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Abstract

In this work, we develop a new set of Bayesian models to perform registration of real-valued
functions. A Gaussian process prior is assigned to the parameter space of time warping
functions, and a Markov chain Monte Carlo (MCMC) algorithm is utilized to explore the pos-
terior distribution. While the proposed model can be defined on the infinite-dimensional func-
tion space in theory, dimension reduction is needed in practice because one cannot store an
infinite-dimensional function on the computer. Existing Bayesian models often rely on some
pre-specified, fixed truncation rule to achieve dimension reduction, either by fixing the grid
size or the number of basis functions used to represent a functional object. In comparison,
the new models in this paper randomize the truncation rule. Benefits of the new models
include the ability to make inference on the smoothness of the functional parameters, a
data-informative feature of the truncation rule, and the flexibility to control the amount of
shape-alteration in the registration process. For instance, using both simulated and real
data, we show that when the observed functions exhibit more local features, the posterior
distribution on the warping functions automatically concentrates on a larger number of basis
functions. Supporting materials including code and data to perform registration and repro-
duce some of the results presented herein are available online.

Introduction

Advances in data collection technology have made functional data prevalent in various applied
domains including biology, biometrics, medicine, computer vision, bioinformatics, and many
others. This, in turn, has prompted rapid development of functional data analysis (FDA) meth-
ods for estimation, alignment, summarization, and statistical modeling (and inference) for
such data. In this work, we specifically focus on the problem of Bayesian model-based align-
ment of two or more functions, termed pairwise and multiple registration, respectively. In par-
ticular, we elucidate the challenges arising from nonlinearity and infinite-dimensionality of
the representation spaces on which observation and prior models must be defined.

We consider the task of registration of real-valued functions defined on a subinterval of the
real line. The goal of registration is to separate two sources of variability in functional data
termed amplitude (y-axis variation) and phase (x-axis variation or time warping), and our aim
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is to temporally align (or warp) a set of functions, such that the amplitude variation in the
observed data is comparable (i.e., amplitude features like local extrema occur at the same time
along the x-axis, across all functions). The phase variation is then captured by a set of time
warping functions that achieve the alignment. Formal definitions of amplitude, phase and the
registration problem that are considered in this work are provided in subsequent sections.

Real data examples of the types of functions we consider are plotted in Fig 1. To motivate
the problem of function registration, we consider the widely-used Berkeley growth study data-
set [1]. The data is comprised of height measurements for boys and girls recorded from age 1
to age 18. To discover patterns of growth such as growth spurts, it is often preferable to analyze
growth rate functions, i.e., the time derivative of the height measurement functions, since peri-
ods of fast/slow growth result in local extrema. The growth rate functions for 54 girls are dis-
played in the third panel, top row of Fig 1. It is clear that the functions have very similar shapes
and exhibit one peak near the middle of the domain, corresponding to the pubertal growth
spurt. However, the pubertal growth spurt does not occur at the same time across all growth
rate functions since different children go through puberty at different times. Thus, it becomes
necessary to register the growth rate functions prior to statistical analysis such that the ampli-
tude variability (magnitude of pubertal growth spurts) and phase variability (timing of puber-
tal growth spurts) are separated.

To enhance statistical analysis, registration of functional data has been utilized in a wide
range of applications including biomechanical data [2-4], handwriting samples [5, 6], gene
expression and proteomics data [7, 8], neural spike trains [9], and gait data [10, 11]. Tradition-
ally, function registration is formulated as an optimization problem under a specific optimality
criterion, preferably a metric. We refer readers to standard FDA textbooks (e.g., [12, 13]) for
an overview of the many approaches that have been proposed. Recently, model-based or prob-
abilistic frameworks have become popular in formulating the registration problem. Specifi-
cally, the Bayesian modeling paradigm provides considerable flexibility as it allows the user to

Right knee flexion (C=12) Pelvis right roll (C=12) Growth rates (C=54)

Pinch force (C=20) Neural spike trains (C=10) Handwriting (C=50)

Fig 1. Examples of the types of functions we consider. The value C represents the number of functions in each
dataset.

https://doi.org/10.1371/journal.pone.0287734.9001
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specify a prior distribution over the phase parameter space. Additionally, it yields a principled
approach for a more comprehensive exploration of the phase parameter space and provides
quantified uncertainty measures via the posterior distribution.

The literature includes multiple different Bayesian formulations of function registration.
Telesca and Inoue [7] use the B-spline basis to model functional parameters; Claeskens et al.
[14] decompose time warping functions into so-called warping component functions or war-
plets. Cheng et al. [15], Bharath and Kurtek [16], and Matuk et al. [17] use Dirichlet priors for
the time (increments of) a warping function. Finally, Earls and Hooker [18], Kurtek [19], and
Lu etal. [11] use Gaussian process priors on a transformed warping parameter space. We refer
the reader to Matuk et al. [20] for a general overview of Bayesian registration methods. As evi-
dent, the main differences among the aforementioned methods are in the specification of the
observation model, the prior model on phase, and the algorithms used for parameter space
exploration; we discuss benefits and drawbacks of the different choices later as we introduce
the proposed framework. Some of the methods (e.g., [16]) are additionally able to incorporate
information on landmarks (predetermined, user-defined points of interest) into the registra-
tion problem.

This work extends and improves the Bayesian models proposed in [11] to enable full explo-
ration of the functional parameter space. In [11], the authors specify a Gaussian process prior
over the infinite-dimensional phase parameter space and represent time warping functions
using a sequence of basis functions. However, at the implementation stage, the dimension of
the parameter space is reduced by choosing a fixed number of basis functions. Thus, the result-
ing model is not truly infinite-dimensional and is able to explore only a small subset of the
underlying parameter space. In practice, the main disadvantage of such a formulation is that
the dimension reduction is performed a priori and is thus not informed by the data. Further-
more, it is generally not obvious how many basis functions are needed to achieve satisfactory
registration results.

To remedy these issues, instead of using a fixed truncation, we allow the truncation to be
random. This is done by randomizing either (i) the number of basis functions or (ii) which
basis functions are used. We incorporate this random truncation as a separate parameter, lead-
ing to nonparametric, infinite-dimensional models in the sense that the prior distributions are
assigned on the entire functional phase parameter space. The proposed models with random
truncation have three advantages. First, the level of smoothness of the functional phase param-
eter is informed by the data, thus avoiding potential mis-specifications of the number of basis
functions. As we will show, under-specification of the number of basis functions can lead to
poor registration results. Second, one can flexibly incorporate prior beliefs or desired con-
straints on the shape of the functional phase parameter. For instance, how much shape-alter-
ation occurs in the observed functions can be controlled by the prior on the number of basis
functions. Third, our model allows one to make inference on the random truncation parame-
ter, which can provide additional information about the shapes of the functions in the data.
For instance, the posterior tends to keep a larger number of basis functions for the phase
parameter when the observed functions exhibit a lot of local features that must be registered.
Following ideas from [11, 21, 22], we develop algorithms that allow efficient sampling from the
posterior distribution of both the functional parameter and the random truncation parameter.
A key designing principle for our model is to treat the phase parameter space as infinite-
dimensional and to allow the data to dictate the amount of dimension reduction that is
needed.

The rest of the paper is organized as follows. We first introduce the statistical problem of
function registration, focusing on relevant function spaces, in Section Problem Formulation
and Function Spaces of Interest. The proposed Bayesian registration models are formally
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specified in Sections Pairwise Bayesian Registration Model with Random Basis Truncation
and Multiple Function Bayesian Registration Model with Random Basis Truncation. In Sec-
tions Simulation Study and Applications, we demonstrate the proposed method on a pairwise
simulation study and several real datasets.

Problem formulation and function spaces of interest

We formulate the task of function registration as a statistical problem by defining (i) the data
and the observation space, and (ii) the parameter(s) and their corresponding representation
spaces. As will be seen, it is essential to transform both the observation space and the parame-
ter space. The transformations we adopt here are developed in [23, 24] in the context of func-
tion registration and have been utilized for registration models in a host of recent manuscripts,
including [11, 17-19, 25, 26]. A comprehensive discussion of these transformations can be
found in [13]. Here, for brevity, we will only introduce the relevant notation and briefly state
the transformations. We refer the reader to the aforementioned references for more details.
We start with the simpler case of pairwise registration, where two real valued functions, f;
and f,, are observed. Without loss of generality, we assume that the domain on which the func-
tions are observed is [0, 1]. In this scenario, these two functions are regarded as data with the
corresponding observation space F = {f : [0,1]—R | f is absolutely continuous} . Suppose
our goal is to register f, to f;. This is achieved by finding a warping function y such that f, o
and f; are aligned. The role of y is to warp the domain of f, so that the amplitude variation of f,
is retained, but its phase variation is altered (ideally to match that of f;). The amount of alter-
ation, which quantifies the difference in phase variation between f; and f,, is captured by y.
The warping function y is regarded as the parameter with the corresponding parameter space
L={y:[0,1] — [0,1] | ¥(0) =0, ¥(1) = 1,0 < ¥ < oo}. In the next two paragraphs, we sepa-
rately describe the transformations carried out on the (1) observation (data) space, and (2)
parameter space. More details on these transformations can be found in the S1 File.
Observation (data) space. For f € F, we use the square-root velocity transformation

Q(f)(t) = sign(f' (1) /I ()] = q(1), (1)

where f” is the derivative of f. The resulting function, denoted by g for simplicity and referred
to as the square-root velocity function (SRVF), is an element of the transformed observation
space Q, which is a subset of L*([0, 1]) [23]. The mapping Q is bijective up to a translation and
f € F can be recovered from g € Q using Q' (q)(¢) )+ j;) (s)| ds. The SRVF of a
time warped function, f oy € F, is given by

Q(f o7)(t) = QU ()7 (1) = (g,7)(8)- (2)

Note that this is not the same as function composition g o y, because of the additional term
\/7'; for brevity, we denote this quantity by (g, ).
Parameter space. For y € I, we apply two transformations:

Q(y)(t) = sign(y' () /17 ()] = /7' (t) = ¥ (t) 3)

exp;' (Y) = sin9(0) (Y — cos(0)) = g, where 0 = cos™ (/0 lﬁ(t)dt). (4)

The first transformation is the square-root velocity transformation in Eq (1) (note that y'(¢) >
0V t). The second transformation is the inverse exponential map for a unit sphere that allows
us to linearize the space W, which is a transformed representation space of the warping
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functions. The resulting function, denoted by g, belongs to a subset of a linear space, defined as
A ={ge T,(¥)|expi(g) > 0} (the notation T,(¥) refers to the tangent space of ¥ at the func-
tion 1; see S1 File for details). We can transform g back to y via

t
0

10 =0 = [V~ [ il

where exp, (g) = cos(||g||) + 22Ul ¢ (||-|| is the I.” norm). The warping of an SRVF, (g, 7),

llgll
can now be written in terms of the function g, which lies in a linear space, via

(@.7)() = () V7T = q< / exp?(g)(s)ds) exp,(g)(1). 5)

In summary, our approach is to perform statistical inference on the parameter g € A, using
the (SRVFs of) the observed data ¢q,, g, € Q. Generalization to multiple function registration
is straightforward. Suppose we observe C > 2 functions, denoted by fi, .. ., fc. The goal is to
register them simultaneously to a template function, f*. In some applications, we can pre-spec-
ify a known function as the template (common choices include one of the observed functions
or their point-wise mean). Alternatively, we can treat f * as another unknown parameter to be
estimated. Registration is achieved via estimation of the warping functions, y;,i=1, ..., C, cor-
responding to each observed function. After applying the same transformations, we treat
qys---,qc € Qasdataand gy, . . ., gc € A (the warping functions) and Q(f*) = g* € Q (the
template function) as parameters.

Pairwise Bayesian registration model with random basis truncation

In the case of pairwise registration, the data consists of two functions f; and f,, represented via
their SRVFs g, and ¢,, observed on a finite grid of size N denoted by [t] = {t;, . . ., tn}. We use
the notation [¢] to denote discretization of the domain [0, 1] throughout the rest of the paper.

Thus, f([t]) denotes evaluations of the function fat the domain points [¢]; similarly, ﬂ)m h(s)ds
denotes the N-dimensional vector ( fotl h(s)ds, ..., fot” h(s)ds) . We model the difference

between q;([#]) and (q,, ¥)([¢]) by a zero-mean N-dimensional Gaussian distribution. The
main parameter of interest is the warping function y € I represented via g € A. At the imple-
mentation stage, dimension reduction is necessary, and this is achieved by an auxiliary variable
T. Specifically, we first represent g by an infinite sum using basis functions. Then, we use the
random variable T to truncate the infinite sum to a finite sum, which can be evaluated on a
computer. The truncated version of g will be henceforth denoted by g.

The pair (g, T) fully specifies ¢ and we specify a prior distribution for g by assigning a joint
prior probability model for the pair (g, T). To that end, we use a Gaussian process to model g
and a general distribution 77 that does not depend on g to model T. We further ensure that the
pair (g, T) results in a valid warping function by restricting the joint prior to the domain
B={(g,T): exp,(g) > 0}. The full model is given below.

Model 1.

[1]
a() g ( | e ds) Cexp @) | g T.0? ~ N0y, oIy),
g T ~ {Gaussian(0,C,) - T, },

o, ~ IG(shape = a, scale = b),
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where g is a function of g and T, C, is a covariance operator for the Gaussian process prior, Tr is
a prior distribution for T, {-}g denotes the truncation of the joint prior distribution to the set B,
IG(-, -) is the inverse-gamma distribution, and a and b are fixed constants.

The likelihood function is then given by

L T,0! | ) = (%_)(i)/ exp{ — g0z 552(@) . (©)

where

5E(F) = i(qlw o [ ew@oa) expl@xti))?. o)

i=1

This likelihood is identical to that of [11, 19], except that the truncated parameter g replaces
the parameter g.

Random truncation mechanisms

We now discuss the following two mechanisms for the prior distribution of the random trun-
cation T, which is key to the proposed approach.

(1) Random Number of Basis Functions. In the first scenario, consider T = M, where M is
the number of basis functions used to represent the parameter g. In this case, mp = mysis a
prior distribution on the set of positive integers and g(t) = S, &b,(t), where {b;}; - ; forms
an orthonormal basis for T, (V).

(2) Random Indicators. In the second scenario, we can randomly switch a basis function
on and off (called a sieve prior in [22]). This is done via the random sequence {y;}; = 1. .. . cor
i €10, 1}; we refer to this sequence simply as y. This sequence controls which basis functions
are kept in the basis expansion of g. In other words, T'= y and g is calculated as
g(t) =7 7 - &b,(t). Let M, be the maximum number of basis functions stored at the
implementation stage, and let M,,,, be the number of active basis functions (i.e.,

M,, = S y.). The domain of y, denoted X, is the collection of vectors of the form

on

(t €{0,1}, ...,z € {0,1}), and 7 = 7, is a prior on X'

Posterior distribution and sampling via Markov chain Monte Carlo

The posterior distribution is a probability measure y on the product space T, (¥) x

(domain of T) x R" and is dominated by the prior measure y. The Radon-Nikodym deriva-
tive is given by Bayes’ formula: Z—f{‘] (g, T,0%) x L(g,T,02|q,,q,). We use a Metropolis-within-
Gibbs algorithm to sample from the posterior distribution of (g, T', ¢7). To update the poste-
rior at each step, the algorithm iteratively draws from (i) the full conditional distribution of (g,
T), and (ii) the full conditional distribution of ¢2. Details are given as follows.

Sampling of (g,T). We first update g. For this purpose, we use a Z-mixture pCN proposal
(see [11, 22] for details) by setting ¢ = g1/ (1 — ) + B.¢, where gis the current value, £ is a

draw from the Gaussian process prior, and 3, € (0, 1) is a tuning parameter drawn with proba-
bility p, satisfying 7 | p, = 1. As an example, in the case of a 2-mixture pCN proposal, we
can draw f3; = 0.5 with probability 0.8 and 5, = 0.001 with probability 0.2, resulting in “big
jump proposals” approximately 80% of the time and “very small jump proposals” approxi-
mately 20% of the time. Sampling a new function § from Gaussian(0, C,) is done via the Kar-

hunen-Loéve expansion. We specify the covariance operator C, by its eigenpairs {(b;, ;) } .,
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where {b,(-)} forms an orthonormal basis for T;('V') and the sequence of coefficients satisfy
> 7»? < 00. While theoretically i = 1, . . ., 00, at the implementation stage, we store a large
number M,,,, of basis functions. We thus sample independent random variables
& ~N(0,L)), i=1,...,M,,.Then, &(t) = SV &b,(t) if truncation mechanism (1) is
used, or £(t) = S0y, - €,b,(t) if truncation mechanism (2) is used.

We then independently generate a proposal, T', according to a density Q. (-|-), which
depends on the truncation mechanism. The pair (¢, T') is accepted with probability 1 A p,
where

_ L, T, ay) (T - Qu(T|T")
L(gv T, Uf) : nT(T) ’ QT(TI|T)

p (g, T) € B}, (8)

and 71 is the density function (with respect to the Lebesgue measure) of 7. This acceptance
ratio is intuitive if distributions of g have densities with respect to the Lebesgue measure. In
that case, the form of p follows directly from the fact that Gaussian(g'; 0, C,) - Q,cy(glg’) is
symmetric in gand ¢ (Q,y is the pCN proposal described earlier). Since a dominating Lebes-
gue measure does not exist on T;('¥), we can derive the acceptance ratio formally using the
dominating prior Gaussian measure (given in the S1 File).

If truncation mechanism (1) is used, Q,(T|T") = Q,,(M|M’), and we can use a K-step ran-
dom walk proposal of the form

M W.p. Py
M=E1l wp. p
M = M+E2 W.p. Do

M+K wp. pg

where p, + >, 2p, = 1. In other words, M’ can either stay at the current value, with proba-
bility po, or move forward or backward up to K steps. This is a symmetric proposal and the
Metropolis Hastings (MH) acceptance ratio in Eq (8) simplifies to

o= L(glvM,7 6?) i TEM(M,)
L(g, M, O-%) ’ T[M(M)

I{(g’, M') € B}. ©)

If the truncation mechanism (2) is used, then Q,(T|T") = Q,(x|x'), and we can use an on-
or-off proposal, where y' is proposed by either switching on a nonactive basis function, with
probability 0.5, or switching off an active basis function, again with probability 0.5. If all of the
basis functions are currently on, i.e., M,,, = M,,,,, we switch one of them off with probability 1.
On the other hand, if only one basis function is on, i.e., M,,, = 1, we switch on another basis
function with probability 1. This is the form of proposal suggested in [22]. It is not a symmetric
proposal and the MH acceptance ratio in Eq (8) can be written as

_ L(g/v X/v 0?) : 7'62(}{’)
L(g,X,O-%) : TEZ(X)

-a,, 1&g %) € B}, (10)
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where

(Mmax - Mon)/(Man + 1) lf Man 7é 17M0n # M M/ = Mon + 1

max? on

a — Mon/(Mmax - Mon + 1) lf Mon # 17M0n # Mmu)ﬂM(/m = Mon - 1
o (Mnmx - 1)/4 lf Mon =1
Mmax/2 lf Man = Mmax'

The derivation of g, is given in the S1 File.

Alternatively, one can consider a symmetric, choose-k proposal, where y’ is proposed via
the following steps: (i) sample k € {1, 2, ..., K < M,,,,} (for simplicity, we set the probability
for each value of k to be the same, but this is not required by the algorithm), (ii) randomly
select k entries from the vector y = (y, € {0, 1},...,%, € {0,1}), and (iii) propose 1’ by
switching (on to off, off to on) all of the selected entries. This proposal is symmetric. For exam-
ple,if y=(0,0,1,1) and ¥ = (0, 1, 0, 1), then
Q,(X'1x) = Q,(xlx') = P(select 2nd and 3rd entries|k = 2)P(k = 2). As a result, the MH
acceptance ratio for this proposal is the same as the one given in Eq (10) with a,,, = 1.

Sampling of 6. To update o2, we draw directly from the conjugate inverse-gamma distri-

bution with shape parameter § 4- a and scale parameter { SSE(g) + b.

Multiple function Bayesian registration model with random basis
truncation

The model for multiple function registration is a direct extension of Model (1). Based on the
observed functions fy, . . ., fc, represented via the SRVFs g, . . ., g¢, we aim to make inference
ong,,...,gc which are determined by the pairs (g1, T1). . ., (g, T¢c). In addition, we treat the
template function g* as a parameter and consider the same truncation mechanisms as
described in the pairwise case. The truncated template function is denoted by g* and is deter-
mined by the pair (g%, T,). We assign a Gaussian process prior to g* and a prior 7, to the ran-
dom truncation T,.

Model 2.

(1]
Uil <‘/0 expf(gl)(s)ds> exp,(g)([t]) —q"([t) | 4 T, &, T17O-? ~ N(ON?O-?IN)a

g
qc</0 expf(é’c)(S)dS> exp,(@)([) =4 ([f]) | 4T, g Tey 07 ~ N(Oy, 031y),

(8, T)) ~ { Gaussian(0,C,) - T},

(8cs Te) ~ { Gaussian(0,C,) - 11}y,
(q°,T,) ~ Gaussian(0,C,) - 17,
o} ~ IG(shape = a, scale = b).

The likelihood function is then given by

< 1 \Y/1\"? 1
L - 2) — — ) (= — ;.a
I L[ e et R
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where

SSE( Z( - Ik exph(2) (96 exp1<§,-><t,->)2- (12

j=1

Sampling from the posterior distribution is performed in the same fashion as in the pair-
wise case using a Metropolis-within-Gibbs algorithm. At each step, the algorithm first updates
each of the truncated warping parameters (g;, T;), i = 1, .. ., C sequentially via a Metropolis
step. The acceptance ratio for updating any of the pairs (g;, T;) takes the same form and, for
(g1, T1), is given by

1/\L<g1’T17'--7gc7TCaq*7Tqvo-f) TET(T) T(T1|T1) I{(g/ T/) GB}
L(glvT1a~~~>gc>Tcaq*qu,0%) n(T,) - Q(TH|T,) v
exp{ — 5 SSE@L ) | (T - Qu(TITY)
=1A I{(gu T1) € B}
exp{ — £ 55E@,q) | - m(T,) - Qu(T|T)

The algorithm then updates the template (g%, T,;) with the acceptance ratio

L( 17T17~~-7gca C’Q7 q’ ) nT(T;)'QT<Tq|T;)
LigyTis 80 Tes ' Ty o) - m(T,) - Qu(TIT,)

el - B NssE@a) ) m(T) QT
exp{ — 25 X SSE, 7))} 7r(T,) - Qu(T)IT,)

1A

Note that, for simplicity, we use the same prior 77 and proposal Q,. foreach T;,i=1,...,C
and T, but this is not required. Lastly, the algorithm updates ¢} by drawing directly from an
inverse-gamma distribution with shape parameter ; C - N 4- a and scale parameter

C
Zl SSE(g,,4") + b.

Simulation study

We first assess the performance of the proposed pairwise Bayesian registration model via a
simulation study. We simulate two observed functions, f; and f,, both of which are warped ver-
sions of a template function, f(t) = sin(47#%) [2]. The two observed functions are constructed
such that f; = f, o ¥,,,,. where the true warping y,,,.. is randomly generated. We then apply our
model to register f, to f; to obtain y,, an estimate of the true warping, and compare ¥, to
Yirue- We use five sets of true warping functions, which are shown in Fig 2. Each set contains
ten warpings and has varying degrees of local features: set (2) shown in the second panel in the
top row contains warping functions that are very smooth with no “small wiggles,” whereas set
(5) (fifth panel in the top row) contains warping functions that are “very wiggly.” Set (1) con-
tains piecewise linear warping functions. We compare the proposed method to the model in
[11], with the recommended setting of using 20 basis functions (we refer to this model as
M?20).

Prior Specification

We now discuss different choices for the prior distributions for the pairwise registration
Model (1). We use an inverse-gamma distribution with a = 0.1 and b = 0.1 for ¢?. For the
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Fig 2. Pairwise simulation results. Top: Five sets of ten true warping functions with different amount of local features.
Bottom: FR distance-based performance of different models for estimating the true warping functions in each set;
smaller distance indicates better performance.

https://doi.org/10.1371/journal.pone.0287734.9002

Gaussian process prior of the warping parameter g, we must specify the covariance operator C,
by its eigenpairs {(b;, 1)) },.,. We use the Fourier basis functions b,(t) €

{V2sin(2int), V2 cos(2int)},., and set A} = 4° - i"'2. The constant 1.2 in this expression
controls the decay rate of the Fourier series. If it is desirable to put more prior weight on warp-
ing functions with many local features, one can choose a smaller constant so that the higher
frequency Fourier basis elements are weighted more (this constant should be greater than 1 to
satisfy " A7 < 00). For the random truncation T, we use a few different priors based on which
truncation mechanism is used, as described below.

Truncation mechanism (1): There are multiple possible prior choices for the number of
basis functions. First, we consider three Poisson priors, truncated to the domain [1, M,,,,, =
200], with means equal to 20 (pois20), 50 (pois50) and 80 (pois80). These priors reflect beliefs
about the smoothness of the warping functions. For instance, if the prior belief is that the
warping function is relatively smooth and the phase variation should only relate to the general
shape of the observed functions, a prior with a smaller mean should be chosen. Second, we
consider two discrete uniform prior distributions on [30, M,,,,, = 200] (caplow) and [1, 50]
(caphigh), respectively. These two priors enforce a maximum (minimum) level of smoothness
of the warping functions via the restriction that M > 30 (M < 50), but are non-informative in
the sense that any M between 30 and M,,,,, = 200 (1 and 50) is equally likely.

Truncation mechanism (2): We choose a uniform prior distribution on the sequence of
on-off switches for the basis functions (indicator). This prior is non-informative on the shape
of the warping functions since any of the basis elements in the sequence are equally likely to be
switched on or off.

The flexibility of prior choices for the random truncation is an important benefit of the pro-
posed model, in comparison to existing models with fixed truncation. In practice, if one wishes
to register the general shapes of the functions without altering small, local features, a prior that
puts more weight on smoother functions (i.e., truncation mechanism (1) with Poisson with a
small mean or a uniform with a small upper bound) should be chosen. If one has no strong

PLOS ONE | https://doi.org/10.1371/journal.pone.0287734  July 7, 2023 10/19


https://doi.org/10.1371/journal.pone.0287734.g002
https://doi.org/10.1371/journal.pone.0287734

PLOS ONE

Bayesian function registration with random truncation

prior opinion and wants the posterior to be mostly informed by the data, a less informative
prior (i.e., truncation mechanism (2) with uniform for the on-off indicators) should be chosen.
At the same time, the model is robust to the prior choices of the decay rate of the Fourier basis
and the model variance o2 (see the S1 File for a sensitivity analysis).

Implementation details

At the implementation stage, both the observed functions and the parameters are stored on a
grid of size 200, which is the same as M,,,,,, the number of stored basis functions. We first per-
form pairwise registration for each set of warping functions using the deterministic Dynamic
Programming (DP) algorithm, which is implemented in the R package fdasrvf [27]. We use the
DP estimate to initialize the MCMC sampling algorithm for the proposed Bayesian model. We
note that, while DP offers a good starting point and allows the chain to mix faster, the perfor-
mance of the MCMC algorithm is independent of the starting point in the long run. Examples
with different starting points are included in the S1 File. For the warping parameter g, we use a
3-mixture pCN proposal with jump sizes f, = (0.5, 0.05, 0.0001) and corresponding proposal
probabilities p, = (0.3, 0.3, 0.4). For truncation mechanism (1), the proposal for M is a 10-step
random walk where M’ stays at the current value or moves forward or backward by up to 10
steps (with the probability for each move (pg, p1, - - -, p1o) x (1, 0.5, 0.445, .. ., 0.001), where
0.5, 0.445, .. ., 0.001 is an equally spaced decreasing sequence of length 10). For truncation
mechanism (2), the proposed state ' is generated by switching up to five randomly selected
indicators. We use the choose-k proposal because we notice that it tends to have faster conver-
gence than the on-or-off alternative.

Results

To evaluate performance, we calculate the Fisher-Rao distance between y,,,, and ¥, [24]:

A (e o) = €05 (s V) = ( / wma)wm(odt) (13)

where the posterior mean is used to construct ¥, for the Bayesian models. The results are
shown in Fig 2. Importantly, we see that the M20 model proposed in [11] does not perform
well compared to the proposed random truncation or random indicator models when the true
warping functions have many local features. While M can be fixed to a larger value, our model
has the advantage that the value of M does not need to be decided a priori and, instead, is
informed by the data. Comparing to DP, we notice that when ¥, has fewer local features (sets
(2) and (3)), the proposed Bayesian models perform better irrespective of the prior distribution
for the random truncation T. When y,,,,. has more local features (sets (4) and (5)), models
pois20 and caphigh perform worse, as expected, since they impose strong prior constraints on
the maximum smoothness of the warping function. For the set of linear functions, DP per-
forms better than the Bayesian models. This is not surprising since DP performs registration
by solving a minimization problem in a piecewise linear fashion. On the other hand, the Fou-
rier basis used for the Bayesian models are not piecewise linear. We also note that, while we
compare DP with the Bayesian methods numerically using the FR distance, they are funda-
mentally different approaches. DP is optimization-based and the algorithm is very fast, but it
has some known limitations: (1) it is not easy to enforce restrictions on the parameter space,
(2) while regularization can be imposed by adding a term to the cost function, the choice of
the regularization parameter is difficult in practice, (3) performance of the algorithm heavily
depends on the discretization and neighborhood size settings, and (4) there is no prescribed
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Fig 3. Posterior mean of the number of (active) basis functions for different registration models in the pairwise
simulation study. The five boxplots in each panel correspond to the five sets of true warping functions (top row of Fig
2).

https://doi.org/10.1371/journal.pone.0287734.9003

approach for uncertainty quantification. In comparison, model-based approaches are more
flexible and provide a more principled exploration of the parameter space.

We also examine the posterior means of the number of active basis functions in Fig 3.
Based on this result, we highlight two additional advantages of the proposed method compared
to the model in [11]. First, inference on the level of smoothness of the warping function is
clearly informed by the underlying data. We see that when the true warping functions, and
consequently the observed functions, have more local features, the (posterior mean) number
of active basis functions is larger regardless of the prior chosen for the random truncation T.
Note that the set of linear functions requires more basis functions due to the sharp turns at the
break points. Second, one can flexibly incorporate constraints on the level of smoothness via
this prior. For example, the model pois20 generates fewer active basis functions than the model
pois80, regardless of the level of smoothness in the observed functions. The model caplow
results in estimated warping functions based on at least 30 basis elements even when the true
warping function is very smooth. On the other hand, the model caphigh results in estimated
warping functions based on at most 50 basis elements even when the true warping function
has many local features. Fig 4 shows four examples that compare registration performance
between the Bayesian models caplow and caphigh. In each example, we display f, (grey), f1 = f>
© Yirue (black), f5 © Yest,caplow (green) and fo © Yest,caphign (blue). The estimated warping functions
are obtained using the posterior means in each case. It is clear that the model caplow allows for
registration of more local features than the model caphigh.

Applications

In this section, we apply the proposed multiple function Bayesian registration model to the six
datasets displayed in Fig 1. They arise in five different application domains:

Fig 4. Four examples of pairwise Bayesian registration with priors caplow and caphigh. In each panel, we show f;
(black), f, (grey), f2 © Yest.capiow (green) and f5 © Yest caplow (blue). The estimated warping functions correspond to
posterior means.

https://doi.org/10.1371/journal.pone.0287734.g004
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1. Right knee flexion and pelvis right roll. This data is comprised of two gait variables (mea-
surements taken by markers as participants walk) for C = 12 participants. We obtained the
data from the online supplementary material of [28]. Each gait cycle is linearly scaled such
that they are observed on the same time interval, i.e., the x-axis can be interpreted as per-
centage of one gait cycle. For more information on the role of registration in gait cycle anal-
ysis see, e.g., [10, 11, 29]

2. Growth rates. We use the growth rate functions of C = 54 girls from the Berkeley growth
study [1], available in the R package fda [30]. This dataset is widely used to assess registra-
tion performance.

3. Pinch force. Each function records the pinch force exerted by the thumb and forefingers
during a brief squeeze. These measurements were collected for C = 20 test subjects [2, 12,
31] and the full dataset is available in the R package fda. The starting time of the pinch as
well as the time spent to reach the maximum force are different across test subjects, necessi-
tating a registration step to account for this temporal variation prior to further analysis.

4. Neural spike trains (sequence of electrical pulses sent by the neurons to the brain). The
dataset is comprised of C = 10 smoothed neural spike train functions; see [9] for a detailed
description. This dataset is analyzed in multiple papers, including [24, 32-36], with a partic-
ular interest in function registration.

5. Handwriting samples. We use the x-coordinates of C = 50 replicates (generated by a single
person) of handwritten Chinese characters for ‘statistical science’ [6]), available in the R
package fda. This dataset is used in [5] as an application of function registration.

Prior specification

The covariance operator in the Gaussian process prior of the warping functions, C,, and the
inverse-gamma prior for the model variance, 62, are identical to the priors specified in the
pairwise registration simulation study. The covariance operator in the Gaussian process prior
for the template function, C,, is specified by the Fourier basis with corresponding eigenvalues

A= o2 - i"'?, where o? is fixed based on the scale of the observed functions. Using the Fourier

i
basis to represent the template function is especially suitable when the observed functions are
periodic on [0, 1], i.e., the gait cycle variables. For other datasets, we set the Fourier period to
2. As shown in the simulation study, these prior choices yield good registration results across
different shapes of observed functions; on the other hand, the model is robust to alternative
prior choices for these model parameters.

The random truncation is specified by truncation mechanism (1). For both the warping
functions and the template, we use a discrete uniform prior on [5, M,,,, = 200] for the number
of basis functions M. This prior is non-informative and allows us to evaluate registration per-
formance that is primarily driven by the data. Intuitively, the chosen range, [5, M,,,, = 200],
ensures that the warping functions have a minimum level of complexity (as captured by the
first five Fourier basis elements), but are allowed to have as many local features as possible
(since the observed functions are evaluated on a discretized grid of size 200). In practice, this is
a suitable approach when one does not have strong prior information for the warping parame-
ter and does not wish to restrict the level of shape-alteration during the registration process.
For the proposals, we want to have a variety of small and intermediate jump sizes to explore
the parameter space thoroughly. To that end, we use a pCN proposal with 3, values equally
spaced between 0.001 and 0.0001 for the functional parameters and use a 1-step random walk

PLOS ONE | https://doi.org/10.1371/journal.pone.0287734  July 7, 2023 13/19


https://doi.org/10.1371/journal.pone.0287734

PLOS ONE

Bayesian function registration with random truncation

proposal for the number of basis functions. Convergence is visually monitored by checking the
trace plots of the log-likelihood. Trace plots for two of the datasets are provided in the S1 File.

Results

For comparison, we also perform registration with the M20 model [11]. Registration results
for the six different datasets under consideration are shown in Fig 5. In each panel, we show
the registered data (left) with respect to the estimated template (middle). For the estimated
template, we also visualize the level of uncertainty (as measured by the posterior pointwise
standard deviations, standardized by the scale of the original data; blue = small standard devia-
tion, red = large standard deviation). We see that, when the observed functions have very dif-
ferent shapes (e.g., neural spike trains), the estimated template tends to have more uncertainty.
In the right panel, we plot the template function estimated using the M20 model. We see that
the proposed method is better at producing a template function that resembles the shape of the
original functions. For instance, the template estimated by the M20 model does not have the
small wiggles at both ends of the pinch force curves, and the M20 model cannot recover a
good template for the handwriting curves. This, again, shows the limitation of the model pro-
posed in [11], where the number of basis functions can be mis-specified. In comparison, the
proposed model uses 178 basis functions (posterior average) to estimate the template function
of the pinch force dataset and 196 basis functions for the handwriting dataset. When the
observed functions are relatively smooth, the posterior of the template function reflects that by
using fewer basis functions (e.g., 55 and 33 for the two gait datasets). This shows the data-
informative feature of the proposed method.

For a quantitative assessment of registration results, we report the inverse of pairwise corre-

2y 0h)

lation (IPC) [11, 15], calculated using IPC = S G where 7(-, -) is the pairwise Pearson’s
iz

vﬂ

ight knee flexion Pelvis right roll

.

Growth rates Pinch force

=

eural spike trains Handwriting

Wl |

Fig 5. Registration results for six real datasets. The original observed functions for each dataset can be found in Fig
1. Here, we display the registered functions (left panel), the estimated template function using the proposed random
truncation model (middle panel), with the color corresponding to the pointwise standard deviation (red—larger
standard deviation and more uncertainty; blue—smaller standard deviation and less uncertainty), and the estimated
template function using the M20 model (right panel). The warping and template functions used to perform
registration are estimated using the posterior means.

https://doi.org/10.1371/journal.pone.0287734.9005
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correlation, fare the observed functions, and f are the registered functions. The IPC values
corresponding to registration performance of different models are shown in Fig 6. Overall
results are comparable across different models when the observed functions are relatively
smooth. The M20 model notably does not perform as well when the observed functions have
many local features (e.g. pinch force, spike trains, and handwriting data) due to an under-spec-
ification of the number of basis functions. Compared to DP, the proposed Bayesian model
achieves similar performance for all datasets (in the case of multiple function registration, DP
aligns each function to an estimated template function in a pairwise manner; see [24] for
details). Another numerical criterion (Sync) based on the L? distance between the registered
functions shows similar results and is discussed in the S1 File.

We note that the IPC (and Sync) values are based only on the correlation or the distance
between the registered functions and do not take into account how well the shapes of the func-
tions are preserved. It also only accounts for the quality of the template indirectly via the regis-
tered functions. As we have shown in Fig 5, the M20 model does not recover the shape of the
template function as well as the proposed method. On the other hand, DP sometimes does not
preserve the original shapes of the observed functions after registration. For instance, we high-
light two neural spike trains in the top row of Fig 7. The original observed curves are shown in
the left panel; we see that one of the curves (blue) exhibits more local features than the other
(red). Despite a good registration result (middle panel), DP has smoothed out the unmatched
local features in the blue curve. In contrast (right panel), the proposed Bayesian model pre-
serves the original shapes of the two curves better. In fact, when the observed functions have
different numbers of features, e.g., local extrema, the random truncation component of the
Bayesian model enables one to detect this pattern. The two highlighted neural spike trains
were identified, because their corresponding warping parameters have the largest posterior
means for the number of basis functions. An estimated warping function represented by a
large number of basis elements signals that the observed function has been altered a lot in its
local features after registration, likely due to some unmatched features being “squeezed,” as
evident in this example.

In some applications, it is not desirable to alter the shapes of the observed functions too
much. The proposed Bayesian model offers a flexible way to control how much shape

Right knee flexion 0982 =) . e 0.9825
Pelvis right roll — & ' 0.956
Growth rates - : 8 o858
Pinch force 11" B 0.5831
Neural spike trains Oﬁe B m— 0'3835
Handwriting 0988 0.9889

Fig 6. IPC values for six real datasets after registration. Smaller value means better alignment. The black line
corresponds to the proposed approach (specifically, this is a 95% credible interval of the IPC values constructed using
200 randomly sampled posterior draws); the red round dot corresponds to the M20 model; the blue square
corresponds to DP. Since the IPC value for each dataset is plotted on a different scale (and the values are not directly
comparable across different datasets), we display the numeric values of the end points as a reference.

https://doi.org/10.1371/journal.pone.0287734.9006
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Observed Registered (DP) Registered (Proposed)

Fig 7. Registration results highlighting two neural spike trains (top) and three growth rate functions (bottom).
https://doi.org/10.1371/journal.pone.0287734.9007

alteration is allowed via the prior distribution of the random truncation parameter. Specifi-
cally, shape-alteration during the registration process will be limited if the prior puts very
small or zero probability on large values of the number of basis functions. We show an exam-
ple of this for the growth rate functions in the bottom row of Fig 7. We again highlight three
observed functions in the left panel. They all exhibit two modes while most of the other func-
tions in the data have only one mode. After registration using DP (middle panel), the bimodal
pattern in the highlighted functions is no longer obvious. As a result, one might overlook the
fact that these individuals have two growth spurts rather than the more common pattern of
one pubertal growth spurt. To limit the level of shape alteration, we apply the proposed Bayes-
ian registration model with a restrictive discrete uniform prior on [1, 10] for random trunca-
tion for the warping parameters. In this case, the prior limits the number of basis functions to
be at most 10. The corresponding results (right panel) show that the bimodal feature of the
highlighted growth rate functions is much better preserved after registration.

Summary

We develop Bayesian models for pairwise and multiple function registration. These models
build on existing Bayesian registration techniques which assign Gaussian process priors to the
warping function, after a sequence of function space transformations. When building the reg-
istration models, the functional parameter is represented via an infinite sequence of basis func-
tions, but at the implementation stage, it is necessary to truncate this sequence. Our main
contribution lies in the randomization of this truncation process. This is done by introducing
anew random truncation parameter that controls how many or which basis functions are used
to represent the functional parameters. The resulting Bayesian models can then explore the
full parameter space instead of a small subset of a truncated parameter space.

In practice, there are three main benefits of the proposed method compared to models
where the truncation mechanism is fixed. First, the posterior distribution on the truncation
parameter is informed by both the data and the prior, and one does not have to choose the
truncation a priori, thus avoiding possible mis-specifications of the truncation parameter. Sec-
ond, one can put restrictions on the registration process by using a restrictive prior for the
truncation parameter, which controls how much shape alteration is allowed. For instance, as
we have shown in the growth rate example, by limiting the number of basis functions to be at
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most 10 for the warping function parameter, we retain important features (one or two growth
spurts) in the registered growth rate functions. Third, the new models also allow us to make
inference on how much truncation has occurred. This can help detect when an observed func-
tion has undergone a significant shape change during registration, especially in its local fea-
tures. We demonstrate the aforementioned advantages of the proposed approach through a
simulation study and multiple real datasets.

In addition, the proposed modeling framework is very flexible. In the case of multiple func-
tion registration, one can use a different prior for each of the warping functions, correspond-
ing to each of the observed functions, and for the template function, e.g., one can use non-
informative priors for the warping functions and a restrictive prior for the template function
that would constrain the template to have a smooth shape with limited local features. This
enables fine-tuning of the models based on the application of interest.

The Metropolis-within-Gibbs algorithm we use to sample from the posterior distribution is
efficient in the sense that the computational cost is largely unaffected by the size of the grid on
which the functions are observed. The proposals for the functional and random truncation
parameters further allow much flexibility in the jump sizes for exploring the parameter space.
On the other hand, a drawback of the algorithm is that it is not informed by the likelihood. As
a result, in some applications, convergence can be slow; for example, based on trace plots, the
real datasets considered in the Applications section require at least 2 x 10 iterations and can
take more than 10° iterations (trace plots for two datasets are given as examples in the S1 File;
computation time for registering 10 functions is about 100 minutes per 10° updates). While
this is not surprising, because the algorithm is exploring a very large parameter space, a possi-
ble future research direction is to design algorithms with faster convergence rates, by using
likelihood-informed proposals or adaptive proposals with jump sizes automatically tuned by
acceptance rates.

Supporting information

S1 File. Supplementary material. This pdf file serves as an appendix to the main manuscript
and includes: 1) additional derivations; 2) trace plots for two real data examples; 3) Sync values
for assessing registration performance for the six real datasets in Section; and 4) a discussion
of model sensitivity.

(PDF)

S2 File. Code and data. The code folder includes R code to perform pairwise and multiple
function registration. Datasets used in the manuscript are also included as .RData files. A
readme file is included to provide instructions.
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