½t�

0

exp2

1
ð~g 1ÞðsÞds

!

exp1ð~g 1Þð½t�Þ � ~q∗ð½t�Þ j q∗;Tq; g1;T1; s2

1
� Nð0N ; s2

1
INÞ;

..

.

qC

 Z ½t�

0

exp2

1
ð~gCÞðsÞds

!

exp
1
ð~gCÞð½t�Þ � ~q∗ð½t�Þ j q∗;Tq; gC;TC; s2

1
� Nð0N ; s2

1
INÞ;

ðg1;T1Þ � fGaussianð0; CgÞ � tTgB;

..

.

ðgC;TCÞ � fGaussianð0; CgÞ � tTgB;

ðq∗;TqÞ � Gaussianð0; CqÞ � t∗T;

s2
1

� IGðshape ¼ a; scale ¼ bÞ:

The likelihood function is then given by

Lðg1;T1; . . . ; gC;TC; q∗;Tq; s2
1
Þ ¼

YC

i¼1

1
ffiffiffiffiffiffi
2p

p

� �N
1

s2
1

� �N=2

exp �
1

2s2
1

SSEð~g i; ~q∗Þ
� �( )

; ð11Þ
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where

SSEð~g i; ~q∗Þ ¼
XN

j¼1

�

~q∗ðtjÞ � qi

�Z tj

0

exp2

1
ð~g iÞðsÞds

�

exp
1
ð~g iÞðtjÞ

�2

: ð12Þ

Sampling from the posterior distribution is performed in the same fashion as in the pair-

wise case using a Metropolis-within-Gibbs algorithm. At each step, the algorithm first updates

each of the truncated warping parameters (gi, Ti), i = 1, . . ., C sequentially via a Metropolis

step. The acceptance ratio for updating any of the pairs (gi, Ti) takes the same form and, for

(g1, T1), is given by

1 ^
Lðg 0

1
;T 0

1
; . . . ; gC;TC; q∗;Tq; s2

1
Þ � pTðT 0

1
Þ �QTðT1jT 0

1
Þ

Lðg1;T1; . . . ; gC;TC; q∗;Tq; s2
1
Þ � pTðT1Þ �QTðT 0

1
jT1Þ

� Ifðg 0

1
;T0

1
Þ 2 Bg

¼ 1 ^
exp
n

� 1

2s2
1

SSEð~g 0
1
; ~q∗Þ

o
� pTðT 0

1
Þ �QTðT1jT 0

1
Þ

exp
n

� 1

2s2
1

SSEð~g 1; ~q∗Þ
o

� pTðT1Þ �QTðT 0
1
jT1Þ

� Ifðg 0

1
;T 0

1
Þ 2 Bg:

The algorithm then updates the template (q*, Tq) with the acceptance ratio

1 ^
Lðg1;T1; . . . ; gC;TC; q∗0

;T0
q; s2

1
Þ � pTðT 0

qÞ �QTðTqjT 0
qÞ

Lðg1;T1; . . . ; gC;TC; q∗;Tq; s2
1
Þ � pTðTqÞ �QTðT 0

qjTqÞ

¼ 1 ^
exp
n

� 1

2s2
1

P
iSSEð~g i; ~q∗0

Þ
o

� pTðT 0
qÞ �QTðTqjT 0

qÞ

exp
n

� 1

2s2
1

P
iSSEð~g i; ~q∗Þ

o
� pTðTqÞ �QTðT 0

qjTqÞ
:

Note that, for simplicity, we use the same prior πT and proposalQT for each Ti, i = 1, . . ., C
and Tq, but this is not required. Lastly, the algorithm updates s2

1
by drawing directly from an

inverse-gamma distribution with shape parameter 1

2
C � N þ a and scale parameter

1

2

PC

i¼1

SSEð~g i; ~q∗Þ þ b.

Simulation study

We first assess the performance of the proposed pairwise Bayesian registration model via a

simulation study. We simulate two observed functions, f1 and f2, both of which are warped ver-

sions of a template function, f(t) = sin(4πt2) [2]. The two observed functions are constructed

such that f1 = f2 � γtrue where the true warping γtrue is randomly generated. We then apply our

model to register f2 to f1 to obtain γest, an estimate of the true warping, and compare γest to

γtrue. We use five sets of true warping functions, which are shown in Fig 2. Each set contains

ten warpings and has varying degrees of local features: set (2) shown in the second panel in the

top row contains warping functions that are very smooth with no “small wiggles,” whereas set

(5) (fifth panel in the top row) contains warping functions that are “very wiggly.” Set (1) con-

tains piecewise linear warping functions. We compare the proposed method to the model in

[11], with the recommended setting of using 20 basis functions (we refer to this model as

M20).

Prior Specification

We now discuss different choices for the prior distributions for the pairwise registration

Model (1). We use an inverse-gamma distribution with a = 0.1 and b = 0.1 for s2
1
. For the
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Gaussian process prior of the warping parameter g, we must specify the covariance operator Cg

by its eigenpairs fðbi; l
2

i Þgi�1
. We use the Fourier basis functions biðtÞ 2

f
ffiffiffi
2

p
sinð2iptÞ;

ffiffiffi
2

p
cosð2iptÞgi�1

and set l
2

i ¼ 42 � i�1:2. The constant 1.2 in this expression

controls the decay rate of the Fourier series. If it is desirable to put more prior weight on warp-

ing functions with many local features, one can choose a smaller constant so that the higher

frequency Fourier basis elements are weighted more (this constant should be greater than 1 to

satisfy
P

l
2

i < 1). For the random truncation T, we use a few different priors based on which

truncation mechanism is used, as described below.

Truncation mechanism (1): There are multiple possible prior choices for the number of

basis functions. First, we consider three Poisson priors, truncated to the domain [1, Mmax =

200], with means equal to 20 (pois20), 50 (pois50) and 80 (pois80). These priors reflect beliefs

about the smoothness of the warping functions. For instance, if the prior belief is that the

warping function is relatively smooth and the phase variation should only relate to the general

shape of the observed functions, a prior with a smaller mean should be chosen. Second, we

consider two discrete uniform prior distributions on [30, Mmax = 200] (caplow) and [1, 50]

(caphigh), respectively. These two priors enforce a maximum (minimum) level of smoothness

of the warping functions via the restriction that M � 30 (M � 50), but are non-informative in

the sense that any M between 30 and Mmax = 200 (1 and 50) is equally likely.

Truncation mechanism (2): We choose a uniform prior distribution on the sequence of

on-off switches for the basis functions (indicator). This prior is non-informative on the shape

of the warping functions since any of the basis elements in the sequence are equally likely to be

switched on or off.

The flexibility of prior choices for the random truncation is an important benefit of the pro-

posed model, in comparison to existing models with fixed truncation. In practice, if one wishes

to register the general shapes of the functions without altering small, local features, a prior that

puts more weight on smoother functions (i.e., truncation mechanism (1) with Poisson with a

small mean or a uniform with a small upper bound) should be chosen. If one has no strong

Fig 2. Pairwise simulation results. Top: Five sets of ten true warping functions with different amount of local features.

Bottom: FR distance-based performance of different models for estimating the true warping functions in each set;

smaller distance indicates better performance.

https://doi.org/10.1371/journal.pone.0287734.g002
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prior opinion and wants the posterior to be mostly informed by the data, a less informative

prior (i.e., truncation mechanism (2) with uniform for the on-off indicators) should be chosen.

At the same time, the model is robust to the prior choices of the decay rate of the Fourier basis

and the model variance s2
1

(see the S1 File for a sensitivity analysis).

Implementation details

At the implementation stage, both the observed functions and the parameters are stored on a

grid of size 200, which is the same as Mmax, the number of stored basis functions. We first per-

form pairwise registration for each set of warping functions using the deterministic Dynamic

Programming (DP) algorithm, which is implemented in the R package fdasrvf [27]. We use the

DP estimate to initialize the MCMC sampling algorithm for the proposed Bayesian model. We

note that, while DP offers a good starting point and allows the chain to mix faster, the perfor-

mance of the MCMC algorithm is independent of the starting point in the long run. Examples

with different starting points are included in the S1 File. For the warping parameter g, we use a

3-mixture pCN proposal with jump sizes βz = (0.5, 0.05, 0.0001) and corresponding proposal

probabilities pz = (0.3, 0.3, 0.4). For truncation mechanism (1), the proposal for M is a 10-step

random walk where M0 stays at the current value or moves forward or backward by up to 10

steps (with the probability for each move (p0, p1, . . ., p10) / (1, 0.5, 0.445, . . ., 0.001), where

0.5, 0.445, . . ., 0.001 is an equally spaced decreasing sequence of length 10). For truncation

mechanism (2), the proposed state χ0 is generated by switching up to five randomly selected

indicators. We use the choose-k proposal because we notice that it tends to have faster conver-

gence than the on-or-off alternative.

Results

To evaluate performance, we calculate the Fisher-Rao distance between γtrue and γest [24]:

dFRðgtrue; gestÞ ¼ cos�1ðhctrue; cestiÞ ¼ cos�1

�Z 1

0

ctrueðtÞcestðtÞdt
�

; ð13Þ

where the posterior mean is used to construct γest for the Bayesian models. The results are

shown in Fig 2. Importantly, we see that the M20 model proposed in [11] does not perform

well compared to the proposed random truncation or random indicator models when the true

warping functions have many local features. While M can be fixed to a larger value, our model

has the advantage that the value of M does not need to be decided a priori and, instead, is

informed by the data. Comparing to DP, we notice that when γtrue has fewer local features (sets

(2) and (3)), the proposed Bayesian models perform better irrespective of the prior distribution

for the random truncation T. When γtrue has more local features (sets (4) and (5)), models

pois20 and caphigh perform worse, as expected, since they impose strong prior constraints on

the maximum smoothness of the warping function. For the set of linear functions, DP per-

forms better than the Bayesian models. This is not surprising since DP performs registration

by solving a minimization problem in a piecewise linear fashion. On the other hand, the Fou-

rier basis used for the Bayesian models are not piecewise linear. We also note that, while we

compare DP with the Bayesian methods numerically using the FR distance, they are funda-

mentally different approaches. DP is optimization-based and the algorithm is very fast, but it

has some known limitations: (1) it is not easy to enforce restrictions on the parameter space,

(2) while regularization can be imposed by adding a term to the cost function, the choice of

the regularization parameter is difficult in practice, (3) performance of the algorithm heavily

depends on the discretization and neighborhood size settings, and (4) there is no prescribed
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approach for uncertainty quantification. In comparison, model-based approaches are more

flexible and provide a more principled exploration of the parameter space.

We also examine the posterior means of the number of active basis functions in Fig 3.

Based on this result, we highlight two additional advantages of the proposed method compared

to the model in [11]. First, inference on the level of smoothness of the warping function is

clearly informed by the underlying data. We see that when the true warping functions, and

consequently the observed functions, have more local features, the (posterior mean) number

of active basis functions is larger regardless of the prior chosen for the random truncation T.

Note that the set of linear functions requires more basis functions due to the sharp turns at the

break points. Second, one can flexibly incorporate constraints on the level of smoothness via

this prior. For example, the model pois20 generates fewer active basis functions than the model

pois80, regardless of the level of smoothness in the observed functions. The model caplow
results in estimated warping functions based on at least 30 basis elements even when the true

warping function is very smooth. On the other hand, the model caphigh results in estimated

warping functions based on at most 50 basis elements even when the true warping function

has many local features. Fig 4 shows four examples that compare registration performance

between the Bayesian models caplow and caphigh. In each example, we display f2 (grey), f1 = f2
� γtrue (black), f2 � γest,caplow (green) and f2 � γest,caphigh (blue). The estimated warping functions

are obtained using the posterior means in each case. It is clear that the model caplow allows for

registration of more local features than the model caphigh.

Applications

In this section, we apply the proposed multiple function Bayesian registration model to the six

datasets displayed in Fig 1. They arise in five different application domains:

Fig 3. Posterior mean of the number of (active) basis functions for different registration models in the pairwise

simulation study. The five boxplots in each panel correspond to the five sets of true warping functions (top row of Fig

2).

https://doi.org/10.1371/journal.pone.0287734.g003

Fig 4. Four examples of pairwise Bayesian registration with priors caplow and caphigh. In each panel, we show f1
(black), f2 (grey), f2 � γest,caplow (green) and f2 � γest,caplow (blue). The estimated warping functions correspond to

posterior means.

https://doi.org/10.1371/journal.pone.0287734.g004
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1. Right knee flexion and pelvis right roll. This data is comprised of two gait variables (mea-

surements taken by markers as participants walk) for C = 12 participants. We obtained the

data from the online supplementary material of [28]. Each gait cycle is linearly scaled such

that they are observed on the same time interval, i.e., the x-axis can be interpreted as per-

centage of one gait cycle. For more information on the role of registration in gait cycle anal-

ysis see, e.g., [10, 11, 29]

2. Growth rates. We use the growth rate functions of C = 54 girls from the Berkeley growth

study [1], available in the R package fda [30]. This dataset is widely used to assess registra-

tion performance.

3. Pinch force. Each function records the pinch force exerted by the thumb and forefingers

during a brief squeeze. These measurements were collected for C = 20 test subjects [2, 12,

31] and the full dataset is available in the R package fda. The starting time of the pinch as

well as the time spent to reach the maximum force are different across test subjects, necessi-

tating a registration step to account for this temporal variation prior to further analysis.

4. Neural spike trains (sequence of electrical pulses sent by the neurons to the brain). The

dataset is comprised of C = 10 smoothed neural spike train functions; see [9] for a detailed

description. This dataset is analyzed in multiple papers, including [24, 32–36], with a partic-

ular interest in function registration.

5. Handwriting samples. We use the x-coordinates of C = 50 replicates (generated by a single

person) of handwritten Chinese characters for ‘statistical science’ [6]), available in the R

package fda. This dataset is used in [5] as an application of function registration.

Prior specification

The covariance operator in the Gaussian process prior of the warping functions, Cg , and the

inverse-gamma prior for the model variance, s2
1
, are identical to the priors specified in the

pairwise registration simulation study. The covariance operator in the Gaussian process prior

for the template function, Cq, is specified by the Fourier basis with corresponding eigenvalues

l
2

i ¼ s2
q � i�1:2, where s2

q is fixed based on the scale of the observed functions. Using the Fourier

basis to represent the template function is especially suitable when the observed functions are

periodic on [0, 1], i.e., the gait cycle variables. For other datasets, we set the Fourier period to

2. As shown in the simulation study, these prior choices yield good registration results across

different shapes of observed functions; on the other hand, the model is robust to alternative

prior choices for these model parameters.

The random truncation is specified by truncation mechanism (1). For both the warping

functions and the template, we use a discrete uniform prior on [5, Mmax = 200] for the number

of basis functions M. This prior is non-informative and allows us to evaluate registration per-

formance that is primarily driven by the data. Intuitively, the chosen range, [5, Mmax = 200],

ensures that the warping functions have a minimum level of complexity (as captured by the

first five Fourier basis elements), but are allowed to have as many local features as possible

(since the observed functions are evaluated on a discretized grid of size 200). In practice, this is

a suitable approach when one does not have strong prior information for the warping parame-

ter and does not wish to restrict the level of shape-alteration during the registration process.

For the proposals, we want to have a variety of small and intermediate jump sizes to explore

the parameter space thoroughly. To that end, we use a pCN proposal with βz values equally

spaced between 0.001 and 0.0001 for the functional parameters and use a 1-step random walk
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proposal for the number of basis functions. Convergence is visually monitored by checking the

trace plots of the log-likelihood. Trace plots for two of the datasets are provided in the S1 File.

Results

For comparison, we also perform registration with the M20 model [11]. Registration results

for the six different datasets under consideration are shown in Fig 5. In each panel, we show

the registered data (left) with respect to the estimated template (middle). For the estimated

template, we also visualize the level of uncertainty (as measured by the posterior pointwise

standard deviations, standardized by the scale of the original data; blue = small standard devia-

tion, red = large standard deviation). We see that, when the observed functions have very dif-

ferent shapes (e.g., neural spike trains), the estimated template tends to have more uncertainty.

In the right panel, we plot the template function estimated using the M20 model. We see that

the proposed method is better at producing a template function that resembles the shape of the

original functions. For instance, the template estimated by the M20 model does not have the

small wiggles at both ends of the pinch force curves, and the M20 model cannot recover a

good template for the handwriting curves. This, again, shows the limitation of the model pro-

posed in [11], where the number of basis functions can be mis-specified. In comparison, the

proposed model uses 178 basis functions (posterior average) to estimate the template function

of the pinch force dataset and 196 basis functions for the handwriting dataset. When the

observed functions are relatively smooth, the posterior of the template function reflects that by

using fewer basis functions (e.g., 55 and 33 for the two gait datasets). This shows the data-

informative feature of the proposed method.

For a quantitative assessment of registration results, we report the inverse of pairwise corre-

lation (IPC) [11, 15], calculated using IPC ¼

P
i6¼j

rðfi ;fjÞ
P

i6¼j
rð~f i ;~f jÞ

, where r(�, �) is the pairwise Pearson’s

Fig 5. Registration results for six real datasets. The original observed functions for each dataset can be found in Fig

1. Here, we display the registered functions (left panel), the estimated template function using the proposed random

truncation model (middle panel), with the color corresponding to the pointwise standard deviation (red—larger

standard deviation and more uncertainty; blue—smaller standard deviation and less uncertainty), and the estimated

template function using the M20 model (right panel). The warping and template functions used to perform

registration are estimated using the posterior means.

https://doi.org/10.1371/journal.pone.0287734.g005
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correlation, f are the observed functions, and ~f are the registered functions. The IPC values

corresponding to registration performance of different models are shown in Fig 6. Overall

results are comparable across different models when the observed functions are relatively

smooth. The M20 model notably does not perform as well when the observed functions have

many local features (e.g. pinch force, spike trains, and handwriting data) due to an under-spec-

ification of the number of basis functions. Compared to DP, the proposed Bayesian model

achieves similar performance for all datasets (in the case of multiple function registration, DP

aligns each function to an estimated template function in a pairwise manner; see [24] for

details). Another numerical criterion (Sync) based on the L2 distance between the registered

functions shows similar results and is discussed in the S1 File.

We note that the IPC (and Sync) values are based only on the correlation or the distance

between the registered functions and do not take into account how well the shapes of the func-

tions are preserved. It also only accounts for the quality of the template indirectly via the regis-

tered functions. As we have shown in Fig 5, the M20 model does not recover the shape of the

template function as well as the proposed method. On the other hand, DP sometimes does not

preserve the original shapes of the observed functions after registration. For instance, we high-

light two neural spike trains in the top row of Fig 7. The original observed curves are shown in

the left panel; we see that one of the curves (blue) exhibits more local features than the other

(red). Despite a good registration result (middle panel), DP has smoothed out the unmatched

local features in the blue curve. In contrast (right panel), the proposed Bayesian model pre-

serves the original shapes of the two curves better. In fact, when the observed functions have

different numbers of features, e.g., local extrema, the random truncation component of the

Bayesian model enables one to detect this pattern. The two highlighted neural spike trains

were identified, because their corresponding warping parameters have the largest posterior

means for the number of basis functions. An estimated warping function represented by a

large number of basis elements signals that the observed function has been altered a lot in its

local features after registration, likely due to some unmatched features being “squeezed,” as

evident in this example.

In some applications, it is not desirable to alter the shapes of the observed functions too

much. The proposed Bayesian model offers a flexible way to control how much shape

Fig 6. IPC values for six real datasets after registration. Smaller value means better alignment. The black line

corresponds to the proposed approach (specifically, this is a 95% credible interval of the IPC values constructed using

200 randomly sampled posterior draws); the red round dot corresponds to the M20 model; the blue square

corresponds to DP. Since the IPC value for each dataset is plotted on a different scale (and the values are not directly

comparable across different datasets), we display the numeric values of the end points as a reference.

https://doi.org/10.1371/journal.pone.0287734.g006
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alteration is allowed via the prior distribution of the random truncation parameter. Specifi-

cally, shape-alteration during the registration process will be limited if the prior puts very

small or zero probability on large values of the number of basis functions. We show an exam-

ple of this for the growth rate functions in the bottom row of Fig 7. We again highlight three

observed functions in the left panel. They all exhibit two modes while most of the other func-

tions in the data have only one mode. After registration using DP (middle panel), the bimodal

pattern in the highlighted functions is no longer obvious. As a result, one might overlook the

fact that these individuals have two growth spurts rather than the more common pattern of

one pubertal growth spurt. To limit the level of shape alteration, we apply the proposed Bayes-

ian registration model with a restrictive discrete uniform prior on [1, 10] for random trunca-

tion for the warping parameters. In this case, the prior limits the number of basis functions to

be at most 10. The corresponding results (right panel) show that the bimodal feature of the

highlighted growth rate functions is much better preserved after registration.

Summary

We develop Bayesian models for pairwise and multiple function registration. These models

build on existing Bayesian registration techniques which assign Gaussian process priors to the

warping function, after a sequence of function space transformations. When building the reg-

istration models, the functional parameter is represented via an infinite sequence of basis func-

tions, but at the implementation stage, it is necessary to truncate this sequence. Our main

contribution lies in the randomization of this truncation process. This is done by introducing

a new random truncation parameter that controls how many or which basis functions are used

to represent the functional parameters. The resulting Bayesian models can then explore the

full parameter space instead of a small subset of a truncated parameter space.

In practice, there are three main benefits of the proposed method compared to models

where the truncation mechanism is fixed. First, the posterior distribution on the truncation

parameter is informed by both the data and the prior, and one does not have to choose the

truncation a priori, thus avoiding possible mis-specifications of the truncation parameter. Sec-

ond, one can put restrictions on the registration process by using a restrictive prior for the

truncation parameter, which controls how much shape alteration is allowed. For instance, as

we have shown in the growth rate example, by limiting the number of basis functions to be at

Fig 7. Registration results highlighting two neural spike trains (top) and three growth rate functions (bottom).

https://doi.org/10.1371/journal.pone.0287734.g007
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most 10 for the warping function parameter, we retain important features (one or two growth

spurts) in the registered growth rate functions. Third, the new models also allow us to make

inference on how much truncation has occurred. This can help detect when an observed func-

tion has undergone a significant shape change during registration, especially in its local fea-

tures. We demonstrate the aforementioned advantages of the proposed approach through a

simulation study and multiple real datasets.

In addition, the proposed modeling framework is very flexible. In the case of multiple func-

tion registration, one can use a different prior for each of the warping functions, correspond-

ing to each of the observed functions, and for the template function, e.g., one can use non-

informative priors for the warping functions and a restrictive prior for the template function

that would constrain the template to have a smooth shape with limited local features. This

enables fine-tuning of the models based on the application of interest.

The Metropolis-within-Gibbs algorithm we use to sample from the posterior distribution is

efficient in the sense that the computational cost is largely unaffected by the size of the grid on

which the functions are observed. The proposals for the functional and random truncation

parameters further allow much flexibility in the jump sizes for exploring the parameter space.

On the other hand, a drawback of the algorithm is that it is not informed by the likelihood. As

a result, in some applications, convergence can be slow; for example, based on trace plots, the

real datasets considered in the Applications section require at least 2 × 105 iterations and can

take more than 106 iterations (trace plots for two datasets are given as examples in the S1 File;

computation time for registering 10 functions is about 100 minutes per 105 updates). While

this is not surprising, because the algorithm is exploring a very large parameter space, a possi-

ble future research direction is to design algorithms with faster convergence rates, by using

likelihood-informed proposals or adaptive proposals with jump sizes automatically tuned by

acceptance rates.

Supporting information

S1 File. Supplementary material. This pdf file serves as an appendix to the main manuscript

and includes: 1) additional derivations; 2) trace plots for two real data examples; 3) Sync values

for assessing registration performance for the six real datasets in Section; and 4) a discussion

of model sensitivity.

(PDF)

S2 File. Code and data. The code folder includes R code to perform pairwise and multiple

function registration. Datasets used in the manuscript are also included as .RData files. A

readme file is included to provide instructions.

(ZIP)
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