
Received: 8 January 2021 Revised: 29 May 2022 Accepted: 2 August 2022

DOI: 10.1112/topo.12258

Journal of TopologyRESEARCH ARTICLE

Symplectic hats

John B. Etnyre1 Marco Golla2

1School of Mathematics, Georgia Institute
of Technology, Atlanta, Georgia, USA
2CNRS, Nantes Université, Laboratoire de
Mathématiques Jean Leray, Nantes,
France

Correspondence
Marco Golla, CNRS, Nantes Université,
Laboratoire de Mathématiques Jean
Leray, Nantes, France.
Email: marco.golla@univ-nantes.fr

Funding information
NSF, Grant/Award Numbers:
DMS-1608684, DMS-1906414; Simons
Foundation

Abstract
We study relative symplectic cobordisms between con-
tact submanifolds, and in particular relative symplectic
cobordisms to the empty set, that we call hats. While
we make some observations in higher dimensions, we
focus on the case of transverse knots in the standard 3-
sphere, and hats in blow-ups of the (punctured) complex
projective planes. We apply the construction to give con-
straints on the algebraic topology of fillings of double
covers of the 3-sphere branched over certain transverse
quasipositive knots.
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1 INTRODUCTION

There has been a great deal of study of cobordism and concordance of smooth knots in dimen-
sion 3, leading to a beautiful and rich field in low-dimensional topology. There are two ways of
formulating contact analogues of these objects. Both start with a symplectic cobordism, that is a
symplectic manifold (𝑋, 𝜔) whose boundary consists of a concave part (𝑀−, 𝜉−) and a convex
part (𝑀+, 𝜉+). Given a Legendrian submanifold 𝐿± in the contact manifold 𝑀± one can look
for Lagrangian submanifold in 𝑋 with boundary −𝐿− ∪ 𝐿+. Such Lagrangian cobordisms have
been studied quite closely [13, 15, 17]. However, the corresponding question about symplectic
cobordisms has seen comparatively little attention. More specifically, given contact submani-
folds (𝐶±, 𝜉±) of (𝑀±, 𝜉±), we say they are relatively symplectically cobordant if there is a properly
embedded symplectic submanifold (Σ, 𝜔|Σ) of (𝑋, 𝜔) that is transverse to 𝜕𝑋 and a symplectic
cobordism from (𝐶−, 𝜉−) to (𝐶+, 𝜉+).
We note that if we consider relative symplectic cobordisms in codimension larger than 2 then

there is an ℎ-principle [18, Theorem 12.1.1]. In particular, if there is a smooth cobordism between
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the contact manifolds that is formally symplectic then the cobordism can be isotoped to be a
relative symplectic cobordism. Thus, we will restrict to the codimension-2 setting in this paper.
The only situation when the relative symplectic cobordism question has been extensively stud-

ied is when 𝑋 = 𝐵4 with its standard symplectic structure (so 𝑀− = ∅ and 𝑀+ is the standard
contact 𝑆3). In this context, 𝐶+ will be a transverse link and we are asking when 𝐶+ bounds a
symplectic surface in 𝐵4. Thanks to the work of Rudolph [73] and Boileau and Orevkov [10], we
have a complete characterization of links that bound such surfaces: they are the closures of quasi-
positive braids. Moreover, the answer is the same in the complex and in the symplectic category.
Quasipositive knots are now a class that is very familiar to low-dimensional topologists, and some
results about their fillings have even been partially generalized past 𝐵4 [46].
In this paper, we will study the general problem of relative symplectic cobordism in all dimen-

sions, but we will particularly focus on the 3-dimensional setting. We will also focus much of our
attention on the situation where 𝐶+ = ∅. When𝑀+ is empty we say 𝑋 is a symplectic cap for𝑀−

and if in addition 𝐶+ is empty we say Σ is a symplectic hat for 𝐶−.
If one does not restrict the topology of 𝑋, then it is not hard to show that (𝐶−, 𝜉−) in (𝑀−, 𝜉−)

has a symplectic hat [32], in fact one can even control the topology of Σ.

Theorem 1.1. Every transverse link 𝐿 in a contact 3-manifold (𝑌, 𝜉) has a hat that is a disjoint
union of disks in some cap (𝑋, 𝜔) for (𝑌, 𝜉).

It is more difficult to find symplectic hats when the topology of 𝑋 is fixed. Below we will study
the situation when 𝑋 is assumed to be simple; we will show that there is some rich structure to
the problem and that hats can be used to build symplectic caps for contact manifolds and restrict
the topology of symplectic fillings of certain contact manifolds. But before moving on to this, we
end this discussion with the fundamental question:

Question 1.2. Let (𝑋, 𝜔) be a symplectic cap for (𝑀, 𝜉). Does a contact submanifold (𝐶, 𝜉′) of
(𝑀, 𝜉) bound a symplectic hat in (𝑋, 𝜔) if and only if 𝐶 is null-homologous in 𝑋?

While it seems unlikely that the answer can be YES in general, below we provide some mild
evidence that it might indeed be YES. In particular, below we will see that there are many fewer
restrictions on symplectic hats than on relative symplectic fillings and so one might hope the
answer is YES. Even if the answer is NO, can one formulate conditions that will guarantee the
existence of a hat?

1.1 Projective hats

The simplest symplectic cap for (𝑆3, 𝜉std) is the projective capℂℙ2 ⧵ Int(𝐵4), where𝐵4 is a Darboux
ball in ℂℙ2. We call a symplectic hat in the projective cap a projective hat. We begin by noticing
the following.

Theorem 1.3. Every transverse link 𝑇 in (𝑆3, 𝜉std) has a projective hat.

This result is in stark contrast with the results of Rudolph and Boileau–Orevkov, in that it poses
no restriction on the link. However, in some way it parallels the analogous result in the absolute
case: while there are strong restrictions on contact manifolds in order for them to admit a sym-
plectic filling (for example, overtwistedness, non-vanishing of contact invariants), every contact
manifold has a symplectic cap [24].
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2218 ETNYRE and GOLLA

One way of thinking about projective hats is in terms of singularities of curves (see, for
instance, [37] for related questions and definitions); in fact, by coning over (𝑆3, 𝐿), we can think
of Theorem 1.3 as saying that every transverse knot is the link of the (unique) singularity of a sin-
gular symplectic surface inℂℙ2. From this perspective, quasipositive transverse links are links for
which the surface admits a symplecting smoothing, while algebraic links are links for which the
surface admits both a smoothing and a resolution in terms of blow-ups.
Since Theorem 1.3 provides us with an existence result, we can ask questions about complexity.

We define the hat genus of 𝑇 to be the smallest genus ĝ(𝑇) of a projective hat. This is one of the
possiblemeasures of complexity of hats.We prove various properties of the hat genus and compute
it for some families of transverse knots. One of the more general theorems along these lines is the
following.

Theorem 1.4. Suppose𝑇 is a transverse knot in (𝑆3, 𝜉std) and there is a transverse regular homotopy
to an unknot with only positive crossing changes. Then the hat genus is

ĝ(𝑇) = −
(
sl(𝑇) + 1

2

)
,

where sl(𝑇) is the self-linking number of 𝑇.

This allows us to show, for example, that for 𝑞 > 𝑝 ⩾ 2, any transverse representative 𝑇 of the
(𝑝, −𝑞)-torus knot 𝑇𝑝,−𝑞 satisfies

ĝ(𝑇) = −
(
sl(𝑇) + 1

2

)
.

In particular, the maximal self-linking number representative 𝑇′ (which has sl(𝑇′) =
−𝑝𝑞 + 𝑞 − 𝑝) has

ĝ(𝑇′) =
(𝑞 − 1)(𝑝 + 1)

2
.

Remark 1.5. It is interesting to note that in [64] it was shown that the smooth projective genus
of 𝑇2,−3 is 0 where as we have computed the symplectic projective genus to be at least 3 for any
transverse representative. Thus, we see quite a difference between the smooth and symplectic hat
genus of a knot.

Another sample computation is that for the 𝑛–twist knot with maximal self-linking number
𝑇𝑛 [27], the hat genus is

ĝ(𝑇𝑛) =

⎧⎪⎨⎪⎩
1 𝑛 ⩽ −3 and odd
𝑛+3
2

𝑛 ⩾ 1 and odd
𝑛
2

𝑛 positive and even.

Question 1.6. The hat genus for 𝑇𝑛 with 𝑛 even and negative is not known. Recall there are
several maximal self-linking number representatives of such twists knots. Is the hat genus of each
representative the same?More generally, there aremanyknot types that are known tohave distinct
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SYMPLECTIC HATS 2219

transverse representatives with the same self-linking number [7, 14, 25, 26, 63]. Can the hat genus
distinguish any of these?

We note that the projective hat genus is not always a simple function of the self-linking number.
Specifically, in Proposition 4.6 we show that if 𝑇2,2𝑘+1 is the maximal self-linking number torus
knot, then

𝑘 1 2 3 4 5 6 7 8 9 10 11
ĝ(𝑇2,2𝑘+1) 0 1 0 2 1 0 3 2 1 5 4

Question 1.7. Can one compute ĝ(𝑇2,2𝑘+1)?

Note that the question has a clear counterpart in complex geometry, askingwhat is theminimal
genus (or minimal degree) of an algebraic curve in ℂℙ2 with a singularity of type 𝑇2,2𝑘+1 (also
referred to as an 𝐴2𝑘-singularity). It is also related to a question in the theory of deformations
of singularities, asking what is the minimal 𝑝 such that a singularity of type 𝑇𝑝,𝑝+1 deforms to
𝑇2,2𝑘+1. Both questions are open, and there is a relatively large gap between the available lower
and upper bounds. See, for instance, [28, 44, 68].
We end the discussion of projective hats with the following question.

Question 1.8. If 𝑇 is a slice, quasipositive transverse knot in (𝑆3, 𝜉std) that has ĝ(𝑇) = 0, is 𝑇 the
maximal self-linking unknot?

While we do not know how to answer Question 1.8, we sketch an approach that seems
promising at the end of Subsection 3.3.
We recall that there is a well-known and well-studied analogous question for Lagrangian

concordance. Namely, if there is a Lagrangian concordance from 𝐿 to and from the maximal
Thurston–Bennequin Legendrian unknot𝑈, is 𝐿 isotopic to𝑈? A positive answer to Question 1.8
would imply a positive answer to the Lagrangian question as well, via symplectic push-off.

1.2 Hats in other manifolds

Above we saw that not all transverse knots bound a genus-0 surface in the projective hat of
(𝑆3, 𝜉std); however, we do have the following.

Theorem 1.9. Every transverse knot 𝑇 in (𝑆3, 𝜉std) has a symplectic hat of genus 0 in a blow-up of
the projective cap.

Let (𝑋0, 𝜔0) = ℂℙ2 ⧵ 𝐵4, where 𝐵4 is embedded as a Darboux ball with convex boundary.
We will write 𝑋𝑛 to denote an 𝑛-fold symplectic blow-up of 𝑋0, so that 𝑋𝑛 is diffeomorphic to
(ℂℙ2#𝑛ℂℙ2) ⧵ 𝐵4. These are all caps for (𝑆3, 𝜉std). We define the 𝑛th rational hat genus ĝ𝑛(𝑇) of a
transverse knot 𝑇 to be the smallest genus of a hat for 𝐾 in 𝑋𝑛
The proof of Theorem 1.9 shows that for any transverse knot 𝑇, the sequence 𝐺(𝑇) = {ĝ𝑛(𝑇)}𝑛

is non-increasing and eventually 0. We define the hat slicing number of 𝑇 to be

𝑠̂(𝑇) = min{𝑛 ∣ ĝ𝑛(𝑇) = 0}.

It takes some work to find examples where the hat slicing number is larger than 1.

 17538424, 2022, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12258, W
iley O

nline Library on [23/08/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



2220 ETNYRE and GOLLA

Proposition 1.10. Let 𝐾𝑝 be the unique transverse representative of 𝑇𝑝.𝑝+1#𝑇2,3 with maximal
self-linking number which is 𝑝2 − 𝑝 + 1 = 2g(𝑇𝑝,𝑝+1#𝑇2,3) − 1. We have

𝑠̂(𝐾𝑝) = 𝑝 − 1, for 𝑝 ⩽ 7,

𝐺(𝐾𝑝) = (𝑝 − 1, 𝑝 − 2,… , 2, 1, 0, … ), for 𝑝 ⩽ 4.

Question 1.11. Let 𝐾𝑝 be the transverse representative of 𝑇𝑝,𝑝+1#𝑇2,3 with sl(𝐾𝑝) = 𝑝2 − 𝑝 + 1.
Is 𝑠̂(𝐾𝑝) = 𝑝 − 1? Is 𝐺(𝐾𝑝) = (𝑝 − 1, 𝑝 − 2,… , 2, 1, 0, … )?

It is easy to see, modifying the proof of the above proposition, that 𝑠̂(𝐾𝑝) ⩽ 𝑝 − 1 and that
ĝ(𝐾𝑝) = 𝑝 − 1. In particular, we also know ĝ𝑛(𝐾𝑝) ⩽ 𝑝 − 1 − 𝑛, for 𝑛 ⩽ 𝑝 − 1.
We also formulate the following question.

Question 1.12. Is ĝ𝑘+1(𝐾) < ĝ𝑘(𝐾) if 𝑘 < 𝑠̂(𝐾)? In other words, is 𝐺(𝐾) a strictly decreasing
sequence until it hits 0?

In Subsection 4.3, we also investigate hats in Hirzebruch caps for (𝑆3, 𝜉std). The Hirzebruch
caps are 𝐻0, which is the standard symplectic 𝑆2 × 𝑆2 minus a Darboux ball, and𝐻1 = 𝑋1.

1.3 Higher dimensional hats

We also consider higher dimensional projective caps for links of isolated complete intersection
singularities. Recall that a complete intersection in ℂℙ𝑛 is a complex 𝑑-dimensional subvariety
defined by 𝑛 − 𝑑 equations. An isolated complex intersection singularity is an isolated singularity of
a complete intersection. Its linkΣ is a contact submanifold of dimension 2𝑑 − 1 in (𝑆2𝑛−1, 𝜉std).We
view the ambient manifold as the concave boundary of ℂℙ𝑛 ⧵ 𝐵2𝑛, which we still call a projective
cap.

Proposition 1.13. Let 𝑌 ⊂ (𝑆2𝑛−1, 𝜉std) be the link of an isolated complete intersection singularity.
Then Σ has a hat in the projective cap of (𝑆2𝑛−1, 𝜉std).

Since the analogue proposition for torus knots (which are hypersurface singularities in ℂ2, and
in particular they are complete intersection singularities) is one of the main lemmas in our proof
of Theorem 1.3, we hope that the statement might be one of the ingredients in the proof of the
higher dimensional and codimension generalization of Theorem 1.3.
In fact, we make an effort in setting up all definitions and technical statements in the general

case, rather than restricting to the case of knots in 3-manifolds. What is missing in the proof of the
generalization of Theorem 1.3 to arbitrary dimension is a cofinality statement; belowwewill prove
that the set of torus links is cofinal in the set of transverse links, with respect to the partial order-
ing given by relative symplectic cobordisms. Untangling the definition, this means that for every
transverse link 𝐿 in (𝑆3, 𝜉std) there exist a torus link 𝑇 in (𝑆3, 𝜉std) and a symplectic cobordism
from 𝐿 to 𝑇.
Proving an analogue statement for links of isolated complete intersection singularities, together

with the proposition above, would yield the existence of projective hats of contact submanifolds
of (𝑆2𝑛−1, 𝜉std) for arbitrary 𝑛.
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SYMPLECTIC HATS 2221

1.4 Hats and restrictions on fillings of contact manifolds

Hats can give rise to caps via a branched cover construction: given a (suitable) projective hat 𝑆 for
𝑇 in (𝑆3, 𝜉std), the 𝑟-fold cyclic cover of the projective cap branched over 𝑆 is a cap for the 𝑟-fold
cyclic cover (Σ𝑟(𝑇), 𝜉𝑇,𝑟) of (𝑆3, 𝜉std) branched over 𝑇. (When 𝑟 = 2 we omit 𝑟 from the notation.)

Warning 1.14. We advise the reader that, in the following two statements, we will abuse notation
by denoting a transverse knot by its topological type; for example, we will write𝑚(946) to denote
a transverse knot. What we mean is that we are considering the transverse knot obtained as the
closure of the braid representing the knot taken from the KnotInfo database [54]. We also note
that the data we are using might agree with other knot databases or knot tables, as well as with
other data on KnotInfo, only up to mirroring.

Wewill use (someof) these caps to restrict the topology of symplectic fillings of brancheddouble
covers. In what follows, we denote with 𝐸8 the unique negative definite, even, unimodular form
of rank 8, and with𝐻 the hyperbolic quadratic form. Our main result is the following.

Theorem 1.15. If𝐾 ⊂ (𝑆3, 𝜉std) is one of the transverse knots in Table 1, then 𝜉𝐾 is Stein (and hence
exactly) fillable. Let (𝑊,𝜔) be an exact symplectic filling of (Σ(𝐾), 𝜉𝐾), with intersection form𝑄𝑊 .

(1) If 𝐾 is of type 12𝑛242, then𝑊 is spin,𝐻1(𝑊) = 0, and 𝑄𝑊 = 𝐸8 ⊕ 𝐻.
(2) If 𝐾 is of type 10124, 12𝑛292, or 12𝑛473, then𝑊 is spin,𝐻1(𝑊) = 0, and 𝑄𝑊 = 𝐸8.
(3) If 𝐾 is of type𝑚(12𝑛121), then𝑊 is spin,𝐻1(𝑊) = 0, and 𝑄𝑊 = 𝐻.
(4) If 𝐾 is of type𝑚(12𝑛318), then𝑊 is an integral homology ball.
(5) If 𝐾 is of any of the following topological types, then𝑊 is a rational homology ball:

𝑚(820), 𝑚(946), 10140, 𝑚(10155), 𝑚(11𝑛50),

𝑚(11𝑛132), 11𝑛139, 𝑚(11𝑛172), 𝑚(12𝑛145), 𝑚(12𝑛393),

12𝑛582, 12𝑛708, 𝑚(12𝑛721), 𝑚(12𝑛768), 12𝑛838.

TABLE 1 The braids whose closures are the transverse knots we consider in Theorems 1.15 and 1.18. We label
positive generators in the braid group by 𝑥, 𝑦, 𝑧, 𝑤, in this order, and we denote with 𝑋,𝑌, 𝑍,𝑊 their inverses

Knot type Strands Braid Knot type Strands Braid
𝑚(820) 3 𝑥3𝑦𝑋3𝑦 12𝑛242 3 𝑥𝑦2𝑥2𝑦7

𝑚(946) 4 𝑥𝑌𝑥𝑌𝑧𝑦𝑋𝑦𝑧 12𝑛292 4 𝑥𝑦2𝑥3𝑦𝑍𝑦2𝑥𝑧2

10124 3 (𝑥𝑦)5 𝑚(12𝑛393) 5 𝑦𝑍𝑤𝑍𝑦𝑋2𝑧𝑦𝑤𝑧2𝑦𝑥

10140 4 𝑋3𝑦𝑥3𝑦𝑧𝑌𝑧 𝑚(12𝑛318) 4 𝑥𝑦𝑧𝑋𝑧𝑌2𝑥𝑌𝑧𝑦𝑥𝑌

𝑚(10155) 3 𝑥3𝑦𝑋2𝑦𝑋2𝑦 12𝑛473 4 𝑥𝑦4𝑧2𝑦3𝑥𝑌𝑧

𝑚(11𝑛50) 4 𝑥2𝑦𝑋𝑦𝑧𝑌𝑥𝑌2𝑧 12𝑛582 5 𝑥𝑌𝑥𝑦𝑧𝑤𝑌𝑤𝑧𝑦𝑍𝑊𝑦𝑍

𝑚(11𝑛132) 4 𝑋2𝑦𝑥𝑧𝑌𝑥𝑌𝑧𝑦2 12𝑛708 3 𝑥𝑌3𝑥𝑌𝑥𝑦𝑋𝑦3

11𝑛139 5 𝑥2𝑦𝑋𝑧𝑌𝑧𝑤𝑍𝑦𝑍𝑤 𝑚(12𝑛721) 3 𝑌5𝑥4𝑦2𝑥

𝑚(11𝑛172) 4 𝑥𝑦𝑋𝑦𝑥𝑧𝑌𝑥𝑌2𝑧 𝑚(12𝑛768) 4 𝑍2𝑦2𝑧𝑌2𝑧2𝑦𝑥𝑌𝑥

𝑚(12𝑛121) 4 𝑥𝑦𝑋2𝑦𝑧𝑌𝑥𝑦2𝑧2𝑌 12𝑛838 5 𝑥𝑦𝑍𝑤𝑋𝑦𝑧𝑥𝑌𝑊𝑧𝑤

𝑚(12𝑛145) 5 𝑤𝑍𝑦𝑍𝑦𝑋2𝑤𝑦𝑧𝑌𝑧𝑦𝑥
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2222 ETNYRE and GOLLA

Remark 1.16. We note that 12𝑛242 can also be described as the pretzel knot 𝑃(−2, 3, 7) and
Σ(12𝑛242) is known to be the Brieskorn homology sphere (with its natural orientation reversed)
−Σ(2, 3, 7). By contrast to Item (1) in the theorem, Σ(12𝑛242) has minimal strong symplectic fill-
ings with arbitrarily large 𝑏+2 (see the end of Subsection 6.1 for a proof). Contact manifolds with a
finite number of exact fillings but infinitely many strong fillings were already observed for cotan-
gent bundles of hyperbolic surfaces [50, 58] (see [76] for a much stronger statement); as far as we
are aware, this is the first example of an integral homology sphere such that the topology of Stein
fillings is restricted, while that of strong symplectic fillings is not.
Compare also with work of Lin [51]; the manifold −Σ(2, 3, 7) satisfies the assumptions of [51,

Theorem 1], and therefore all of its Stein fillings that are not negative definite have intersection
form 𝐸8 ⊕ 𝐻. (In fact, it is easy to show using Floer-theoretic tools that −Σ(2, 3, 7) cannot have
any negative definite Stein fillings.)

Remark 1.17. Recall that the branched double cover of the knot 10124 = 𝑇3,5 is the Poincaré
sphere Σ(2, 3, 5), endowed with the canonical contact structure 𝜉can, that is, the one arising as
the boundary of the singularity of {𝑥2 + 𝑦3 + 𝑧5 = 0} at the origin of ℂ3. We note here that Ohta
and Ono [65, Theorem 2] proved that every symplectic filling of (Σ(2, 3, 5), 𝜉can) is diffeomorphic
to the 𝐸8–plumbing, which is a stronger statement than what we are proving here.

We can also restrict the symplectic fillings of some higher order cyclic branched covers.

Theorem 1.18. Let (Σ𝑟(𝐾), 𝜉𝐾,𝑟) denote the 𝑟-fold cyclic cover of (𝑆3, 𝜉std), branched over the trans-
verse knot 𝐾 of Table 1. Then 𝜉𝐾,𝑟 is Stein fillable, and hence exactly fillable. Let (𝑊,𝜔) be an exact
filling of (Σ𝑟(𝐾), 𝜉𝐾,𝑟).

(1) If 𝐾 is a quasipositive braid closure of knot type𝑚(820),𝑚(946), 10140,𝑚(10155),𝑚(11𝑛50), and
𝑟 = 3, 4, then𝑊 is a spin rational homology ball.

(2) If 𝐾 is a quasipositive braid closure of knot type 𝑚(11𝑛132), 11𝑛139, 𝑚(11𝑛172), 𝑚(12𝑛318),
12𝑛708,𝑚(12𝑛838), and 𝑟 = 3, then𝑊 is a spin rational homology ball.

(3) If 𝐾 is a quasipositive braid closure of knot type 821 and 𝑟 = 3, 4, then𝑊 is spin and 𝑏2(𝑊) =
2(𝑟 − 1).

These theorem follow by showing that each of these manifolds has a cap that embeds in a K3
surface. Thus, the cap is Calabi–Yau and in [50] it was shown that such caps restrict the topology
of fillings. Recall that a Calabi–Yau cap of a contact 3-manifold is a symplectic cap (𝐶, 𝜔) such
that 𝑐1(𝜔) is torsion [50]. We get the embedding of our cap into a K3 surface by taking the cover
of ℂℙ2 or ℂℙ1 × ℂℙ1 branched over the union of a hat for a knot 𝐾 and a symplectic filling of 𝐾
which will be a curve of the appropriate degree or bi-degree.
The last statement in Theorem 1.18 also uses Heegaard Floer theory to guarantee properties of

the cap necessary to carry out the above argument. To illustrate a more subtle case where more
sophisticated Heegaard Floer theory is used, we also prove the following result.

Theorem1.19. Let (𝑊,𝜔𝑊) be a Stein filling of (Σ(2, 3, 7), 𝜉can). Then𝑊 has𝐻1(𝑊) = 0 and either
𝐻2(𝑊) ≅ 𝐸8 ⊕ 2𝐻 or𝐻2(𝑊) ≅ ⟨−1⟩; moreover, both cases occur.
We also establish a simpler analogous statement for Σ(2, 3, 5) in Subsection 6.3.
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SYMPLECTIC HATS 2223

1.5 Hats and the generalized Thom conjecture

Using hats we give a proof of the generalized Thom conjecture. The statement is well-known
among specialists and we give a simple proof of it, but see also [32] for another proof.

Theorem 1.20. Let (𝑋, 𝜔) be a strong symplectic filling of (𝑌, 𝜉), 𝐾 a null-homologous transverse
knot in (𝑌, 𝜉), and 𝐹 ⊂ 𝑋 an 𝜔–symplectic surface whose boundary is𝐾, such that 𝐹 is transverse to
𝜕𝑋. Then𝐹minimizes the genus in its relative homology class (among all surfaces properly embedded
in 𝑋 whose boundary is 𝐾).

Organization of the paper

In Section 2, we discuss generalities on relative symplectic cobordisms between contact subman-
ifolds in arbitrary dimension (and co-dimension). We study in more detail cobordisms between
transverse links, giving general adjuction formulae for symplectic cobordisms, andwe provide the
basic building blocks for the construction: hats coming from complex curves and elementary sym-
plectic cobordisms. In Section 3, we prove a (slight) strengthening of Theorems 1.3, 1.1, and 1.4;
we also provide many examples and computations. In Section 4, we prove Theorem 1.9 and we
compute minimal hat genus in blow-ups of the projective hats for some knots, including Propo-
sition 1.10. Section 5 is devoted to the proof of Proposition 1.13, and Section 6 contains the proof
of Theorems 1.15, 1.18, and 1.19; some of the computations needed in this section are postponed to
Appendix A, while Appendix B proves Theorem 1.20

2 GENERAL REMARKS ON SYMPLECTIC COBORDISMS
BETWEEN KNOTS

In the first two subsections, we will define relative symplectic cobordisms and discuss simple
methods to build them. In the following section, we discuss the adjunction equality for relative
cobordisms in in symplectic 4-manifolds. The last two sections review quasipositive links and
complex surfaces in ℂℙ2.

2.1 Definitions and gluing

A boundary component𝑀 of a symplectic manifold (𝑋, 𝜔) is called strongly convex (respectively,
strongly concave) if there is a vector field 𝑣 defined near 𝑀 such that the Lie derivative satisfies
𝑣𝜔 = 𝜔 and 𝑣 points out of (respectively, into) 𝑋 along𝑀. We call 𝑣 a Liouville vector field (note
that we do not require 𝑣 to be defined on all of 𝑋).
A strong symplectic cobordism from the contact manifold (𝑀−, 𝜉−) to the contact manifold

(𝑀+, 𝜉+) is a compact symplectic manifold (𝑋, 𝜔) with 𝜕𝑋 = −𝑀− ∪𝑀+ where (𝑀−, 𝜉−) as a
strongly concave boundary component and (𝑀+, 𝜉+) as a strongly convex boundary component.
Unless otherwise specified, we will only consider strong symplectic cobordisms, hence we will
systematically drop the adjective ‘strong’.
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2224 ETNYRE and GOLLA

We call (𝐶, 𝜉) a contact submanifold of (𝑀, 𝜉) if 𝐶 is transverse to 𝜉 and 𝑇𝑝𝐶 ∩ 𝜉𝑝 = 𝜉𝑝
for all 𝑝 ∈ 𝐶. Given two contact submanifolds (𝐶±, 𝜉±) in (𝑀±, 𝜉±), we say they are relatively
symplectically cobordant if there is

(1) a symplectic submanifold Σ of (𝑋, 𝜔) such that (Σ, 𝜔|Σ) is a symplectic cobordism from
(𝐶−, 𝜉−) to (𝐶+, 𝜉+), and

(2) there there are Liouville vector fields 𝑣± for (𝑋, 𝜔) near𝑀± that restrict to be Liouville vector
fields for (Σ, 𝜔|Σ) near 𝐶±.

We call Σ a relative symplectic cobordism. We note that since the symplectic structure on Σ comes
from the restriction of the symplectic structure on𝑋, Condition (2) simplymeans that theLiouville
vector fields for (𝑋, 𝜔) are tangent to Σ near 𝐶±. We note that while Condition (2) is convenient
to include in the definition, it may be replaced with

(2’) Σ is transverse to the boundary of 𝑋

if one is willing to deform the symplectic structure.

Lemma 2.1. Given a symplectic cobordism Σ from (𝐶−, 𝜉−) to (𝐶+, 𝜉+) inside the symplectic cobor-
dism (𝑋, 𝜔) from (𝑀−, 𝜉−) to (𝑀+, 𝜉+) as in Condition (1) of relative symplectic cobordism, then as
long as Σ is transverse to 𝑀± we can assume, after deforming 𝜔 near 𝑀±, that there are Liouville
vector fields 𝑣± near𝑀± that restrict to be Liouville vector fields for (Σ, 𝜔|Σ) near 𝐶+.
Moreover, this deformation is made by adding to 𝑋 a piece of the symplectization of (𝑀−, 𝜉−) and

(𝑀+, 𝜉+).

We will need ideas from the proof of Lemma 2.4 to establish this lemma so the proof is
given below.
Below we will frequently build relative symplectic cobordisms in stages, so it is useful to

note that the standard arguments for gluing together strongly convex and concave boundaries
of symplectic manifolds, see, for example, [20], easily generalize to give a relative gluing result.

Lemma 2.2. Given two relative symplectic cobordisms Σ𝑖 , 𝑖 = 0, 1, from (𝐶𝑖−, 𝜉
𝑖
−) to (𝐶

𝑖
+, 𝜉

𝑖
+), inside

the symplectic cobordisms (𝑋𝑖, 𝜔𝑖) from (𝑀𝑖
−, 𝜉

𝑖
−) to (𝑀

𝑖
+, 𝜉

𝑖
+) for which there is a contactomorphic of

pairs from (𝑀0
+, 𝐶

0
+) to (𝑀

1
−, 𝐶

1
−) , then onemay glue𝑋

0 to𝑋1 along𝑀0
+ ≅ 𝑀

1
− to obtain a symplectic

cobordism (𝑋, 𝜔) from (𝑀0
−, 𝜉

0
−) to (𝑀

1
+, 𝜉

1
+) and simultaneously glueΣ

0 toΣ1 along𝐶0+ ≅ 𝐶
1
− to get a

relative symplectic cobordismΣ from (𝐶0−, 𝜉
0
−) to (𝐶

1
+, 𝜉

1
+). (We note that when gluing one can arrange

that (𝑋𝑖, 𝜔𝑖) and a scaled version of (𝑋𝑖+1, 𝜔𝑖+1) are symplectic submanifolds of (𝑋, 𝜔), and similarly
for the Σ𝑖 . Here the indexing is taken mod 2.) □

Recall a symplectic filling, respectively cap, is a symplectic cobordism (𝑋, 𝜔) with 𝑀− = ∅,
respectively, 𝑀+ = ∅. And given a contact submanifold 𝐶 in the boundary of a symplectic fill-
ing (or symplectic slice surface), respectively, cap, then a relative cobordism from, respectively, to,
the empty set will be called a symplectic filling, respectively, hat, for 𝐶.

2.2 Constructing symplectic cobordisms

We will need to consider regular homotopies of transverse knots. To this end we recall that a
‘generic’ regular homotopy 𝜙𝑡 ∶ 𝑆1 → 𝑀 can be assumed to have isolated times at which there are
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SYMPLECTIC HATS 2225

isolated double points and at a double point the intersection is ‘transverse’ in the following sense:
if 𝑡𝑖 is a time for which there are values 𝜃1 and 𝜃2 such that 𝜙𝑡𝑖 (𝜃1) = 𝜙𝑡𝑖 (𝜃2) then we consider the
paths 𝛾𝑖(𝑠) = 𝜙𝑠(𝜃𝑖) and demand that 𝛾′1(𝑡𝑖) − 𝛾

′
2(𝑡𝑖), 𝜙

′
𝑡𝑖
(𝜃1), and 𝜙′𝑡𝑖 (𝜃2) are linearly independent

in 𝑇𝜙𝑡𝑖 (𝜃1)𝑀. We call a double point of a regular homotopy positive if the above basis defines the
given orientation on𝑀, and otherwise we call it negative.
We note that if given a diagram of a knot inℝ3 and one switches a negative crossing to a positive

crossing then that gives a generic regular homotopy with a positive double point. Switching a
positive to a negative crossing gives a negative double point.

Remark 2.3. More generally, consider regular homotopies 𝜙𝑡 ∶ 𝐶𝑘 → 𝑀2𝑛+1. Generically if 𝑘 < 𝑛
this will be an isotopy and for 𝑘 = 𝑛 there will be isolated transverse double points and we can
assign signs to them in a fashion analogous to the one discussed above.

Lemma 2.4. Let 𝜙𝑡 ∶ (𝐶2𝑘+1, 𝜉′) → (𝑀2𝑛+1, 𝜉), 𝑡 ∈ [0, 1] be a generic regular homotopy of contact
immersions with 𝜙0 and 𝜙1 embeddings. The trace of this homotopy in any sufficiently large piece of
the symplectization [𝑎, 𝑏] × 𝑀 of 𝜉 is an immersed symplectic cobordism from 𝜙0(𝐶) in {𝑎} × 𝑀 to
𝜙1(𝐶) in {𝑏} × 𝑀.
When 2𝑘 + 1 < 𝑛, the trace is an embedded symplectic cobordism. When 2𝑘 + 1 = 𝑛, the sym-

plectic cobordisms has isolated double points that correspond to double points in the regular
homotopy and will be positive double points if the crossing change in the homotopy is positive and
negative otherwise.

Proof. Let 𝛽 be a contact form for 𝜉′ on 𝐶 and 𝛼 be a contact form for 𝜉 on𝑀. Since 𝜙𝑡 is a contact
homotopywe know that𝜙∗𝑡 𝛼 = 𝑓𝑡 𝛽 for some 1-parameter family of positive functions𝑓𝑡 ∶ 𝐶 → ℝ.
If g ∶ [0, 1] → [𝑎, 𝑏] is any increasing function then the ‘trace’ of the isotopy is parameterized by

Φ ∶ [0, 1] × 𝐶 → [𝑎, 𝑏] × 𝑀 ∶ (𝑡, 𝑝) ↦ (g(𝑡), 𝜙𝑡(𝑝)).

This clearly gives an immersion with double points corresponding to double points of the
homotopy. Pulling back 𝑑(𝑒𝑡𝛼) yields

𝑑(𝑒g(𝑡)𝑓𝑡 𝛽) = 𝑒
g(𝑡)

(
g ′(𝑡)𝑓𝑡 +

𝜕𝑓𝑡
𝜕𝑡

)
𝑑𝑡 ∧ 𝛽 + 𝑒g(𝑡)𝑓𝑡𝑑𝛽,

which is clearly a symplectic form on [0, 1] × 𝐶 whenever g ′(𝑡) is sufficiently large and it may
be taken to be arbitrarily large if 𝑏 − 𝑎 is sufficiently large. We note for later use that if ℎ ∶
[0, 1] → [𝑎, 𝑐] is any function with derivative larger than g , then if g can be used to parameterize
a symplectic embedding then so can ℎ.
For the claim about the sign of the double point of the immersion use the notation for a double

point established just before the statement of the lemma (here we only discuss the 3-dimensional
case that we will use below, but the higher dimensional case is analogous). The tangent space
for one sheet of the surface at the intersection point (𝑡𝑖, 𝜙𝑡𝑖 (𝜃1)) will be spanned by the oriented
basis {g ′(𝑡𝑖)𝜕𝑡 + 𝛾′1(𝑡𝑖), 𝜙

′
𝑡𝑖
(𝜃1)} and the other sheet will be spanned by the oriented basis {g ′(𝑡𝑖)𝜕𝑡 +

𝛾′2(𝑡𝑖), 𝜙
′
𝑡𝑖
(𝜃2)}. This clearly gives an oriented basis equivalent to {𝜕𝑡, 𝛾′1(𝑡𝑖) − 𝛾

′
2(𝑡𝑖), 𝜙

′
𝑡𝑖
(𝜃1), 𝜙𝑡𝑖 (𝜃2)},

which establishes the claim. □
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2226 ETNYRE and GOLLA

Remark 2.5. Lemma 2.4 immediately allows us to generalize Lemma 2.2 to allow for gluing rel-
ative symplectic cobordisms (𝑋0, Σ0) and (𝑋1, Σ1) under merely the hypothesis that𝑀0

+ and𝑀
1
−

are contactomorphic by a contactomorphism taking 𝐶0+ to a contact submanifold that is contact
isotopic to 𝐶1−. (See the lemma for notation.)

Proof of Lemma 2.1. We discuss the case of 𝐶+, noting that the case of 𝐶− is analogous. We can
extend (𝑋, 𝜔) by adding a small piece [0, 𝜀] × 𝑀+ of the symplectization of (𝑀+, 𝜉+) and extending
Σ so that it is transverse to {𝑡} × 𝑀+ and symplectic in the extension (this can be done since being
symplectic is an open condition). Note that 𝐶𝑡 = Σ ∩ ({𝑡} × 𝑀+), for 𝑡 ∈ [0, 𝜀], can be taken to be
a contact submanifolds in (𝑀+, 𝜉+) (since being a contact embedding is an open condition).
Now for sufficiently large 𝑏 let (𝑋′, 𝜔′) be the extension of (𝑋, 𝜔) by the piece [0, 𝑏] × 𝑀+ of

the symplectization of (𝑀+, 𝜉+). Let 𝜙 ∶ [0, 𝜀] → [0, 𝜀] be a function that is the identity on [0, 𝜀∕2]
and equal to zero near 𝜀. So, 𝐶𝜙(𝑡) is a contact isotopy in (𝑀+, 𝜉+). If we take the function g in the
proof of Lemma 2.4 to be the identity on [0, 𝜀∕4] and have sufficiently large derivative outside of
this interval, then the trace of 𝐶𝑓(𝑡) is a symplectic submanifold and can be used to extend Σ to a
symplectic submanifold Σ′ in (𝑋′, 𝜔′). Clearly Σ is a symplectic cobordism from 𝐶− to 𝐶+ and Σ′
is simply 𝐶+ × [𝑏 − 𝜀, 𝑏] near 𝜕+𝑋′ and hence tangent to the Liouville vector field 𝜕𝑡. □

We would now like to resolve double points, but we can only symplectically resolve positive
double points. This results seems well-known, but the authors could not find a specific reference,
so we provide an elementary proof based on the ideas above.

Lemma 2.6. Let Σ be an immersed symplectic surface in the symplectic 4-manifold (𝑋, 𝜔). If 𝑝 is a
positive transverse double point of Σ, then one may remove a neighborhood of 𝑝 in Σ and replace it
with a symplectic annulus, resulting in a symplectic surface Σ′ with one less double point than Σ and
the genus increased: g(Σ′) = g(Σ) + 1.

Proof. We first claim that Σ can be deformed in a𝐶0-small way near a positive double point so that
there is a Darboux chart about the double point in which Σ is the union of the (𝑥1, 𝑦1)-plane and
the (𝑥2, 𝑦2)-plane. To see this let𝑝 be a transverse positive double point ofΣ and𝑈 a neighborhood
of 𝑝 such that the two sheets of Σ ∩ 𝑈 are 𝑆1 and 𝑆2. A standard Moser-type argument constructs
a symplectomorphism 𝜙 ∶ 𝑈′ → 𝑉 between a neighborhood𝑈′ of 𝑝 contained in𝑈 and an open
ball 𝑉 about the origin in (ℝ4, 𝜔std), so that 𝜙(𝑝) is the origin, 𝜙(𝑈 ∩ 𝑆1) = 𝑆′1 is the intersection
of the (𝑥1, 𝑦1)-plane with 𝑉, and 𝜙(𝑈′ ∩ 𝑆2) = 𝑆′2 is a surface tangent to the (𝑥2, 𝑦2)-plane at the
origin. So, 𝑆′2 near the origin is the graph of a function 𝐹∶ ℝ

2 → ℝ2 ∶ (𝑥, 𝑦) ↦ (𝑓(𝑥, 𝑦), g(𝑥, 𝑦)),
with 𝑓, g , and their first derivatives vanishing at the origin. Now let 𝜌 ∶ [0, 1) → ℝ be a function
that vanishes on [0, 𝜀

2
], is 1 outside [0, 𝜀], and is monotonically increasing on [ 𝜀

2
, 𝜀], with 𝜌′ < 4

𝜀
; let

𝜌𝑡 = 𝑡𝜌(𝑟) + 1 − 𝑡. Consider the family of functions (𝐹𝑡)𝑡∈[0,1] defined by𝐹𝑡(𝑥, 𝑦) = 𝜌𝑡(𝑟) ⋅ 𝐹(𝑥, 𝑦),
where 𝑟 =

√
𝑥2 + 𝑦2. One may check that the symplectic form evaluated on 𝑑𝐹𝑡(

𝜕
𝜕𝑥
) and 𝑑𝐹𝑡(

𝜕
𝜕𝑦
)

(that is on a basis for the tangent space to the graph of 𝐹𝑡) is

1 + 𝜌2𝑡 (𝑟) ⋅ (𝑓𝑥g𝑦 − g𝑦g𝑥) +
𝜌′𝑡(𝑟)𝜌𝑡(𝑟)

𝑟

(
𝑦𝑓𝑥g + 𝑥g𝑦𝑓 − 𝑥𝑓𝑦g − 𝑦g𝑥𝑓

)
. (1)

Therefore, the graph of 𝐹 is a symplectic surface inℝ4 if and only if the quantity above is positive.
Since the graph of 𝐹 is symplectic and 𝜌𝑡 is identically 1 for 𝑟 > 𝜀, the only part to check is when
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SYMPLECTIC HATS 2227

F IGURE 1 Front diagrams for transverse tangles in a Darboux ball

𝑟 < 𝜀. When 𝑟 ⩽ 𝜀
2
, the third summand vanishes and the second summand is larger than −1 by

our assumption on 𝐹. Finally, when 𝜀
2
< 𝑟 < 𝜀, the first two summands in (1) are strictly larger

than 0 since 𝑆′2 is symplectic and 𝜌𝑡 is between 0 and 1. Each part of the last summand in (1) is
of order 𝑟2 by our assumption on 𝜌′𝑡. Thus, if 𝜀 is taken small enough the last term can be made
arbitrarily small, and hence the graph of 𝐹𝑡 is symplectic for each 𝑡, giving a symplectic isotopy
from 𝑆′2 to the graph of 𝐹1. We have thus established our first claim.
Now to resolve the double point. Let 𝐵 be a round ball contained in our Darboux chart. Note

that (𝑆′1 ∪ 𝑆
′
2) ∩ 𝜕𝐵 is a transverse Hopf link. The surface 𝐶𝜀 = {𝑧1𝑧2 = 𝜀} ∩ 𝐵 is a complex surface

for positive 𝜀. In particular, 𝐶𝜀 is symplectic with boundary a transverse link that is transversely
isotopic to (𝑆′1 ∪ 𝑆

′
2) ∩ 𝜕𝐵 (via the isotopy given by 𝜀 going to zero). We may now use Remark 2.5

to glue 𝐶𝜀 to Σ − (𝐵 ∩ Σ) and thus resolve the double point at the expense of adding genus. □

The above two observations immediately yield the following result.

Lemma 2.7. If 𝐾 is a transverse link in (𝑀3, 𝜉) that is obtained from the transverse link 𝐾′ by
transverse isotopy and g positive crossing changes, then there is a relative symplectic cobordismΣ from
𝐾′ to𝐾 in any sufficiently large piece ([𝑎, 𝑏] × 𝑀, 𝑑(𝑒𝑡𝛼)) of the symplectization of (𝑀, 𝜉). Moreover,
for knots the surface Σ can be taken to have genus g .

We also observe that a positive crossing can be added to a transverse knot via a symplectic
cobordism. This result also follows from combining [46, Lemma 5.1] and [46, Example 4.7], but
the simple argument is presented here for completeness.

Lemma 2.8. If 𝐾 is a transverse link in (𝑀, 𝜉) and a portion of 𝐾 in a Darboux ball is as shown on
the left of Figure 1, then there is a symplectic cobordism Σ in a piece of the symplectization of (𝑀, 𝜉)
from 𝐾 to the knot 𝐾′ obtained from 𝐾 by replacing the tangle on the left of Figure 1 by the one on
the right.

Proof. We claim that we can construct a surface Σ′ in𝑀 by adding a twisted 1-handle to𝐾 × [0, 𝛿]
so that 𝜕Σ′ = −𝐾 ∪ 𝐾′ and 𝑑𝛼 is positive on Σ′ where 𝛼 is a contact 1–form for 𝜉. Given this
take any piece [𝑎, 𝑏] × 𝑀 of the symplectization of (𝑀, 𝜉) and take Σ′ to be a subset of {𝑏} × 𝑀.
Any small isotopy that pushes Σ′ − 𝐾′ into [𝑎, 𝑏) × 𝑀 will result in a surface Σ that is symplectic.
So, take the isotopy so that 𝐾 ⊂ Σ sits on {𝑏 − 𝜀} × 𝑀 and Σ − 𝜕Σ is in (𝑏 − 𝜀, 𝑏) × 𝑀. This is a
cobordism from 𝐾 to 𝐾′ satisfying condition (1) of symplectic cobordism. Lemma 2.1 allows us to
extend the cobordism to satisfy both conditions of a symplectic cobordism.
We are left to show that Σ′ exists. To this end note that one may easily construct an annulus 𝐴

with one boundary𝐾 and the other boundary a copy,𝐾, of𝐾 so that the characteristic foliation on
the annulus is by arcs running form one component boundary to the other. We can then add a 1-
handle to𝐴 to get a surface Σ′ with transverse boundary−𝐾 and𝐾′ and the only singular point in
the characteristic foliation of Σ′ a positive hyperbolic point in the 1-handle. From this it is easy to
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2228 ETNYRE and GOLLA

construct an area form𝜔 onΣ′ and a vector field 𝑣 directing the characteristic foliation so that𝑑𝜄𝑣𝜔
is a positive multiple of 𝜔 (that is, 𝑣 has positive divergence on Σ′), see [35]. Let 𝛽 = 𝜄𝑣𝜔. One may
easily see that 𝑓𝛽 = 𝛼|𝑇Σ′ for some positive function 𝑓. Now in a neighborhood 𝑁 = [−𝜀, 𝜀] × Σ′

of Σ′, with Σ′ = {0} × Σ′, we know that 𝛼 is of the form 𝛽𝑡 + 𝑢𝑡 𝑑𝑡 where 𝛽𝑡 and 𝑢𝑡 are 1-forms and
functions, respectively, on Σ′ and 𝛽0 = 𝑓𝛽. Multiplying 𝛼 by 1∕𝑓 we can assume that the contact
form for 𝜉 is 𝛽𝑡 + 𝑢𝑡 𝑑𝑡 with 𝛽0 = 𝛽. But now 𝑑𝛼 on 𝑇Σ′ is 𝑑𝛽 which is a positive area from on Σ′
as desired. □

Below we will sometimes use the well-known notion of an open book decomposition and it
supporting a contact structure. We do not discuss this here, but refer the reader to [23] for more
details.

Example 2.9. Themain application of Lemma 2.8 in this paper is to braid closures; recall that one
can associate to a braid a transverse knot in (𝑆3, 𝜉std), which is just the closure of the braid, viewed
as being transverse to the pages of the standard open book of (𝑆3, 𝜉std) with disk pages. In this
context, the operation of adding a crossing to the closure of 𝛽 ∈ 𝐵𝑛 in the lemma corresponding to
just adding a positive braid generator to any braid factorization of 𝛽 (in any position). By contrast,
Lemma 2.7 corresponds to adding the square of a generator.

More generally, we note that Lemma 2.7 also follows from Lemmas 2.4 and 2.8 for isotopies (we
do not need the statement for regular homotopies) since a negative to positive crossing change
can be effected by adding two positive crossings. Again we note that Lemma 2.8 and the isotopy
version of Lemma 2.4 are contained in [46], and thus ourmain observation of this section, namely,
Lemma 2.7, easily follows from [46] as well.
We end this subsection by noting that open book decompositions can be used to construct

relative symplectic fillings.

Lemma 2.10. Let 𝐵 be the binding of an open book decomposition of 𝑀 that supports the
contact structure 𝜉. If Σ is a page of the open book then in in a piece of the symplectization
([𝑎, 𝑏] × 𝑀, 𝑑(𝑒𝑡𝛼)), for some contact form 𝛼, we can take Σ in {𝑏} × 𝑀 and push its interior into
the interior of [𝑎, 𝑏] × 𝑀 to get a symplectic filling of 𝐵.

Proof. Since the open book decomposition supports 𝜉 there is a contact form 𝛼 for 𝜉 for which 𝑑𝛼
is positive on the pages of the open book. Thus, the symplectic form 𝑒𝑡(𝑑𝑡 ∧ 𝛼 + 𝑑𝛼) is positive
on Σ and hence on Σ when its interior is pushed slightly into the interior of [𝑎, 𝑏] × 𝑀. Now this
can be done so that the perturbed Σ is transverse to {𝑏} × 𝑀. Thus, Lemma 2.1 gives the desired
result. □

Remark 2.11. One might expect the same argument to work to construct a symplectic hat for the
binding of an open book, but this does not work since the orientation on 𝐵 induced from the page
is not correct to be the lower boundary component of a relative symplectic cobordism.

2.3 Symplectic submanifolds

Asimple bundle theory argument yields the following useful fact for closed, immersed, symplectic
surfaces.
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SYMPLECTIC HATS 2229

Lemma2.12 (McCarthy–Wolfson [56]). LetΣ be an immersed symplectic sub-surface of a symplectic
4-manifold (𝑋, 𝜔). Then,

⟨𝑐1(𝑋, 𝜔), [Σ]⟩ = 2 − 2g + [Σ] ⋅ [Σ] − 2𝐷,
where g is the genus of Σ, [Σ] denote the homology class determined by Σ, and 𝐷 be the number of
double points of Σ counted with sign. □

We have the following relative version of this for symplectic cobordisms.

Lemma 2.13. Let (𝑋, 𝜔) be a symplectic cobordisms from the contact manifold (𝑀, 𝜉) to (𝑀′, 𝜉′), 𝐶
a transverse knot in (𝑀, 𝜉), and 𝐶′ a transverse knot in (𝑀′, 𝜉′). Further assume that𝑀 and𝑀′ are
homology spheres. If Σ is any immersed symplectic surface with transverse double points in (𝑋, 𝜔)
with boundary −𝐶 ∪ 𝐶′, then

⟨𝑐1(𝑋, 𝜔), [Σ]⟩ = 𝜒(Σ) − sl(𝐶) + sl(𝐶′) + [Σ] ⋅ [Σ] − 2𝐷,
where [Σ] is the homology class of the closed surface Σ = Σ ∪ 𝑆 ∪ −𝑆′ where 𝑆 is any Seifert surface
for 𝐶 in 𝑀 and 𝑆′ is a Seifert surface for 𝐶′ in 𝑀′, g(Σ) is the genus of Σ and 𝐷 be the number of
double points of Σ counted with sign.

Remark 2.14. It is not essential that𝑀 and𝑀′ are homology spheres, but when they are not one
must still assume that 𝐶 and 𝐶′ are null-homologous so that the self-linking number is defined.
In this case, the self-linking number will depend on the choice of Seifert surface and this surface
must also be used in defining Σ.

We note a couple of consequences.

(1) (The relative symplectic Thom conjecture) A symplectic surface Σ with boundary properly
embedded in a symplectic filling (𝑋, 𝜔) that is transverse to the boundary, minimizes genus
in its relative homology class. We prove this in Appendix B, cf. [32].

(2) If a transverse knot 𝑇 in (𝑆3, 𝜉std) boundary a symplectic surface Σ in (𝐵4, 𝜔std), then

sl(𝑇) = 2g(Σ) − 1.

In particular, a stabilized transverse knot cannot be the boundary of an embedded symplectic
surface in 𝐵4.
To see this note that such a surface would have lower genus that the one 𝑇 bounds and then

this surface would violate the relative symplectic Thom conjecture.

Proof. Let 𝑅𝛼 and 𝑅′𝛼 be a Reeb vector fields for 𝜉 and 𝜉
′, respectively, and 𝑡 the coordinate normal

to −𝑀 ∪𝑀 = 𝜕𝑋. By adding a collar neighborhood to the boundary of 𝑋 and extending Σwe can
assume that 𝐶 and 𝐶′ are orbits of the Reeb vector field.
Note that the tangent space 𝑇𝑋 restricted to Σ splits (as a symplectic bundle) as 𝐸1 ⊕ 𝐸2 where

𝐸1 is 𝑇Σ along Σ and the span of 𝑅𝛼 and 𝜕𝑡 along 𝑆 ∪ 𝑆′, and 𝐸2 is the symplectic normal bundle
to Σ along Σ, 𝜉 along 𝑆 and 𝜉′ along 𝑆′. So, restricted to Σ we have

𝑐1(𝑋, 𝜔) = 𝑐1(𝑇𝑋) = 𝑐1(𝐸1) + 𝑐1(𝐸2).
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2230 ETNYRE and GOLLA

To compute ⟨𝑐1(𝐸1), [Σ]⟩ we choose the section 𝜕𝑡 over 𝑆 ∪ 𝑆′ and extend it arbitrarily over 𝑇Σ.
So, clearly ⟨𝑐1(𝐸1), [Σ]⟩ = 𝜒(Σ). Now to compute ⟨𝑐1(𝐸2), [Σ]⟩ choose a non-zero section 𝑠 of 𝜉
over 𝑆, 𝑠′ of 𝜉′ over 𝑆′, and extend it arbitrarily over the normal bundle to Σ. Clearly, ⟨𝑐1(𝐸2), [Σ]⟩
is the relative Chern class of the normal bundle 𝜈 to Σ relative to 𝑠 ∪ 𝑠′ along −𝐶 ∪ 𝐶′ = 𝜕Σ. To
compute this we choose another section of the normal bundle. Let 𝜎 and 𝜎′ be the unit normal
vector fields along 𝑆 and 𝑆′, respectively. Along 𝜕Σ, 𝜎 and 𝜎′ are contained in the normal bundle
to Σ. Computing the relative Chern class of 𝜈, relative to 𝜎 and 𝜎′, evaluated on Σ clearly gives
[Σ] ⋅ [Σ] − 2𝐷 since we can use 𝜎, 𝜎′ and their extension over Σ to create a section of the normal
bundle of Σ
We finally note that the difference between the framings that 𝑠 and 𝜎 give to𝐶 is−sl(𝐶) and the

difference between the 𝑠′ and𝜎′ framings of𝐶′ is sl(𝐶′). The former is just the definition of the self-
linking number, while the latter is also the definition but wemust remember that 𝜕𝑋 = −𝑀 ∪𝑀′

and the linking numbers in𝑀 and −𝑀 differ by a sign. Hence,

⟨𝑐1(𝐸2), [Σ]⟩ = −sl(𝐶) + sl(𝐶′) + [Σ] ⋅ [Σ] − 2𝐷. □

2.4 Quasipositivity and links bounding symplectic slice surfaces

Recall that the 𝑛-strand braid group 𝐵𝑛 is generated by 𝑛 − 1 elementary generators, 𝜎1, … , 𝜎𝑛−1,
where 𝜎𝑖 interchanges the 𝑖th and (𝑖 + 1)st strands with a positive half-twist. Formore on the braid
group see [6]. A braid is called quasipositive if it can be written as a product of conjugates of non-
negative powers of the standard generators and it is called strongly quasipositive if it can bewritten
as a product of the elements

𝜎𝑖𝑗 = (𝜎𝑖 …𝜎𝑗−2)
−1𝜎𝑗−1(𝜎𝑖 … 𝜎𝑗−2),

for 1 ⩽ 𝑖 < 𝑗 < 𝑛. A link in 𝑆3 is called quasipositive or strongly quasipositive when it can be
realized as the closure of such a braid. Combining work of Rudolph [73] and Boileau and Orevkov
[10] it is known that the class of quasipositive links is precisely the class of links that arise as the
transverse intersection of a complex surface inℂ2 with the unit sphere; these are sometimes called
transverse ℂ-links. Moreover, [10, Theorem 2] makes it clear that the class of links is also precisely
the class of links that arise as the transverse intersection of a symplectic surface in the unit ball
in ℂ2 (with standard symplectic structure) with the unit sphere. Given Lemma 2.1, we see that
a transverse link in (𝑆3, 𝜉std) bounds a symplectic slicing surface in the 4-ball if and only if it is
given as the closure of a quasipositive braid.
We now turn to a special class of quasipositive links, namely, links of algebraic singularities.

Given a complex polynomial 𝑓(𝑧, 𝑤) in two variables, let 𝑉(𝑓) = 𝑓−1(0). Suppose that 𝑥 ∈ 𝑉(𝑓)
is an isolated singular point of 𝑓. Then for small enough 𝜀 > 0 the sphere of radius 𝜀, 𝑆𝜀, about 𝑥
intersects 𝑉(𝑓) transversely in a link 𝐿𝑓,𝑥. For 𝛿 sufficiently small 𝑓−1(𝛿) will also intersect the
𝑆𝜀 transversely in a link isotopic to 𝐿𝑓 . This surface is called the Milnor fiber of 𝐿𝑓 . So, 𝐿𝑓 is a
quasipositive link (in fact it is strongly quasipositive). For a topologist-friendly introduction to
singularity of curves in the spirit of this paper, we refer to [37, section 2] The main example we
will consider in this paper is that of 𝑓(𝑧, 𝑤) = 𝑧𝑝 − 𝑤𝑞. In this case, 𝐿𝑧𝑝−𝑤𝑞,0 is the (𝑝, 𝑞)-torus
link. It is also well-known that, when 𝑝 and 𝑞 are coprime, the complex surface that 𝐿𝑧𝑝−𝑤𝑞,0
bounds in the 4-ball has genus 1

2
(𝑝 − 1)(𝑞 − 1).
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SYMPLECTIC HATS 2231

2.5 Complex curves in ℂℙ𝟐

Wewill be considering algebraic curves in ℂℙ2. More specifically, given a non-zero homogeneous
polynomial 𝑓(𝑥, 𝑦, 𝑧) ∈ ℂ[𝑥, 𝑦, 𝑧], one can consider the set

𝑉(𝑓) = {[𝑥 ∶ 𝑦 ∶ 𝑧] ∈ ℂℙ2 ∣ 𝑓(𝑥, 𝑦, 𝑧) = 0}.

This is a complex surface in ℂℙ2. We say it has degree 𝑑 if the polynomial has degree 𝑑. Moreover,
recall that the second homology of ℂℙ2 is generated by the homology class of a line 𝓁 ⊂ ℂℙ2 and
one can easily check that the homology class defined by𝑉(𝑓) agreeswith 𝑑[𝓁], thus giving another
interpretation of the degree of 𝑉(𝑓).
A point in𝑉(𝑓)where the derivative of𝑓 vanisheswill be called a singular point. If𝑃 is a singular

point then for sufficiently small ball 𝐵 about 𝑃, 𝑉(𝑓) will intersect 𝜕𝐵 = 𝑆3 transversely in some
link 𝐿𝑓,𝑃. Clearly, 𝐿𝑓,𝑃 is a quasipositive link and so bounds a complex surface Σ𝑓,𝑃 in 𝐵. If the
links associated to all the singular points of 𝑉(𝑓) are connected (that is are knots) then we say
𝑉(𝑓) is a cuspidal curve. A cuspidal curve is a PL embedded surface of some genus g . Replacing
neighborhoods of all the singular points of𝑉(𝑓)with the complex surfaces Σ𝑓,𝑃 and recalling that
𝑐1(ℂℙ

2) = 3[𝓁] one can apply Lemma 2.12 to see that

3𝑑 = ⟨𝑐1(ℂℙ2), [Σ′′]⟩ = 2 − 2(g +
∑

g(Σ𝑓,𝑃)
)
+ 𝑑2,

where the sum is taken over all the singular points of 𝑉(𝑓). This yields

g +
∑

g(Σ𝑓,𝑃) =
(𝑑 − 2)(𝑑 − 1)

2
. (2)

Wewill take a topological viewpoint on singularities, similar to that of [37, section 2.2]. In particu-
lar, we will use the following fact: if we blow up the plane ℂ2 at the origin and we let 𝐸 denote the
exceptional divisor, the proper transform of the curve 𝑉(𝑥𝑝 − 𝑦𝑞) (with 𝑝 < 𝑞) has multiplicity of
intersection 𝑝 with the 𝐸, and it has a singularity isomorphic to that of 𝑉(𝑥𝑝 − 𝑦𝑞−𝑝).

3 HATS IN THE PUNCTURED PROJECTIVE PLANE

In this section, we will show that all transverse knots in the standard contact 𝑆3 have a hat in
(𝑋, 𝜔) = (ℂℙ2 ⧵ 𝐵4, 𝜔FS), where 𝐵4 is embedded as a Darboux ball with convex boundary in ℂℙ2
and𝜔FS is the Fubiny–Studymetric; and compute the hat genus for many examples. In particular,
we show that the symplectic hat genus can differ from the genus of a smooth surface in 𝑋 with
boundary the knot.
Let 𝓁∞ be a line at infinity in ℂℙ2 (that is the standard ℂℙ1 in ℂℙ2) that is in the complement

of the 𝐵4 removed above. Let 𝐾 be a transverse knot in (𝑆3, 𝜉std). A hat Σ for 𝐾 in (𝑋, 𝜔) will be
called a projective hat for 𝐾. By Poincaré–Lefschetz duality and elementary algebro-topological
manipulations,

𝐻2(𝑋, 𝜕𝑋) ≅ 𝐻
2(𝑋) ≅ 𝐻2(ℂℙ2) ≅ 𝐻2(ℂℙ

2) ≅ ℤ.
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2232 ETNYRE and GOLLA

We can give an explicit isomorphism by choosing a line 𝓁∞ in ℂℙ2 that is contained in 𝑋, and
use the intersection pairing 𝐻2(𝑋, 𝜕𝑋) ⊗ 𝐻2(𝑋) → ℤ to define the degree of Σ as the intersection
number of Σ and 𝓁∞.

3.1 Existence of projective hats

It is easy to see that, for each knot 𝐾 there are always smoothly embedded surfaces in 𝑋 with any
degree and boundary 𝐾. These have been studied in [64], but more work is necessary to prove the
existence of symplectic hats, and we will see that the degree cannot be arbitrary for a given 𝐾.
The following is a slight extension of Theorem 1.3 from the introduction.

Theorem 3.1. Every transverse link 𝐾 in (𝑆3, 𝜉std) has a projective hat. Moreover, this hat can have
any sufficiently large degree.

We begin with a lemma.

Lemma3.2. The transverse representative of the positive torus knot𝑇𝑝,𝑞 in (𝑆3, 𝜉std)with self-linking
number 𝑝𝑞 − 𝑝 − 𝑞 wears a symplectic projective hat of genus

(𝑞 − 𝑝 − 1)(𝑞 − 1)

2

and degree 𝑞, where we are assuming, without loss of generality, that 𝑞 > 𝑝.

Remark 3.3. The knot 𝑇𝑝,𝑞 might wear a hat of smaller genus and degree if 𝑝 is sufficiently small,
but it is interesting to note that these numbers are optimal if 𝑞 < 2𝑝. To see this suppose that
𝑞 < 2𝑝, and that there is a degree-𝑑 hat for 𝑇𝑝,𝑞. We apply [8, equation (⋆𝑗), p. 523] with 𝑗 = 1.
The inequality reads

Γ(3) = Γ(Δ1) ⩽ 𝑑, (3)

where 𝑑 is the degree of the hat, and Γ(𝑘) is the 𝑘th element of the semigroup comprising all
non-negative integer linear combinations of 𝑝 and 𝑞 (starting at Γ(1) = 0 = 0𝑝 + 0𝑞).
Since 𝑞 < 2𝑝, the first three elements of the semigroup are 0, 𝑝, 𝑞, and therefore Γ(3) = 𝑞;

substituting in the inequality above, we obtain that 𝑞 ⩽ 𝑑, as claimed.

Proof. There are many ways to construct a hat for 𝑇𝑝,𝑞. A particularly simple one was pointed
out to us by Dmitry Tonkonog. Consider the curve 𝐶 = 𝑉(𝑥𝑞 − 𝑦𝑝𝑧𝑞−𝑝 + 𝑦𝑞). It is immediate to
check that the only singularity of 𝐶 is at (0 ∶ 0 ∶ 1). Moreover, the following construction gives
a local change of coordinates around (0,0) in the affine chart {𝑧 = 1} that maps 𝑉(𝑥𝑞 − 𝑦𝑝) to 𝐶.
Let g be a 𝑝th root of the function 𝑤 ↦ 1 − 𝑤𝑞−𝑝: this exists locally in a ball 𝐵 centered at 𝑤 = 0
since g(0) ≠ 0, and set ℎ(𝑤) = 𝑤g(𝑤). The latter function is a biholomorphism since g(0) ≠ 0. It is
immediate to check that in the chart {𝑧 = 1, 𝑦 ∈ 𝐵}, the biholomorphism (𝑥, 𝑦) ↦ (𝑥, ℎ(𝑦))maps
𝑉(𝑥𝑞 − 𝑦𝑝) to 𝐶. Thus, the complement of a neighborhood of the singular point gives the desired
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SYMPLECTIC HATS 2233

hat. The degree of the hat is clearly 𝑞; the Adjunction Formula (2) gives its genus to be

1
2
(𝑞 − 1)(𝑞 − 2) −

1
2
(𝑝 − 1)(𝑞 − 1) =

(𝑞 − 𝑝 − 1)(𝑞 − 1)

2
,

as claimed. □

Remark 3.4. There is an alternative approach to proving the lemma, which is closer to the spirit
of this paper. One can start from the curve 𝑉(𝑥𝑞 − 𝑦𝑝𝑧𝑞−𝑝); it is a rational curve, since the map
[𝑠 ∶ 𝑡] ↦ [𝑠𝑝𝑡𝑞−𝑝 ∶ 𝑠𝑞 ∶ 𝑡𝑞] gives a parameterization by ℂℙ1. Moreover, it has two singularities at
(0 ∶ 0 ∶ 1) and at (0 ∶ 1 ∶ 0). The singularity at (0 ∶ 0 ∶ 1) is of the desired type 𝑥𝑞 − 𝑦𝑝 = 0, and
we can trade the other singularity, which is of type 𝑥𝑞 − 𝑦𝑞−𝑝, for itsMilnor fiber, which has genus
1
2
(𝑞 − 𝑝 − 1)(𝑞 − 1).

Remark 3.5. The statements in [8] are about complex curves; however, since the proofs use smooth
4-dimensional topology techniques, they hold more generally for reals surfaces whose singulari-
ties are cones over knots. The Inequality (3) holds for smooth curves having only one singularity
whose cone is a cone over a torus knot, so they apply to our case.

Proof of Theorem 3.1. We will build a symplectic cobordism from 𝐾 to a positive torus knot and
then use Lemma 2.2 to glue this to a symplectic hat for the torus knot constructed in Lemma 3.2.
Given a transverse knot 𝐾 we can transversely isotope it so that it is braided. Thus, we can use

Lemma 2.4 to build a symplectic cobordism from 𝐾 to a closed 𝑛-braid. Now Lemma 2.8, which
says we can add positive crossings wherever we like, allows us to build a symplectic cobordism
from the braid to the closure of (𝜎1⋯𝜎𝑛−1)

𝑘 for any sufficiently large𝑘. Since for𝑘 relatively prime
to 𝑛 the braid (𝜎1⋯𝜎𝑛−1)

𝑘 is a positive torus knot we have constructed the desired symplectic
cobordism. □

The following result will be useful in the next section, and it can easily be combined with
Lemmas 2.2 and 3.2 to give an alternate proof of Theorem 3.1.

Lemma 3.6. Every transverse link 𝐾 in (𝑆3, 𝜉std) has an immersed symplectic cobordism with only
positive double points to a torus knot in a piece of the symplectization of (𝑆3, 𝜉std).

To prepare for the proof of this lemma we set up some notation. Given two braids 𝛽 and 𝛽′ we
will write 𝛽 ↑ 𝛽′ to indicate that 𝛽′ is obtained from 𝛽 by inserting a square of a generator into
some presentation of 𝛽 as a word in the generators. A braid 𝛽′ is generated by squares from 𝛽 if
there exists a sequence

𝛽 = 𝛽0, 𝛽1, … , 𝛽𝑚 = 𝛽
′

such that𝛽𝑘+1 is obtained from𝛽𝑘 by inserting the square of a generator.When𝛽 = 𝑒 is the identity
braid, we simply say that 𝛽′ is generated by squares.
Observe that if𝛽′ is generated by squares from𝛽, there is a sequence of positive crossing changes

from the closure of 𝛽 to the closure of 𝛽′.
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2234 ETNYRE and GOLLA

Lemma 3.7. The square of the Garside element Δ2𝑛 ∈ 𝐵𝑛 is generated by squares from 𝜎2
𝑖
for each

1 ⩽ 𝑖 ⩽ 𝑛 − 1.

Proof. We prove this by induction on 𝑛. If 𝑛 = 2, Δ21 = 𝜎
2
1, and this is clearly generated by squares

from 𝜎21 .
If 𝑛 ⩾ 2, then Δ2𝑛+1 = (𝜄𝑛Δ

2
𝑛) ⋅ (𝜎𝑛⋯𝜎2𝜎

2
1𝜎2⋯𝜎𝑛), where we denoted by 𝜄𝑛 ∶ 𝐵𝑛 → 𝐵𝑛+1 the

inclusion of the first 𝑛 strands. Both factors are generated by squares: the first by the inductive
assumption, and the second by direct inspection.
In particular, this shows that Δ2𝑛+1 is generated by squares from 𝜎2𝑛 (since the last factor is) or

by any of 𝜎21, … , 𝜎
2
𝑛−1 (since the first factor is). □

Proof of Lemma 3.6. The transverse knot𝐾 is the closure of an 𝑛-braid 𝛽 ∈ 𝐵𝑛. Up to conjugation,
we can suppose that 𝛽 induces the permutation (1 2⋯𝑛). Let 𝛽0 = 𝜎1𝜎2⋯𝜎𝑛−1, and observe that
𝛾 = 𝛽−10 𝛽 is in the pure braid group.
In particular, 𝛾 is a product of elements of the form 𝑤𝑖𝜎

𝜀𝑖
𝑘𝑖
𝑤−1
𝑖
, where 𝜀𝑖 = ±2 and 𝑤𝑖 is an arbi-

traryword in the braid group for each 𝑖 (see, for example, [6, Lemma 1.8.2]).We claim that for some
integer𝑚,Δ2𝑚 is generated by squares from 𝛾. This proves that𝛽0Δ2𝑚 is generated by squares from
𝛽, and in particular there is a symplectic cobordism from the closure of 𝛽 to the closure of 𝛽0Δ2𝑚,
which is the torus knot 𝑇𝑛,𝑚𝑛+1. Now the desired immersed cobordism follows from Lemma 2.4.
Let us now prove the claim. For each 𝑖 such that 𝜀𝑖 = −2, we simply change the corresponding

crossing by inserting a 𝜎2
𝑘𝑖
:

𝑤𝑖𝜎
−2
𝑘𝑖
𝑤−1𝑖 ↑ 𝑤𝑖𝜎

−2
𝑘𝑖
𝜎2𝑘𝑖
𝑤−1𝑖 = 𝑒.

For each 𝑖 such that 𝜀𝑖 = 2, we use Lemma 3.7, which asserts that Δ2 is generated by square
from 𝜎2

𝑘𝑖
; indeed, we have

𝑤𝑖Δ
2𝑤−1𝑖 = Δ2,

since Δ2 is central in the braid group 𝐵𝑛. That is, we have proven Δ2𝑚 is generated by squares
from 𝛾. □

3.2 Projective hat genus

We can now define two invariants for transverse knots in (𝑆3, 𝜉std).

Definition 3.8. We call the hat genus of 𝐾 the smallest genus ĝ(𝐾) of a symplectic hat of 𝐾 in
(𝑋, 𝜔) and the hat degree to be the minimal degree 𝑑(𝐾) of a symplectic hat for 𝐾.

Later we will discuss hats in other caps for (𝑆3, 𝜉std) and then when confusion might arise we
will refer to the hat genus and hat degree, as the projective hat genus and projective hat degree,
respectively.
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SYMPLECTIC HATS 2235

Example 3.9. Note that ĝ(𝐾) = 0 if and only if 𝐾 has a symplectic projective hat that is a disk.
For example, ĝ(𝐾) = 0 for whenever 𝐾 = 𝑇𝑝,𝑝+1 has maximal self-linking number. In fact, there
exists a rational singular curve whose unique singularity has link 𝑇𝑝,𝑝+1, namely, 𝑉(𝑥𝑝𝑧 − 𝑦𝑝+1).

We note that using the adjunction formula for hats, in Lemma 2.13, for a fixed transverse knot
the hat genus determines the hat degree and vice versa.

Lemma 3.10. If Σ is a projective hat for a transverse knot 𝐾 in (𝑆3, 𝜉std), then

ĝ(𝐾) = −
(
sl(𝐾) + 1

2

)
+
𝑑(𝐾)2 − 3𝑑(𝐾) + 2

2
⩾ −

(
sl(𝐾) + 1

2

)
and

sl(𝐾) = (𝑑(𝐾)2 − 3𝑑(𝐾) + 1) − 2ĝ(𝐾).

Proof. If Σ′ is a Seifert surface for 𝐾 and Σ = Σ ∪ Σ′, then Σ represents a homology class 𝑑ℎ in
𝐻2(ℂℙ

2) ≅ ℤ where ℎ is the generator of homology given by a line. Recalling that

𝑐1(ℂℙ
2) = 𝑐1(ℂℙ

2 − 𝐵4) = 3ℎ,

then the equation in Lemma 2.13 immediately gives

3𝑑(𝐾) = 1 − 2ĝ(𝐾) − sl(𝐾) + 𝑑(𝐾)2,

which is equivalent to the stated formula. □

As a corollary we see that the adjunction formula gives lower bounds on the hat genus of
quasipositive knots.

Corollary 3.11. If 𝐾 is a quasipositive knot with 4-ball genus g𝑠(𝐾), and

𝑚 =
(𝑑 − 2)(𝑑 − 1)

2

is the smallest triangular number𝑚 ⩾ g𝑠(𝐾), then

ĝ(𝐾) ⩾ 𝑚 − g𝑠(𝐾).

Moreover, the hat degree must satisfy

𝑑(𝐾) ⩾ 𝑑.

Remark 3.12. Since the gaps between consecutive triangular numbers can be made arbitrarily
large and any genus can be realized by a quasipositive knot, this result shows that the hat genus
and hat degree can each be made arbitrarily large.
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2236 ETNYRE and GOLLA

Proof. Since 𝐾 is quasipositive, 𝐾 bounds a symplectic curve Σ̌ in (𝐵4, 𝜔) by [73], and gluing Σ̌
with a cap Σ̂ of minimal genus in (𝑋, 𝜔) yields a closed symplectic surface Σ in ℂℙ2. The genus
of Σ̌ is the quasipositive genus g𝑠(𝐾). (Here, and below, we use the phrase ‘quasipositive genus’
of a knot to mean the genus of a symplectic surface in (𝐵4, 𝜔) with boundary the given knot.)
We know from Lemma 2.13, and the comment after the lemma, that 𝑠𝑙(𝐾) = 2g𝑠(𝐾) − 1. Thus,
Proposition 3.10 gives

ĝ(𝐾) = −g𝑠(𝐾) +
(𝑑(𝐾))2 − 3𝑑(𝐾) + 2

2
.

So, if 𝑑 is the smallest 𝑑 as in the statement of the corollary then the stated results follows. □

Remark 3.13. In fact, we claim here that the set of genera that are realized by hats for𝐾 contains all
possible genera (that is, all genera satisfying the adjunction formula for some degree) past some
sufficiently large constant.
To see this, observe that the hat constructed in Proposition 3.1 is algebraic outside a tubular

neighborhood 𝑁 of 𝑆3. Therefore, there is family of complex lines in the complement of 𝑁. A
generic line in this family intersects the hat transversely, and onlywhere the hat is algebraic; there-
fore, all intersections are positive, and hence smoothable in the symplectic category. Choosing any
finite set of such generic lines and smoothing all double points yields the desired hats.

We now make an observation concerning the relation between self-linking numbers and the
hat genus. Recall that given a transverse knot 𝑇 one can form the transverse stabilization 𝑆(𝑇) of
𝑇 (if 𝑇 is given as the closure of a braid then 𝑆(𝑇) is the closure of a negative Markov stabilization
of 𝑇). We know that stabilization decreases the self-linking number by 2: sl(𝑆(𝑇)) = sl(𝑇) − 2.

Proposition 3.14. Given a transverse knot 𝑇 in (𝑆3, 𝜉std) we have

ĝ(𝑆𝑘(𝑇)) ⩽ ĝ(𝑇) + 𝑘.

Moreover, if 𝑇 is the closure of a quasipositive braid, then

−g𝑠(𝑇) + 𝑘 ⩽ ĝ(𝑆𝑘(𝑇)).

Corollary 3.15. A complete list of transverse unknots in (𝑆3, 𝜉std) is𝑈𝑘 = 𝑆𝑘(𝑈) for 𝑘 ⩾ 0. We know
that

ĝ(𝑈𝑘) = −
(
sl(𝑈𝑘) + 1

2

)
= 𝑘,

and the hat degree is 1.

Proof of Proposition 3.14. It has long been known [67] that if a transverse knot 𝑇 is realized as the
closure of a braid 𝛽, which it always can be [5], then the closure of a negativeMarkov stabilization
of 𝛽 is the transverse stabilization of 𝑇 and the closure of the positive Markov stabilization of 𝛽 is
transversely isotopic to 𝑇. Thus, we see that there is a transverse regular homotopy from 𝑆(𝑇) to 𝑇
with one positive crossing change. Thus, from Lemma 2.4 we see there is an immersed symplectic
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SYMPLECTIC HATS 2237

cobordism 𝐶 from 𝑆𝑘(𝑇) to 𝑇 with 𝑘 positive double points and a symplectic cobordism 𝐶′ from
𝑇 to 𝑆𝑘(𝑇) with 𝑘 negative double points.
Now given a hat 𝑆 for 𝑇 in(𝑋, 𝜔)we can compose this with𝐶 and resolve the double points as in

Lemma 2.6 to construct a hat for 𝑆𝑘(𝑇)with genus ĝ(𝑇) + 𝑘, thus establishing the first inequality.
Let us now suppose that 𝑇 is quasipositive. Let 𝑆′ be a minimal genus hat for 𝑆𝑘(𝑇) and 𝐹 be a

symplectic filling of𝑇 in (𝐵4, 𝜔std).We can glue 𝑆′,𝐶′, and𝐹 together to get an immersed symplec-
tic surface Σ in (ℂℙ2, 𝜔FS) of genus g = g𝑠(𝑇) + ĝ(𝑆𝑘(𝑇)) with 𝑘 negative double points. Assume
the homology class of Σ is 𝑎ℎ, where ℎ is the generator of𝐻2(ℂℙ2) on which the symplectic form
is positive. Lemma 2.12 now yields

3𝑎 = ⟨𝑐1(ℂℙ2), [Σ]⟩ = 2 − 2g(Σ) + Σ ⋅ Σ + 2𝑚 = 2 − 2g + 𝑎2 + 2𝑘,

from which 2g − 2𝑘 = 𝑎2 − 3𝑎 + 2 = (𝑎 − 1)(𝑎 − 2) ⩾ 0. That is, ĝ(𝑆𝑘(𝑇)) ⩾ 𝑘 − g𝑠(𝑇). □

Propositions 3.14 and 3.10 lead to the following natural question.

Question 3.16. Is the function ĝ(𝑆𝑘(𝑇)) ∶ ℕ → ℕ ∶ 𝑘 → ĝ(𝑆𝑘(𝑇)) non-decreasing? From
Lemma 3.10 this is equivalent to asking: can the hat degree drop when a transverse knot
is stabilized?

3.3 Further examples

We begin with a strengthening of Theorem 1.4 that shows for some transverse knots the bound in
the estimate in Proposition 3.10 is sharp.

Theorem3.17. Suppose𝑇 is a transverse knot in (𝑆3, 𝜉std)and there is a transverse regular homotopy
to an unknot with only positive crossing changes. Then the hat degree is 1 and hence the hat genus is

ĝ(𝑇) = −
(
sl(𝑇) + 1

2

)
,

where sl(𝑇) is the self-linking number of 𝑇.

We note that this allows us to compute the hat genus for many knots.

Corollary 3.18. If 𝑇 is the closure of a negative braid (that is a product of non-positive powers of the
generators of the braid group), then

ĝ(𝑇) = −
(
sl(𝑇) + 1

2

)
and the hat degree is 1.

Proof. Changing negative powers in a braid word to positive powers corresponds to a transverse
regular homotopy of the braid closures with positive crossing changes. Clearly by changing a
subset of the letters in the braid word representing 𝑇 one arrives at the unknot. □
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2238 ETNYRE and GOLLA

A special case of the previous corollary is the following computation.

Corollary 3.19. Suppose 𝑞 > 𝑝 ⩾ 2. Then any transverse representative 𝑇 of the (𝑝, −𝑞)-torus knot
𝑇𝑝,−𝑞 satisfies

ĝ(𝑇) = −
(
sl(𝑇) + 1

2

)
.

In particular, the maximal self-linking number representative 𝑇′ (which has sl(𝑇′) = −𝑝𝑞 + 𝑞 − 𝑝)
has

ĝ(𝑇−𝑝,𝑞) =
(𝑞 − 1)(𝑝 + 1)

2

and hat degree 1.

We note one further corollary of Theorem 3.17.

Corollary 3.20. Let 𝑇𝑛 be a twist knot with maximal self-linking number. The hat genus of 𝑇𝑛 is

ĝ(𝑇𝑛) =

⎧⎪⎨⎪⎩
1 𝑛 ⩽ −3 and odd
𝑛+3
2

𝑛 ⩾ 1 and odd
𝑛
2

𝑛 positive and even.

The hat degree is 1 in all these cases.

Proof. The proof is similar to the ones above given the classification of Legendrian and transverse
twist knots in [27]. □

Proof of Theorem 3.17. We begin by noticing that if 𝑇′ is obtained from 𝑇 by a regular homotopy
through transverse knots with a single positive double point then

sl(𝑇′) = sl(𝑇) + 2.

Onemay see this through a relative Euler characteristic argument, but as we are only considering
knots in 𝑆3 there is a simpler argument. Specifically, note that we can remove a point 𝑝 from 𝑆3

and obtain a contactomorphismof 𝑆3 ⧵ {𝑝} toℝ3with its standard contact structure taking another
point 𝑞 in 𝑆3 to the origin in ℝ3. Now we can find a contactomorphism from a neighborhood of
the double point in the regular homotopy to a ball in 𝑆3 about 𝑞 with the double point going to
𝑞. This contactomorphism can be extended to all of 𝑆3 and so we can assume our double point
occurs at 𝑞. We can moreover assume the homotopy misses 𝑝 so that the entire homotopy occurs
in ℝ3 and that near the double point the two strands of the knot are both oriented in the positive
𝑧 direction. Now as we know the self-linking number of a transverse knot in the standard contact
structure on ℝ3 can be computed as the writhe of its front projection, see [22], it is clear that the
change in self-linking numbers is as claimed.
Now given a transverse knot 𝑇 as in the statement of the theorem, denote its self-linking num-

ber sl(𝑇) = −2𝑛 − 1. By hypothesis there is a regular homotopy with, say, 𝑘 positive crossing
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SYMPLECTIC HATS 2239

changes to an unknot 𝑈′. From the discussion above we see sl(𝑈′) = −2(𝑛 − 𝑘) − 1 < 0. (So, we
see the self-linking number of 𝑇must be negative.)We can represent𝑈′ as the closure of the braid
𝜎−11 ⋯𝜎−1

𝑛−𝑘
. So, 𝑛 − 𝑘more positive crossing changes will result in an unknot𝑈 with sl(𝑈) = −1.

Thus, there is a regular homotopy from 𝑇 to the maximal self-linking number unknot 𝑈 with 𝑛
positive crossing changes.
Now applying Lemma 2.4, we can find an immersed concordance from 𝑇 to 𝑈 with 𝑛 positive

double points and glue this to a genus-0, degree-1 hat or 𝑈 to get an immersed genus-0 hat for 𝑇
in (𝑋, 𝜔). Lemma 2.6 now yield an embedded genus-𝑛 hat for 𝑇 with degree 1. So, ĝ(𝑇) ⩽ 𝑛.
We now show that ĝ(𝑇) ⩾ 𝑛. To this end, let Σ̂ be a hat for 𝑇 with minimal genus. From

Lemma 2.4, we can get an immersed concordance from 𝑈 to 𝑇 with 𝑛 negative double points.
Gluing together Σ̂ the concordance and the slice disk for𝑈 we construct an immersed symplectic
surface Σ in ℂℙ2 of genus g(Σ̂) having 𝑛 negative double points. If the homology class of Σ is 𝑎ℎ
then applying in immersed adjunction equality, Lemma 2.12, we see

3𝑎 = ⟨𝑐1(ℂℙ2), [Σ]⟩ = 2 − 2g(Σ̂) + 𝑎2 + 2𝑛.
So, g(Σ̂) = (𝑑−1)(𝑑−2)

2
+ 𝑛, or more specifically g(Σ̂) ⩾ 𝑛 as claimed. □

Recall, in Question 1.8 we asked if a slice, quasipositive transverse knot 𝑇 in (𝑆3, 𝜉std) that has
ĝ(𝑇) = 0, must be the maximal self-linking unknot. While we cannot answer Question 1.8, we
sketch an approach that seems promising.

Approach to Question 1.8. Given such a transverse knot 𝑇, let �Σ and Σ̂ be the filling and hat for
𝑇. The symplectic surface Σ = �Σ ∪ Σ̂ in ℂℙ2 has genus 0 and thus, by the adjunction formula, Σ̂
has degree 1 or 2. Choose an almost complex structure 𝐽 such that Σ is 𝐽-holomorphic.
Assuming that 𝑇 is a non-trivial knot we derive a contradiction. We begin by showing that 𝑇 is

symplectically concordant to the unknot.
Suppose that 𝑇 wears a hat of degree 1. There exists an almost complex line 𝓁1 lying entirely

inside the cap; it intersects Σ̂ positively, hence it intersects Σ̂ transversely once, inside the cap.
Removing a neighborhood of 𝓁1 from the cap, we obtain a 𝐽-holomorphic concordance from 𝑇 to
the link at infinity of Σ̂; since Σ̂ intersects 𝓁1 transversely, the link is the unknot 𝑈.
Similarly, suppose that 𝑇 wears a hat of degree 2. There exists an almost complex line 𝓁2 lying

entirely inside the cap, which is tangent to Σ̂. By positivity of intersections, the tangent point is
the only intersection. Removing a neighborhood of 𝓁2 from the cap, we obtain a 𝐽-holomorphic
concordance between 𝑇 and the link at infinity of Σ̂; since Σ̂ has an order 1 tangency to 𝓁2, the
link is the unknot.
In either case, we get a 𝐽-holomorphic concordance from 𝑇 to the unknot in 𝑆3 × [𝑎, 𝑏]. Now if

one can deform 𝐽, keeping the concordance 𝐽-holomorphic, so that the standard height function
on 𝑆3 × [𝑎, 𝑏] is pluri-subharmonic, then the maximum principle implies that the concordance is
ribbon (that is, the restriction of the projection map 𝑆3 × [𝑎, 𝑏] → [𝑎, 𝑏] has no maxima).
However, this contradicts a result of Gordon [42]: since 𝑇 is slice and quasipositive, there is a

ribbon concordance from𝑈 to 𝑇; the argument above produces a ribbon concordance in the other
direction. Finally, since the unknot has fundamental groupℤ,𝑈 is in particular transfinitely nilpo-
tent, and [42, Theorem 1.2] implies that 𝑇 is isotopic to𝑈. (See also [15]*Theorem 3.2: while their
statement is in terms of decomposable Lagrangian concordances, the proof is entirely topological
and applies more generally to ribbon concordances.) □
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2240 ETNYRE and GOLLA

We note that Question 1.8 would also follow from the arguments above together with a positive
answer to the following stronger question.

Question 3.21. If there is a relative symplectic cobordism of genus 0 from a transverse knot 𝑇 to
a maximal self-linking transverse unknot 𝑈 in a piece of the symplectization of (𝑆3, 𝜉std), then is
𝑇 transversely isotopic to 𝑈?

4 HATS IN OTHERMANIFOLDS

In this section, we will show that a transverse knots always bounds a symplectic disk in some cap
for the contact manifolds and then we will consider hats in rational surfaces.
We begin by establishing some notation for rational surfaces caps. More specifically, let

(𝑋0, 𝜔0) = ℂℙ2 ⧵ 𝐵4, where 𝐵4 is embedded as a Darboux ball with convex boundary, as in Sec-
tion 3.Wewill write𝑋𝑛 to denote an 𝑛-fold symplectic blow-up of𝑋0, so that𝑋𝑛 is homeomorphic
to (ℂℙ2#𝑛ℂℙ2) ⧵ 𝐵4. These are all caps for (𝑆3, 𝜉std) andwewill consider hats for transverse knots
in these caps.
There is another type of rational surface.Wewill denote it by𝑌0 = (𝑆2 × 𝑆2, 𝜔0) theHirzebruch

surface ℂℙ1 × ℂℙ1, endowed with its natural Kähler structure, and with 𝑌1 = (ℂℙ2#ℂℙ2, 𝜔1) the
blow-up of ℂℙ2, endowed with a blow-up symplectic structure.
Note that there are infinitely many Hirzebruch surface up to complex diffeomorphism; these

are all Kähler, and any two such complex surfaces are symplectomorphic (after possibly deforming
their symplectic form) if and only if they are diffeomorphic. Since the only two diffeomorphism
classes of the underlying manifolds are 𝑆2 × 𝑆2 and ℂℙ2#ℂℙ2, there are only two symplectic
Hirzebruch surfaces, 𝑌0 and 𝑌1 as defined above.
A Hirzebruch cap (𝐻𝑒, 𝜔𝑒) of (𝑆3, 𝜉std) is obtained by removing a ball 𝐵4 with convex boundary

from theHirzebruch surface𝑌𝑒, for 𝑒 = 0 or 𝑒 = 1. By abuse of notation, wewill indexHirzebruch
caps cyclically modulo 2, that is,𝐻𝑘 = 𝐻0 whenever 𝑘 is even, and𝐻𝑘 = 𝐻1 whenever 𝑘 is odd.
Wenote that there is some overlap in our notation. Specifically, (𝑋, 𝜔) = (𝑋0, 𝜔0) and (𝑋1, 𝜔1) =

(𝐻1, 𝜔1).
In the second subsection, wewill consider hats, whichwe call rational hats, in the non-minimal

rational caps 𝑋𝑛 and in the following subsection we will consider hats, which we call Hirzebruch
hats, in the Hirzebruch caps.

4.1 Disk hats

The goal of this section is to prove Theorem 1.1 from the introduction; recall that the theorem
asserts that a transverse link 𝐿 in arbitrary contact 3-manifold (𝑌, 𝜉) has a hat that is a collection
of pairwise disjoint disks in some cap (𝑋, 𝜔) of (𝑌, 𝜉).

Proof of Theorem 1.1. We begin by recalling a result of Gay, [33, Theorem 1.1]. The theorem states
that if 𝑇 is a transverse link in the convex boundary of a symplectic manifold (𝑊,𝜔𝑊), then one
may attach 2-handles to 𝑇 with sufficiently negative framing and extend the symplectic structure
so that the upper boundary is weakly convex. It is clear from the proof that the core disk of the
model symplectic 2-handle is symplectic, and that if 𝑇 bounded a symplectic manifold in𝑊 then
this core will cap off the surface symplectically.
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SYMPLECTIC HATS 2241

In our situation, we consider the symplectic manifold𝑊 = [0, 1] × 𝑌, which is a piece of the
symplectization of (𝑌, 𝜉). Inside 𝑊 we have the symplectic annuli 𝐴 = [0, 1] × 𝐿. We can now
attach Gay’s symplectic 2-handles to 𝐿 in {1} × 𝑌 and cap off the upper boundaries of 𝐴 with
symplectic disks. Thus, we get a symplectic manifold (𝑊′, 𝜔′) that has 𝑌 as a concave boundary,
symplectic disks forming a hat for 𝐿, and a weakly convex boundary 𝑌′. We can now cap off 𝑌′
using [19, 21], to obtain a cap (𝑋, 𝜔) containing the required hat. □

Remark 4.1. Theorem 1.1 can also be proven, in a very similar fashion, by adding Weinstein han-
dles to a Legendrian approximation of 𝐿, and then perturbing the symplectic structure on the
cobordism. We used Gay’s symplectic handles since they give a more direct proof.

4.2 Hats in non-minimal rational surfaces

We start by proving Theorem 1.9, which asserts that every transverse knot𝐾 in (𝑆3, 𝜉std) has a disk
hat in some blow-up 𝑋𝑁 of the projective cap 𝑋0. This is a refinement of Theorem 1.1 for knots in
(𝑆3, 𝜉std).

Proof of Theorem 1.9. By Lemma 3.6, there is a symplectic concordance from𝐾 to𝑇𝑝,𝑞 with positive
double points.
Without loss of generality, we assume 𝑝 < 𝑞. Consider the complex curve 𝐶 = 𝑉(𝑥𝑞 − 𝑦𝑝𝑧𝑞−𝑝)

in ℂℙ2. The curve 𝐶 has two singular points, namely, (0 ∶ 1 ∶ 0) and (0 ∶ 0 ∶ 1), whose links are
the torus knots 𝑇𝑝−𝑞,𝑞 and 𝑇𝑝,𝑞, respectively. Removing a neighborhood of the 𝑇𝑝,𝑞 singular point
from ℂℙ2 will result in a singular hat for 𝑇𝑝,𝑞 with genus 0, whose singularity is of type 𝑇𝑞−𝑝,𝑞.
Thus,𝐾 wears a singular projective hat with genus 0 and positive double points. Note that there

is a regular homotopy from the transverse unknot to 𝑇𝑞−𝑝,𝑞 with only positive crossing changes.
Thus, there is a concordance from the unknot to 𝑇𝑞−𝑝,𝑞. We can use this concordance and a sym-
plectic slicing disk for the unknot to replace a neighborhood of the 𝑇𝑞−𝑝,𝑞 singularity with an
immersed disk. The result is an immersed genus-0 hat for 𝐾 in (𝑋0, 𝜔0).
Now instead of replacing the singularities with genus, we now resolve the singularities by blow-

ing up: positive double points can be resolved using blow-ups [56]. Thus, 𝐾 wears a genus-0 hat
in some 𝑋𝑁 . □

Definition 4.2. Let ĝ𝑛(𝐾) define the smallest genus of a hat for 𝐾 in 𝑋𝑛. We call this the 𝑛th
rational hat genus of 𝐾.

An immediate corollary of the above proposition is the following observation.

Corollary 4.3. For each 𝐾, the sequence 𝐺(𝐾) = {ĝ𝑛(𝐾)}𝑛 is non-increasing and eventually 0.

Definition 4.4. We let 𝑠̂(𝐾) = min{𝑛 ∣ ĝ𝑛(𝐾) = 0}, and we call this the hat slicing number of 𝐾.

Example 4.5. Suppose𝐾 is a transverse unknotwith sl(𝐾) = −1 − 2𝑠 < −1.We claim that 𝑠̂(𝐾) =
1. In fact, as noted above, ĝ(𝐾) > 0, hence 𝑠̂(𝐾) ⩾ 1; moreover, 𝐾 is the closure of the 𝑠 + 1-braid
(𝜎1 …𝜎𝑠)

−1, and a single full twist takes it to the braid (𝜎1 …𝜎𝑠)𝑠, whose closure is the transverse
representative of 𝑇𝑠,𝑠+1 with maximal self-linking number, which has been shown in Lemma 3.2
to have a symplectic disk hat. It follows that 𝑠̂(𝐾) ⩽ 1.
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2242 ETNYRE and GOLLA

Proposition 4.6. For the torus knots 𝑇2,2𝑘+1 we know 𝑠̂(𝑇2,2𝑘+1) ⩽ 1. In particular, the sequence
𝐺(𝑇2,2𝑘+1) is

(ĝ(𝑇2,2𝑘+1), 0, …)

where the values of ĝ(𝑇2,2𝑘+1) for 𝑘 ⩽ 11 are

𝑘 1 2 3 4 5 6 7 8 9 10 11

ĝ(𝑇2,2𝑘+1) 0 1 0 2 1 0 3 2 1 5 4

Proof. We first observe that ĝ1(𝑇2,2𝑘+1) = 0 for each 𝑘 ⩾ 0: indeed, by [29, Theorem 1.1], there is
a degree-(𝑘 + 2) curve in ℂℙ2 with two singularities, one of type 𝑇𝑘,𝑘+1 and one of type 𝑇2,2𝑘+1,
and blowing up at the former (as discussed at the end of Subsection 2.5) yields a genus-0 hat for
𝑇2,2𝑘+1. Thus, 𝑠̂(𝑇2,2𝑘+1) ⩽ 1.
For the computation of ĝ(𝑇2,2𝑘+1) we begin by noting that from [30] we have

ĝ(𝑇2,3) = ĝ(𝑇2,7) = ĝ(𝑇2,13) = 0.

Note that the 4-ball genus g𝑠(𝑇2,2𝑘+1) =
(2−1)(2𝑘+1−1)

2
= 𝑘. Thus, by Corollary 3.11 we see that a

lower bound on ĝ(𝑇2,12𝑘+1) is 𝑑 − 𝑙 where 𝑘 =
𝑑(𝑑−1)
2

+ 𝑙 for 1 ⩽ 𝑙 ⩽ 𝑑.
We are left to show that there are indeed hats of the appropriate genus. For 𝑇2,5 we know that

there is a positive crossing change to get to 𝑇2,7, so it has hat genus 1. Similarly for 𝑇2,11. For 𝑇2,9
note that one can make two positive crossing changes to get to 𝑇2,13 and hence its hat genus is 2.
Following [82] (see also [2]), there exists a degree-6, genus-1 curve 𝐶19 with a singularity of type

𝑇2,19 thus with our lower bound given above we have ĝ(𝑇2,19) = 1. Since there are one, respec-
tively, two, crossing changes from 𝑇2,17, respectively, 𝑇2,15, to 𝑇2,19 we see that their hat genus is
1, respectively, 2.
For 𝑇2,23, we claim that there is a deformation from 𝑇6,7 to 𝑇2,23; we exhibit such a deformation

by removing eight generators to a braid representative of 𝑇6,7 to obtain one of 𝑇2,23. Since 𝑇6,7 has
a genus-0 hat (coming from the curve 𝑉(𝑥6𝑧 − 𝑦7)), 𝑇2,23 has a genus-4, degree-7 hat.
To prove the claim, one checks that, in the braid group 𝐵6 (see Lemma A.1 for details):

(𝜎1⋯𝜎5)
7 = (𝜎1⋯𝜎5)

2 ⋅ (𝜎1𝜎3𝜎2𝜎3𝜎4𝜎5𝜎1𝜎3𝜎2𝜎3𝜎3𝜎4𝜎5𝜎1𝜎3𝜎2𝜎3𝜎4𝜎3𝜎5𝜎1𝜎2𝜎3𝜎4𝜎5).

The second factor on the right-hand side contains eight generators 𝜎𝑖 with 𝑖 even; removing them,
one reduces to the braid

(𝜎1⋯𝜎5)
2 ⋅ 𝜎1𝜎3𝜎3𝜎5𝜎1𝜎3𝜎3𝜎3𝜎5𝜎1𝜎3𝜎3𝜎3𝜎5𝜎1𝜎3𝜎5,

whose closure is the transverse representative of𝑇2,23withmaximal self-linking number. (An easy
way to see this is the following: the closure of the braid is a (2, 2ℎ + 1)-cable of the unknot, viewed
as the closure of the 3-braid 𝜎1𝜎2𝜎3; moreover, the braid is positive and has self-linking number
45.)
This proves that ĝ(𝑇2,23) ⩽ 4, and Corollary 3.11 gives the lower bound ĝ(𝑇2,23) ⩾ 4.
The usual crossing-change argument shows that ĝ(𝑇2,21) ⩽ 5. However, g𝑠(𝑇2,21) = 10 is a tri-

angular number, so tweaking the argument of Corollary 3.11, in order to show that ĝ(𝑇2,21) ⩾ 5, it
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SYMPLECTIC HATS 2243

is enough to show that ĝ(𝑇2,21) > 0, or, equivalently, that theminimal hat degree of 𝑇2,21 is strictly
larger than 6.
Suppose the contrary; then there would exist a symplectic rational curve 𝐶′ of degree 6 with

a singularity of type 𝑇2,21. Let 𝑁 be a small neighborhood of the singularity and 𝐶 the result of
replacing the singularity in 𝑁 with the symplectic surface 𝑇2,21 bounds in 𝑁. Since 𝐶 is degree 6
and symplectic isotopy problem is true in degree 6 [74] (see also [75]) we know 𝐶 is isotopic to a
complex curve. Now it is well-known [40, Corollary 7.3.25], that the cover of ℂℙ2 branched over
𝐶 is a K3 surface. But inside of this K3 surface we see an embedding of the cover of the ball 𝑁
branched over the symplectic surface that 𝑇2,21 bounds in 𝑁. This is a plumbing 𝑃 of 20 (−2)-
spheres, [40, section 7.2]. However, 𝑏−2 (𝑃) = 20 > 19 = 𝑏

−
2 (𝑋) and so any hat for 𝑇2,21 has degree

larger than 6. □

Remark 4.7. There are other possible arguments to conclude that ĝ(𝑇2,21) > 0: one can either
use the semigroup obstruction of Borodzik and Livingston [11], or the Levine–Tristram signa-
ture obstruction of Borodzik and Némethi [12]. The argument above is very close to that of [37,
Proposition 7.13].

Remark 4.8. In the proof of Proposition 4.6 we saw that if 𝑘 is of the form 𝑑(𝑑−1)
2

+ 𝑙 for 1 ⩽ 𝑙 ⩽
𝑑 (that is, 𝑘 is larger than the triangular number 𝑑(𝑑−1)

2
and less than or equal to 𝑑(𝑑+1)

2
) then

ĝ(𝑇2,2𝑘+1) ⩾ 𝑑 − 𝑙. We actually have equality for 𝑘 ⩽ 9. However, when 𝑘 = 10 this gives a lower
bound of 0 on the hat genus, and we see from the table above that the actual hat genus of 𝑇2,21 is
5, but for 𝑘 = 11 our lower bound is again accurate.
In fact, either using positivity of intersections (which gives the almost-complex counterpart

of Bézout’s inequalities in the complex setup) or using topological techniques (Heegaard Floer
correction terms or Levine–Tristram signatures), one can show that this lower bound is eventually
not sharp.

It takes somework to find examples where the hat slicing number is larger than 1, but we noted
their existence in Proposition 1.10 which we repeat here for the readers convenience.

Proposition 1.10. Let 𝐾𝑝 be the unique transverse representative of 𝑇𝑝.𝑝+1#𝑇2,3 with maximal
self-linking number which is 𝑝2 − 𝑝 + 1 = 2g(𝑇𝑝,𝑝+1#𝑇2,3) − 1. We have

𝑠̂(𝐾𝑝) = 𝑝 − 1,

for 𝑝 ⩽ 8. Moreover,

𝐺(𝐾𝑝) = (𝑝 − 1, 𝑝 − 2,… , 2, 1, 0, … ),

for 𝑝 ⩽ 4.

Is it always true that 𝑠̂(𝐾𝑝) = 𝑝 − 1? and that 𝐺(𝐾𝑝) = (𝑝 − 1, 𝑝 − 2,… , 2, 1, 0, … )? It is easy to
see, modifying the proof of the above proposition, that

𝐺(𝐾𝑝) ≺ (𝑝 − 1, 𝑝 − 2,… , 2, 1, 0, … )
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2244 ETNYRE and GOLLA

(so that, in particular, 𝑠̂(𝐾𝑝) ⩽ 𝑝 − 1) and that ĝ(𝐾𝑝) = 𝑝 − 1. It is clear however where the proof
of the previous proposition ceases to work: as soon as 𝑁 is large (presumably 𝑁 ⩾ 8 is already
large in this sense), we have too many coefficients 𝑏𝑖 to allow for the same kind of bounds. (See
the proof below for notation.)
Our proof of Proposition 1.10 requires a special case of [36, Proposition 6.2]. We provide an

alternative proof (of the special case) below.

Proposition 4.9. A closed symplectic 4-manifold cannot contain a rational cuspidal curve of self-
intersection strictly larger than 𝑝2 + 9 whose singularities are of type 𝑇𝑝,𝑝+1 and 𝑇2,3.

Proof. Suppose by contradiction that such a curve 𝐶0 exists; in particular, 𝐶0 ⋅ 𝐶0 ⩾ 𝑝2 + 10. Blow
up at the singularity of type𝑇𝑝,𝑝+1 and look at the proper transform𝐶 of𝐶0. The effect of the blow-
up is to smooth the singularity: in fact, as observed at the end of Subsection 2.5, in the blow-up,
𝐶 has a singularity of type 𝑇𝑝,𝑝+1−𝑝 = 𝑇1,𝑝, that is, the unknot. That is, the singularity is resolved
by a single blow-up. Therefore, 𝐶 has a unique singularity left, which is of type 𝑇2,3; moreover,
𝐶 ⋅ 𝐶 = 𝐶0 ⋅ 𝐶0 − 𝑝

2 ⩾ 10. However, this contradicts a result of Ohta and Ono [66], which asserts
that no pseudo-holomorphic rational curve with a simple cusp (that is, a singularity of type 𝑇2,3)
in a closed symplectic 4-manifold has self-intersection larger than 9. (Note that we can make 𝐶
𝐽-holomorphic with respect to some almost complex structure 𝐽 by blowing up the singularity of
𝐶0 and applying results of McDuff [59] to the total transform.) □

We will also need the following lemma.

Lemma 4.10. In ℂℙ2 there is a symplectic sphere 𝐶𝑘𝑝+2 of degree (𝑝 + 2) that has (𝑝 − 𝑘) positive
double points and two singularities of type𝑇𝑝,𝑝+1 and𝑇2,2𝑘+1, for 0 ⩽ 𝑘 ⩽ 𝑝.Wewill denote the 𝑘 = 1
sphere by 𝐶′𝑝.

Proof. From [29, Theorem 1.1, case 8], for each𝑝 there exists a degree-(𝑝 + 2) rational curve𝐶𝑝+2 in
ℂℙ2 with singularities of type 𝑇𝑝,𝑝+1 and 𝑇2,2𝑝+1. For each 0 ⩽ 𝑘 ⩽ 𝑝, the latter can be deformed
to a singularity of type 𝑇2,2𝑘+1 and 𝑝 − 𝑘 ordinary double points. Here by ‘deformed’ we mean
that we can modify the curve in an arbitrarily small neighborhood of the singularity, replacing
it with a curve with the ‘smaller’ singularities described. To see this note that one may go from
𝑇2,2𝑘+1 to 𝑇2,2𝑝+1 by (𝑝 − 𝑘) positive crossing changes. Thus, by Lemma 2.4 there is a symplectic
cobordism in [𝑎, 𝑏] × 𝑆3 from 𝑇2,2𝑘+1 to 𝑇2,2𝑝+1 with (𝑝 − 𝑘) double points. We can now excise a
neighborhood of the singularity of type 𝑇2,2𝑝+1, glue our constructed cobordism in its place using
Lemma 2.2, and finally glue in a new symplectic ball and the cone on 𝑇2,2𝑘+1. The case 𝑘 = 1
gives the claimed symplectic curve 𝐶′𝑝+2. (With more work this construction can be done in the
algebraic category yielding a complex curve with the stated properties.)
An alternate construction of 𝐶𝑝+2 can also be given as follows. Look at the (reducible) curve

𝑉(𝑥𝑝𝑧2 − 𝑦𝑝+1𝑧); it consists of a rational curve 𝑅 with a cusp of type 𝑇𝑝,𝑝+1 and a line 𝐿 with a
tangency of order 𝑝 + 1 to 𝑅 at a smooth point of 𝑅. The link of the tangency point is of type
𝑇2,2𝑝+2. As above we can replace a neighborhood of this point by a pair of pants with a sin-
gular point of type 𝑇2,2𝑝+1 since we can build a symplectic cobordism from 𝑇2,2𝑝+1 to 𝑇2,2𝑝+2
by adding a single positive crossing using Lemma 2.8. The resulting curve 𝐶 has degree 𝑝 + 2
(since deformations do not change the degree), is irreducible (since we connected the two irre-
ducible components with the deformation), and has genus 0 (either by adjunction or by a Euler
characteristic computation). □
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SYMPLECTIC HATS 2245

Proof of Proposition 1.10. We begin by noticing that blowing up ℂℙ2 at each of the (𝑝 − 1) double
points of𝐶′𝑝 fromLemma 4.10 gives an embedded sphere𝐶with two singular points of type𝑇𝑝,𝑝+1
and 𝑇2,3. Removing a neighborhood containing the two singular points shows that ĝ𝑝−1(𝐾𝑝) = 0.
Thus, to see 𝑠̂(𝐾𝑝) = 𝑝 − 1 we merely need to see ĝ𝑝−2(𝐾𝑝) ≠ 0.
For 𝑝 = 1 we are done. For 𝑝 = 2 we note that the genus of 𝐾2 is 2, and since the minimal tri-

angular number larger than 2 is 3, Corollary 3.11 give a lower bound of 1 for ĝ(𝐾2). To see that
ĝ(𝐾2) = 1 we note that resolving the double point of 𝐶′2 gives a genus-1 surface with two sin-
gular points of type 𝑇2,3 and removing a neighborhood containing the singular points gives the
desired surface.
We will now compute whole sequence 𝐺(𝐾𝑝) for 𝑝 = 3 and 4. Then for 𝐾5,… , 𝐾8 we use the

same techniques as for 𝐾4, but we only achieve the computation of the hat slicing number. It is
possible that, pushing the arguments a little bit further, one can compute 𝐺(𝐾𝑝) for some other
small value of 𝑝, but we do not pursue this here.
The knot 𝐾3: We show that 𝐺(𝐾3) = (2, 1, 0, …).
Since the slice genus of𝐾3 is 4 and theminimal triangular number larger than this is 6, we again

have from Corollary 3.11 that ĝ(𝐾) ⩾ 2; by looking at 𝐶′3 and smoothing its two double points, we
create a curve in ℂℙ2 with genus 2 and whose singularities are the cusps of 𝐶′3, that is, one of type
𝑇3,4 and one of type 𝑇2,3. It follows that ĝ(𝐾) ⩽ 2.
To compute ĝ1(𝐾3), look again at 𝐶′3. Blowing up at one of its double points and resolving the

other, we construct a genus-1 hat in ℂℙ2#ℂℙ2, thus proving that ĝ1(𝐾3) ⩽ 1.
We are left to prove that ĝ1(𝐾3) > 0. Suppose by contradiction that 𝐾3 has a genus-0 hat 𝐻 in

punctured 𝑋1; filling (𝑆3, 𝜉std, 𝐾3) with the cone filling, we obtain a symplectic rational cuspidal
curve 𝐶 in the sense of [37]. Suppose that the homology class of 𝐶 is 𝑎ℎ − 𝑏𝑒 ∈ 𝐻2(𝑋1), where ℎ
and 𝑒 are the homology classes of a line and of the exceptional divisor. By positivity of intersec-
tions, either 𝑎 = 0 or 𝑎, 𝑏 ⩾ 0: this follows as in [52, Lemma 4.5], once we observe that the class
ℎ can always be realized by a smooth 𝐽-holomorphic +1-sphere for each 𝐽, since the space of 𝐽-
holomorphic spheres in the class ℎ has positive dimension and is non-empty (because ℎ satisfies
automatic transversality and it is represented by a symplectic sphere) [43] (see also [80, section 2]).
Applying the adjunction formula, we obtain

1
2
(𝑎 − 1)(𝑎 − 2) −

1
2
𝑏(𝑏 − 1) = g(𝑇3,4#𝑇2,3) = 4. (4)

So, 𝑎 ≠ 0 and we have 𝑎, 𝑏 ⩾ 0. Since the only way to express 4 as a difference of triangular
numbers is as 4 = 10 − 6, we obtain that (𝑎, 𝑏) = (6, 4), and in particular 𝐶 ⋅ 𝐶 = 62 − 42 = 20.
However, 𝐶 ⋅ 𝐶 = 20 > 18 = 3 ⋅ 3 + 9, thus contradicting Proposition 4.9.
The knot 𝐾4: We show that 𝐺(𝐾4) = (3, 2, 1, 0, …).
We begin with a lemma that follows from positivity of intersections and Gromov’s work on

𝐽-holomorphic lines and conics in ℂℙ2.

Lemma 4.11. Suppose that 𝐾𝑝 has a hat in 𝑋𝑛 in the homology class 𝑎ℎ −
∑
𝑏𝑖𝑒𝑖 , with

𝑏1 ⩾⋯ ⩾ 𝑏𝑛 ⩾ 0.

Then (assuming 𝑛 is large enough for each inequality to make sense) we have:

𝑎 ⩾ 𝑏1 + 𝑝
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𝑎 ⩾ 𝑏1 + 𝑏2

2𝑎 ⩾ 𝑏1 + 𝑏2 + 𝑏3 + 𝑏4 + 𝑝, and

2𝑎 ⩾ 𝑏1 + 𝑏2 + 𝑏3 + 𝑏4 + 𝑏5.

Proof. Let 𝐶 be the singular curve obtained by gluing the hat with a singular symplectic filling of
𝐾𝑝 with two singular points, one of type 𝑇2,3 and the other of type 𝑇𝑝,𝑝+1. The homology class of
𝐶 is 𝑎ℎ −

∑
𝑏𝑖𝑒𝑖 . (When proving the first two inequalities we assume 𝑛 = 2 for convenience; in

general, the other expectational curves can be ignored.)
Realize the homology classes of 𝑒1 and 𝑒2 by symplectically embedded disjoint spheres 𝐸1, 𝐸2,

and then choose an almost-complex structure 𝐽2 on 𝑋2 that makes 𝐸1, 𝐸2, and 𝐶 simultaneously
𝐽2-holomorphic (this follows as in the case of𝐾3 above). Contracting𝐸1 and𝐸2weget to an almost-
complex ℂℙ2 (with almost-complex structure 𝐽), and by work of Gromov there is a (unique)
𝐽-holomorphic line 𝐿 in ℂℙ2 passing through the contractions of 𝐸1 and 𝐸2, and its proper trans-
form in 𝑋2 is 𝐽2-holomorphic, and thus intersects 𝐶 positively. But the homology class of the
proper transform 𝐿′ of 𝐿 is ℎ − 𝑒1 − 𝑒2, and its intersection with 𝐶 is precisely

0 ⩽ 𝐶 ⋅ 𝐿′ = (𝑎ℎ − 𝑏1𝑒1 − 𝑏2𝑒2) ⋅ (ℎ − 𝑒1 − 𝑒2) = 𝑎 − 𝑏1 − 𝑏2.

To prove that 𝑎 ⩾ 𝑏1 + 𝑝, just consider the line going through the singular point of 𝐶 of multi-
plicity 𝑝 (that is, the point where 𝐶 is a cone over 𝑇𝑝,𝑝+1) and the contraction of the exceptional
divisor corresponding to 𝑒1.
The second part of the statements is proved in analogous way by using conics instead of lines.

Indeed, instead of considering a line, consider the (unique) conic through the contractions of
𝑒1, … , 𝑒4 and the singularity of type 𝑇𝑝,𝑝+1, or through the contractions of 𝑒1, … , 𝑒5, and then apply
positivity of intersections. □

In the following,we find it convenient to re-write the adjunction formula for the homology class
𝑎ℎ − 𝑏1𝑒1 −⋯ − 𝑏𝑁𝑒𝑁 ∈ 𝐻2(𝑋𝑁), represented as a rational cuspidal curve with two singularities
of type 𝑇𝑝,𝑝+1 and 𝑇2,3 as

𝑎2 − 𝑏21 −⋯ − 𝑏2𝑁 = 𝑝
2 − 𝑝 + (3𝑎 − 𝑏1 −⋯ − 𝑏𝑁). (5)

An immediate corollary to Lemma 4.11, since the 𝑏𝑖 are decreasing, is that for each set of distinct
indices 𝑖1, … , 𝑖5:

2𝑎 ⩾ 𝑏𝑖1 +⋯ + 𝑏𝑖5 , 𝑎 ⩾ 𝑏𝑖1 + 𝑏𝑖2 , (6)

where by convenience we let 𝑏𝑁+1 = 𝑝 and 𝑏𝑁+2 = 2. The fact that we can use 𝑏𝑁+2 = 2 in the
bounds can be seen, as in the proof of the lemma, by taking a curve through the singularities of
type 𝑇2,3 that lives in the singular filling of 𝐾𝑝. In particular, 𝑎 ⩾ 𝑝 + 2.
Finally returning to𝐾4, we see, as above, that ĝ(𝐾4) ⩾ 3, since g(𝑇4,5#𝑇2,3) = 7 and the smallest

triangular number larger than 7 is 10; by either blowing up or resolving the double points of 𝐶′4
as we did for 𝐶′3 above, we easily see that ĝ(𝐾4) ⩽ 3, and that in fact ĝ1(𝐾4) ⩽ 2, ĝ2(𝐾4) ⩽ 1, and
ĝ3(𝐾4) = 0.
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Suppose that ĝ2(𝐾4) = 0. Using Equation (6), we can write

3𝑎 − 𝑏1 − 𝑏2 = (𝑎 − 𝑏1) + (𝑎 − 𝑏2) + 𝑎 ⩾ 2𝑝 + 𝑎 ⩾ 3𝑝 + 2 = 14 = 𝑝 + 10,

And thus Equation (5) gives

𝑎2 − 𝑏21 − 𝑏
2
2 > 𝑝 + 10,

which contradicts Proposition 4.9. Since ĝ2(𝐾) > 0, then a fortiori ĝ1(𝐾) > 0.
Suppose that ĝ1(𝐾) = 1; and let 𝑎ℎ − 𝑏𝑒 be the homology class of the corresponding curve 𝐷

in ℂℙ2#ℂℙ2. Applying the adjunction formula, 1
2
(𝑎 − 1)(𝑎 − 2) − 1

2
𝑏(𝑏 − 1) = 8 (note that the

right-hand side is 8 instead of 7 — as it was above — since now the curve has genus 1); by
direct inspection, the only solution to the equation is (𝑎, 𝑏) = (10, 8). However, this contradicts
the Lemma 4.11 above, since 10 = 𝑎  𝑏 + 𝑝 = 8 + 4 = 12. Therefore, ĝ1(𝐾) > 1.
The knot 𝑲𝟓,𝑲𝟔, and 𝑲𝟕: Here, we simply establish that ĝ𝑝−2(𝐾𝑝) ≠ 0 for 5 ⩽ 𝑝 ⩽ 7. We also

have the inequality ĝ𝑝−2(𝐾𝑝) ⩽ 1 from resolving one double point of 𝐶′𝑝 and blowing up the rest
as in the examples above. Thus, we actually prove ĝ𝑝−2(𝐾𝑝) = 1.
Suppose ĝ𝑝−2(𝐾𝑝) = 0, then we produce a rational cuspidal curve 𝐶𝑝 as we did in the 𝐾3 case;

suppose that [𝐶𝑝] = 𝑎ℎ − 𝑏1𝑒1 −⋯ − 𝑏𝑝−2𝑒𝑝−2 ∈ 𝐻2(𝑋𝑝−2).
In light of the Adjunction Formula (5), if we want to apply Proposition 4.9 as in the examples

above, it is enough to prove that (3𝑎 − 𝑏1 −⋯ − 𝑏𝑁) ⩾ 𝑝 + 10. We will do this for 𝑝 = 5, 6, 7, 8
and 𝑁 = 𝑝 − 2,
For convenience of notation, from now on we drop the subscripts.
For 𝑝 = 5: By the Inequalities (6), we obtain

3𝑎 − 𝑏1 − 𝑏2 − 𝑏3 = (𝑎 − 𝑏1) + (𝑎 − 𝑏2) + (𝑎 − 𝑏3) ⩾ 3𝑝 = 𝑝 + 10.

For 𝑝 = 6: By the Inequalities (6), we can write

3𝑎 − 𝑏1 −⋯ − 𝑏4 = 𝑎 + (2𝑎 − 𝑏1 −⋯ − 𝑏4) ⩾ 𝑎 + 𝑝 = 𝑎 + 6,

so if 𝑎 ⩾ 10 we have 3𝑎 − 𝑏1 −⋯ − 𝑏4 ⩾ 𝑝 + 10. There are obviously no solutions to Equation 5
if 𝑎 ⩽ 7, this is also true for 𝑎 = 8. For 𝑎 = 9 the only solution is (𝑎, 𝑏1, … , 𝑏4) = (9, 3, … , 3). This
curve has self-intersection 45.
By looking at the classification of fillings of the corresponding contact structure on the bound-

ary of the neighborhood of the curve as in [37], one sees that this contact structure does not
have any strong fillings. The obstruction reduces to the not being able to embed 4 in ℂℙ2, [37,
Proposition 5.24], where 4 is two conics with an order-4 tangency and a line tangent to both.
This can be seen as follows. Given the hypothesized 𝐶6, blow-up at the two singularities of

the curve, thus obtaining a configuration of three smoothly embedded symplectic spheres: the
proper transform 𝐶 of the curve, of self-intersection 45 − 62 − 22 = 5, and two (−1)–curves (the
exceptional divisors), having tangency orders 6 and 2 with 𝐶. Now blow up four more times at the
intersection point of 𝐶 with the first exceptional divisor: the proper transform of 𝐶 is a+1-sphere,
and the resulting configuration of curves is shown in Figure 2.
We apply McDuff’s theorem [57] to identify the proper transform of 𝐶 with a line in a blow-up

of ℂℙ2. Using Lisca’s arguments [52], the homological embedding of the configuration is forced,
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2248 ETNYRE and GOLLA

F IGURE 2 The configuration associated to the curve of self-intersection 45 with singularities of type 𝑇2,3
(left) and 𝑇6,7 (right), together with the embedding coming fromMcDuff’s theorem. The bold curves represent the
total transform of the curve described in the proof of the case 𝑝 = 6 in Proposition 1.10; the thin curves represent
the exceptional divisors in the embedding.

up to permutation of the indices: the embedding is displayed in Figure 2. Contracting the divisors
𝑒1, 𝑒6, … , 𝑒9, and then 𝑒5, 𝑒4, 𝑒3, 𝑒2 (in this order) reduces our configuration to one containing 4
(the curve in the homology class ℎ − 𝑒1 − 𝑒2 can be disregarded). To this end, it is clear that the
two curves in the homology classes 2ℎ −

∑
𝑒𝑖 blow down to two conics; blowing down 𝑒5 creates

a transverse self-intersection between the two blown-down curves; 𝑒4 passes through the point of
intersection, and blowing it down creates a simple tangency. Contracting 𝑒3 and 𝑒2 in the same
fashion creates a tangency of order 4, which will be the only intersection point of the two conics.
For 𝑝 = 7: From the Inequalities (6), we obtain

3𝑎 − 𝑏1 −⋯ − 𝑏5 = 𝑎 + (2𝑎 − 𝑏1 −⋯ − 𝑏4 − 𝑏5) ⩾ 𝑎.

If 𝑎 ⩾ 17 = 𝑝 + 10, we are done. It is clear there are no solutions to Equation 5 if 𝑎 ⩽ 8. A computer
search now shows that there are no solutions to the adjunction formula for which 𝑎 between 9
and 16 either. □

4.3 Hats in Hirzebruch caps

We now investigate the Hirzebruch cap (𝐻𝑒, 𝜔𝑒) of (𝑆3, 𝜉std) discussed at the beginning of this
section. We call 𝐹𝑒 a ℂℙ1–fiber of 𝐻𝑒, and 𝑆𝑒 and 𝑆′𝑒 the two sections with self-intersection +𝑒
and −𝑒, respectively; with a small abuse of notation, we use the same notation for the homology
classes (either in𝐻2(𝐻𝑒) or in𝐻2(𝐻𝑒, 𝜕𝐻𝑒)).

Proposition 4.12. For each 𝑝 ⩾ 2 and 𝑘 ⩾ 1 the knot 𝑇𝑝,𝑘𝑝+1 admits a genus-0 hat in (𝐻𝑘, 𝜔𝑘), in
the relative homology class 𝐹𝑘 + 𝑝𝑆𝑘 .
Analogously, for each 𝑝 ⩾ 2 and 𝑘 ⩾ 1 the knot 𝑇𝑝,𝑘𝑝−1 admits a genus-0 hat in (𝐻𝑘, 𝜔𝑘), in the

relative homology class 𝑝𝑆𝑘 .

Proof. We start by proving that the knots 𝑇𝑝,𝑘𝑝+1 have genus-0 hats in 𝐻𝑘.
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SYMPLECTIC HATS 2249

F IGURE 3 From left to right: the curve 𝐶 (black) and the line 𝓁 (blue); the curve 𝐶𝑘 (black), the fiber 𝐹𝑘
(blue), and the section 𝑆′

𝑘
(red); the curve 𝐶′ (black) and the line 𝓁′ (blue); the curve 𝐶′

𝑘
(black), the fiber 𝐹𝑘

(blue), and the section 𝑆′
𝑘
(red). In the second and fourth figure, the point at which we blow-up is the intersection

of the red and blue curves, and the curve to be contracted is the proper transform of the blue curve.

Let 𝐶 denote the curve 𝐶 = 𝑉(𝑥𝑝+1 + 𝑦𝑝𝑧) ⊂ ℂℙ2. The curve 𝐶 has a singularity with link
𝑇𝑝,𝑝+1 at the point (0 ∶ 0 ∶ 1), is smooth away from (0 ∶ 0 ∶ 1), and is rational. That is, the com-
plement of a small ball 𝐵4 centered at (0 ∶ 0 ∶ 1) is a disk, which is complex and hence symplectic
with respect to the Kähler structure onℂℙ2. Consider the line 𝓁 = {𝑥 = 0} ⊂ ℂℙ2. It has two inter-
sections with 𝐶: (0 ∶ 0 ∶ 1), with multiplicity 𝑝, and (0 ∶ 1 ∶ 0), with multiplicity 1. By blowing
up at (0 ∶ 1 ∶ 0), we obtain an embedded rational curve𝐶1, the proper transform of𝐶, whose only
singularity is of type 𝑇𝑝,𝑝+1.
Observe that the proper transform of 𝓁1 is a fiber 𝐹1 of 𝑋1 over ℂℙ1, and that it intersects 𝐶1

only at the singular point 𝑥1, and it does so with multiplicity 𝑝. The exceptional divisor 𝐸1 of the
blow-up is a (−1)–section 𝑆′1 of 𝑋1, and it intersects the curve 𝐶1 transversely at one point.
We now proceed by induction; suppose that, as in Figure 3, we have created a curve 𝐶𝑘 in 𝐻𝑘

such that:

∙ 𝐶𝑘 has only one singularity of type 𝑇𝑝,𝑘𝑝+1;
∙ 𝐶𝑘 intersects a fiber 𝐹𝑘 only at the singularity of 𝐶𝑘 with multiplicity 𝑝;
∙ 𝐶𝑘 intersects a section 𝑆′𝑘 transversely at one point.

Now blow up at the intersection of 𝐹𝑘 and 𝑆′𝑘, creating the exceptional divisor 𝐸𝑘, and blow down
the proper transform of 𝐹𝑘. The singularity of 𝐶𝑘+1 at 𝑥𝑘+1 has gained a 𝑝 in its multiplicity
sequence, hence its link is 𝑇𝑝,(𝑘+1)𝑝+1, as desired. The curve 𝐸𝑘 blows down to a fiber 𝐹𝑘+1 of
𝐻𝑘+1, that intersects the image 𝐶𝑘+1 only at its singularity with multiplicity 𝑝. Finally, the proper
transform of 𝑆′

𝑘
is 𝑆′

𝑘+1
, and the contraction happens away from 𝑆′

𝑘+1
, hence 𝑆′

𝑘+1
still intersects

𝐶𝑘+1 transversely at one point.
This proves the existence of the genus-0 hat; we now compute its relative homology class.

Indeed, with respect to the intersection pairing, the two bases (𝐹𝑘, 𝑆𝑘) and (𝑆′𝑘, 𝐹𝑘) of 𝐻2(𝐻𝑘)
are dual bases. Since 𝐶𝑘 intersects 𝐹𝑘 with multiplicity 𝑝 and 𝑆′𝑘 with multiplicity 1, its homology
class is therefore 𝐹𝑘 + 𝑝𝑆𝑘; the corresponding hat, obtained by removing a small ball around the
singularity, is in the relative homology class 𝐹𝑘 + 𝑝𝑆𝑘.
This concludes the proof in the case 𝑇𝑝,𝑘𝑝+1. The proof in the case 𝑇𝑝,𝑘𝑝−1 is very similar, and

we only outline the differences here.
Instead of considering the curve 𝐶, we consider the curve 𝐶′ = 𝑉(𝑥𝑝 + 𝑦𝑝−1𝑧) ⊂ ℂℙ2, and

instead of the line 𝓁 we consider 𝓁′ = {𝑦 = 0}. The line 𝓁′ and the curve 𝐶′ intersect only once,
with multiplicity 𝑝. Blowing up at a generic point of 𝓁′ yields the starting point for the induction,
as above.

 17538424, 2022, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12258, W
iley O

nline Library on [23/08/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



2250 ETNYRE and GOLLA

However, now the fiber 𝐹1 only intersects the curve once, with multiplicity 𝑝. We blow up once
at a generic point of 𝐹1 and blow down the proper transform: therefore, the section 𝑆′1 (that is,
the exceptional divisor) is disjoint from the curve. By doing so, we obtain a curve 𝐶′1 whose only
singularity picks up a new 𝑝 in the multiplicity, and the fiber 𝐹′2 again intersects the curve once
withmultiplicity 𝑝; this allows to run the induction similarly as above. In particular, we get curves
𝐶′
𝑘
whose only singularity is of type 𝑇𝑝,𝑘𝑝−1. Now 𝐶′𝑘 is disjoint from the section 𝑆′

𝑘
and intersects

the fiber 𝐹𝑘 with multiplicity 𝑝, so its homology class (as well as the relative homology class of
the cap) is 𝑝𝑆𝑘. □

Example 4.13. Observe that, by contrast, some of these knots have very large hat genus. We will
focus on the case 𝑘 = 2. Consider the knot 𝑇𝑝,2𝑝−1 first; the first three elements of the semigroup
of the associated singularity are 0, 𝑝, 2𝑝 − 1, hence, in the notation of [8], Γ(3) = 2𝑝 − 1. Using [8,
equation (⋆𝑗), p. 15] with 𝑗 = 1, one obtains 2𝑝 − 1 = Γ(3) ⩽ 𝑑, that is the degree is at least 2𝑝 − 1.
In particular, ĝ(𝑇𝑝,2𝑝−1) ⩾

(𝑑−1)(𝑑−2)
2

− g(𝑇𝑝,2𝑝−1) = (𝑝 − 1)(𝑝 − 2); this actually proves that the
hat of Lemma 3.2 is the one of minimal degree for these knots, proving that, in fact, ĝ(𝑇𝑝,2𝑝−1) =
(𝑝 − 1)(𝑝 − 2).
Wenowexhibit a symplectic curve of degree 2𝑝 − 1 and genus (𝑝 − 1)(𝑝 − 2) inℂℙ2whose only

singularity is a cone over 𝑇𝑝,2𝑝−1. Indeed, the curve 𝑉(𝑥2𝑝−1 + 𝑦𝑝𝑧𝑝−1) has two singularities, one
of which is of type 𝑇𝑝,2𝑝−1. Smoothing the other singularity yields the desired symplectic curve.
Similarly, for the knot 𝑇𝑝,2𝑝+1 we have that the third element of the semigroup is 2𝑝, yield-

ing 𝑑 ⩾ 2𝑝 as above. In particular, ĝ(𝑇𝑝,2𝑝+1) =
(𝑑−1)(𝑑−2)

2
− g(𝑇𝑝,2𝑝+1) ⩾ (𝑝 − 1)2. However, by

smoothing one of the two singularities of the curve 𝑉(𝑥2𝑝+1 + 𝑦𝑝𝑧𝑝+1) we obtain a hat of
degree 2𝑝 + 1, hence showing that ĝ(𝑇𝑝,2𝑝+1) ⩽ 𝑝2. Since there are no triangular numbers strictly
between g(𝑇𝑝,2𝑝+1) + (𝑝 − 1)2 and g(𝑇𝑝,2𝑝+1) + (𝑝 − 1)2, we have ĝ(𝑇𝑝,2𝑝+1) ∈ {(𝑝 − 1)2, 𝑝2}. For
example, for 𝑝 = 2 there is a unicuspidal symplectic curve of degree 4 whose singularity is of type
𝑇2,5; likewise, for 𝑝 = 3 there is a unicuspidal symplectic curve of degree 6 whose singularity is of
type 𝑇3,7.

5 A HIGHER DIMENSIONAL EXAMPLE

We prove here Proposition 1.13, which is a higher dimensional analogue of Lemma 3.2. That is,
we will prove that the link of an isolated complete intersection singularity, which is a contact
submanifold of (𝑆2𝑛−1, 𝜉std), has a hat in ℂℙ𝑛 ⧵ 𝐵𝑛.
The two main ingredients of the theorem are:

∙ the finite determinacy theorem for singularities of complete intersections, asserting that any
singularity is determined by an appropriate truncation of its Taylor series (see [1, 77]);

∙ a deformation {(𝑋𝑡, 0)}|𝑡|⩽1 of an isolated complete intersection singularity (𝑋0, 0) induces a
symplectic cobordism from the link of (𝑋𝜀, 0) to that of (𝑋0, 0).

Let us be more precise on how a deformation gives rise to a symplectic cobordism.
Let Δ be the unit disk in ℂ centered at 0 and Δ∗ = Δ ⧵ {0}. A deformation of the singularity

in ℂ𝑛 defined by the equations 𝐺1 =⋯ = 𝐺𝑛−𝑑 = 0 is a 1-parameter family {𝐺𝑡1, … , 𝐺
𝑡
𝑛−𝑑

}𝑡∈Δ of
power series such that 𝐺0

𝑘
= 𝐺𝑘. Suppose that the germs {𝐺𝑡1 = ⋯ = 𝐺𝑡

𝑛−𝑑
= 0}𝑡∈Δ∗ have topologi-

cally isomorphic singularities at 𝑂 ∈ ℂ𝑛 and that the corresponding subvarieties are all complete
intersections. In this case, let 𝑋𝑡 denote (the germ at 𝑂 ∈ ℂ𝑛 of) {𝐺𝑡1 =⋯ = 𝐺𝑡

𝑛−𝑑
= 0}; with a
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SYMPLECTIC HATS 2251

small abuse of notation, we will also call 𝑋𝑡 the singularity of 𝑋𝑡 at the origin. We say that 𝑋𝑡 for
any 𝑡 ≠ 0 is the generic singularity in the family {𝑋𝑡}, and that 𝑋0 is the central singularity.
Let 𝜀 > 0 be a real number such that 𝑋0 intersects 𝑆2𝑛−1𝜀 ⊂ ℂ𝑛 transversely. We choose 𝜀 suffi-

ciently small so that this intersection is the link of 𝑋0. For 𝑡 sufficiently small, 𝑋𝑡, too, intersects
𝑆2𝑛−1𝜀 transversely. Now choose 𝜂 sufficiently small such that 𝑋𝑡 intersects 𝑆2𝑛−1𝜂 transversely in
the link of 𝑋𝑡. Then 𝑋𝑡 ∩ (𝐷2𝑛𝜀 ⧵ 𝐷2𝑛𝜂 ) is a symplectic cobordism from the link of 𝑋𝑡 to the link
of 𝑋0.
We split off an easy lemma. We put coordinates {(𝑧0 ∶⋯ ∶ 𝑧𝑛)} on ℂℙ𝑛.

Lemma 5.1. Let 1 ⩽ 𝑑 < 𝑛 and 𝑝 be positive integers, and 𝐴 = (𝑎𝑖,𝑗)1⩽𝑖⩽𝑛−𝑑,1⩽𝑗⩽𝑛 be a complex
matrix of size (𝑛 − 𝑑) × 𝑛 whose (𝑛 − 𝑑) × (𝑛 − 𝑑) minors are all non-zero. Then the equa-
tions

∑𝑛
𝑗=1 𝑎1,𝑗𝑧

𝑝
𝑗
=⋯ =

∑𝑛
𝑗=1 𝑎𝑛−𝑑,𝑗𝑧

𝑝
𝑗
= 0 define a complete intersection𝑋𝐴,𝑝 ⊂ ℂℙ𝑛 that has an

isolated singularity at (1 ∶ 0 ∶⋯ ∶ 0) and is non-singular elsewhere. In particular, the link of its
singularity has a projective hat.

Note that none of the equations above involves 𝑧0.

Proof. We compute the Jacobian of the map ℂ𝑛+1 → ℂ𝑛−𝑑 sending

(𝑧0, … , 𝑧𝑛) ↦

(
𝑛∑
𝑗=1

𝑎1,𝑗𝑧
𝑝
𝑗
, … ,

𝑛∑
𝑗=1

𝑎𝑛−𝑑,𝑗𝑧
𝑝
𝑗

)
.

This is simply given by 𝐵(𝑧0, … , 𝑧𝑛) = (𝑏𝑖,𝑗(𝑧0, … , 𝑧𝑛))1⩽𝑖⩽𝑛−𝑑,0⩽𝑗⩽𝑛, where

𝑏𝑖,𝑗(𝑧0, … , 𝑧𝑛) =

{
0 if 𝑗 = 0

𝑝𝑎𝑖,𝑗𝑧
𝑝−1
𝑗

if 𝑗 > 0.

To check that 𝑋𝐴,𝑝 is a complete intersection whose unique singularity is at (1 ∶ 0 ∶ ⋯ ∶ 0), it is
enough to show that 𝐵(𝑧0, … , 𝑧𝑛) has maximal rank along 𝑋𝐴,𝑝, except when 𝑧1 = ⋯ = 𝑧𝑛 = 0.
This is easy to see, since the matrix 𝐵(𝑧0, … , 𝑧𝑛) is obtained from 𝐴 by adding a column and

multiplying each column by 𝑝𝑧𝑝−1
𝑗

, so there is a non-vanishing minor as soon as at least 𝑛 − 𝑑
among 𝑧1, … , 𝑧𝑛 are non-vanishing. On the other hand, if at least 𝑑 + 1 among them are vanishing,
then all of them vanish, since the equations defining 𝑋𝐴,𝑝 are linear in 𝑧

𝑝
1 , … , 𝑧

𝑝
𝑛 and 𝐴 has all

non-zero maximal minors.
The complement of a small ball around (1 ∶ 0 ∶ ⋯ ∶ 0) gives the desired projective hat. □

Proof of Proposition 1.13. Suppose (𝑌2𝑑−1, 𝜉) ⊂ (𝑆2𝑛−1, 𝜉std) is the link of an isolated complete
intersection singularity (𝑋, 0) in ℂ𝑛, defined by analytic functions 𝑓1, … , 𝑓𝑛−𝑑. By the finite deter-
minacy theorem, there exists a constant 𝐶 such that (𝑋, 0) is isotopic to the singularity defined by
the truncations of the Taylor series of 𝑓1, … , 𝑓𝑛−𝑑 at degree 𝐶.
Choose 𝑝 = 𝐶 + 1 and 𝐴 = (𝑎𝑖,𝑗) to be a complex (𝑛 − 𝑑) × 𝑛 matrix with non-zero maximal

minors. For 𝑖 = 1, … , 𝑛 − 𝑑 let

g𝑖(𝑧1, … , 𝑧𝑛) = 𝑎𝑖,1𝑧
𝑝
1 +⋯ + 𝑎𝑖,𝑛𝑧

𝑝
𝑛
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2252 ETNYRE and GOLLA

and, for a complex number 𝑡,

𝐹𝑡𝑖 = g𝑖 + 𝑡𝑓𝑖.

In particular, note that the truncation of 𝐹𝑡
𝑖
at degree 𝐶 is 𝑡𝑓𝑖 . It follows that, when 𝑡 ≠ 0, the

singularity of {𝐹𝑡1 = ⋯ = 𝐹𝑡
𝑛−𝑑

= 0} at the origin is isomorphic to (𝑋, 0). On the other hand, when
𝑡 = 0, then we have the complete intersection 𝑋𝐴,𝑝 of Lemma 5.1, and the link (𝑌𝐴,𝑝, 𝜉𝐴,𝑝) of its
singularity has a projective hat.
The family {{𝐹𝑡1 =⋯ = 𝐹𝑡

𝑛−𝑑
= 0}}𝑡 describes a deformation of {g1 = ⋯ = g𝑛−𝑑 = 0}, so there

exists a symplectic cobordism in 𝑆2𝑛−1 × [0, 1] from (𝑌, 𝜉) to (𝑌𝐴,𝑝, 𝜉𝐴,𝑝), and gluing this to the
projective hat of (𝑌𝐴,𝑝, 𝜉𝐴,𝑝) we conclude the proof. □

6 APPLICATIONS OF HATS TO FILLINGS

In this section, wewill construct hats for some quasipositive knots, andwewill see how these hats
can be used to produce caps for their branched covers. In turn, we will use these caps to restrict
the topology of exact fillings of these branched covers.
Recall that given a transverse link 𝐾 in a contact manifold (𝑌, 𝜉) there is a natural contact

structure 𝜉𝐾 induced on any cover of 𝑌 branched over 𝐾 obtained by pulling back 𝜉 on the com-
plement of 𝐾 and extending over the branched locus in a natural way [41]. For a transverse knot
𝐾 in (𝑆3, 𝜉std) we denote by Σ𝑟(𝐾) the contact manifold obtained by 𝑟-fold cyclic branched cover
of (𝑆3, 𝜉std) branched over 𝐾. When 𝑟 = 2 we will leave off the subscript and just write Σ(𝐾).
In what follows, we will only be dealing with quasipositive knot types. For each such knot type

𝐾 we will choose a specific quasipositive braid, which gives a specific transverse representative
𝑇 smoothly isotopic to 𝐾. This choice endows the branched cover Σ𝑟(𝐾) with a contact structure
obtained as the 𝑟-fold cyclic cover of (𝑆3, 𝜉std) branched over 𝑇. By an abuse of notation, we will
denote it with 𝜉𝐾,𝑟 instead of 𝜉𝑇,𝑟; as above, if 𝑟 = 2 we drop it from the notation and simply
write 𝜉𝐾 .

Remark 6.1. We do not have examples for which our statements are sensitive to the choice of the
transverse isotopy class 𝑇 in the smooth knot type 𝐾. More generally, we are not aware of any
examples in the literature of two transverse knots 𝑇, 𝑇′ with the same classical invariants, and
such that 𝜉𝑇 is not contactomorphic to 𝜉𝑇′ .
However, we do not see any reason why the statement should hold for arbitrary transverse

representatives. More precisely, our proof of Theorem 1.15 will break down if, in one of the knot
types 𝐾 of the statement, one can find another transverse representative 𝑇′ with 𝑑(𝑇′) > 6 and
𝜉𝑇′ ≠ 𝜉𝑇 , where 𝑇 is the transverse knot of topological type 𝐾 considered in Theorem 1.15. The
proof of Theorem 1.18 would also break down for similar phenomena.

In this section, we prove Theorems 1.15 and 1.18 which we recall here for the reader’s conve-
nience.

Theorem 1.15. Let 𝐾 ⊂ (𝑆3, 𝜉std) be one of the transverse knots in Table 1. Let (𝑊,𝜔) be an exact
symplectic filling of (Σ(𝐾), 𝜉𝐾), with intersection form 𝑄𝑊

(1) If 𝐾 is of type 12𝑛242, then𝑊 is spin,𝐻1(𝑊) = 0, and 𝑄𝑊 = 𝐸8 ⊕ 𝐻.
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SYMPLECTIC HATS 2253

(2) If 𝐾 is of type 10124, 12𝑛292, or 12𝑛473, then𝑊 is spin,𝐻1(𝑊) = 0, and 𝑄𝑊 = 𝐸8.
(3) If 𝐾 is of type𝑚(12𝑛121), then𝑊 is spin,𝐻1(𝑊) = 0, and 𝑄𝑊 = 𝐻.
(4) If 𝐾 is of type𝑚(12𝑛318), then𝑊 is an integral homology ball.
(5) If 𝐾 is of any of the following topological types, then𝑊 is a rational homology ball:

𝑚(820), 𝑚(946), 10140, 𝑚(10155), 𝑚(11𝑛50),

𝑚(11𝑛132), 11𝑛139, 𝑚(11𝑛172), 𝑚(12𝑛145), 𝑚(12𝑛393),

12𝑛582, 12𝑛708, 𝑚(12𝑛721), 𝑚(12𝑛768), 12𝑛838.

Theorem 1.18. Let (Σ𝑟(𝐾), 𝜉𝐾,𝑟) denote the 𝑟-fold cyclic cover of (𝑆3, 𝜉std), branched over the
transverse knot 𝐾 of Table 1. Let (𝑊,𝜔) be an exact filling of (Σ𝑟(𝐾), 𝜉𝐾,𝑟).

(1) If 𝐾 is a quasipositive braid closure of knot type𝑚(820),𝑚(946), 10140,𝑚(10155),𝑚(11𝑛50), and
𝑟 = 3, 4, then𝑊 is a spin rational homology ball.

(2) If 𝐾 is a quasipositive braid closure of knot type 𝑚(11𝑛132), 11𝑛139, 𝑚(11𝑛172), 𝑚(12𝑛318),
12𝑛708,𝑚(12𝑛838), and 𝑟 = 3, then𝑊 is a spin rational homology ball.

(3) If 𝐾 is a quasipositive braid closure of knot type 821 and 𝑟 = 3, 4, then𝑊 is spin and 𝑏2(𝑊) =
2(𝑟 − 1).

6.1 The pretzel knot 𝑷(−𝟐, 𝟑, 𝟕)

In this section, we prove Part (1) of Theorem 1.15 and so we focus on𝐾 = 𝑃(−2, 3, 7) = 12𝑛242; this
is a quasipositive knot with determinant 1, whose branched double cover is Σ(𝐾) = −Σ(2, 3, 7)
[60], that is, a Brieskorn sphere with its orientation reversed. This case will be paradigmatic for
the other examples considered later.
For convenience we will denote the standard generators of the braid group 𝐵3 by 𝑥 and 𝑦. The

knot 𝐾 is represented by the braid word 𝑥𝑦2𝑥2𝑦7 ∈ 𝐵3. We also recall the notation 𝛽 ↑ 𝛽′ intro-
duced just before Lemma 3.7 to indicate the braid 𝛽′ is obtained from 𝛽 by adding the square of a
generator.

Lemma 6.2. The knot 𝐾 has a genus-5, degree-6 hat𝐻 in ℂℙ2.

Proof. We are going to exhibit a genus-5 symplectic cobordism Σ from 𝐾 to 𝑇3,11. Since 𝑇3,11 is the
only cusp of the rational curve 𝑉((𝑧𝑦 − 𝑥2)3 − 𝑥𝑦5) [30], it has a disk hat of genus 0. Gluing the
cobordism and the latter hat, we obtain the desired result.
The symplectic cobordism Σ is obtained by performing a sequence of positive crossing changes,

isotopies, and conjugations. The starting point will be the braid 𝑥𝑦2𝑥2𝑦7, whose closure is a
transverse representative of 𝐾 with self-linking number 9, and the goal will be the braid (𝑥𝑦)11,
whose closure is the unique transverse representative of 𝑇3,11 with self-linking number 19. Recall
that in the 3-braid group, we have the relation 𝑥𝑦𝑥 = 𝑦𝑥𝑦, and that the closures of braids are
insensitive to conjugation (that we are going to denote with ∼). We are also going to denote
with Δ2 = (𝑥𝑦)3 = (𝑥𝑦𝑥)2 the full twist, which lies in the center of 𝐵3 (in fact, it generates it).
To ease readability, we also underline the point of the braid word where we have introduced a
new crossing.
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2254 ETNYRE and GOLLA

We start by observing the following fact: given any word𝑤 ∈ 𝐵3, with two crossing changes we
can turn 𝑤0 = 𝑤𝑥𝑦2𝑛+1 into 𝑤1 = 𝑤Δ2𝑥𝑦2𝑛−1. In fact,

𝑤0 = 𝑤𝑥𝑦
2𝑛+1 ↑ 𝑤𝑥𝑦𝑥𝑥𝑦2𝑛 ↑ 𝑤𝑥𝑦𝑥𝑥𝑦𝑥𝑥𝑦2𝑛−1 = 𝑤(𝑥𝑦𝑥)2𝑥𝑦2𝑛−1 = 𝑤Δ2𝑥𝑦2𝑛−1 = 𝑤1.

We denote such an operation by 𝑤0 ↑↑ 𝑤1.
The sequence goes as follows:

𝑥𝑦2𝑥2𝑦7 ↑ 𝑥𝑦2𝑥𝑦2𝑥𝑦7 = 𝑥𝑦(𝑦𝑥𝑦)𝑦𝑥𝑦7 ∼ 𝑦𝑥𝑦𝑦𝑥𝑦𝑦𝑥𝑦𝑦5 = 𝑥𝑦𝑥𝑦𝑥𝑦𝑥𝑦𝑥𝑦5

=Δ2𝑥𝑦𝑥𝑦5 ↑↑ Δ2𝑥𝑦Δ2𝑥𝑦3 ↑↑ Δ4𝑥𝑦Δ2𝑥𝑦 = Δ6𝑥𝑦𝑥𝑦 = (𝑥𝑦)11. □

We now use this hat for 𝐾 to build a nice symplectic cap for Σ(𝐾).

Proposition 6.3. There is a symplectic cap (𝐶, 𝜔𝐶) for Σ(𝐾) that embeds in a symplectic K3 surface.
Moreover,𝐻1(𝐶) = 0, the intersection form of 𝐶 is 𝐸8 ⊕ 2𝐻, and the canonical divisor 𝐾𝐶 vanishes.

Proof. Since𝐾 is quasipositive, it bounds a symplectic surface𝐹 of genus equal to the quasipositive
genus of 𝐾, which in turn can be computed from the self-linking number of 𝐾 by the adjunction
formula in Lemma 2.13, see also [10].
In this case, g(𝐾) = g𝑠(𝐾) = 5, hence g(𝐹) = 5. Glue𝐹 and the hat𝐻 from Lemma 6.2 together:

this yields a smooth symplectic curve 𝐷 ⊂ ℂℙ2 of the same degree as the degree of the hat; that
is, 𝐷 has degree 6 and genus 10.
Since the symplectic isotopy problem is true in degree 6 [74] (see also [75]), 𝐷 is isotopic to a

complex curve of degree 6, and the branched double cover of ℂℙ2 branched over a smooth sextic
is a K3 surface (see, for example, [40, Corollary 7.3.25]).
Let (𝐶, 𝜔𝐶) be the double cover of ℂℙ2 ⧵ 𝐵4 branched over 𝐻 and Σ(𝐹) be the double cover

of 𝐵4 branched over 𝐹. We note that (𝑆3, 𝜉std) in ℂℙ2 has a neighborhood that looks like a piece
[𝑎, 𝑏] × 𝑆3 of the symplectization of (𝑆3, 𝜉std) and 𝐷 intersects this neighborhood in [𝑎, 𝑏] × 𝐾.
The branched covering construction of contact and symplectic manifolds shows that a piece of
the symplectization of Σ(𝐾) lies above [𝑎, 𝑏] × 𝑆3 in the cover and so (𝐶, 𝜔𝐶) is a cap for Σ𝐾 (and
Σ(𝐹) is a filling).
Onemay easily compute 𝑏2(Σ(𝐹)) = 10 (see, for instance, [40, section 7]); moreover, since Σ(𝐾)

is an integral homology sphere, the intersection forms on 𝐻2(Σ(𝐹)) and 𝐻2(𝐶) are both unimod-
ular. The intersection form on K3 is 2𝐸8 ⊕ 3𝐻, and thus 𝑏2(𝑋) = 𝑏2(K3) − 𝑏2(Σ(𝐹)) = 12 and
𝑏+2 (𝑋) ⩽ 3. The only unimodular intersection form of rank 12 and 𝑏+2 ⩽ 3 is 𝐸8 + 2𝐻.
Finally, the canonical class 𝐾𝑋 is the restriction of 𝐾K3 = 0 to 𝑋, hence it vanishes, too. □

With the Calabi–Yau cap (𝐶, 𝜔𝐶) in hand, Theorem 1.15 Part (1) will follow from the following
results.

Proposition 6.4. Suppose that a contact rational homology 3-sphere (𝑌, 𝜉) has a Calabi–Yau cap
(𝐶, 𝜔𝐶)with 𝑏+2 (𝐶) ⩾ 2 and 𝑏2(𝐶) ⩾ 7. Then all exact symplectic fillings embed in a K3 surface, have
finite first homology, and have the same Betti numbers and signature. Moreover, if 𝑌 is an integral
homology sphere, then every filling has trivial first homology.

The proof is essentially the proof of [76, Proposition 3.1], cf. [50, Theorem 1.3].
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SYMPLECTIC HATS 2255

Proof. Suppose (𝑊,𝜔𝑊) is an exact symplectic filling of (𝑌, 𝜉), and let

(𝑋, 𝜔) = (𝐶, 𝜔𝐶) ∪(𝑌,𝜉) (𝑊, 𝜔𝑊).

Let also 𝐾𝑋 denote the canonical class of 𝑋.
Since𝑊 is an exact filling and 𝐶 is a Calabi–Yau cap, it follows that

𝐾𝑋 ⋅ [𝜔] = 𝐾𝑋|𝑊 ⋅ [𝜔𝑊] + 𝐾𝑋|𝐶 ⋅ [𝜔𝐶] = 𝐾𝑋|𝑊 ⋅ 0 + 0 ⋅ [𝜔𝐶] = 0.

The facts that 𝑏+2 (𝑋) ⩾ 2 and 𝐾𝑋 ⋅ [𝜔𝑋] = 0 together imply that the only Seiberg–Witten basic
classes for 𝑋 are ±𝐾𝑋 [78]. Since 𝐾𝑋 is represented by a symplectic embedded surface [79] and
𝐾𝑋 ⋅ [𝜔𝑋] = 0, in fact 𝐾𝑋 = 0, therefore 𝑋 is symplectically minimal [31].
Hence, the symplectic Kodaira dimension of𝑋 is 0 [48], and therefore𝑋 has the rational homol-

ogy of either a K3 surface, or of an Enriques surface, or of a 𝑇2-bundle over 𝑇2 [4, 47, 61]. However,
𝐶 cannot embed in a torus bundle 𝑇 over the torus, since 𝑏2(𝐶) ⩾ 7 > 6 ⩾ 𝑏2(𝑇). Neither can 𝐶
embed in an Enriques surface 𝐸: indeed, 𝑏+2 (𝐶) ⩾ 2 > 1 = 𝑏

+
2 (𝐸).

Hence, 𝑋 is a rational homology K3, that is, |𝐻1(𝑋)| = 𝑛 < ∞. Consider the kernel of the
Abelianization map 𝜋1(𝑋) → 𝐻1(𝑋), and the cover (𝑋, 𝜔) associated to its kernel. As signature
is multiplicative under finite covers we see 𝜎(𝑋) = −16𝑛, but since 𝑋 is also a compact symplec-
tic manifold of Kodaira dimension 0, its signature must be 0,−8, or−16. Thus, 𝑛 = 1 and we have
𝐻1(𝑋) = 0.
Let us look at the Mayer–Vietoris long exact sequence for 𝑋 = 𝑊 ∪𝑌 𝐶:

𝐻1(𝑌) → 𝐻1(𝐶) ⊕ 𝐻1(𝑊) → 𝐻1(𝑋) = 0.

Since 𝑌 is a rational homology sphere, 𝐻1(𝑊) is finite. If 𝑌 is an integral homology sphere,
𝐻1(𝑊) = 0.
Finally, since 𝑌 is a rational homology sphere, the intersection forms of𝑊 and of 𝐶 are non-

degenerate, and their direct sum embeds as a full-rank sub-lattice of 𝐻2(𝑋) ≅ 2𝐸8 ⊕ 3𝐻. The
statements on 𝑏2(𝑊) and 𝜎(𝑊) readily follow; an Euler characteristics argument implies that
𝑏3(𝑊) is invariant, too. □

Proof of Theorem 1.15 Part (1). The cap (𝐶, 𝜔𝐶) of Proposition 6.3 is a Calabi–Yau cap, and it has
𝑏+2 (𝐶) = 2 and 𝑏2(𝐶) = 12 ⩾ 7. Therefore, by Proposition 6.4, all exact fillings of 𝜉 are spin and
have the same Betti numbers and signature. In the proof of Proposition 6.3, we saw a filling with
𝑏2 = 10 and 𝜎 = −8.
Since −Σ(2, 3, 7) is an integral homology sphere, the intersection form of any filling is

unimodular; since the filling is spin, it is also even. In particular, the intersection form is
𝐸8 ⊕ 𝐻. □

We now establish Remark 1.16 by constructing infinitely many symplectic fillings of−Σ(2, 3, 7).
We begin by constructing one such filling.

Lemma 6.5. The contact structure 𝜉 is filled by the plumbing of Lagrangian spheres according to
the graph 𝐸10 in Figure 4.
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2256 ETNYRE and GOLLA

F IGURE 4 The graph 𝐸10.

F IGURE 5 Two contact surgery diagrams; the thicker components correspond to contact +1–surgery, the
others to Legendrian surgery. The arrows indicate the handleslides described in the proof of Lemma 6.5.

Note that, in fact, 𝐸10, as a lattice, is isomorphic to 𝐸8 ⊕ 𝐻, by classification of indefinite
unimodular forms (or by direct inspection).

Proof (sketch). By lifting the monodromy of the disk open book for (𝑆3, 𝜉std), adapted to the
3-braid 𝑥𝑦2𝑥2𝑦7, and converting to a contact surgery diagram as in [45], we obtain the diagram
on the left of Figure 5. Here (+1)–contact surgery is performed on the darker knots and (−1)–
contact surgery is performed on the other knots. Since the darker knots are unlinked unknots,
doing (+1)–surgery along them can also be viewed as attaching a 1-handle.
By successively handlesliding [16] the topmost unknot on the next one (as indicated by the long

arrow on the top left), and performing the three handleslides indicated by the other three arrows,
we obtain the diagram on the right.
We can now cancel the two bottommost knots, and perform a last handleslide as indicated

by the arrow. The remaining contact (+1)-framed knot cancels with the remaining ‘big’ (−1)-
framed knot, leaving with the diagram comprising ten tb = −1 unknots that link according to the
𝐸10 graph.
This exhibits 𝜉 as the boundary of the 𝐸10 plumbing of Lagrangian spheres, as required. □

Proof of Remark 1.16. By Lemma 6.5, 𝜉 is the boundary of the plumbing (𝑃, 𝜔𝑃) of Lagrangian
spheres, plumbed according to the 𝐸10 graph.We can deform the symplectic structure𝜔𝑃 to make
all spheres symplectic [39].
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SYMPLECTIC HATS 2257

Since the𝐸10 plumbing is not negative definite and its boundary is a homology sphere, it admits
a family {𝑁𝜀} of open neighborhoods with concave boundary [49].
In particular, there is a symplectic structure on Σ(𝐾) × [0, 1] such that both boundary compo-

nents are convex, and this is obtained by removing 𝑁𝜀 from 𝑃 for some sufficiently small 𝜀. We
can now cap off the component Σ(𝐾) × {0} with caps with arbitrarily large 𝑏+2 [24]. □

6.2 Quasipositive knots with few crossings

In this section, we will prove the other cases of Theorem 1.15 using the same technique as in the
previous subsection. In particular, we begin by finding quasipositive knots with degree-6 hats.

Lemma 6.6. A quasipositive representative of each of the following knots has a degree-6 hat:
𝑚(820),𝑚(946), 10124, 10140,𝑚(10155),𝑚(11𝑛50),𝑚(11𝑛132), 11𝑛139,𝑚(11𝑛172),𝑚(12𝑛121),
𝑚(12𝑛145), 12𝑛292,𝑚(12𝑛318),𝑚(12𝑛393), 12𝑛473, 12𝑛582, 12𝑛708,𝑚(12𝑛721),𝑚(12𝑛768), 12𝑛838.

Wewill prove the statement only for𝑚(820),𝑚(946), 10140, and𝑚(12𝑛145), as a sample. The rest
of the proof can be found in Appendix A.
In the following, we denote with 𝑥, 𝑦 the generators of 𝐵3 and with 𝑥, 𝑦, 𝑧 the generators of 𝐵4.

In what follows, we use ↑𝑘 to denote the insertion of 𝑘 pairs of crossings and we underline the
new generators (or the generator that has been switched from negative to positive as well as the
original negative crossing, or the negative full twist that we simplify), ∼ to denote conjugation,
and ∼𝐷 to denote Markov destabilization. We also use Δ2 to denote the Garside element in 𝐵3.

Proof. The knots are all quasipositive according to KnotInfo [54]. We argue case by case.
𝐦(𝟖𝟐𝟎): This is the closure of the 3-braid 𝑥3𝑦𝑥−3𝑦. We can write

𝑥3𝑦𝑥−3𝑦 ↑2 𝑥
3𝑦𝑥𝑦 = 𝑥4𝑦𝑥 ∼𝐷= 𝑥

5,

and 𝑇2,5 is the singularity at the point (0 ∶ 0 ∶ 1) of the degree-5 curve 𝑉(𝑥2𝑧3 − 𝑦5), hence it has
a degree-5 (and hence a degree-6 as well) hat.
𝐦(𝟗𝟒𝟔): This is the closure of the 4-braid 𝑥𝑦−1𝑥𝑦−1𝑧𝑦𝑥−1𝑦𝑧. We can write

𝑥𝑦−1𝑥𝑦−1𝑧𝑦𝑥−1𝑦𝑧 ↑ 𝑥𝑦𝑥𝑦−1𝑧𝑦𝑥−1𝑦𝑧 = 𝑦𝑥𝑧𝑦𝑥−1𝑦𝑧 = 𝑦𝑧𝑥𝑦𝑥−1𝑦𝑧

= 𝑦𝑧𝑦−1𝑥𝑦2𝑧 = 𝑧−1𝑦𝑧𝑥𝑦2𝑧 ∼ 𝑦𝑧𝑥𝑦2 ∼ 𝑧𝑥𝑦3 ∼ 𝑥3𝑦 ∼𝐷 𝑥
3

The closure of the latter is 𝑇2,3 with its maximal self-linking number, hence we have produced a
degree-3 (and hence degree-6) hat.
𝟏𝟎𝟏𝟒𝟎: This is the closure of the 4-braid 𝑥−3𝑦𝑥3𝑦𝑧𝑦−1𝑧. We have

𝑥−3𝑦𝑥3𝑦𝑧𝑦−1𝑧 ↑3 𝑥𝑦𝑥
3𝑦(𝑧𝑦𝑧) = 𝑥𝑦𝑥3𝑦2𝑧𝑦 ∼𝐷 (𝑥𝑦𝑥)𝑥

2𝑦3

∼ (𝑥𝑦𝑥)𝑦5 = 𝑦𝑥𝑦6 ∼𝐷= 𝑦
7,

and the latter is the singularity of the degree-4 curve 𝑉((𝑧𝑦 − 𝑥2)2 − 𝑥𝑦3) at (0 ∶ 0 ∶ 1) [30].
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2258 ETNYRE and GOLLA

𝐦(𝟏𝟐𝐧𝟑𝟏𝟖): This knot is the closure of the 4-braid 𝑥𝑦𝑧𝑥−1𝑧𝑦−2𝑥𝑦−1𝑧𝑦𝑥𝑦−1. We have:

𝑥𝑦𝑧𝑥−1𝑧𝑦−2𝑥𝑦−1𝑧𝑦𝑥𝑦−1 ↑3 𝑥𝑦𝑧𝑥
−1𝑧𝑥𝑦𝑧𝑦𝑥𝑦 = 𝑥𝑦𝑧2𝑦𝑧𝑦𝑥𝑦 ∼ 𝑦𝑧2𝑦𝑧𝑦𝑥𝑦𝑥

= 𝑦𝑧2𝑦𝑧𝑦2𝑥𝑦 ∼𝐷 𝑦𝑧
2𝑦𝑧𝑦3 ↑ 𝑦𝑧𝑦2𝑧𝑦𝑧𝑦3 = Δ2𝑧𝑦3 ∼ Δ2𝑦𝑧𝑦2 = (𝑦𝑧)5,

hence we have produced a cobordism from 𝑚(12𝑛318) to 𝑇3,5, and 𝑇3,5 is the singularity at the
point (1 ∶ 0 ∶ 0) of the degree-5 curve 𝑉(𝑥2𝑧3 − 𝑦5). □

With care one could determine the genus of the hats constructed in the proof of Lemma 6.6,
but note that it is not necessary. If 𝐾 is any knot in the lemma it is quasipositive and so bounds a
symplectic surface in 𝐵4. That together with the hat 𝐻 for 𝐾 will give a symplectic surface 𝐷 in
ℂℙ2 of degree 6, which has to have genus 10 by the Adjunction Equality. So, the genus of the hat
can be computed from the genus of the symplectic surface 𝐾 bounds in 𝐵4 (or, equivalently, one
can compute the self-linking of 𝐾 and use the equation in Lemma 2.13).
KnotInfo [54] tells us that the 4-ball genus of

𝑚(820),𝑚(946), 10140,𝑚(10155),𝑚(11𝑛50),𝑚(11𝑛132), 11𝑛139,𝑚(11𝑛172),

𝑚(12𝑛145),𝑚(12𝑛393), 12𝑛582, 12𝑛708,𝑚(12𝑛721),𝑚(12𝑛768), and 12𝑛838

is 0, the 4-ball genus of

10124, 12𝑛292, and 12𝑛473

is 4, and𝑚(12𝑛121) has 4-ball genus 1.
Recall that the determinant of a knot is the order of the first homology group of its branched

double cover; therefore, a knot has determinant 1 if and only if its branched double cover is
a homology sphere. In particular, the intersection form of any smooth 4-manifold bounding
the branched double cover is unimodular, if the knot has determinant 1. The above knots with
determinant 1 are

10124 = 𝑇3,5,𝑚(12𝑛121), 12𝑛292,𝑚(12𝑛318), and 12𝑛473.

Proof of Theorem 1.15, Items (2)–(5). Each of these knots has a Calabi–Yau cap, obtained by taking
the double cover of ℂℙ2 ⧵ 𝐵4, branched over the hat of Lemma 6.6.
Knots in Items (3)–(4) have determinant 1, therefore the intersection form of their fillings is

unimodular, and their rank is determined by the quasipositive genus of the knot. For knots in
Item (2), the cover of 𝐵4 branched over the quasipositive surface the knot bounds has 𝑏2 = 8.
Thus, the cap has second Betti number 14 and also must have signature−8. Similarly for the knot
in Item (3), the cap has second Betti number 20 and signature −16; and for the knot in Item (4)
the cap has second Betti number 22 and signature −16. Thus, they all satisfy the assumptions of
Proposition 6.4. The statement for these knots follows immediately.
For knots in Item (5), the cap has second Betti number 22 and signature−16, so it is a full-rank

sublattice of the intersection lattice of a K3. It follows that the complement of the cap in the K3
is a rational homology ball. So, Proposition 6.4 says all exact fillings must be rational homology
balls. □
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SYMPLECTIC HATS 2259

6.3 Other cyclic covers

So far, we have only considered the case 𝑟 = 2, and made use of the fact that a (symplectic) K3
surface is a double cover of ℂℙ2 branched over a smooth sextic. In fact, one can see that the K3 is
also

∙ a double cover of ℂℙ1 × ℂℙ1 branched over a smooth curve of bi-degree (4,4);
∙ a triple cover of ℂℙ1 × ℂℙ1 branched over a smooth curve of bi-degree (3,3);
∙ a quadruple cover of ℂℙ2 branched over a smooth quartic.

This can be seen by the ramification formula for branched covers [3, Lemma I.17.1] and an Euler
characteristic computation. The former shows that the canonical divisor of each of the previous
branched covers vanishes, and the second that the Euler characteristics is 24; the two conditions
together identify K3 surfaces.
Moreover, as we noted in Proposition 4.12, we can find hats for 𝑇3,5 and 𝑇4,7 in the Hirze-

bruch cap 𝐻2 ≅ ℂℙ1 × ℂℙ1. The homology computation of Proposition 4.12 shows that the
curves obtained by coning off the singularities have bi-degrees (3,3) and (4,4), respectively.
(Note that one needs to change basis in order for the computation to work: however, there is a
symplectomorphism 𝜙∶ 𝐻0 → 𝐻2 such that 𝜙∗(𝑆0 + 𝐹0) = 𝑆2.)
Thus, as we did in the previous subsections we can create a Calabi–Yau cap for (Σ𝑟(𝐾), 𝜉𝐾,𝑟) if

we can find a cobordism from 𝐾 to:

𝑇4,7 if 𝑟 = 2;
𝑇3,5 if 𝑟 = 3;
𝑇3,4, 𝑇2,7, 𝑇2,5#𝑇2,3, or #3𝑇2,3, if 𝑟 = 4.

In the last line, the first two get their degree-4 hats from [30] (and are given by 𝑉(𝑧𝑦3 − 𝑥4) and
𝑉((𝑧𝑦 − 𝑥2)2 − 𝑥𝑦3)) and the third comes from Lemma 4.10.
We do not explore all possibilities here, but rather restrict to a few examples. We note, how-

ever, that many of the computations carried out in the previous subsection can be used to give
restrictions to 3-fold and 4-fold branched covers of some of the knots listed.

Proof of Theorem 1.18. For each of the knots in the first class, which are all slice and quasipositive,
we have found a symplectic cobordism to either 𝑇2,7 (see the proof of Lemma 6.6, which gives
cobordisms to 𝑇2,2𝑘+1 for 𝑘 ⩽ 3 and hence to 𝑇2,7). Since these are singularities of a degree-4 curve
in ℂℙ2, we can find a degree-4 projective hat for each of them. Taking the 4-fold branched cover
of the hat yields a Calabi–Yau cap with second Betti number 22 and 𝑏+2 = 3, thus allowing us to
apply Proposition 6.4.
For all the knots in the first class, and the knots in the second class, we can also find cobor-

disms to 𝑇3,5 (note that one may easily use Lemma 2.8 to construct a cobordism from 𝑇2,7 to 𝑇3,5
and the rest follow from the proof of Lemma 6.6), and thus obtain a hat in the Hirzebruch sur-
face ℂℙ1 × ℂℙ1 of bi-degree (3,3). Taking the cyclic 3-fold cover of the cap branched over the hat,
yields another Calabi–Yau cap with second Betti number 22 and 𝑏+2 = 3, and we can again apply
Proposition 6.4.
Finally, can similarly argue for 821; this is not a knot we have encountered before. It is the

closure of the quasipositive 3-braid 𝑥3𝑦𝑥−2𝑦2, and it has quasipositive genus 1. There is a genus-1

 17538424, 2022, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12258, W
iley O

nline Library on [23/08/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



2260 ETNYRE and GOLLA

cobordism to𝑇2,3#𝑇2,3 (obtained by adding two positive 𝑥 generators that cancel 𝑥−2). It therefore
admits a degree-4 projective hat and a bi-degree-(3,3) hat in ℂℙ1 × ℂℙ1.
One may see the degree-4 projective hat in several different ways; for instance, it is clas-

sically known that there is a rational curve of degree 4 in ℂℙ2 whose singularities are three
simple cusps (that is, of type 𝑇2,3); replacing one of the three singularities with a cusp yields the
desired cap. Alternatively, one can deform a 𝑇3,4-singularity to 𝑇2,3#𝑇2,3 by adding two generators
(underlined) to the braid 𝑥3𝑦3 to get to (𝑥𝑦𝑥)𝑥𝑦(𝑦𝑥𝑦) = 𝑦𝑥𝑦𝑥𝑦𝑥𝑦𝑥 = (𝑦𝑥)4.
One may see the bi-degree-(3,3) hat by noting we can add two more generators to a braid word

for 𝑇3,4 to get 𝑇3,5; as we have already observed, the latter knot has such a hat.
It is easy to check that the corresponding caps have secondBetti numbers 16 and 18, respectively;

moreover, we claim that these caps have 𝑏+2 = 3, thus allowing once again to apply Proposition 6.4.
To prove the claim, we note that each of the two caps contains the complement of a filling of the
𝑟-fold cover of 𝑆3 branched over 𝑇2,3#𝑇2,3; the cover is Σ(2, 3, 𝑟)#Σ(2, 3, 𝑟), endowed with the
standard contact structure on each summand. These manifolds, however, possess only negative
definite fillings (for instance, because they are Heegaard Floer L-spaces [70], or because they are
connected sums of links of simple singularities [66]). In particular, the complement of the filling
of Σ(2, 3, 𝑟)#Σ(2, 3, 𝑟) already has 𝑏+2 = 3, and a fortiori so does the cap of Σ𝑟(821). □

We are now ready to prove Theorem 1.19. We recall that this theorem says: Let (𝑊,𝜔𝑊) be a
Stein filling of (Σ(2, 3, 7), 𝜉can). Then𝑊 has𝐻1(𝑊) = 0 and either𝐻2(𝑊) ≅ 𝐸8 ⊕ 2𝐻 or𝐻2(𝑊) ≅⟨−1⟩; moreover, both cases occur.
In what follows, we denote with 𝔽 the field with two elements; all Heegaard Floer homology

groups will be taken with coefficients in 𝔽.

Proof of Theorem 1.19. We begin by proving the last assertion; the Milnor fiber𝑀 of the singular-
ity {𝑥2 + 𝑦3 + 𝑧7 = 0} is a Stein filling of (Σ(2, 3, 7), 𝜉can) that has 𝐻1(𝑀) = 0 (as it is homotopy
equivalent to a wedge of spheres), it is spin, has 𝑏2(𝑀) = 12 and 𝜎(𝑀) = −8, therefore it realizes
the first case. This can be seen, for instance, by viewing𝑀 as the double cover of 𝐵4 branched over
a quasipositive surface for 𝑇3,7; since the latter has genus 5 and signature −8, the computations
above follow.
Theminimal resolution of the singularity {𝑥2 + 𝑦3 + 𝑧7 = 0}, on the other hand, is a neighbor-

hood of a rational curve (that is, a sphere, possibly singular) with a singularity of type 𝑇2,3 and
self-intersection −1; this can be seen, for instance, from the normal crossing divisor resolution of
the singularity, which is given by the following plumbing graph:

This is clearly not a minimal manifold, since the central vertex represents a −1-sphere; blowing
it down, and then blowing down the contractions of the −2- and −3-spheres yields the desired
curve. This gives a minimal holomorphic filling of (Σ(2, 3, 7), 𝜉can); indeed, minimality follows
from the adjunction formula, since the only primitive second homology class is represented by
a symplectic curve of genus 1. See, for example, [62, Example 1.22] for a reference. Now, work of
Bogomolov and de Oliveira [9, Theorem 2’] asserts that this holomorphic filling can be deformed
to a Stein filling.
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SYMPLECTIC HATS 2261

Let us now prove that these are the only two possibilities for the cohomology of fillings of
(Σ(2, 3, 7), 𝜉can).
Let 𝐾 be the representative of 𝑇3,7 with maximal self-linking number; as mentioned above, the

contact 3-manifold (Σ(2, 3, 7), 𝜉can) is the double cover of (𝑆3, 𝜉std) branched over 𝐾.
Since there is a deformation from 𝑇3,11 to 𝑇3,7, 𝐾 has a degree-6 projective hat 𝐹, which has

genus 10 − g(𝐾) = 4. The double cover (𝐶, 𝜔𝐶) of the projective cap, branched over 𝐹, is a cap
for (Σ(2, 3, 7), 𝜉can) that has𝐻2(𝐶) ≅ 𝐸8 ⊕ 𝐻. If𝑊 is not negative definite, then gluing 𝐶 ∪𝑊, we
obtain a symplectic Calabi–Yau 4-manifold𝑋: this essentially follows from Proposition 6.4, except
that we need to use that 𝑏+2 (𝑋) ⩾ 2 instead of 𝑏

+
2 (𝐶) ⩾ 2.

Since 𝑏2(𝑋) ⩾ 10, we know that 𝑋 is not a 𝑇2–bundle over 𝑇2; since 𝑏+2 (𝑋) ⩾ 𝑏
+
2 (𝐶) + 1 ⩾ 2, 𝑋

cannot be an Enriques surface, either. Thus, as in the proof of Proposition 6.4, 𝑋 is a K3 surface
and we see that𝐻2(𝑊) ≅ 𝐸8 ⊕ 2𝐻.
If𝑊 is negative definite, we argue that its intersection form is diagonalizable: indeed, the Hee-

gaard Floer correction term of Σ(2, 3, 7) (in its unique spin𝑐 structure) vanishes [69, section 8.1];
by [69, section 9],𝑊 has diagonalizable intersection form †.
Let 𝑐 = 𝑐(𝜉can), so that 𝑐 is the Ozsváth–Szabó contact invariant of 𝜉can, where 𝑐 is the image of

𝑐 under the isomorphism from HF+(−Σ(2, 3, 7), 𝔰𝜉) to HF+(−Σ(2, 3, 7), 𝔰𝜉), [34, Theorem 2.10].
Recall from [69, section 8.1] that, as graded vector spaces,HF+(−Σ(2, 3, 7)) ≅  +

(0)
⊕ 𝔽(0), where

 + = 𝔽[𝑈,𝑈−1]∕𝑈 ⋅ 𝔽[𝑈] is a tower, and the subscript indicates that the degree of the bottom of
the tower, the element that we call 1 ∈ HF+(−Σ(2, 3, 7)), is in degree 0, whereas the element 𝑈𝑘
lives in degree 2𝑘. In fact, Ozsváth and Szabó compute the group HF+(Σ(2, 3, 7)), from which
HF+(−Σ(2, 3, 7)) can be recovered by duality [71, Proposition 2.5]. Recall also from [69, Proof
of Theorem 9.1 and Proposition 9.4] that if 𝑍 is a cobordism from 𝑌 to 𝑌′, two integral homol-
ogy spheres, and 𝔰 is any spin𝑐 structure on 𝑍, then the map 𝐹∞𝑍,𝔰 ∶ HF

∞(𝑌) → HF∞(𝑌′) is an
isomorphism if and only if 𝑍 is negative definite.
With these generalities in mind, let us go back to the case at hand. Since 𝜉can has a fill-

ing 𝑀 with 𝑏+2 (𝑀) > 0 (𝑀 the Milnor fiber mentioned above), 𝑐 is not conjugation-invariant in
HF+(−Σ(2, 3, 7)), that is, 𝑐 ≠ 𝑐. Indeed, 𝐹+𝑀,𝔰0(𝑐) = 1 ∈ HF

+(−𝑆3) by functoriality of the contact
invariant, but 𝐹+𝑀,𝔰0(1) = 0, because𝑀 is not negative definite.
Therefore, sinceHF+0 (Σ(2, 3, 7)) ≅ 𝔽⊕2, 𝑐 is not conjugation-invariant, and 1 is, we deduce that

HF+0 (Σ(2, 3, 7)) = {0, 1, 𝑐, 𝑐}.
Suppose now 𝑏 = 𝑏2(𝑊) > 1. Since𝑊 is a Stein filling of Σ(2, 3, 7), which is an integral homol-

ogy sphere, 𝐻1(𝑊) = 0, and therefore 𝐻2(𝑊) is torsion free. It follows that spin𝑐 structures on
𝑊 correspond to characteristic covectors in𝐻2(𝑊), via the first Chern class. We are interested in
spin𝑐 structures 𝔰whose associated cobordismmap 𝐹+𝑊,𝔰 has degree 0, as these are the only spin

𝑐

structures whose cobordism maps act non-trivially on 𝑐; since

deg𝐹+𝑊,𝔰 =
𝑐1(𝔰)

2 − 2𝜒(𝑊) − 3𝜎(𝑊))

4
=
𝑐1(𝔰)

2 + 𝑏

4
,

asking that the degree be 0 corresponds to asking that 𝑐21(𝔰) = −𝑏. There are exactly 2
𝑏 such spin𝑐

structures on 𝑊. In fact, their first Chern classes are in one-to-one correspondence with linear

† The proof of Theorem 9.1 only uses the fact that 𝑑(𝑆3) = 0. In fact, the statement that Ozsváth and Szabó prove is the
following: if𝑊 is a negative definite 4-manifold whose boundary is an integral homology sphere 𝑌 with 𝑑(𝑌) = 0, then
𝑊 has diagonalizable intersection form.
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2262 ETNYRE and GOLLA

combinations of the form
∑𝑏
𝑖=1 ±𝑒𝑖 , where {𝑒1, … , 𝑒𝑏} is an orthonormal basis of 𝐻2(𝑊). Since

𝑏 > 1, 2𝑏 ⩾ 4, hence there are at least four such spin𝑐 structures, as asserted.
We also claim that, for each such spin𝑐 structure 𝔰, either𝐹+𝑊,𝔰(𝑐) ≠ 0 or𝐹

+

𝑊,𝔰
(𝑐) ≠ 0. For, if both

vanished, then ker 𝐹+𝑊,𝔰 would contain 0, 𝑐, 𝑐 and hence be zero; however, we know that 𝐹+𝑊,𝔰
is a non-zero homomorphism (because 𝑊 is negative definite and deg𝐹+𝑊,𝔰 = 0, we know that
𝐹+𝑊,𝔰(1) = 1). In particular, if 𝑏 ⩾ 2, there are at least two spin

𝑐 structures such that 𝐹+𝑊,𝔰(𝑐) ≠ 0;
however, this contradicts a result of Plamenevskaya [72, Proof of Theorem 4], asserting that the
canonical spin𝑐 structure is the only spin𝑐 structure 𝔰 on𝑊 such that 𝐹𝑊,𝔰(𝑐) ≠ 0.
So far, we have proved that 𝑏 ⩽ 1.We now argue that 𝑏 > 0. Indeed, if 𝑏 = 0, then𝑊 is a rational

homology ball filling of (Σ(2, 3, 7), 𝜉can); since Σ(2, 3, 7) is an integral homology sphere and 𝑊,
which is a Stein domain, has a handle decompositionwith no 3-handles,we know that𝐻1(𝑊) = 0.
But then𝑊 has even intersection form and 𝐻1(𝑊) = 0, therefore it is spin. This contradicts the
fact that Σ(2, 3, 7) has Rokhlin invariant 1.
Summing up, if 𝑊 is negative definite, then we necessarily have 𝑏2(𝑊) = 1, and since the

intersection form is unimodular, 𝐻2(𝑊) ≅ ⟨−1⟩. □

Note that in the proof we are using the assumption that𝑊 is a Stein filling rather than just an
exact one: indeed, we are using it in the second half of the proof, to exclude the case that𝑊 is a
rational homology ball, as well as when we are using functoriality of the Ozsváth–Szabó contact
invariant under Stein cobordisms. In fact, what we prove is that exact fillings are either negative
definite or have intersection form 𝐸8 ⊕ 2𝐻, and that Stein fillings that are negative definite have
𝑏2 = 1.
We also observe that we can exhibit a Stein filling of (Σ(2, 3, 7), 𝜉can) as a handlebody. Let Λ be

a Legendrian trefoil with tbΛ = 0. There are two such trefoils, with rotation numbers ±1, corre-
sponding to two non-isotopic, conjugate contact structures on Σ(2, 3, 7) = 𝑆3−1(𝑇2,3). Since there
are exactly two tight contact structures on Σ(2, 3, 7) [55], one of these two contact structure is the
canonical one, and the corresponding handlebody is a Stein filling𝑊 with 𝑄𝑊 = ⟨−1⟩.
The same argument can be applied to show that all exact fillings of (Σ(2, 4, 5), 𝜉can) are either

negative definite or have second Betti number 12 and signature−8; the argument is slightly easier,
since the first homology grouphere is𝐻1(Σ(2, 4, 5)) ≅ ℤ∕5ℤ, and thereforeΣ(2, 4, 5) cannot bound
a rational homology ball. (By contrast,Σ(2, 3, 7) does bound a smooth, non-spin rational homology
ball.)

APPENDIX A: CONSTRUCTING THE SYMPLECTIC COBORDISMS VIA BRAIDS
We begin by presenting the computation we omitted in the proof of Proposition 4.6.

LemmaA.1. In the braid group𝐵6 with standard generators𝜎1, … , 𝜎5, the following identity holds:

(𝜎1⋯𝜎5)
5 = 𝜎1𝜎3𝜎2𝜎3𝜎4𝜎5𝜎1𝜎3𝜎2𝜎3𝜎3𝜎4𝜎5𝜎1𝜎3𝜎2𝜎3𝜎4𝜎3𝜎5𝜎1𝜎2𝜎3𝜎4𝜎5.

Proof. Wewill only use the commutation relations 𝜎𝑖𝜎𝑗 = 𝜎𝑗𝜎𝑖 whenever |𝑖 − 𝑗| > 1 and the braid
relation 𝜎𝑖𝜎𝑖+1𝜎𝑖 = 𝜎𝑖+1𝜎𝑖𝜎𝑖+1.
We start by canceling the factors 𝜎1 and 𝜎5(𝜎1⋯𝜎5) which appear on the left and on the right,

respectively, of each side of the equality. We are left to prove that

𝜎2𝜎3𝜎4𝜎5𝜎1𝜎2𝜎3𝜎4𝜎5𝜎1𝜎2𝜎3𝜎4𝜎5𝜎1𝜎2𝜎3𝜎4 = 𝜎3𝜎2𝜎3𝜎4𝜎5𝜎1𝜎3𝜎2𝜎3𝜎3𝜎4𝜎5𝜎1𝜎3𝜎2𝜎3𝜎4𝜎3.
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SYMPLECTIC HATS 2263

We will abide by the convention that we underline generators when something happens to them
(for example, we underline 𝜎1

⃖⃖
if we are using the commutation relation to move the generator 𝜎1

to the left). We have

𝜎2𝜎3𝜎4𝜎5𝜎1𝜎2𝜎3𝜎4𝜎5𝜎1
⃖⃖
𝜎2𝜎3𝜎4𝜎5𝜎1𝜎2𝜎3𝜎4

= 𝜎2𝜎3𝜎4𝜎5𝜎1𝜎2𝜎1𝜎3𝜎4𝜎5𝜎2𝜎3𝜎4𝜎5𝜎1𝜎2𝜎3𝜎4

= 𝜎2𝜎3𝜎4𝜎5𝜎2
⃖⃖
𝜎1𝜎2𝜎3𝜎4𝜎5𝜎2

⃖⃖
𝜎3𝜎4𝜎5𝜎1𝜎2𝜎3𝜎4

= 𝜎2𝜎3𝜎2𝜎4𝜎5𝜎1𝜎2𝜎3𝜎2𝜎4𝜎5𝜎3
⃖⃖
𝜎4𝜎5𝜎1𝜎2𝜎3𝜎4

= 𝜎3𝜎2𝜎3𝜎4𝜎5𝜎1𝜎3𝜎2𝜎3𝜎4𝜎3𝜎5𝜎4𝜎5𝜎1𝜎2𝜎3𝜎4

= 𝜎3𝜎2𝜎3𝜎4𝜎5𝜎1𝜎3𝜎2𝜎3𝜎4𝜎3𝜎4𝜎5𝜎4
⃖⃗
𝜎1𝜎2𝜎3𝜎4

= 𝜎3𝜎2𝜎3𝜎4𝜎5𝜎1𝜎3𝜎2𝜎3𝜎3𝜎4𝜎3𝜎5𝜎1𝜎2𝜎4𝜎3𝜎4

= 𝜎3𝜎2𝜎3𝜎4𝜎5𝜎1𝜎3𝜎2𝜎3𝜎3𝜎4𝜎5𝜎1𝜎3𝜎2𝜎3𝜎4𝜎3,

as required. □

Here we provide the remaining computations to complete the proof of Lemma 6.6. We use the
notation above; for braids on 5 strandsweuse the letter𝑤 for the fourth generator. To de-clutter the
notation, we also use capital letters to denote inverses. Finally, we will use facts about (symplectic
or complex) curves quite freely.

Proof of Lemma 6.6 (continued). We argue case by case.
𝟏𝟎𝟏𝟐𝟒: As noted above, this is 𝑇3,5. This is the link of the degree-5 curve {𝑥3𝑧2 − 𝑦5 = 0} at

(0 ∶ 0 ∶ 1), therefore it has a degree-5 (and hence a degree-6) hat.
𝐦(𝟏𝟎𝟏𝟓𝟓): This is the closure of the 3-braid 𝑥3𝑦𝑋2𝑦𝑋2𝑦. We can write

𝑥3𝑦𝑋2𝑦𝑋2𝑦 ↑4 𝑥
3𝑦𝑥2𝑦𝑥2𝑦 = 𝑥2(𝑥𝑦𝑥)2𝑥𝑦 ∼ Δ2𝑦𝑥3 ↑↑ Δ4(𝑦𝑥) = (𝑦𝑥)7;

since there is a cobordism from 𝑇3,7 to 𝑇3,11, and 𝑇3,11 is the singularity of a degree-6 curve,
𝑚(10155) has a degree-6 hat.
𝐦(𝟏𝟏𝐧𝟓𝟎): This is the closure of the 4-braid 𝑥2𝑦𝑋𝑦𝑧𝑌𝑥𝑌2𝑧. As above:

𝑥2𝑦𝑋𝑦𝑧𝑌𝑥𝑌2𝑧 ↑2 𝑥
2𝑦𝑋𝑦𝑧𝑦𝑥𝑧 = 𝑥2𝑦𝑋𝑦(𝑧𝑦𝑧)𝑥 = 𝑥2𝑦𝑋𝑦2𝑧𝑦𝑥 ∼𝐷

∼𝐷 𝑥
2𝑦𝑋𝑦3𝑥 ↑ 𝑥2𝑦𝑥𝑦2𝑥 = 𝑥5𝑦𝑥2 ∼𝐷 𝑥

7,

and the latter is the singularity of a degree-4 curve.
𝐦(𝟏𝟏𝐧𝟏𝟑𝟐): This is represented by the 4-braid 𝑋2𝑦𝑥𝑧𝑌𝑥𝑌𝑧𝑦2. We now have, using the relation

𝑧𝑦𝑥𝑦𝑧 = 𝑧𝑥𝑦𝑥𝑧 = 𝑥𝑧𝑦𝑧𝑥 = 𝑥𝑦𝑧𝑦𝑧:

𝑋2𝑦𝑥𝑧𝑌𝑥𝑌𝑧𝑦2 ↑3 𝑦𝑥𝑧𝑦𝑥𝑦𝑧𝑦
2 = 𝑦𝑥2𝑦𝑧𝑦𝑥2 ∼𝐷 𝑦𝑥

2𝑦2𝑥𝑦2 = (𝑦𝑥)4,

and the latter is the singularity of a degree-4 curve.
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2264 ETNYRE and GOLLA

𝟏𝟏𝐧𝟏𝟑𝟗:As noted above, this is the closure of the 5-braid 𝑥2𝑦𝑋𝑧𝑌𝑧𝑤𝑍𝑦𝑍𝑤. Using the relations
𝑤𝑧𝑦𝑧𝑤 = 𝑦𝑧𝑤𝑧𝑦 (analogue as in the previous case) and 𝑥2𝑦𝑥 = 𝑥𝑦𝑥𝑦 = 𝑦𝑥𝑦2:

𝑥2𝑦𝑥−1𝑧𝑦−1𝑧𝑤𝑧−1𝑦𝑧−1𝑤 ↑3 (𝑥
2𝑦𝑥)𝑧𝑦𝑧(𝑤𝑧𝑦𝑧𝑤) = 𝑦𝑥𝑦2𝑧𝑦𝑧𝑦𝑧𝑤𝑧𝑦 ∼𝐷

∼𝐷 𝑦𝑦
2𝑧𝑦𝑧𝑦𝑧2𝑦 = 𝑦2Δ2𝑧𝑦 ∼ Δ2(𝑧𝑦)2 = (𝑧𝑦)5,

and the latter is the singularity of a degree-5 curve.
𝐦(𝟏𝟏𝐧𝟏𝟕𝟐):As above, this is the closure of the 4-braid 𝑥𝑦𝑋𝑦𝑥𝑧𝑌𝑥𝑌2𝑧. We can write

𝑥𝑦𝑋𝑦𝑥𝑧𝑌𝑥𝑌2𝑧 ↑3 𝑥𝑦𝑥𝑦𝑥𝑧𝑦𝑥𝑧 = 𝑥𝑦𝑥𝑦𝑥(𝑧𝑦𝑧)𝑥 = 𝑥𝑦𝑥𝑦𝑥𝑦𝑧𝑦𝑥 ∼𝐷= Δ
2𝑦𝑥 ∼ (𝑥𝑦)4,

which is the singularity of a degree-4 curve.
𝐦(𝟏𝟐𝐧𝟏𝟐𝟏): This is the closure of the 4-braid 𝑥𝑦𝑋2𝑦𝑧𝑌𝑥𝑦2𝑧2𝑌. We have

𝑥𝑦𝑋2𝑦𝑧𝑌𝑥𝑦2𝑧2𝑌 ↑3 𝑥𝑦(𝑦𝑧𝑦)𝑥𝑦
2𝑧2𝑦 = 𝑥(𝑦𝑧𝑦)𝑧𝑥𝑦2𝑧2𝑦 =

= (𝑥𝑧𝑦𝑧2𝑥)𝑦2𝑧2𝑦 = 𝑧(𝑥𝑦𝑥)𝑧2𝑦2𝑧2𝑦 = 𝑧𝑦𝑥𝑦𝑧2𝑦2𝑧2𝑦 ∼𝐷

∼𝐷 𝑧𝑦
2𝑧2𝑦2𝑧2𝑦 ↑2 𝑧𝑦

2𝑧𝑦2𝑧𝑦2𝑧𝑦2𝑧𝑦 = 𝑧𝑦Δ4 = (𝑧𝑦)7,

and the latter has a cobordism to (𝑧𝑦)11, hence it has a degree-6 hat.
𝐦(𝟏𝟐𝐧𝟏𝟒𝟓): This is the closure of the 5-braid 𝑤𝑍𝑦𝑍𝑦𝑋2𝑤𝑦𝑧𝑌𝑧𝑦𝑥. We will use the identities

𝑤𝑧𝑦𝑧𝑤 = 𝑦𝑧𝑤𝑧𝑦 and Δ2 = 𝑦𝑧2𝑦𝑧2. We write

𝑤𝑍𝑦𝑍𝑦𝑋2𝑤𝑦𝑧𝑌𝑧𝑦𝑥 ↑4 𝑤𝑧𝑦𝑧𝑦𝑤𝑦𝑧𝑦𝑧𝑦𝑥 ∼𝐷 (𝑤𝑧𝑦𝑧𝑤)𝑦
2𝑧𝑦𝑧𝑦 = (𝑦𝑧𝑤𝑧𝑦)𝑦2𝑧𝑦𝑧𝑦 ∼𝐷

∼𝐷 𝑦𝑧
2𝑦3𝑧𝑦𝑧𝑦 ↑ (𝑦𝑧2𝑦𝑧2)𝑦2𝑧𝑦𝑧𝑦 = Δ2𝑦2𝑧𝑦𝑧𝑦 ↑

↑ Δ2𝑦𝑧2𝑦𝑧𝑦𝑧𝑦 = Δ4𝑦𝑧 = (𝑦𝑧)7,

which is the singularity of a degree-6 curve.
𝟏𝟐𝐧𝟐𝟗𝟐: This is the closure of the 4-braid 𝑥𝑦2𝑥3𝑦𝑍𝑦2𝑥𝑧2. We can write

𝑥𝑦2𝑥3𝑦𝑍𝑦2𝑥𝑧2 = 𝑥𝑦2𝑥3𝑦(𝑍𝑦2𝑧)𝑥𝑧 = 𝑥𝑦2𝑥3𝑦2𝑧2𝑌𝑥𝑧 ↑ 𝑥𝑦2𝑥3𝑦2𝑧2𝑦𝑥𝑧 =

= 𝑥𝑦2𝑥3𝑦2𝑧(𝑧𝑦𝑧)𝑥 = 𝑥𝑦2𝑥3𝑦2(𝑧𝑦𝑧)𝑦𝑥 = 𝑥𝑦2𝑥3𝑦3𝑧𝑦2𝑥 ∼𝐷

∼𝐷 𝑥𝑦
2𝑥3𝑦5𝑥 ∼ 𝑦𝑥2𝑦2𝑥3𝑦4 ↑ 𝑦𝑥𝑦 ⋅ 𝑦𝑥𝑦 ⋅ 𝑦𝑥3𝑦4 = Δ2𝑦𝑥3𝑦4 ↑4

↑4 Δ
2𝑦𝑥𝑦2𝑥𝑦2𝑥𝑦2𝑥𝑦2𝑥𝑦2 = Δ6𝑦𝑥𝑦2 = Δ6𝑥𝑦𝑥𝑦 = (𝑥𝑦)11.

𝐦(𝟏𝟐𝐧𝟑𝟗𝟑): This is the closure of the 5-braid 𝑦𝑍𝑤𝑍𝑦𝑋2𝑧𝑦𝑤𝑧2𝑦𝑥. In the following, we will use
the identity 𝑤𝑧𝑦𝑧𝑤 = 𝑦𝑧𝑤𝑧𝑦:

𝑦𝑍𝑤𝑍𝑦𝑋2𝑧𝑦𝑤𝑧2𝑦𝑥 ↑3 𝑦𝑧(𝑤𝑧𝑦𝑧𝑤)𝑦𝑧
2𝑦𝑥 ∼𝐷 𝑦𝑧(𝑤𝑧𝑦𝑧𝑤)𝑦𝑧

2𝑦 = 𝑦𝑧(𝑦𝑧𝑤𝑧𝑦)𝑦𝑧2𝑦 ∼𝐷

∼𝐷 𝑦𝑧𝑦𝑧
2𝑦2𝑧2𝑦 ↑2 𝑦𝑧𝑦𝑧𝑦

2𝑧𝑦2𝑧𝑦2𝑧𝑦 ∼ (𝑦𝑧)7,

and we conclude as in the cases above.
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𝟏𝟐𝐧𝟒𝟕𝟑: This knot is the closure of the 4-braid 𝑥𝑦4𝑧2𝑦3𝑥𝑌𝑧. We write

𝑥𝑦4𝑧2𝑦3𝑥𝑌𝑧 ↑ 𝑥𝑦4𝑧2𝑦3𝑥𝑦𝑧 ∼ 𝑦4𝑧2𝑦3(𝑥𝑦𝑥)𝑧 = 𝑦4𝑧2𝑦4𝑥𝑦𝑧 ∼𝐷 𝑦
4𝑧2𝑦5𝑧 ∼ 𝑧𝑦4𝑧2𝑦5 ↑3

↑3 𝑧𝑦𝑧
2𝑦𝑧2𝑦𝑧2𝑦𝑧2𝑦5 = Δ4𝑦𝑧5 ↑↑ Δ6𝑦𝑧3 ∼ Δ6𝑧𝑦𝑧2 = Δ6𝑦𝑧𝑦𝑧 = (𝑦𝑧)11.

𝟏𝟐𝐧𝟓𝟖𝟐: This knot is the closure of the 5-braid 𝑥𝑌𝑥𝑦𝑧𝑤𝑌𝑤𝑧𝑦𝑍𝑊𝑦𝑍; using the identity
𝑤𝑧𝑦𝑧𝑤 = 𝑦𝑧𝑤𝑧𝑦, we compute

𝑥𝑌𝑥𝑦𝑧𝑤𝑌𝑤𝑧𝑦𝑍𝑊𝑦𝑍 ↑5 (𝑥𝑦𝑥)𝑦𝑧𝑤𝑦(𝑤𝑧𝑦𝑧𝑤)𝑦𝑧 = 𝑦𝑥𝑦
2𝑧𝑦2(𝑤𝑧𝑤)𝑧𝑦2𝑧 ∼𝐷

∼𝐷 𝑦
3𝑧𝑦2𝑧𝑤𝑧2𝑦2𝑧 ∼𝐷 𝑦

3𝑧𝑦2𝑧3𝑦2𝑧 ↑3 𝑧𝑦
2𝑧2𝑦𝑧𝑦2𝑧2𝑦2𝑧𝑦𝑧2𝑦 ∼

∼ (𝑦𝑧)5𝑧𝑦3𝑧2𝑦2 ↑∼ (𝑦𝑧)5𝑦2𝑧𝑦3𝑧2𝑦2 = (𝑦𝑧)11.

𝟏𝟐𝐧𝟕𝟎𝟖: This is the closure of the 3-braid 𝑥𝑌3𝑥𝑌𝑥𝑦𝑋𝑦3.

𝑥𝑌3𝑥𝑌𝑥𝑦𝑋𝑦3 ↑ 𝑥𝑌𝑥𝑦𝑥𝑦𝑥𝑦3 = (𝑦𝑥)4,

whose closure is 𝑇3,4.
𝐦(𝟏𝟐𝐧𝟕𝟐𝟏): This is the closure of the 3-braid 𝑌5𝑥4𝑦2𝑥; using the identity 𝑦2𝑥𝑦2𝑥 = (𝑦𝑥)3.

𝑌5𝑥4𝑦2𝑥 ↑6 𝑦𝑥𝑦
2𝑥𝑦2𝑥𝑦2𝑥𝑦2𝑥 = (𝑦𝑥)7.

𝐦(𝟏𝟐𝐧𝟕𝟔𝟖): This is the closure of the 4-braid 𝑧−2𝑦2𝑧𝑦−2𝑧2𝑦𝑥𝑦−1𝑥.

𝑧−2𝑦2𝑧𝑦−2𝑧2𝑦𝑥𝑦−1𝑥 ↑3 𝑦
2𝑧3𝑥𝑦𝑥 = 𝑦2𝑧3𝑦𝑥𝑦 ∼𝐷 𝑦

2𝑧3𝑦3,

and the closure of 𝑦2𝑧3𝑦3 is the connected sum 𝑇2,5#𝑇2,3, has a degree-4 hat (which is algebraic,
since it comes from a rational cuspidal curve).
𝟏𝟐𝐧𝟖𝟑𝟖: this knot is the closure of the 5-braid 𝑥𝑦𝑍𝑤𝑋𝑦𝑧𝑥𝑌𝑊𝑧𝑤. Using the braid identities

𝑥𝑦𝑧𝑦𝑥 = 𝑧𝑦𝑥𝑦𝑧, 𝑤𝑧𝑦𝑧𝑤 = 𝑦𝑧𝑤𝑧𝑦, and 𝑧𝑦2𝑧𝑦2 = Δ2:

𝑥𝑦𝑍𝑤𝑋𝑦𝑧𝑥𝑌𝑊𝑧𝑤 ↑4 𝑥𝑦𝑧𝑤𝑥𝑦𝑧𝑥𝑦𝑤𝑧𝑤 = 𝑥𝑦𝑧𝑤(𝑥𝑦𝑥)𝑧𝑦(𝑤𝑧𝑤) = (𝑥𝑦𝑧𝑦𝑥)𝑦(𝑤𝑧𝑦𝑧𝑤)𝑧 =

= 𝑧𝑦𝑥𝑦𝑧𝑦2𝑧𝑤𝑧𝑦𝑧 ∼𝐷 𝑧𝑦
2𝑧𝑦2𝑧2𝑦𝑧 = Δ2(𝑧𝑦)2 = (𝑧𝑦)5. □

APPENDIX B: THE GENERALIZED THOM CONJECTURE
Here, we give an alternative proof of the generalized Thom conjecture, Theorem 1.20. Recall that
the theorem asserts that if𝐹 is a symplectic surface in a symplecticmanifold (𝑋, 𝜔)with boundary
𝐾 in the contact manifold 𝑌 = 𝜕𝑋, then 𝐹 is genus-minimizing in its homology class, relative to
its boundary.

Proof of Theorem 1.20. Fix a Seifert surface 𝑆 for 𝐾 in 𝑌, and a Legendrian approximation 𝐿 of 𝐾;
let rot𝑆(𝐿) and sl𝑆(𝐾) be the rotation number of 𝐿 and self-linking number of 𝐾 relative to 𝑆.
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Attach a Weinstein handle to (𝑋, 𝜔) along 𝐿, thus obtaining a symplectic 4-manifold (𝑋′, 𝜔′)
with convex boundary. Let 𝐹 be the surface obtained by capping off 𝐹 with the core of the Wein-
stein handle. We can embed (𝑋′, 𝜔′) in a minimal Kähler surface (𝑍, 𝜔𝑍) with 𝑏+2 (𝑍) > 1 by
[53].
Since 𝑏+2 (𝑍) > 1, the canonical class 𝐾𝑍 of 𝑍 is a Seiberg–Witten basic class [81], and we can

apply the adjunction inequality to any surface 𝐺 in the homology class [𝐹]:

2 − 2g(𝐺) ⩽ ⟨𝑐1(𝑍), [𝐺]⟩ − [𝐺] ⋅ [𝐺] = ⟨𝑐1(𝑍), [𝐹]⟩ − [𝐹] ⋅ [𝐹]. (B.1)

We now set out to compute the right-hand side.
Call 𝐹′ the surface obtained by capping off 𝐹 with the Seifert surface −𝑆, and 𝑆′ be the surface

obtained by capping off 𝑆with the core of theWeinstein handle. Clearly, we have that [𝐹′] + [𝑆′] =
[𝐹]. Moreover, by [38, Proposition 2.3],

⟨𝑐1(𝑍), [𝑆′]⟩ = ⟨𝑐1(𝑋′), [𝑆]⟩ = rot𝑆(𝐿).
Since 𝐹 is symplectic, by Lemma 2.13 (and the following remark) we have

⟨𝑐1(𝑍), [𝐹′]⟩ = ⟨𝑐1(𝑋), [𝐹′]⟩ = sl𝑆(𝐾) + 1 − 2g(𝐹) + [𝐹′] ⋅ [𝐹′].
Thus,

⟨𝑐1(𝑍), [𝐹]⟩ = ⟨𝑐1(𝑍), [𝐹′] + [𝑆′]⟩ = sl𝑆(𝐾) + 1 − 2g(𝐹) + [𝐹′] ⋅ [𝐹′] + rot𝑆(𝐿).
Finally, the Weinstein handle is attached with contact framing−1 (hence smooth framing

tb(𝐿) − 1); therefore, the last summand in (B.1) is

[𝐹] ⋅ [𝐹] = [𝐹′] ⋅ [𝐹′] + [𝑆′] ⋅ [𝑆′] = [𝐹′] ⋅ [𝐹′] + tb(𝐿) − 1.

Putting the everything together, and recalling that tb(𝐿) = sl𝑆(𝐾) + rot𝑆(𝐿), we obtain

2 − 2g(𝐺) ⩽ sl𝑆(𝐾) + 1 − 2g(𝐹) + [𝐹
′] ⋅ [𝐹′] + rot𝑆(𝐿) − [𝐹

′] ⋅ [𝐹′] − tb(𝐿) + 1

= 2 − 2g(𝐹). □
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