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Abstract

We study relative symplectic cobordisms between con-
tact submanifolds, and in particular relative symplectic
cobordisms to the empty set, that we call hats. While
we make some observations in higher dimensions, we
focus on the case of transverse knots in the standard 3-
sphere, and hats in blow-ups of the (punctured) complex
projective planes. We apply the construction to give con-
straints on the algebraic topology of fillings of double
covers of the 3-sphere branched over certain transverse
quasipositive knots.
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1 | INTRODUCTION

There has been a great deal of study of cobordism and concordance of smooth knots in dimen-
sion 3, leading to a beautiful and rich field in low-dimensional topology. There are two ways of
formulating contact analogues of these objects. Both start with a symplectic cobordism, that is a
symplectic manifold (X, w) whose boundary consists of a concave part (M_,&_) and a convex
part (M,,&,). Given a Legendrian submanifold L, in the contact manifold M, one can look
for Lagrangian submanifold in X with boundary —L_ U L,. Such Lagrangian cobordisms have
been studied quite closely [13, 15, 17]. However, the corresponding question about symplectic
cobordisms has seen comparatively little attention. More specifically, given contact submani-
folds (C,, ?i) of (M, £,), we say they are relatively symplectically cobordant if there is a properly
embedded symplectic submanifold (Z, w|s) of (X, ) that is transverse to dX and a symplectic
cobordism from (C_, 5_) to (C,, a).

We note that if we consider relative symplectic cobordisms in codimension larger than 2 then
there is an h-principle [18, Theorem 12.1.1]. In particular, if there is a smooth cobordism between
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the contact manifolds that is formally symplectic then the cobordism can be isotoped to be a
relative symplectic cobordism. Thus, we will restrict to the codimension-2 setting in this paper.

The only situation when the relative symplectic cobordism question has been extensively stud-
ied is when X = B* with its standard symplectic structure (so M_ = @ and M, is the standard
contact S3). In this context, C + will be a transverse link and we are asking when C, bounds a
symplectic surface in B*. Thanks to the work of Rudolph [73] and Boileau and Orevkov [10], we
have a complete characterization of links that bound such surfaces: they are the closures of quasi-
positive braids. Moreover, the answer is the same in the complex and in the symplectic category.
Quasipositive knots are now a class that is very familiar to low-dimensional topologists, and some
results about their fillings have even been partially generalized past B* [46].

In this paper, we will study the general problem of relative symplectic cobordism in all dimen-
sions, but we will particularly focus on the 3-dimensional setting. We will also focus much of our
attention on the situation where C, = @. When M is empty we say X is a symplectic cap for M _
and if in addition C, is empty we say X is a symplectic hat for C_.

If one does not restrict the topology of X, then it is not hard to show that (C_, 3_) in(M_,&)
has a symplectic hat [32], in fact one can even control the topology of X.

Theorem 1.1. Every transverse link L in a contact 3-manifold (Y, &) has a hat that is a disjoint
union of disks in some cap (X, w) for (Y, £).

It is more difficult to find symplectic hats when the topology of X is fixed. Below we will study
the situation when X is assumed to be simple; we will show that there is some rich structure to
the problem and that hats can be used to build symplectic caps for contact manifolds and restrict
the topology of symplectic fillings of certain contact manifolds. But before moving on to this, we
end this discussion with the fundamental question:

Question 1.2. Let (X, w) be a symplectic cap for (M, ). Does a contact submanifold (C, ') of
(M, &) bound a symplectic hat in (X, w) if and only if C is null-homologous in X?

While it seems unlikely that the answer can be YES in general, below we provide some mild
evidence that it might indeed be YES. In particular, below we will see that there are many fewer
restrictions on symplectic hats than on relative symplectic fillings and so one might hope the
answer is YES. Even if the answer is NO, can one formulate conditions that will guarantee the
existence of a hat?

1.1 | Projective hats

The simplest symplectic cap for (S3, £,4) is the projective cap CP? \ Int(B*), where B* is a Darboux
ball in CP2. We call a symplectic hat in the projective cap a projective hat. We begin by noticing
the following.

Theorem 1.3. Every transverse link T in (S°, £.4) has a projective hat.

This result is in stark contrast with the results of Rudolph and Boileau-Orevkov, in that it poses
no restriction on the link. However, in some way it parallels the analogous result in the absolute
case: while there are strong restrictions on contact manifolds in order for them to admit a sym-
plectic filling (for example, overtwistedness, non-vanishing of contact invariants), every contact
manifold has a symplectic cap [24].
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2218 | ETNYRE AND GOLLA

One way of thinking about projective hats is in terms of singularities of curves (see, for
instance, [37] for related questions and definitions); in fact, by coning over (S3, L), we can think
of Theorem 1.3 as saying that every transverse knot is the link of the (unique) singularity of a sin-
gular symplectic surface in CP2. From this perspective, quasipositive transverse links are links for
which the surface admits a symplecting smoothing, while algebraic links are links for which the
surface admits both a smoothing and a resolution in terms of blow-ups.

Since Theorem 1.3 provides us with an existence result, we can ask questions about complexity.
We define the hat genus of T to be the smallest genus G(T) of a projective hat. This is one of the
possible measures of complexity of hats. We prove various properties of the hat genus and compute
it for some families of transverse knots. One of the more general theorems along these lines is the
following.

Theorem 1.4. Suppose T is a transverse knot in (S3, &) and there is a transverse regular homotopy
to an unknot with only positive crossing changes. Then the hat genus is
~ sI(T) +1
i =- (20,

where sI(T) is the self-linking number of T.

This allows us to show, for example, that for g > p > 2, any transverse representative T of the
(p, —q)-torus knot T, _, satisfies

~ s(T)+1

)= -(A0 1),

In particular, the maximal self-linking number representative T’ (which has sl(T’) =
—pq+q— p)has

(g—D(p+ 1)'

) =15

Remark 1.5. 1t is interesting to note that in [64] it was shown that the smooth projective genus
of T, _5 is 0 where as we have computed the symplectic projective genus to be at least 3 for any
transverse representative. Thus, we see quite a difference between the smooth and symplectic hat
genus of a knot.

Another sample computation is that for the n-twist knot with maximal self-linking number
T, [27], the hat genus is

1 n < =3 and odd
9(T,) = "TH n > 1and odd
S npositive and even.

Question 1.6. The hat genus for T,, with n even and negative is not known. Recall there are
several maximal self-linking number representatives of such twists knots. Is the hat genus of each
representative the same? More generally, there are many knot types that are known to have distinct
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transverse representatives with the same self-linking number [7, 14, 25, 26, 63]. Can the hat genus
distinguish any of these?

We note that the projective hat genus is not always a simple function of the self-linking number.
Specifically, in Proposition 4.6 we show that if T ,;,; is the maximal self-linking number torus
knot, then

k |1 2 3 4 5 6 7 8 9 10 1
Type) | O 1 0 2 1 0 3 2 1 5 4

Question 1.7. Can one compute §(T’ »;,1)?

Note that the question has a clear counterpart in complex geometry, asking what is the minimal
genus (or minimal degree) of an algebraic curve in CP? with a singularity of type T;54+1 (also
referred to as an A, -singularity). It is also related to a question in the theory of deformations
of singularities, asking what is the minimal p such that a singularity of type T, ,,, deforms to
T, 2k+1- Both questions are open, and there is a relatively large gap between the available lower
and upper bounds. See, for instance, [28, 44, 68].

We end the discussion of projective hats with the following question.

Question 1.8. If T is a slice, quasipositive transverse knot in (S, &) that has §(T) = 0, is T the
maximal self-linking unknot?

While we do not know how to answer Question 1.8, we sketch an approach that seems
promising at the end of Subsection 3.3.

We recall that there is a well-known and well-studied analogous question for Lagrangian
concordance. Namely, if there is a Lagrangian concordance from L to and from the maximal
Thurston-Bennequin Legendrian unknot U, is L isotopic to U? A positive answer to Question 1.8
would imply a positive answer to the Lagrangian question as well, via symplectic push-off.

1.2 | Hats in other manifolds

Above we saw that not all transverse knots bound a genus-0 surface in the projective hat of
(83, &44); however, we do have the following.

Theorem 1.9. Every transverse knot T in (S3, &4) has a symplectic hat of genus 0 in a blow-up of
the projective cap.

Let (X,,®,) = CP?\ B* where B* is embedded as a Darboux ball with convex boundary.
We will write X, to denote an n-fold symplectic blow-up of X|,, so that X, is diffeomorphic to
(CP2#nCP?) \ B*. These are all caps for (S3, £,4). We define the nth rational hat genus G, (T) of a
transverse knot T to be the smallest genus of a hat for K in X,

The proof of Theorem 1.9 shows that for any transverse knot T, the sequence G(T) = {5,(1)%,
is non-increasing and eventually 0. We define the hat slicing number of T to be

S(T) = min{n | §,(T) = 0}.

It takes some work to find examples where the hat slicing number is larger than 1.
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2220 | ETNYRE AND GOLLA

Proposition 1.10. Let K, be the unique transverse representative of T, . #T, 5 with maximal
self-linking number which is p> — p +1 = 29(Tp p1#T,3) — 1. We have

g\(Kp)=p_1aforp<7a

GK,)=(p-1,p=—2,...2,1,0,..), for p< 4.

Question 1.11. Let K, be the transverse representative of T, , 1 #T, ; with sl(K ) = pP—-p+1.
Is&(Kp) =p—1?71Is G(Kp) =(p-1,p-2,..,2,1,0,..)?

It is easy to see, modifying the proof of the above proposition, that S(K p) < p—1 and that
@(Kp) = p — 1. In particular, we also know §n(Kp) <p-l-n,forngp-1
We also formulate the following question.

Question 1.12. Is G, (K) < G (K) if k < §(K)? In other words, is G(K) a strictly decreasing
sequence until it hits 0?

In Subsection 4.3, we also investigate hats in Hirzebruch caps for (S3, £.4). The Hirzebruch
caps are H, which is the standard symplectic S? X S? minus a Darboux ball, and H; = X;.

1.3 | Higher dimensional hats

We also consider higher dimensional projective caps for links of isolated complete intersection
singularities. Recall that a complete intersection in CP" is a complex d-dimensional subvariety
defined by n — d equations. An isolated complex intersection singularity is an isolated singularity of
acomplete intersection. Its link 2 is a contact submanifold of dimension 2d — 1in (S?"71, £.4). We
view the ambient manifold as the concave boundary of CP" \ B**, which we still call a projective
cap.

Proposition 1.13. Let Y C (S, £4) be the link of an isolated complete intersection singularity.
Then X has a hat in the projective cap of (S**~1, £4).

Since the analogue proposition for torus knots (which are hypersurface singularities in C?, and
in particular they are complete intersection singularities) is one of the main lemmas in our proof
of Theorem 1.3, we hope that the statement might be one of the ingredients in the proof of the
higher dimensional and codimension generalization of Theorem 1.3.

In fact, we make an effort in setting up all definitions and technical statements in the general
case, rather than restricting to the case of knots in 3-manifolds. What is missing in the proof of the
generalization of Theorem 1.3 to arbitrary dimension is a cofinality statement; below we will prove
that the set of torus links is cofinal in the set of transverse links, with respect to the partial order-
ing given by relative symplectic cobordisms. Untangling the definition, this means that for every
transverse link L in (S, &) there exist a torus link T in (S3, £4) and a symplectic cobordism
fromLtoT.

Proving an analogue statement for links of isolated complete intersection singularities, together
with the proposition above, would yield the existence of projective hats of contact submanifolds
of (821, &) for arbitrary n.
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1.4 | Hats and restrictions on fillings of contact manifolds

Hats can give rise to caps via a branched cover construction: given a (suitable) projective hat S for
T in (S3, £4), the r-fold cyclic cover of the projective cap branched over S is a cap for the r-fold
cyclic cover (Z,.(T), §7,,) of (83, &,q) branched over T. (When r = 2 we omit r from the notation.)

Warning 1.14. We advise the reader that, in the following two statements, we will abuse notation
by denoting a transverse knot by its topological type; for example, we will write m(9,¢) to denote
a transverse knot. What we mean is that we are considering the transverse knot obtained as the
closure of the braid representing the knot taken from the KnotInfo database [54]. We also note
that the data we are using might agree with other knot databases or knot tables, as well as with
other data on KnotInfo, only up to mirroring.

We will use (some of) these caps to restrict the topology of symplectic fillings of branched double
covers. In what follows, we denote with E5 the unique negative definite, even, unimodular form
of rank 8, and with H the hyperbolic quadratic form. Our main result is the following.

Theorem 1.15. IfK C (S°, &) is one of the transverse knots in Table 1, then &, is Stein (and hence
exactly) fillable. Let (W, w) be an exact symplectic filling of (2(K), ), with intersection form Qy;.

(1) IfK isof type 12n,,,, then W is spin, H;{(W) = 0, and Qy, = Eg @ H.

(2) IfK is of type 10,54, 121,95, OF 121475, then W is spin, H; (W) = 0, and Qy, = Eg.
(3) IfK is of type m(12n,,,), then W is spin, H;(W) = 0, and Qy, = H.

(4) IfK is of type m(12n4,5), then W is an integral homology ball.

(5) IfK is of any of the following topological types, then W is a rational homology ball:

m(8,), m(96), 10,49, m(10;55), m(11ns,),
m(11n,s,), 11nysg, m(11n;,), m(12ny45), m(12n593),

12nsg,, 121505, m(12n451), mM(12n45), 12ngsg.

TABLE 1 The braids whose closures are the transverse knots we consider in Theorems 1.15 and 1.18. We label
positive generators in the braid group by x, y, z, w, in this order, and we denote with X, Y, Z, W their inverses

Knot type Strands Braid Knot type Strands Braid

m(8,) 3 x3yX3y 12n,y,, 3 xy*x?y’

m(9,6) 4 xYxYzyXyz 121, 4 xy*x3yZy?xz?
10,54 3 (xy)? m(12n,43) 5 YZwZyX?zywz*yx
10,49 4 X3yx3yzYz m(12n;;5) 4 xXyzXzY?xYzyxY
m(10,55) 3 X3yX2yX2y 12n,,, 4 xy*z2y3xYz
m(11ns,) 4 xX2yXyzYxY?z 12ns, 5 xYxyzwYwzyZWyZ
m(11n,3,) 4 X2yxzYxYzy? 121,08 3 XY3xYxyXy3
111, 5 X2yXzYzwZyZw m(12n;,,) 3 Y x*y2x

m(11n,,) 4 xyXyxzYxY’z m(12n;64) 4 Z2y*zY?z%yxYx
m(12n,,,) 4 xyX2yzYxy?z*Y 12ng54 5 xyZwXyzxYWzw
m(12n,,5) 5 wZyZyX*wyzYzyx
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Remark 1.16. We note that 12n,,, can also be described as the pretzel knot P(-2,3,7) and
Z(12n,,,) is known to be the Brieskorn homology sphere (with its natural orientation reversed)
—>(2,3,7). By contrast to Item (1) in the theorem, 2(12n,,,) has minimal strong symplectic fill-
ings with arbitrarily large bJ (see the end of Subsection 6.1 for a proof). Contact manifolds with a
finite number of exact fillings but infinitely many strong fillings were already observed for cotan-
gent bundles of hyperbolic surfaces [50, 58] (see [76] for a much stronger statement); as far as we
are aware, this is the first example of an integral homology sphere such that the topology of Stein
fillings is restricted, while that of strong symplectic fillings is not.

Compare also with work of Lin [51]; the manifold —%(2, 3, 7) satisfies the assumptions of [51,
Theorem 1], and therefore all of its Stein fillings that are not negative definite have intersection
form Eq @ H. (In fact, it is easy to show using Floer-theoretic tools that —X(2, 3, 7) cannot have
any negative definite Stein fillings.)

Remark 1.17. Recall that the branched double cover of the knot 10,,, = T; 5 is the Poincaré
sphere (2, 3, 5), endowed with the canonical contact structure &.,,, that is, the one arising as
the boundary of the singularity of {x? + y* + z> = 0} at the origin of C3. We note here that Ohta
and Ono [65, Theorem 2] proved that every symplectic filling of (£(2, 3, 5), §.,,,) is diffeomorphic
to the Eg-plumbing, which is a stronger statement than what we are proving here.

We can also restrict the symplectic fillings of some higher order cyclic branched covers.

Theorem 1.18. Let (2,(K), £k ) denote the r-fold cyclic cover of (S*, &), branched over the trans-
verse knot K of Table 1. Then £y . is Stein fillable, and hence exactly fillable. Let (W, ) be an exact

fllllng Of(zr(K)’ gK,r)-

(1) IfK is a quasipositive braid closure of knot type m(8,), m(9,4), 10149, M(10;55), m(11ns,), and
r = 3,4, then W is a spin rational homology ball.

(2) If K is a quasipositive braid closure of knot type m(11n,3,), 111,39, m(11n,7,), m(12ns;3),
121545, m(12ng3g), and v = 3, then W is a spin rational homology ball.

(3) IfK is a quasipositive braid closure of knot type 8,, and r = 3,4, then W is spin and b,(W) =
2(r —1).

These theorem follow by showing that each of these manifolds has a cap that embeds in a K3
surface. Thus, the cap is Calabi-Yau and in [50] it was shown that such caps restrict the topology
of fillings. Recall that a Calabi-Yau cap of a contact 3-manifold is a symplectic cap (C,w) such
that c¢; () is torsion [50]. We get the embedding of our cap into a K3 surface by taking the cover
of CP? or CP! x CP! branched over the union of a hat for a knot K and a symplectic filling of K
which will be a curve of the appropriate degree or bi-degree.

The last statement in Theorem 1.18 also uses Heegaard Floer theory to guarantee properties of
the cap necessary to carry out the above argument. To illustrate a more subtle case where more
sophisticated Heegaard Floer theory is used, we also prove the following result.

Theorem 1.19. Let (W, wy,) be a Stein filling of (2(2, 3, 7), € .un)- Then W has H; (W) = 0 and either
H,(W) = Eg @ 2H or H,(W) = (—1); moreover, both cases occur.

We also establish a simpler analogous statement for %(2, 3, 5) in Subsection 6.3.
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1.5 | Hats and the generalized Thom conjecture

Using hats we give a proof of the generalized Thom conjecture. The statement is well-known
among specialists and we give a simple proof of it, but see also [32] for another proof.

Theorem 1.20. Let (X, w) be a strong symplectic filling of (Y, £), K a null-homologous transverse
knotin (Y, &), and F C X an w-symplectic surface whose boundary is K, such that F is transverse to
0X. Then F minimizes the genus in its relative homology class (among all surfaces properly embedded
in X whose boundary is K).

Organization of the paper

In Section 2, we discuss generalities on relative symplectic cobordisms between contact subman-
ifolds in arbitrary dimension (and co-dimension). We study in more detail cobordisms between
transverse links, giving general adjuction formulae for symplectic cobordisms, and we provide the
basic building blocks for the construction: hats coming from complex curves and elementary sym-
plectic cobordisms. In Section 3, we prove a (slight) strengthening of Theorems 1.3, 1.1, and 1.4;
we also provide many examples and computations. In Section 4, we prove Theorem 1.9 and we
compute minimal hat genus in blow-ups of the projective hats for some knots, including Propo-
sition 1.10. Section 5 is devoted to the proof of Proposition 1.13, and Section 6 contains the proof
of Theorems 1.15, 1.18, and 1.19; some of the computations needed in this section are postponed to
Appendix A, while Appendix B proves Theorem 1.20

2 | GENERAL REMARKS ON SYMPLECTIC COBORDISMS
BETWEEN KNOTS

In the first two subsections, we will define relative symplectic cobordisms and discuss simple
methods to build them. In the following section, we discuss the adjunction equality for relative
cobordisms in in symplectic 4-manifolds. The last two sections review quasipositive links and
complex surfaces in CP?.

2.1 | Definitions and gluing

A boundary component M of a symplectic manifold (X, w) is called strongly convex (respectively,
strongly concave) if there is a vector field v defined near M such that the Lie derivative satisfies
L, o = w and v points out of (respectively, into) X along M. We call v a Liouville vector field (note
that we do not require v to be defined on all of X).

A strong symplectic cobordism from the contact manifold (M_,&_) to the contact manifold
(M,,&,) is a compact symplectic manifold (X, ) with 0X = —-M_U M, where (M_,§{_) as a
strongly concave boundary component and (M, £, ) as a strongly convex boundary component.
Unless otherwise specified, we will only consider strong symplectic cobordisms, hence we will
systematically drop the adjective ‘strong’.
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We call (C,€) a contact submanifold of (M, £) if C is transverse to & and T,Cn§, = Ep

for all p € C. Given two contact submanifolds (C,, 'g‘i) in (M,,&,), we say they are relatively
symplectically cobordant if there is

1) a symplectic suhrnanifold Y of (X,w) such that (Z,w|y) is a symplectic cobordism from
(C_,& )to(C,,¢&,), and

(2) there there are Liouville vector fields v, for (X, w) near M, that restrict to be Liouville vector
fields for (%, w|y) near C,..

We call X a relative symplectic cobordism. We note that since the symplectic structure on £ comes
from the restriction of the symplectic structure on X, Condition (2) simply means that the Liouville
vector fields for (X, w) are tangent to X near C,. We note that while Condition (2) is convenient
to include in the definition, it may be replaced with

(2’) X is transverse to the boundary of X

if one is willing to deform the symplectic structure.

Lemma 2.1. Given a symplectic cobordism X from (C_, E_) to(C,, '§+) inside the symplectic cobor-
dism (X, w) from (M_,&_) to (M., §.) as in Condition (1) of relative symplectic cobordism, then as
long as X is transverse to M, we can assume, after deforming w near M, that there are Liouville
vector fields v, near M, that restrict to be Liouville vector fields for (2, w|s) near C,.

Moreover, this deformation is made by adding to X a piece of the symplectization of (M_,£_) and

My, 8,).

We will need ideas from the proof of Lemma 2.4 to establish this lemma so the proof is
given below.

Below we will frequently build relative symplectic cobordisms in stages, so it is useful to
note that the standard arguments for gluing together strongly convex and concave boundaries
of symplectic manifolds, see, for example, [20], easily generalize to give a relative gluing result.

Lemma 2.2. Given two relative symplectic cobordisms =, i = 0, 1, from (C', €' ) to (C!, Ei), inside
the symplectic cobordisms (X', ") from (M, €' ) to (M', &%) for which there is a contactomorphic of
pairs from (M9,C%) to(M*,C!), then one may glue X° to X* along M = M! to obtain a symplectic
cobordism (X, w) from (M°, £°) to (M1, &} ) and simultaneously glue =° to 5" along C9 = C! togeta
relative symplectic cobordism  from (C°, £°) to (C, ’51 ). (We note that when gluing one can arrange
that (X', w') and a scaled version of (X'*1, w™*1) are symplectic submanifolds of (X, w), and similarly
for the =\. Here the indexing is taken mod 2.) O

Recall a symplectic filling, respectively cap, is a symplectic cobordism (X, w) with M_ = @,
respectively, M, = @. And given a contact submanifold C in the boundary of a symplectic fill-
ing (or symplectic slice surface), respectively, cap, then a relative cobordism from, respectively, to,
the empty set will be called a symplectic filling, respectively, hat, for C.

2.2 | Constructing symplectic cobordisms

We will need to consider regular homotopies of transverse knots. To this end we recall that a
‘generic’ regular homotopy ¢, : S! — M can be assumed to have isolated times at which there are
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isolated double points and at a double point the intersection is ‘transverse’ in the following sense:
if t; is a time for which there are values 6, and 6, such that ¢, (6,) = ¢; (6,) then we consider the
paths y,(s) = $,(6;) and demand that ¥/ (t;) — y/(t)), ¢;i(el), and qb{i(@z) are linearly independent
in Ty, (o,yM. We call a double point of a regular homotopy positive if the above basis defines the
givenlorientation on M, and otherwise we call it negative.

We note that if given a diagram of a knot in R3 and one switches a negative crossing to a positive
crossing then that gives a generic regular homotopy with a positive double point. Switching a
positive to a negative crossing gives a negative double point.

Remark 2.3. More generally, consider regular homotopies ¢, : CK — M?"+1, Generically ifk < n
this will be an isotopy and for k = n there will be isolated transverse double points and we can
assign signs to them in a fashion analogous to the one discussed above.

Lemma 2.4. Let ¢, : (CP+1, &) — (M?"+1,£),t € [0,1] be a generic regular homotopy of contact
immersions with ¢, and ¢, embeddings. The trace of this homotopy in any sufficiently large piece of
the symplectization [a,b] X M of & is an immersed symplectic cobordism from ¢,(C) in {a} X M to
$,(C) in{b} x M.

When 2k + 1 < n, the trace is an embedded symplectic cobordism. When 2k + 1 = n, the sym-
plectic cobordisms has isolated double points that correspond to double points in the regular
homotopy and will be positive double points if the crossing change in the homotopy is positive and
negative otherwise.

Proof. Let 3 be a contact form for £’ on C and a be a contact form for £ on M. Since ¢, is a contact
homotopy we know that ¢;'a = f, § for some 1-parameter family of positive functions f, : C — R.
If g : [0,1] = [a, b]is any increasing function then the ‘trace’ of the isotopy is parameterized by

@ :[0,1]XC — [a,b] xM : (¢, p) = (g9(0), $,(p)).

This clearly gives an immersion with double points corresponding to double points of the
homotopy. Pulling back d(e‘a) yields

of,

a5, = (o 0f + 5

) dt AB+edDf,dB,

which is clearly a symplectic form on [0, 1] X C whenever ¢'(t) is sufficiently large and it may
be taken to be arbitrarily large if b — a is sufficiently large. We note for later use that if & :
[0,1] — [a,c] is any function with derivative larger than g, then if g can be used to parameterize
a symplectic embedding then so can h.

For the claim about the sign of the double point of the immersion use the notation for a double
point established just before the statement of the lemma (here we only discuss the 3-dimensional
case that we will use below, but the higher dimensional case is analogous). The tangent space
for one sheet of the surface at the intersection point (¢;, ¢;, (6,)) will be spanned by the oriented
basis {g’(t;)d; + ¥/ (t)s ¢;i (61)} and the other sheet will be spanned by the oriented basis {¢’(¢;)d, +
Y5, gb;i (6,)}. This clearly gives an oriented basis equivalent to {9, y; (t;) — ¥}(t), ¢;i (61), ¢, (6,)},
which establishes the claim. O
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Remark 2.5. Lemma 2.4 immediately allows us to generalize Lemma 2.2 to allow for gluing rel-
ative symplectic cobordisms (X°,£°) and (X', £') under merely the hypothesis that M9 and M*
are contactomorphic by a contactomorphism taking C?r to a contact submanifold that is contact
isotopic to C!. (See the lemma for notation.)

Proof of Lemma 2.1. We discuss the case of C_, noting that the case of C_ is analogous. We can
extend (X, w) by adding a small piece [0, €] X M of the symplectization of (M, £, ) and extending
Z so that it is transverse to {t} X M and symplectic in the extension (this can be done since being
symplectic is an open condition). Note that C, = X n ({t} Xx M), for ¢t € [0, €], can be taken to be
a contact submanifolds in (M, £, ) (since being a contact embedding is an open condition).
Now for sufficiently large b let (X', ") be the extension of (X, w) by the piece [0,b] x M, of
the symplectization of (M, &, ). Let ¢ : [0,e] — [0, £] be a function that is the identity on [0, &/2]
and equal to zero near €. So, Cy ;) is a contact isotopy in (M, &, ). If we take the function g in the
proof of Lemma 2.4 to be the identity on [0, £/4] and have sufficiently large derivative outside of
this interval, then the trace of C(;) is a symplectic submanifold and can be used to extend X to a
symplectic submanifold ¥’ in (X', w’). Clearly X is a symplectic cobordism from C_ to C, and &’
is simply C, X [b — ¢, b] near 6, X’ and hence tangent to the Liouville vector field ;. O

We would now like to resolve double points, but we can only symplectically resolve positive
double points. This results seems well-known, but the authors could not find a specific reference,
so we provide an elementary proof based on the ideas above.

Lemma 2.6. Let X be an immersed symplectic surface in the symplectic 4-manifold (X, w). If p is a
positive transverse double point of %, then one may remove a neighborhood of p in Z and replace it
with a symplectic annulus, resulting in a symplectic surface ¥’ with one less double point than T and
the genus increased: g(T') = g(Z) + 1.

Proof. We first claim that = can be deformed in a C°-small way near a positive double point so that
there is a Darboux chart about the double point in which X is the union of the (x;, y;)-plane and
the (x,, ¥,)-plane. To see this let p be a transverse positive double point of ~ and U a neighborhood
of p such that the two sheets of £ N U are S; and S,. A standard Moser-type argument constructs
a symplectomorphism ¢ : U’ — V between a neighborhood U’ of p contained in U and an open
ball V about the origin in (R?, wyq), so that ¢(p) is the origin, $(U N S;) = S’ is the intersection
of the (xy,y;)-plane with V, and ¢(U’' N S,) = Sg is a surface tangent to the (x,, y,)-plane at the
origin. So, S; near the origin is the graph of a function F : R? — R?: (x,y) = (f(x,y), 9(x,)),
with f, g, and their first derivatives vanishing at the origin. Now let p : [0,1) — R be a function
that vanishes on [0, %], is 1 outside [0, ], and is monotonically increasing on [%, e], with p’ < ‘E—‘; let
p; = tp(r) + 1 — t. Consider the family of functions (F,),¢[o 1] defined by F,(x, y) = p,(r) - F(x,y),
where r = 4/x2 + y2. One may check that the symplectic form evaluated on dF, t(%) and dF z(%)
(that is on a basis for the tangent space to the graph of F,) is

pi(rp,(r)
—

1+ p[Z(r) : (fxgy - gygx) + (yfxg + ngf - xfyg _ygxf) (1)

Therefore, the graph of F is a symplectic surface in R* if and only if the quantity above is positive.
Since the graph of F is symplectic and p, is identically 1 for r > ¢, the only part to check is when
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FIGURE 1 Frontdiagrams for transverse tangles in a Darboux ball

r <e. Whenr < % the third summand vanishes and the second summand is larger than —1 by
our assumption on F. Finally, when % < r < g, the first two summands in (1) are strictly larger
than 0 since S; is symplectic and p, is between 0 and 1. Each part of the last summand in (1) is
of order r? by our assumption on ,o;. Thus, if € is taken small enough the last term can be made
arbitrarily small, and hence the graph of F, is symplectic for each ¢, giving a symplectic isotopy
from S; to the graph of F,. We have thus established our first claim.

Now to resolve the double point. Let B be a round ball contained in our Darboux chart. Note
that (S} U S)) N 9B is a transverse Hopf link. The surface C, = {z,z, = ¢} N B is a complex surface
for positive ¢. In particular, C, is symplectic with boundary a transverse link that is transversely
isotopic to (S{ U S;) N 0B (via the isotopy given by ¢ going to zero). We may now use Remark 2.5

to glue C, to T — (B N Z) and thus resolve the double point at the expense of adding genus. [
The above two observations immediately yield the following result.

Lemma 2.7. If K is a transverse link in (M3, £) that is obtained from the transverse link K’ by
transverse isotopy and g positive crossing changes, then there is a relative symplectic cobordism X from
K’ to K in any sufficiently large piece ([a, b] X M, d(e'«)) of the symplectization of (M, £). Moreover,
for knots the surface T can be taken to have genus g.

We also observe that a positive crossing can be added to a transverse knot via a symplectic
cobordism. This result also follows from combining [46, Lemma 5.1] and [46, Example 4.7], but
the simple argument is presented here for completeness.

Lemma 2.8. IfK is a transverse link in (M, £) and a portion of K in a Darboux ball is as shown on
the left of Figure 1, then there is a symplectic cobordism % in a piece of the symplectization of (M, £)
from K to the knot K’ obtained from K by replacing the tangle on the left of Figure 1 by the one on
the right.

Proof. We claim that we can construct a surface ¥’ in M by adding a twisted 1-handle to K X [0, &]
so that 8%’ = —K UK’ and da is positive on ' where « is a contact 1-form for £. Given this
take any piece [a,b] X M of the symplectization of (M, &) and take X’ to be a subset of {b} X M.
Any small isotopy that pushes ¥’ — K’ into [a, b) X M will result in a surface T that is symplectic.
So, take the isotopy so that K C T sits on {b — e} X M and X — 90X is in (b — €,b) X M. This is a
cobordism from K to K’ satisfying condition (1) of symplectic cobordism. Lemma 2.1 allows us to
extend the cobordism to satisfy both conditions of a symplectic cobordism.

We are left to show that X/ exists. To this end note that one may easily construct an annulus A
with one boundary K and the other boundary a copy, K, of K so that the characteristic foliation on
the annulus is by arcs running form one component boundary to the other. We can then add a 1-
handle to A to get a surface ¥’ with transverse boundary —K and K’ and the only singular point in
the characteristic foliation of ¥’ a positive hyperbolic point in the 1-handle. From this it is easy to
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construct an area form w on ¥’ and a vector field v directing the characteristic foliation so that d,w
is a positive multiple of w (that is, v has positive divergence on '), see [35]. Let 8 = 1,w. One may
easily see that f8 = a|,y for some positive function f. Now in a neighborhood N = [—¢,¢] X &’
of ¥/, with ' = {0} x X', we know that « is of the form 8, + u, dt where 8, and u; are 1-forms and
functions, respectively, on ¥’ and 8, = ff. Multiplying a by 1/ f we can assume that the contact
form for £ is 8, + u, dt with 8, = 8. But now dot on T¥/ is d8 which is a positive area from on X’
as desired. O

Below we will sometimes use the well-known notion of an open book decomposition and it
supporting a contact structure. We do not discuss this here, but refer the reader to [23] for more
details.

Example 2.9. The main application of Lemma 2.8 in this paper is to braid closures; recall that one
can associate to a braid a transverse knot in (S3, £4), which is just the closure of the braid, viewed
as being transverse to the pages of the standard open book of (S3, &) with disk pages. In this
context, the operation of adding a crossing to the closure of § € B,, in the lemma corresponding to
just adding a positive braid generator to any braid factorization of 8 (in any position). By contrast,
Lemma 2.7 corresponds to adding the square of a generator.

More generally, we note that Lemma 2.7 also follows from Lemmas 2.4 and 2.8 for isotopies (we
do not need the statement for regular homotopies) since a negative to positive crossing change
can be effected by adding two positive crossings. Again we note that Lemma 2.8 and the isotopy
version of Lemma 2.4 are contained in [46], and thus our main observation of this section, namely,
Lemma 2.7, easily follows from [46] as well.

We end this subsection by noting that open book decompositions can be used to construct
relative symplectic fillings.

Lemma 2.10. Let B be the binding of an open book decomposition of M that supports the
contact structure &. If ¥ is a page of the open book then in in a piece of the symplectization
([a,b] x M, d(e'a)), for some contact form «, we can take T in {b} x M and push its interior into
the interior of [a, b] X M to get a symplectic filling of B.

Proof. Since the open book decomposition supports & there is a contact form « for £ for which da
is positive on the pages of the open book. Thus, the symplectic form e’(dt A « + de) is positive
on X and hence on X when its interior is pushed slightly into the interior of [a, b] X M. Now this
can be done so that the perturbed X is transverse to {b} X M. Thus, Lemma 2.1 gives the desired
result. O

Remark 2.11. One might expect the same argument to work to construct a symplectic hat for the
binding of an open book, but this does not work since the orientation on B induced from the page
is not correct to be the lower boundary component of a relative symplectic cobordism.

2.3 | Symplectic submanifolds

A simple bundle theory argument yields the following useful fact for closed, immersed, symplectic
surfaces.
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Lemma 2.12 (McCarthy-Wolfson [56]). Let X be an immersed symplectic sub-surface of a symplectic
4-manifold (X, w). Then,

(X, ), [Z]) =2-2¢ +[Z] - [Z] - 2D,

where g is the genus of %, [Z] denote the homology class determined by %, and D be the number of
double points of ¥ counted with sign. O

We have the following relative version of this for symplectic cobordisms.

Lemma 2.13. Let (X, w) be a symplectic cobordisms from the contact manifold (M, &) to(M',&"), C
a transverse knot in (M, £), and C’ a transverse knot in (M, £'). Further assume that M and M’ are
homology spheres. If T is any immersed symplectic surface with transverse double points in (X, w)
with boundary —C U C’, then

(e;(X, w), [Z]) = x(T) = sI(C) +sI(C") + [Z] - [Z] - 2D,

where [Z] is the homology class of the closed surface T = £ U S U —S' where S is any Seifert surface
for C in M and S’ is a Seifert surface for C' in M’, g(Z) is the genus of = and D be the number of
double points of X counted with sign.

Remark 2.14. 1t is not essential that M and M’ are homology spheres, but when they are not one
must still assume that C and C’ are null-homologous so that the self-linking number is defined.
In this case, the self-linking number will depend on the choice of Seifert surface and this surface
must also be used in defining .

We note a couple of consequences.

(1) (The relative symplectic Thom conjecture) A symplectic surface £ with boundary properly
embedded in a symplectic filling (X, w) that is transverse to the boundary, minimizes genus
in its relative homology class. We prove this in Appendix B, cf. [32].

(2) Ifa transverse knot T in (S, £.4) boundary a symplectic surface T in (B*, wgy), then

s(T) = 2¢(2) — 1.

In particular, a stabilized transverse knot cannot be the boundary of an embedded symplectic
surface in B*.

To see this note that such a surface would have lower genus that the one T bounds and then
this surface would violate the relative symplectic Thom conjecture.

Proof. LetR, and R/ be a Reeb vector fields for £ and &', respectively, and ¢ the coordinate normal
to —M UM = 0X. By adding a collar neighborhood to the boundary of X and extending ¥ we can
assume that C and C’ are orbits of the Reeb vector field.

Note that the tangent space TX restricted to X splits (as a symplectic bundle) as E, ® E, where
E, is TZ along T and the span of R, and 3, along S U §’, and E, is the symplectic normal bundle
to X along %, £ along S and ¢’ along S’. So, restricted to = we have

X, w) =c;(TX) = ¢, (E;) + ¢1(Ey).
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To compute {(c,(E,), [Z]) we choose the section 9, over S U S’ and extend it arbitrarily over TZ.
So, clearly (c,(E,), [Z]) = x(2). Now to compute (c,(Ey), [Z]) choose a non-zero section s of &
over S, s’ of ¢’ over S’, and extend it arbitrarily over the normal bundle to X. Clearly, (c,(E,), [Z])
is the relative Chern class of the normal bundle v to ¥ relative to s U s’ along —C U C’ = 3%. To
compute this we choose another section of the normal bundle. Let ¢ and ¢’ be the unit normal
vector fields along S and S/, respectively. Along 9%, o and ¢’ are contained in the normal bundle
to =. Computing the relative Chern class of v, relative to ¢ and ¢/, evaluated on X clearly gives
[Z] - [Z] — 2D since we can use o, ¢’ and their extension over X to create a section of the normal
bundle of =

We finally note that the difference between the framings that s and o give to C is — sl(C) and the
difference between the s’ and ¢’ framings of C’ is sI(C”). The former is just the definition of the self-
linking number, while the latter is also the definition but we must remember that 6X = —M UM’
and the linking numbers in M and —M differ by a sign. Hence,

(¢1(E,), [E]) = =sI(C) +sI(C") + [Z] - [Z] - 2D. O
2.4 | Quasipositivity and links bounding symplectic slice surfaces

Recall that the n-strand braid group B,, is generated by n — 1 elementary generators, oy, ...,0,_,
where o; interchanges the ith and (i + 1) strands with a positive half-twist. For more on the braid
group see [6]. A braid is called quasipositive if it can be written as a product of conjugates of non-
negative powers of the standard generators and it is called strongly quasipositive if it can be written
as a product of the elements

-1
O-ij = (Ui Jj—Z) Uj_l(O'i Uj_z),

for 1 <i< j<n. Alink in S is called quasipositive or strongly quasipositive when it can be
realized as the closure of such a braid. Combining work of Rudolph [73] and Boileau and Orevkov
[10] it is known that the class of quasipositive links is precisely the class of links that arise as the
transverse intersection of a complex surface in C? with the unit sphere; these are sometimes called
transverse C-links. Moreover, [10, Theorem 2] makes it clear that the class of links is also precisely
the class of links that arise as the transverse intersection of a symplectic surface in the unit ball
in C? (with standard symplectic structure) with the unit sphere. Given Lemma 2.1, we see that
a transverse link in (S3, £,,4) bounds a symplectic slicing surface in the 4-ball if and only if it is
given as the closure of a quasipositive braid.

We now turn to a special class of quasipositive links, namely, links of algebraic singularities.
Given a complex polynomial f(z, w) in two variables, let V(f) = f~1(0). Suppose that x € V()
is an isolated singular point of f. Then for small enough ¢ > 0 the sphere of radius ¢, S,, about x
intersects V(f) transversely in a link L ... For § sufficiently small f —1(8) will also intersect the
S, transversely in a link isotopic to L. This surface is called the Milnor fiber of L;. So, L, is a
quasipositive link (in fact it is strongly quasipositive). For a topologist-friendly introduction to
singularity of curves in the spirit of this paper, we refer to [37, section 2] The main example we
will consider in this paper is that of f(z,w) = zP — w9. In this case, L,y_,q  is the (p, q)-torus
link. It is also well-known that, when p and q are coprime, the complex surface that L,,_,q
bounds in the 4-ball has genus %(p —1)(g—-1).
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2.5 | Complex curves in CP?

We will be considering algebraic curves in CP2. More specifically, given a non-zero homogeneous
polynomial f(x,y,z) € C[x,y, z], one can consider the set

V(f)={lx:y:z]ecP’| f(x,y,z) = 0}

This is a complex surface in CP2. We say it has degree d if the polynomial has degree d. Moreover,
recall that the second homology of CP? is generated by the homology class of a line # C CP? and
one can easily check that the homology class defined by V(f) agrees with d[¢], thus giving another
interpretation of the degree of V(f).

A pointin V(f) where the derivative of f vanishes will be called a singular point. If P is a singular
point then for sufficiently small ball B about P, V(f) will intersect B = S> transversely in some
link Ly p. Clearly, Ly p is a quasipositive link and so bounds a complex surface X p in B. If the
links associated to all the singular points of V(f) are connected (that is are knots) then we say
W(f) is a cuspidal curve. A cuspidal curve is a PL embedded surface of some genus g. Replacing
neighborhoods of all the singular points of V(f) with the complex surfaces X p and recalling that
¢,(CP?) = 3[#] one can apply Lemma 2.12 to see that

3d = (e, (P, [2"]) =2 2( g+ X 0(5yp)) + 2,

where the sum is taken over all the singular points of V(f). This yields

g+ Y o =""2D @

We will take a topological viewpoint on singularities, similar to that of [37, section 2.2]. In particu-
lar, we will use the following fact: if we blow up the plane C? at the origin and we let E denote the
exceptional divisor, the proper transform of the curve V(x?P — y?) (with p < q) has multiplicity of
intersection p with the E, and it has a singularity isomorphic to that of V(xP — y9=P).

3 | HATSIN THE PUNCTURED PROJECTIVE PLANE

In this section, we will show that all transverse knots in the standard contact S® have a hat in
(X, w) = (CP? \ B*, wgg), where B* is embedded as a Darboux ball with convex boundary in CP?
and wgg is the Fubiny-Study metric; and compute the hat genus for many examples. In particular,
we show that the symplectic hat genus can differ from the genus of a smooth surface in X with
boundary the knot.

Let #, be a line at infinity in CP? (that is the standard CP! in CP?) that is in the complement
of the B* removed above. Let K be a transverse knot in (S3, £,4). A hat £ for K in (X, w) will be
called a projective hat for K. By Poincaré-Lefschetz duality and elementary algebro-topological
manipulations,

H,(X,0X) =~ H*(X) ~ H*(CP?) =~ H,(CP?) ~ Z.
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2232 | ETNYRE AND GOLLA

We can give an explicit isomorphism by choosing a line 7, in CP? that is contained in X, and
use the intersection pairing H,(X, 0X) ® H,(X) — Z to define the degree of X as the intersection
number of X and 7.

3.1 | Existence of projective hats

It is easy to see that, for each knot K there are always smoothly embedded surfaces in X with any

degree and boundary K. These have been studied in [64], but more work is necessary to prove the

existence of symplectic hats, and we will see that the degree cannot be arbitrary for a given K.
The following is a slight extension of Theorem 1.3 from the introduction.

Theorem 3.1. Every transverse link K in (S, £4) has a projective hat. Moreover, this hat can have
any sufficiently large degree.

We begin with a lemma.

Lemma 3.2. The transverse representative of the positive torusknotT , , in (S3, &) with self-linking
number pq — p — q wears a symplectic projective hat of genus

(@-p-1D@-1)
2

and degree q, where we are assuming, without loss of generality, that q > p.

Remark 3.3. The knot T, , might wear a hat of smaller genus and degree if p is sufficiently small,
but it is interesting to note that these numbers are optimal if g < 2p. To see this suppose that
g < 2p, and that there is a degree-d hat for T, ;. We apply [8, equation (), p. 523] with j = 1.
The inequality reads

r(3) =I(A,) <d, (3)

where d is the degree of the hat, and I'(k) is the kth element of the semigroup comprising all
non-negative integer linear combinations of p and q (starting at T'(1) = 0 = Op + 0q).

Since q < 2p, the first three elements of the semigroup are 0, p,q, and therefore I'(3) = q;
substituting in the inequality above, we obtain that g < d, as claimed.

Proof. There are many ways to construct a hat for T, ;. A particularly simple one was pointed
out to us by Dmitry Tonkonog. Consider the curve C = V(x — yPz97P + y9). It is immediate to
check that the only singularity of C is at (0 : 0 : 1). Moreover, the following construction gives
a local change of coordinates around (0,0) in the affine chart {z = 1} that maps V(x4 — yP) to C.
Let g be a pth root of the function w — 1 — w9~P: this exists locally in a ball B centered at w = 0
since ¢(0) # 0, and set h(w) = wg(w). The latter function is a biholomorphism since g(0) # 0. Itis
immediate to check that in the chart {z = 1,y € B}, the biholomorphism (x, y) — (x, h(y)) maps
V(x4 — yP) to C. Thus, the complement of a neighborhood of the singular point gives the desired
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hat. The degree of the hat is clearly g; the Adjunction Formula (2) gives its genus to be

_@-p-D@-1

2@-D@-2-3p-1@a-1 :

as claimed. O

Remark 3.4. There is an alternative approach to proving the lemma, which is closer to the spirit
of this paper. One can start from the curve V(x4 — yPz97P); it is a rational curve, since the map
[s : t] — [sPt97P : s9 : t9] gives a parameterization by CP!. Moreover, it has two singularities at
(0:0:1)andat(0 : 1 : 0). The singularity at (0 : 0 : 1) is of the desired type x? — yP = 0, and
we can trade the other singularity, which is of type x4 — y97P, for its Milnor fiber, which has genus
S@-p-1g-1.

Remark 3.5. The statements in [8] are about complex curves; however, since the proofs use smooth
4-dimensional topology techniques, they hold more generally for reals surfaces whose singulari-
ties are cones over knots. The Inequality (3) holds for smooth curves having only one singularity
whose cone is a cone over a torus knot, so they apply to our case.

Proof of Theorem 3.1. We will build a symplectic cobordism from K to a positive torus knot and
then use Lemma 2.2 to glue this to a symplectic hat for the torus knot constructed in Lemma 3.2.

Given a transverse knot K we can transversely isotope it so that it is braided. Thus, we can use
Lemma 2.4 to build a symplectic cobordism from K to a closed n-braid. Now Lemma 2.8, which
says we can add positive crossings wherever we like, allows us to build a symplectic cobordism
from the braid to the closure of (o, --- 7,,_;)* for any sufficiently large k. Since for k relatively prime
to n the braid (o, -+ 0,,_;)¥ is a positive torus knot we have constructed the desired symplectic
cobordism. O

The following result will be useful in the next section, and it can easily be combined with
Lemmas 2.2 and 3.2 to give an alternate proof of Theorem 3.1.

Lemma 3.6. Every transverse link K in (S3, &) has an immersed symplectic cobordism with only
positive double points to a torus knot in a piece of the symplectization of (S3, &)

To prepare for the proof of this lemma we set up some notation. Given two braids 8 and 3’ we
will write 8 1 B’ to indicate that 8’ is obtained from f3 by inserting a square of a generator into
some presentation of 8 as a word in the generators. A braid B’ is generated by squares from f if
there exists a sequence

B =Bo:Brs B =B

such that 8, , ; is obtained from (3, by inserting the square of a generator. When 8 = eis the identity
braid, we simply say that 8’ is generated by squares.

Observe that if 3 is generated by squares from 3, there is a sequence of positive crossing changes
from the closure of 8 to the closure of 3’.
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Lemma 3.7. The square of the Garside element Afl € B,, is generated by squares from cl.z foreach
1<ig<n—-—1

Proof. We prove this by induction on n. If n = 2, A% = a%, and this is clearly generated by squares
from o7.

If n>2, then A2 | = (,A%) - (0, -+ 0,050, - 0,), where we denoted by ¢, : B, — B, the
inclusion of the first n strands. Both factors are generated by squares: the first by the inductive
assumption, and the second by direct inspection.

In particular, this shows that Afl +1 1s generated by squares from afl (since the last factor is) or

by any of o2, ...,02 | (since the first factor is). O

Proof of Lemma 3.6. The transverse knot X is the closure of an n-braid § € B,,. Up to conjugation,
we can suppose that § induces the permutation (12 --- n). Let 8, = 0,0, --- 0,,_;, and observe that
y = BB is in the pure braid group.

In particular, y is a product of elements of the form wia;
trary word in the braid group for each i (see, for example, [6,lLemma 1.8.2]). We claim that for some
integer m, A%™ is generated by squares from y. This proves that 3,A%" is generated by squares from
B, and in particular there is a symplectic cobordism from the closure of 3 to the closure of 8,A%",
which is the torus knot T, ,,,,,,1. Now the desired immersed cobordism follows from Lemma 2.4.

Let us now prove the claim. For each i such that ¢; = —2, we simply change the corresponding

crossing by inserting a ai :
i

w;!, where g; = +2 and w; is an arbi-

2.2 -1 _
kiow =e.

-2.,—1
w;o, "W, kWi

Sk i Tin'

For each i such that ¢; = 2, we use Lemma 3.7, which asserts that A? is generated by square

from o’i ; indeed, we have
i

w-Azwi_1 = A2,

1

since A? is central in the braid group B,,. That is, we have proven A*" is generated by squares
from y. O
3.2 | Projective hat genus

We can now define two invariants for transverse knots in (S3, £,4).

Definition 3.8. We call the hat genus of K the smallest genus g(K) of a symplectic hat of K in
(X, w) and the hat degree to be the minimal degree d(K) of a symplectic hat for K.

Later we will discuss hats in other caps for (S3, £,4) and then when confusion might arise we
will refer to the hat genus and hat degree, as the projective hat genus and projective hat degree,
respectively.
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Example 3.9. Note that g(K) = 0 if and only if K has a symplectic projective hat that is a disk.
For example, §(K) = 0 for whenever K = T, ., has maximal self-linking number. In fact, there
exists a rational singular curve whose unique singularity has link T, ,,, namely, V(xPz — yP+h),

We note that using the adjunction formula for hats, in Lemma 2.13, for a fixed transverse knot
the hat genus determines the hat degree and vice versa.

Lemma 3.10. If X is a projective hat for a transverse knot K in (S3, £4), then

SIK) +1Y | AR —3d(K)+2 _ (SI(K) +1
2 2 - 2

2w =(
and

sI(K) = (d(K)? — 3d(K) + 1) — 25(K).

Proof. If ¥/ is a Seifert surface for K and T = £ U Y/, then X represents a homology class dh in
H,(CP?) = Z where h is the generator of homology given by a line. Recalling that

¢,(CP?) = ¢,(CP? — B*) = 3h,
then the equation in Lemma 2.13 immediately gives
3d(K) = 1 —2§(K) —sl(K) + d(K)?,
which is equivalent to the stated formula. O

As a corollary we see that the adjunction formula gives lower bounds on the hat genus of
quasipositive knots.

Corollary 3.11. IfK is a quasipositive knot with 4-ball genus g,(K), and

L _d=2d-1
2

is the smallest triangular number m > g,(K), then
9(K) = m — gy(K).
Moreover, the hat degree must satisfy
d(K) > d.
Remark 3.12. Since the gaps between consecutive triangular numbers can be made arbitrarily

large and any genus can be realized by a quasipositive knot, this result shows that the hat genus
and hat degree can each be made arbitrarily large.
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Proof. Since K is quasipositive, K bounds a symplectic curve 2 in (B*, w) by [73], and gluing
with a cap £ of minimal genus in (X, ) yields a closed symplectic surface T in CP2. The genus
of ¥ is the quasipositive genus ¢,(K). (Here, and below, we use the phrase ‘quasipositive genus’
of a knot to mean the genus of a symplectic surface in (B*, w) with boundary the given knot.)
We know from Lemma 2.13, and the comment after the lemma, that sI(K) = 2¢,(K) — 1. Thus,
Proposition 3.10 gives

(d(K))? - 3d(K) + 2

90 = g (K) + -

So, if d is the smallest d as in the statement of the corollary then the stated results follows. []

Remark 3.13. In fact, we claim here that the set of genera that are realized by hats for K contains all
possible genera (that is, all genera satisfying the adjunction formula for some degree) past some
sufficiently large constant.

To see this, observe that the hat constructed in Proposition 3.1 is algebraic outside a tubular
neighborhood N of S3. Therefore, there is family of complex lines in the complement of N. A
generic line in this family intersects the hat transversely, and only where the hat is algebraic; there-
fore, all intersections are positive, and hence smoothable in the symplectic category. Choosing any
finite set of such generic lines and smoothing all double points yields the desired hats.

We now make an observation concerning the relation between self-linking numbers and the
hat genus. Recall that given a transverse knot T one can form the transverse stabilization S(T) of
T (if T is given as the closure of a braid then S(T) is the closure of a negative Markov stabilization
of T). We know that stabilization decreases the self-linking number by 2: sI(S(T)) = sl(T) — 2.

Proposition 3.14. Given a transverse knot T in (S3, £.4) we have
9(SM(T) <9(T) + k.
Moreover, if T is the closure of a quasipositive braid, then
—g5(T) + k < G(SK(T)).

Corollary 3.15. A complete list of transverse unknots in (S*, £4) is U, = SK(U) fork > 0. We know
that
. sl(Up) +1
o =) =k,

and the hat degree is 1.

Proof of Proposition 3.14. It has long been known [67] that if a transverse knot T is realized as the
closure of a braid 5, which it always can be [5], then the closure of a negative Markov stabilization
of 8 is the transverse stabilization of T and the closure of the positive Markov stabilization of 3 is
transversely isotopic to T. Thus, we see that there is a transverse regular homotopy from S(T) to T
with one positive crossing change. Thus, from Lemma 2.4 we see there is an immersed symplectic
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cobordism C from S¥(T) to T with k positive double points and a symplectic cobordism C’ from
T to SX(T) with k negative double points.

Now given a hat S for T in(X, w) we can compose this with C and resolve the double points as in
Lemma 2.6 to construct a hat for S¥(T) with genus g(T) + k, thus establishing the first inequality.

Let us now suppose that T is quasipositive. Let S’ be a minimal genus hat for S¥(T) and F be a
symplectic filling of T in (B*, wy,). We can glue S’, C’, and F together to get an immersed symplec-
tic surface T in (CP?, wgg) of genus g = ¢,(T) + §(S(T)) with k negative double points. Assume
the homology class of T is ah, where h is the generator of H,(CP?) on which the symplectic form
is positive. Lemma 2.12 now yields

3a = (¢;(CP?),[Z]) =2 —-2g(2) + Z - +2m = 2 — 29 + a* + 2k,
from which 2g — 2k = a> — 3a + 2 = (a — 1)(a — 2) > 0. That is, G(SX(T)) > k — g,(T). O
Propositions 3.14 and 3.10 lead to the following natural question.
Question 3.16. Is the function §(SK(T)) : N = N : k = G(S¥(T)) non-decreasing? From
Lemma 3.10 this is equivalent to asking: can the hat degree drop when a transverse knot
is stabilized?
3.3 | Further examples

We begin with a strengthening of Theorem 1.4 that shows for some transverse knots the bound in
the estimate in Proposition 3.10 is sharp.

Theorem 3.17. Suppose T is a transverse knot in (S, £4) and there is a transverse regular homotopy
to an unknot with only positive crossing changes. Then the hat degree is 1 and hence the hat genus is

AT) = _(sl(T)+ 1)

2
where sI(T) is the self-linking number of T.
We note that this allows us to compute the hat genus for many knots.

Corollary 3.18. If T is the closure of a negative braid (that is a product of non-positive powers of the
generators of the braid group), then

g(T):_<w>

2

and the hat degree is 1.

Proof. Changing negative powers in a braid word to positive powers corresponds to a transverse
regular homotopy of the braid closures with positive crossing changes. Clearly by changing a
subset of the letters in the braid word representing T one arrives at the unknot. 1
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A special case of the previous corollary is the following computation.

Corollary 3.19. Suppose q > p > 2. Then any transverse representative T of the (p, —q)-torus knot

T, _, satisfies

AT) = - <—SI(T; 1 ) .

In particular, the maximal self-linking number representative T' (which has sI(T') = —pq + q — p)
has

(@—D(p+1)

ST )
9(T_p ) >

and hat degree 1.
We note one further corollary of Theorem 3.17.

Corollary 3.20. Let T, be a twist knot with maximal self-linking number. The hat genus of T,, is

1 n < -3 and odd
9T, = ”T+3 n > 1and odd
S npositive and even.

The hat degree is 1 in all these cases.

Proof. The proof is similar to the ones above given the classification of Legendrian and transverse
twist knots in [27]. O

Proof of Theorem 3.17. We begin by noticing that if T’ is obtained from T by a regular homotopy
through transverse knots with a single positive double point then

S(T") = s(T) + 2.

One may see this through a relative Euler characteristic argument, but as we are only considering
knots in S there is a simpler argument. Specifically, note that we can remove a point p from S3
and obtain a contactomorphism of S* \ {p} to R* with its standard contact structure taking another
point g in S* to the origin in R®. Now we can find a contactomorphism from a neighborhood of
the double point in the regular homotopy to a ball in S* about g with the double point going to
g. This contactomorphism can be extended to all of S* and so we can assume our double point
occurs at g. We can moreover assume the homotopy misses p so that the entire homotopy occurs
in R3 and that near the double point the two strands of the knot are both oriented in the positive
z direction. Now as we know the self-linking number of a transverse knot in the standard contact
structure on R3 can be computed as the writhe of its front projection, see [22], it is clear that the
change in self-linking numbers is as claimed.

Now given a transverse knot T as in the statement of the theorem, denote its self-linking num-
ber sI(T) = —2n — 1. By hypothesis there is a regular homotopy with, say, k positive crossing
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changes to an unknot U’. From the discussion above we see sl(U’) = —2(n — k) — 1 < 0. (So, we
see the self-linking number of T must be negative.) We can represent U’ as the closure of the braid
01‘1 ar‘lik. So, n — k more positive crossing changes will result in an unknot U with sl(U) = —1.
Thus, there is a regular homotopy from T to the maximal self-linking number unknot U with n
positive crossing changes.

Now applying Lemma 2.4, we can find an immersed concordance from T to U with n positive
double points and glue this to a genus-0, degree-1 hat or U to get an immersed genus-0 hat for T
in (X, w). Lemma 2.6 now yield an embedded genus-» hat for T with degree 1. So, §(T) < n.

We now show that §(T) > n. To this end, let £ be a hat for T with minimal genus. From
Lemma 2.4, we can get an immersed concordance from U to T with n negative double points.
Gluing together S the concordance and the slice disk for U we construct an immersed symplectic
surface T in CP? of genus ¢(£) having n negative double points. If the homology class of ¥ is ah
then applying in immersed adjunction equality, Lemma 2.12, we see

3a = {c,(CP?),[Z]) = 2 — 2¢(2) + a® + 2n.
So, ¢(£) = (d_l)zﬂ + n, or more specifically ¢(£) > n as claimed. O

Recall, in Question 1.8 we asked if a slice, quasipositive transverse knot T in (S, £4) that has
9(T) = 0, must be the maximal self-linking unknot. While we cannot answer Question 1.8, we
sketch an approach that seems promising.

Approach to Question 1.8. Given such a transverse knot T, let ¥ and % be the filling and hat for
T. The symplectic surface = = XU S in CP? has genus 0 and thus, by the adjunction formula, b}
has degree 1 or 2. Choose an almost complex structure J such that X is J-holomorphic.

Assuming that T is a non-trivial knot we derive a contradiction. We begin by showing that T is
symplectically concordant to the unknot.

Suppose that T wears a hat of degree 1. There exists an almost complex line #; lying entirely
inside the cap; it intersects £ positively, hence it intersects 3 transversely once, inside the cap.
Removing a neighborhood of #; from the cap, we obtain a J-holomorphic concordance from T to
the link at infinity of f; since $ intersects ¢ transversely, the link is the unknot U.

Similarly, suppose that T wears a hat of degree 2. There exists an almost complex line ¢, lying
entirely inside the cap, which is tangent to £. By positivity of intersections, the tangent point is
the only intersection. Removing a neighborhood of ¢, from the cap, we obtain a J-holomorphic
concordance between T and the link at infinity of £; since £ has an order 1 tangency to #,, the
link is the unknot.

In either case, we get a J-holomorphic concordance from T to the unknot in S* X [a, b]. Now if
one can deform J, keeping the concordance J-holomorphic, so that the standard height function
on S3 X [a, b] is pluri-subharmonic, then the maximum principle implies that the concordance is
ribbon (that is, the restriction of the projection map S* X [a, b] — [a, b] has no maxima).

However, this contradicts a result of Gordon [42]: since T is slice and quasipositive, there is a
ribbon concordance from U to T'; the argument above produces a ribbon concordance in the other
direction. Finally, since the unknot has fundamental group Z, U is in particular transfinitely nilpo-
tent, and [42, Theorem 1.2] implies that T is isotopic to U. (See also [15]*Theorem 3.2: while their
statement is in terms of decomposable Lagrangian concordances, the proof is entirely topological
and applies more generally to ribbon concordances.) O
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‘We note that Question 1.8 would also follow from the arguments above together with a positive
answer to the following stronger question.

Question 3.21. If there is a relative symplectic cobordism of genus O from a transverse knot T to
a maximal self-linking transverse unknot U in a piece of the symplectization of (S3, &), then is
T transversely isotopic to U?

4 | HATSIN OTHER MANIFOLDS

In this section, we will show that a transverse knots always bounds a symplectic disk in some cap
for the contact manifolds and then we will consider hats in rational surfaces.

We begin by establishing some notation for rational surfaces caps. More specifically, let
(Xy, @) = CP? \ B*, where B* is embedded as a Darboux ball with convex boundary, as in Sec-
tion 3. We will write X, to denote an n-fold symplectic blow-up of X|;, so that X, is homeomorphic
to (CP2#nCP?) \ B*. These are all caps for (3, £,;) and we will consider hats for transverse knots
in these caps.

There is another type of rational surface. We will denote it by Y, = (S? X S, w,) the Hirzebruch
surface CP! x CP', endowed with its natural Kihler structure, and with Y, = (CP2#CP?, w,) the
blow-up of CP?, endowed with a blow-up symplectic structure.

Note that there are infinitely many Hirzebruch surface up to complex diffeomorphism; these
are all Kdhler, and any two such complex surfaces are symplectomorphic (after possibly deforming
their symplectic form) if and only if they are diffeomorphic. Since the only two diffeomorphism
classes of the underlying manifolds are S? x S? and CP2#CP?, there are only two symplectic
Hirzebruch surfaces, Y, and Y, as defined above.

A Hirzebruch cap (H,,w,) of (S3, &) is obtained by removing a ball B* with convex boundary
from the Hirzebruch surface Y, fore = 0 or e = 1. By abuse of notation, we will index Hirzebruch
caps cyclically modulo 2, that is, H, = H, whenever k is even, and H, = H,; whenever k is odd.

We note that there is some overlap in our notation. Specifically, (X, w) = (X, wy) and (X;, w;) =
(Hy, @y).

In the second subsection, we will consider hats, which we call rational hats, in the non-minimal
rational caps X, and in the following subsection we will consider hats, which we call Hirzebruch
hats, in the Hirzebruch caps.

4.1 | Disk hats

The goal of this section is to prove Theorem 1.1 from the introduction; recall that the theorem
asserts that a transverse link L in arbitrary contact 3-manifold (Y, £) has a hat that is a collection
of pairwise disjoint disks in some cap (X, w) of (Y, ).

Proof of Theorem 1.1. We begin by recalling a result of Gay, [33, Theorem 1.1]. The theorem states
that if T is a transverse link in the convex boundary of a symplectic manifold (W, wy,), then one
may attach 2-handles to T with sufficiently negative framing and extend the symplectic structure
so that the upper boundary is weakly convex. It is clear from the proof that the core disk of the
model symplectic 2-handle is symplectic, and that if T bounded a symplectic manifold in W then
this core will cap off the surface symplectically.
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SYMPLECTIC HATS | 2241

In our situation, we consider the symplectic manifold W = [0,1] X Y, which is a piece of the
symplectization of (Y, £). Inside W we have the symplectic annuli A = [0,1] X L. We can now
attach Gay’s symplectic 2-handles to L in {1} X Y and cap off the upper boundaries of A with
symplectic disks. Thus, we get a symplectic manifold (W', ') that has Y as a concave boundary,
symplectic disks forming a hat for L, and a weakly convex boundary Y’. We can now cap off Y’
using [19, 21], to obtain a cap (X, w) containing the required hat. O

Remark 4.1. Theorem 1.1 can also be proven, in a very similar fashion, by adding Weinstein han-
dles to a Legendrian approximation of L, and then perturbing the symplectic structure on the
cobordism. We used Gay’s symplectic handles since they give a more direct proof.

4.2 | Hats in non-minimal rational surfaces

We start by proving Theorem 1.9, which asserts that every transverse knot K in (S3, £;) has a disk
hat in some blow-up Xy of the projective cap X,,. This is a refinement of Theorem 1.1 for knots in

(Sg’ 'gstd)'

Proofof Theorem1.9. By Lemma 3.6, there is a symplectic concordance from K to T, ; with positive
double points.

Without loss of generality, we assume p < g. Consider the complex curve C = V(x4 — yPz97P)
in CP2. The curve C has two singular points, namely, (0 : 1 : 0)and (0 : 0 : 1), whose links are
the torus knots T,_, , and T, ;, respectively. Removing a neighborhood of the T, ; singular point
from CP? will result in a singular hat for T, , with genus 0, whose singularity is of type T, ..

Thus, K wears a singular projective hat with genus 0 and positive double points. Note that there
is a regular homotopy from the transverse unknot to T, , with only positive crossing changes.
Thus, there is a concordance from the unknot to T,,_, ;. We can use this concordance and a sym-
plectic slicing disk for the unknot to replace a neighborhood of the T,_, , singularity with an
immersed disk. The result is an immersed genus-0 hat for K in (X, w,).

Now instead of replacing the singularities with genus, we now resolve the singularities by blow-
ing up: positive double points can be resolved using blow-ups [56]. Thus, K wears a genus-0 hat
in some Xy . O

Definition 4.2. Let §,(K) define the smallest genus of a hat for K in X,,. We call this the nth
rational hat genus of K.

An immediate corollary of the above proposition is the following observation.
Corollary 4.3. For each K, the sequence G(K) = {9,,(K)}, is non-increasing and eventually 0.
Definition 4.4. We let 5{(K) = min{n | §,(K) = 0}, and we call this the hat slicing number of K.
Example 4.5. Suppose K is a transverse unknot with sI(K) = —1 — 2s < —1. We claim that §{K) =
1. In fact, as noted above, g(K) > 0, hence S{K) > 1; moreover, K is the closure of the s + 1-braid
(0; ...05)7!, and a single full twist takes it to the braid (o, ... o,)*, whose closure is the transverse

representative of T ¢, with maximal self-linking number, which has been shown in Lemma 3.2
to have a symplectic disk hat. It follows that ${K) < 1.
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2242 | ETNYRE AND GOLLA

Proposition 4.6. For the torus knots T 5., we know S(T, 5 ,1) < 1. In particular, the sequence
G(T3ok41) I8

(9(T5 241, 0, ...)
where the values of G(T; 541) fork < 11 are

k | 1 2 3 4 5 6 7 8 9 10 11

§(T2,2k+1)|0102103215 4

Proof. We first observe that g, (T, 5, ;) = 0 for each k > 0: indeed, by [29, Theorem 1.1], there is
a degree-(k + 2) curve in CP? with two singularities, one of type T} ;,; and one of type T, 5,1,
and blowing up at the former (as discussed at the end of Subsection 2.5) yields a genus-0 hat for
T3 241 Thus, (T 541) < 1.

For the computation of §(T, ,;, 1) we begin by noting that from [30] we have

9(Ty3) = 9(Ty7) = 9(T513) = 0.

(2=1)(2k+1-1)

Note that the 4-ball genus g(T; 1) = = k. Thus, by Corollary 3.11 we see that a
d(d-1)

lower bound on §(T, 1541) is d — I where k = —— t+lforl1<i<d.

We are left to show that there are indeed hats of the appropriate genus. For T, 5 we know that
there is a positive crossing change to get to T ;, so it has hat genus 1. Similarly for T, ;;. For T,
note that one can make two positive crossing changes to get to T, ;; and hence its hat genus is 2.

Following [82] (see also [2]), there exists a degree-6, genus-1 curve C, with a singularity of type
T, 9 thus with our lower bound given above we have §(T’, 14) = 1. Since there are one, respec-
tively, two, crossing changes from T, ;,, respectively, T, 15, to T, ;o we see that their hat genus is
1, respectively, 2.

For T, ,3, we claim that there is a deformation from T ; to T', ,3; we exhibit such a deformation
by removing eight generators to a braid representative of T ; to obtain one of T, ,5. Since T ; has
a genus-0 hat (coming from the curve V(x%z — y7)), T, »; has a genus-4, degree-7 hat.

To prove the claim, one checks that, in the braid group B, (see Lemma A.1 for details):

7 _ 2
(01 05)" = (01 05)" - (01030,03040501030,0303040501030,03040305010,030405).

The second factor on the right-hand side contains eight generators o; with i even; removing them,
one reduces to the braid

2
(01 05)" - 0103030501030303050,03030305010305,

whose closure is the transverse representative of T, ,; with maximal self-linking number. (An easy
way to see this is the following: the closure of the braid is a (2, 2k + 1)-cable of the unknot, viewed
as the closure of the 3-braid 0,0,0;; moreover, the braid is positive and has self-linking number
45.)

This proves that §(T, ,3) < 4, and Corollary 3.11 gives the lower bound §(T, ,3) > 4.

The usual crossing-change argument shows that §(T, ,;) < 5. However, g,(T,,;) = 10 is a tri-
angular number, so tweaking the argument of Corollary 3.11, in order to show that §(T, ,;) > 5, it
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is enough to show that g(T, ,;) > 0, or, equivalently, that the minimal hat degree of T, ,; is strictly
larger than 6.

Suppose the contrary; then there would exist a symplectic rational curve C’ of degree 6 with
a singularity of type T, ,;. Let N be a small neighborhood of the singularity and C the result of
replacing the singularity in N with the symplectic surface T, ,; bounds in N. Since C is degree 6
and symplectic isotopy problem is true in degree 6 [74] (see also [75]) we know C is isotopic to a
complex curve. Now it is well-known [40, Corollary 7.3.25], that the cover of CP? branched over
C is a K3 surface. But inside of this K3 surface we see an embedding of the cover of the ball N
branched over the symplectic surface that T, ,; bounds in N. This is a plumbing P of 20 (-2)-
spheres, [40, section 7.2]. However, b (P) = 20 > 19 = b, (X) and so any hat for T, ,; has degree
larger than 6. O

Remark 4.7. There are other possible arguments to conclude that §(T,,;) > 0: one can either
use the semigroup obstruction of Borodzik and Livingston [11], or the Levine-Tristram signa-
ture obstruction of Borodzik and Némethi [12]. The argument above is very close to that of [37,
Proposition 7.13].

Remark 4.8. In the proof of Proposition 4.6 we saw that if k is of the form @ +lfor1<Ig
d (that is, k is larger than the triangular number 4@-D and less than or equal to @) then
9(T30k+1) > d — L. We actually have equality for k < 9. However, when k = 10 this gives a lower
bound of 0 on the hat genus, and we see from the table above that the actual hat genus of T, ,, is
5, but for k = 11 our lower bound is again accurate.

In fact, either using positivity of intersections (which gives the almost-complex counterpart
of Bézout’s inequalities in the complex setup) or using topological techniques (Heegaard Floer
correction terms or Levine-Tristram signatures), one can show that this lower bound is eventually
not sharp.

It takes some work to find examples where the hat slicing number is larger than 1, but we noted
their existence in Proposition 1.10 which we repeat here for the readers convenience.

Proposition 1.10. Let K, be the unique transverse representative of T, , .1 #T, 5 with maximal
self-linking number which is p*> — p + 1 = 29(T, , ;1 #T, ;) — 1. We have

3‘\(I<p) =p-—- la
for p < 8. Moreover,
GK,)=(p-1,p=-2,..,2,1,0,..),
forp <4

Is it always true that §(Kp) = p — 1? and that é(Kp) =(p-1,p-2,..,2,1,0,...)? Itis easy to
see, modifying the proof of the above proposition, that

GK,)<(p-1,p=2,..,2,1,0,..)
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2244 | ETNYRE AND GOLLA

(so that, in particular, STK p) < p — 1) and that g(K p) = p — 1. It is clear however where the proof
of the previous proposition ceases to work: as soon as N is large (presumably N > 8 is already
large in this sense), we have too many coefficients b; to allow for the same kind of bounds. (See
the proof below for notation.)

Our proof of Proposition 1.10 requires a special case of [36, Proposition 6.2]. We provide an
alternative proof (of the special case) below.

Proposition 4.9. A closed symplectic 4-manifold cannot contain a rational cuspidal curve of self-
intersection strictly larger than p* + 9 whose singularities are of type T pp+1and T .

Proof. Suppose by contradiction that such a curve C, exists; in particular, C, - C, > p? + 10. Blow
up at the singularity of type T, , ., and look at the proper transform C of C,,. The effect of the blow-
up is to smooth the singularity: in fact, as observed at the end of Subsection 2.5, in the blow-up,
C has asingularity of type T',, ,,,_, = T ,, that s, the unknot. That is, the singularity is resolved
by a single blow-up. Therefore, C has a unique singularity left, which is of type T ;; moreover,
C-C=C,-C,— p? > 10. However, this contradicts a result of Ohta and Ono [66], which asserts
that no pseudo-holomorphic rational curve with a simple cusp (that is, a singularity of type T’ 3)
in a closed symplectic 4-manifold has self-intersection larger than 9. (Note that we can make C
J-holomorphic with respect to some almost complex structure J by blowing up the singularity of
C, and applying results of McDuff [59] to the total transform.) O

‘We will also need the following lemma.

Lemma 4.10. In CP? there is a symplectic sphere C’; ., 0f degree (p + 2) that has (p — k) positive
double points and two singularities of type T, ,,, and T, 5,1, for0 < k < p. Wewill denotethek =1
sphere by C;.

Proof. From [29, Theorem 1.1, case 8], for each p there exists a degree-(p + 2) rational curve Cp, in
CP? with singularities of type Tpp+1andT,,, . Foreach 0 < k < p, the latter can be deformed
to a singularity of type T, ,,,; and p — k ordinary double points. Here by ‘deformed’ we mean
that we can modify the curve in an arbitrarily small neighborhood of the singularity, replacing
it with a curve with the ‘smaller’ singularities described. To see this note that one may go from
T 241 t0 T5 5,41 by (p — k) positive crossing changes. Thus, by Lemma 2.4 there is a symplectic
cobordism in [a, b] X S* from T, 5, to T55p+1 With (p — k) double points. We can now excise a
neighborhood of the singularity of type T, , ., ;, glue our constructed cobordism in its place using
Lemma 2.2, and finally glue in a new symplectic ball and the cone on T, ;. The case k = 1
gives the claimed symplectic curve C;) +,- (With more work this construction can be done in the
algebraic category yielding a complex curve with the stated properties.)

An alternate construction of C b2 Can also be given as follows. Look at the (reducible) curve
W(xPz? — yP*1z); it consists of a rational curve R with a cusp of type Tp p+1 and a line L with a
tangency of order p + 1 to R at a smooth point of R. The link of the tangency point is of type
T55p+2- As above we can replace a neighborhood of this point by a pair of pants with a sin-
gular point of type T ,,,, since we can build a symplectic cobordism from T, to T;;p.5
by adding a single positive crossing using Lemma 2.8. The resulting curve C has degree p + 2
(since deformations do not change the degree), is irreducible (since we connected the two irre-
ducible components with the deformation), and has genus 0 (either by adjunction or by a Euler
characteristic computation). [l
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Proof of Proposition 1.10. We begin by noticing that blowing up CP? at each of the (p — 1) double
points of C;) from Lemma 4.10 gives an embedded sphere C with two singular points of type T, ,,,
and T, ;. Removing a neighborhood containing the two singular points shows thatg,_;(K,) = 0.
Thus, to see S(K,,) = p — 1 we merely need to see g, ,(K,) # 0.

For p = 1 we are done. For p = 2 we note that the genus of K, is 2, and since the minimal tri-
angular number larger than 2 is 3, Corollary 3.1 give a lower bound of 1 for §(K,). To see that
§(K,) = 1 we note that resolving the double point of Cg gives a genus-1 surface with two sin-
gular points of type T, ; and removing a neighborhood containing the singular points gives the
desired surface.

We will now compute whole sequence G(K p) for p =3 and 4. Then for K, ..., Kg we use the
same techniques as for K,, but we only achieve the computation of the hat slicing number. It is
possible that, pushing the arguments a little bit further, one can compute G(K p) for some other
small value of p, but we do not pursue this here.

The knot K;: We show that @(K3) =(2,1,0,...).

Since the slice genus of K is 4 and the minimal triangular number larger than this is 6, we again
have from Corollary 3.1 that g(K) > 2; by looking at Cg and smoothing its two double points, we
create a curve in CP? with genus 2 and whose singularities are the cusps of C’, that is, one of type
T, , and one of type T) 5. It follows that G(K) < 2.

To compute g, (K3), look again at C7. Blowing up at one of its double points and resolving the
other, we construct a genus-1 hat in CP2#CP?2, thus proving that §, (K;) < 1.

We are left to prove that §,(K5) > 0. Suppose by contradiction that K5 has a genus-0 hat H in
punctured X;; filling (S3, &4, K3) with the cone filling, we obtain a symplectic rational cuspidal
curve C in the sense of [37]. Suppose that the homology class of C is ah — be € H,(X;), where h
and e are the homology classes of a line and of the exceptional divisor. By positivity of intersec-
tions, either a = 0 or a, b > 0: this follows as in [52, Lemma 4.5], once we observe that the class
h can always be realized by a smooth J-holomorphic +1-sphere for each J, since the space of J-
holomorphic spheres in the class & has positive dimension and is non-empty (because h satisfies
automatic transversality and it is represented by a symplectic sphere) [43] (see also [80, section 2]).
Applying the adjunction formula, we obtain

2a=1)@=2)= 3b(b—1) = (T3, #T,3) = 4 @

So, a # 0 and we have a,b > 0. Since the only way to express 4 as a difference of triangular
numbers is as 4 = 10 — 6, we obtain that (a, b) = (6,4), and in particular C - C = 6> — 4% = 20.
However, C - C = 20 > 18 = 3 - 3 + 9, thus contradicting Proposition 4.9.

The knot K,: We show that @(K4) =(3,2,1,0,..).

We begin with a lemma that follows from positivity of intersections and Gromov’s work on
J-holomorphic lines and conics in CP2.

Lemma 4.11. Suppose that K, has a hat in X,, in the homology class ah — 3 be;, with

by > >b,>0.

n

Then (assuming n is large enough for each inequality to make sense) we have:

azb +p
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2246 ETNYRE AND GOLLA

a>b +b,
2a> by +b, + by +b, + p, and

2a>b1+b2+b3+b4+b5.

Proof. Let C be the singular curve obtained by gluing the hat with a singular symplectic filling of
K, with two singular points, one of type T, ; and the other of type T', ;. The homology class of
C is ah — Y b;e;. (When proving the first two inequalities we assume n = 2 for convenience; in
general, the other expectational curves can be ignored.)

Realize the homology classes of e; and e, by symplectically embedded disjoint spheres E;, E,,
and then choose an almost-complex structure J, on X, that makes E;, E,, and C simultaneously
J,-holomorphic (this follows as in the case of K; above). Contracting E; and E, we get to an almost-
complex CP? (with almost-complex structure J), and by work of Gromov there is a (unique)
J-holomorphic line L in CP? passing through the contractions of E; and E,, and its proper trans-
form in X, is J,-holomorphic, and thus intersects C positively. But the homology class of the
proper transform L’ of L is h — e; — e,, and its intersection with C is precisely

0<C-L' =(ah—bye; —bye,)-(h—e;—e,)=a—b, —b,.

To prove that a > b; + p, just consider the line going through the singular point of C of multi-
plicity p (that is, the point where C is a cone over T, , ;) and the contraction of the exceptional
divisor corresponding to e;.

The second part of the statements is proved in analogous way by using conics instead of lines.
Indeed, instead of considering a line, consider the (unique) conic through the contractions of
e, ...,e, and the singularity of type T or through the contractions of ey, ..., e5, and then apply

p,p+1 ’
positivity of intersections. O

In the following, we find it convenient to re-write the adjunction formula for the homology class
ah —bje; — -+ — byey € H,(Xy), represented as a rational cuspidal curve with two singularities
of type Tp, p,q and T 5 as

a?=bl— - —by=p*—p+Ba—b, — - —by). 5)
An immediate corollary to Lemma 4.11, since the b; are decreasing, is that for each set of distinct
indices iy, ..., is:

2a> b+ +b,, a>b, +b,, (6)

where by convenience we let by, = p and by, = 2. The fact that we can use by, = 2 in the
bounds can be seen, as in the proof of the lemma, by taking a curve through the singularities of
type T, 5 that lives in the singular filling of K. In particular, a > p + 2.

Finally returning to K;, we see, as above, that §(K,) > 3, since g(T,, s#T 3) = 7 and the smallest
triangular number larger than 7 is 10; by either blowing up or resolving the double points of Cfl
as we did for C; above, we easily see that §(K,) < 3, and that in fact 5;(K,) < 2, §,(K,) < 1, and
33(Ky) = 0.
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Suppose that §,(K,) = 0. Using Equation (6), we can write
3a—b,—b,=(a—-b))+(a—-by)+a>2p+a>3p+2=14=p+10,
And thus Equation (5) gives
az—bf—b§>p+10,

which contradicts Proposition 4.9. Since g,(K) > 0, then a fortiori §,(K) > 0.

Suppose that g, (K) = 1; and let ah — be be the homology class of the corresponding curve D
in CP2#CP2. Applying the adjunction formula, %(a - 1(a—-2)— %b(b — 1) = 8 (note that the
right-hand side is 8 instead of 7 — as it was above — since now the curve has genus 1); by
direct inspection, the only solution to the equation is (a, b) = (10, 8). However, this contradicts
the Lemma 4.11 above, since 10 = a # b + p = 8 + 4 = 12. Therefore, §,(K) > 1.

The knot K, K, and K;: Here, we simply establish that ﬁp_z(K p) #0for5< p < 7. Wealso
have the inequality g,_,(K,) < 1 from resolving one double point of C;) and blowing up the rest
as in the examples above. Thus, we actually prove g, ,(K,) = 1.

Suppose ﬁp_z(K ») = 0, then we produce a rational cuspidal curve C,, as we did in the K case;

suppose that [C,] = ah — bye; — - —b,_se,_, € Hy(X,,_,).

In light of the Adjunction Formula (5), if we want to apply Proposition 4.9 as in the examples
above, it is enough to prove that (3a — b; — --- — by) > p + 10. We will do this for p = 5,6,7,8
and N =p—2,

For convenience of notation, from now on we drop the subscripts.
For p = 5: By the Inequalities (6), we obtain

3a—b, —b,—by=(a—by)+(a—b,)+(a—bs)>3p=p+10.
For p = 6: By the Inequalities (6), we can write
3a—b1—“'—b4=a+(2a—b1—"'—b4)>a+p=a+6,

so if a > 10 we have 3a — b; — -+ — b, > p + 10. There are obviously no solutions to Equation 5
if a < 7, this is also true for a = 8. For a = 9 the only solution is (a, by, ..., bs) = (9, 3, ..., 3). This
curve has self-intersection 45.

By looking at the classification of fillings of the corresponding contact structure on the bound-
ary of the neighborhood of the curve as in [37], one sees that this contact structure does not
have any strong fillings. The obstruction reduces to the not being able to embed G, in CP?, [37,
Proposition 5.24], where G, is two conics with an order-4 tangency and a line tangent to both.

This can be seen as follows. Given the hypothesized Cg, blow-up at the two singularities of
the curve, thus obtaining a configuration of three smoothly embedded symplectic spheres: the
proper transform C of the curve, of self-intersection 45 — 62 — 22 = 5, and two (—1)-curves (the
exceptional divisors), having tangency orders 6 and 2 with C. Now blow up four more times at the
intersection point of C with the first exceptional divisor: the proper transform of C is a +1-sphere,
and the resulting configuration of curves is shown in Figure 2.

We apply McDuff’s theorem [57] to identify the proper transform of C with a line in a blow-up
of CP2. Using Lisca’s arguments [52], the homological embedding of the configuration is forced,
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2248 ETNYRE AND GOLLA

h
h—e1—es

FIGURE 2 The configuration associated to the curve of self-intersection 45 with singularities of type T, ;
(left) and T, , (right), together with the embedding coming from McDuff’s theorem. The bold curves represent the
total transform of the curve described in the proof of the case p = 6 in Proposition 1.10; the thin curves represent
the exceptional divisors in the embedding.

up to permutation of the indices: the embedding is displayed in Figure 2. Contracting the divisors
ey, €, .-, €9, and then es, e4, e, e, (in this order) reduces our configuration to one containing G,
(the curve in the homology class h — e; — e, can be disregarded). To this end, it is clear that the
two curves in the homology classes 2k — )’ e; blow down to two conics; blowing down es creates
a transverse self-intersection between the two blown-down curves; e, passes through the point of
intersection, and blowing it down creates a simple tangency. Contracting e; and e, in the same
fashion creates a tangency of order 4, which will be the only intersection point of the two conics.
For p = 7: From the Inequalities (6), we obtain

3a—by—++—bs=a+QRa—-by—-—by—bs)>a.

Ifa > 17 = p + 10, we are done. It is clear there are no solutions to Equation 5if a < 8. A computer
search now shows that there are no solutions to the adjunction formula for which a between 9
and 16 either. O

4.3 | Hats in Hirzebruch caps

We now investigate the Hirzebruch cap (H,,w,) of (S3, £4) discussed at the beginning of this
section. We call F, a CP'-fiber of H,, and S, and S/, the two sections with self-intersection +e
and —e, respectively; with a small abuse of notation, we use the same notation for the homology
classes (either in H,(H,) or in H,(H,,0H,)).

Proposition 4.12. Foreach p > 2 and k > 1 the knot Tp,kp+1 admits a genus-0 hat in (Hy, w; ), in
the relative homology class F, + pS;.

Analogously, for each p > 2 and k > 1 the knot Tp’kp_1 admits a genus-0 hat in (H,, w,.), in the
relative homology class pS,.

Proof. We start by proving that the knots T, ; , ., have genus-0 hats in H,..
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FIGURE 3 From left to right: the curve C (black) and the line # (blue); the curve C, (black), the fiber F;
(blue), and the section S, (red); the curve C’ (black) and the line £’ (blue); the curve C, (black), the fiber F,
(blue), and the section S]’( (red). In the second and fourth figure, the point at which we blow-up is the intersection
of the red and blue curves, and the curve to be contracted is the proper transform of the blue curve.

Let C denote the curve C = V(xP*! + yPz) c CP2. The curve C has a singularity with link
Tp, p41 at the point (0 : 0 : 1), is smooth away from (0 : 0 : 1), and is rational. That is, the com-
plement of a small ball B* centered at (0 : 0 : 1) is a disk, which is complex and hence symplectic
with respect to the Kihler structure on CP2. Consider the line # = {x = 0} C CP2. It has two inter-
sections with C: (0 : 0 : 1), with multiplicity p, and (0 : 1 : 0), with multiplicity 1. By blowing
upat(0 : 1 : 0), we obtain an embedded rational curve C;, the proper transform of C, whose only
singularity is of type T, ;.

Observe that the proper transform of #; is a fiber F; of X; over CP!, and that it intersects C;
only at the singular point x;, and it does so with multiplicity p. The exceptional divisor E; of the
blow-up is a (—1)-section S{ of X, and it intersects the curve C, transversely at one point.

We now proceed by induction; suppose that, as in Figure 3, we have created a curve C;, in H;
such that:

* C) has only one singularity of type T, j 11
* C} intersects a fiber F only at the singularity of C; with multiplicity p;
* Cj, intersects a section S]’{ transversely at one point.

Now blow up at the intersection of F}, and S/, creating the exceptional divisor E,, and blow down
the proper transform of F). The singularity of C; ., at x;; has gained a p in its multiplicity
sequence, hence its link is T', (4 1y,41, as desired. The curve Ej blows down to a fiber Fy,, of
H, ., that intersects the image C} ,, only at its singularity with multiplicity p. Finally, the proper
transform of S} is S, |, and the contraction happens away from S, ,, hence S, | still intersects
Cy41 transversely at one point.

This proves the existence of the genus-0 hat; we now compute its relative homology class.
Indeed, with respect to the intersection pairing, the two bases (Fy,S;) and (S],F)) of H,(H,)
are dual bases. Since C, intersects F). with multiplicity p and S with multiplicity 1, its homology
class is therefore F) + pS;; the corresponding hat, obtained by removing a small ball around the
singularity, is in the relative homology class F; + pS;.

This concludes the proof in the case T, ; ,,;- The proof in the case T
we only outline the differences here.

Instead of considering the curve C, we consider the curve C’ = V(xP + yP~!z) c CP?, and
instead of the line # we consider #’ = {y = 0}. The line #’ and the curve C’ intersect only once,
with multiplicity p. Blowing up at a generic point of #’ yields the starting point for the induction,
as above.

pkp—1 is very similar, and
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2250 | ETNYRE AND GOLLA

However, now the fiber F; only intersects the curve once, with multiplicity p. We blow up once
at a generic point of F; and blow down the proper transform: therefore, the section S| (that is,
the exceptional divisor) is disjoint from the curve. By doing so, we obtain a curve C{ whose only
singularity picks up a new p in the multiplicity, and the fiber F; again intersects the curve once
with multiplicity p; this allows to run the induction similarly as above. In particular, we get curves
C; whose only singularity is of type T}, ;. ,_;. Now C} is disjoint from the section S] and intersects
the fiber F) with multiplicity p, so its homology class (as well as the relative homology class of
the cap) is pSy. [l

Example 4.13. Observe that, by contrast, some of these knots have very large hat genus. We will
focus on the case k = 2. Consider the knot T, ,,_; first; the first three elements of the semigroup
of the associated singularity are 0, p, 2p — 1, hence, in the notation of [8], ['(3) = 2p — 1. Using [8,
equation (%), p.15] with j = 1, one obtains 2p — 1 = I'(3) < d, that is the degree is at least 2p — 1.
In particular, (T ,,-1) > W = 9(Tpp—1) = (p — 1)(p — 2); this actually proves that the
hat of Lemma 3.2 is the one of minimal degree for these knots, proving that, in fact, g(T p,zp—1) =
(p—D(p-2).

We now exhibit a symplectic curve of degree 2p — 1 and genus (p — 1)(p — 2) in CP? whose only
singularity is a cone over T, ,,_;. Indeed, the curve V(x*P~" + yPzP~1) has two singularities, one
of which is of type T, ,,,_,. Smoothing the other singularity yields the desired symplectic curve.

Similarly, for the knot T 1 we have that the third element of the semigroup is 2p, yield-

popt1) = W — 9(Tp2p+1) = (p — 1) However, by

smoothing one of the two singularities of the curve V(x?P*! + yPzP*1) we obtain a hat of
degree 2p + 1, hence showing that g(T p2p+1) S p?. Since there are no triangular numbers strictly
between g(T, 5,+1) + (p — D*and g(T, 5 p41) + (p — 1)?, we have §(T , 5,41) € {(p — 1)%, p*}. For
example, for p = 2 there is a unicuspidal symplectic curve of degree 4 whose singularity is of type
T, 5; likewise, for p = 3 there is a unicuspidal symplectic curve of degree 6 whose singularity is of

type T3’7.

p.2p+
ing d > 2p as above. In particular, §(T

5 | A HIGHER DIMENSIONAL EXAMPLE

We prove here Proposition 1.13, which is a higher dimensional analogue of Lemma 3.2. That is,
we will prove that the link of an isolated complete intersection singularity, which is a contact
submanifold of (S?"~1, £4), has a hat in CP" \ B".

The two main ingredients of the theorem are:

* the finite determinacy theorem for singularities of complete intersections, asserting that any
singularity is determined by an appropriate truncation of its Taylor series (see [1, 77]);

* a deformation {(X;,0)} < of an isolated complete intersection singularity (X,,0) induces a
symplectic cobordism from the link of (X, 0) to that of (X, 0).

Let us be more precise on how a deformation gives rise to a symplectic cobordism.

Let A be the unit disk in C centered at 0 and A* = A\ {0}. A deformation of the singularity
in C" defined by the equations G, = -+ = G,_4 = 0 is a 1-parameter family {G, ..., G;_ Jren of
power series such that Gg = Gy.. Suppose that the germs {G{ = = G;_ 4 = O}tea+ have topologi-
cally isomorphic singularities at O € C" and that the corresponding subvarieties are all complete

intersections. In this case, let X, denote (the germ at O € C" of) {G} = -+ = G; _4 =0} with a
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small abuse of notation, we will also call X, the singularity of X, at the origin. We say that X, for
any t # 0 is the generic singularity in the family {X,}, and that X, is the central singularity.

Let £ > 0 be a real number such that X, intersects S?*~! C C" transversely. We choose ¢ suffi-
ciently small so that this intersection is the link of X,. For ¢ sufficiently small, X/, too, intersects
Sf"‘l transversely. Now choose 7 sufficiently small such that X, intersects S%"‘l transversely in
the link of X;. Then X, n (D" \Di”) is a symplectic cobordism from the link of X, to the link
of X,,.

We split off an easy lemma. We put coordinates {(z, : --- : z,)} on CP".

Lemma 5.1. Let 1 <d < n and p be positive integers, and A = (a; j)1<i<n—d,1<j<n b€ a complex
matrix of size (n —d) xn whose (n—d)x (n—d) minors are all non-zero. Then the equa-
i n P _ _\n p _ 3 . .

tions ijl ay,;z; = = ijl Ap-q,jZ; =0 define a complete intersection X, , C CP" that has an
isolated singularity at (1 : 0 : --- : 0) and is non-singular elsewhere. In particular, the link of its

singularity has a projective hat.

Note that none of the equations above involves z,.

Proof. We compute the Jacobian of the map C"**! — "¢ sending

n n
p p
(295 r 2) P Z 125 s 2 A jZ; |-
=1 j=1

This is simply given by B(z, ..., z,,) = (b; j(Z¢, -, Zn))1<i<n—d o< j<n> Where

0 ifj=0
bi,j(ZO’ ceey Zn) = p—l

pa; ;z; if j > 0.
To check that X, , is a complete intersection whose unique singularity isat (1 : 0 : -+ : 0), itis
enough to show that B(z, ..., z,) has maximal rank along X, ,, except when z; = -+ = z,, = 0.

This is easy to see, since the matrix B(z, ..., z,) is obtained from A by adding a column and
multiplying each column by pzf ~!, so there is a non-vanishing minor as soon as at least n — d
among z,, ... , Z,, are non-vanishing. On the other hand, ifatleast d + 1 among them are vanishing,
then all of them vanish, since the equations defining X, , are linear in zf s, Zh and A has all
non-zero maximal minors.

The complement of a small ball around (1 : 0 : --- : 0) gives the desired projective hat. O

Proof of Proposition 1.13. Suppose (Y2471, &) c (2", £, is the link of an isolated complete
intersection singularity (X,0) in C", defined by analytic functions f;, ..., f,_4. By the finite deter-
minacy theorem, there exists a constant C such that (X, 0) is isotopic to the singularity defined by
the truncations of the Taylor series of f7, ..., f,_, at degree C.

Choose p=C+1and A =(q; j) to be a complex (n — d) X n matrix with non-zero maximal
minors. Fori =1,...,n —d let

_ p p
91215y 2,) = a;1z) + -+ 0,2,
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2252 | ETNYRE AND GOLLA

and, for a complex number ¢,
Fi =g +tf;

In particular, note that the truncation of Ff at degree C is ¢ f;. It follows that, when ¢ # 0, the
singularity of {F { =..=F fl g= 0} at the origin is isomorphic to (X, 0). On the other hand, when
t = 0, then we have the complete intersection X4 ,, of Lemma 5.1, and the link (Y, ,,§, ,) of its
singularity has a projective hat.

The family {{F { == F; 4= 0}}; describes a deformation of {¢g; = -+ = g,,_4 = 0}, so there
exists a symplectic cobordism in S2"~1 x [0,1] from (Y, £) to (Y, A.p>§4,p)> and gluing this to the
projective hat of (Y, ,, {4 ) we conclude the proof. O

6 | APPLICATIONS OF HATS TO FILLINGS

In this section, we will construct hats for some quasipositive knots, and we will see how these hats
can be used to produce caps for their branched covers. In turn, we will use these caps to restrict
the topology of exact fillings of these branched covers.

Recall that given a transverse link K in a contact manifold (Y, £) there is a natural contact
structure & induced on any cover of Y branched over K obtained by pulling back & on the com-
plement of K and extending over the branched locus in a natural way [41]. For a transverse knot
K in (S3, £,4) we denote by Z.(K) the contact manifold obtained by r-fold cyclic branched cover
of (83, £,4) branched over K. When r = 2 we will leave off the subscript and just write Z(K).

In what follows, we will only be dealing with quasipositive knot types. For each such knot type
K we will choose a specific quasipositive braid, which gives a specific transverse representative
T smoothly isotopic to K. This choice endows the branched cover X, (K) with a contact structure
obtained as the r-fold cyclic cover of (S3, &,4) branched over T. By an abuse of notation, we will
denote it with £, instead of &7 ,; as above, if ¥ = 2 we drop it from the notation and simply
write .

Remark 6.1. We do not have examples for which our statements are sensitive to the choice of the
transverse isotopy class T in the smooth knot type K. More generally, we are not aware of any
examples in the literature of two transverse knots T, T’ with the same classical invariants, and
such that & is not contactomorphic to &;.

However, we do not see any reason why the statement should hold for arbitrary transverse
representatives. More precisely, our proof of Theorem 1.15 will break down if, in one of the knot
types K of the statement, one can find another transverse representative T’ with d(T’) > 6 and
& # &, where T is the transverse knot of topological type K considered in Theorem 1.15. The
proof of Theorem 1.18 would also break down for similar phenomena.

In this section, we prove Theorems 1.15 and 1.18 which we recall here for the reader’s conve-
nience.

Theorem 1.15. Let K C (S3,&,,4) be one of the transverse knots in Table 1. Let (W, ) be an exact
symplectic filling of ((K), £x), with intersection form Qy,

(1) IfK isof type 12n,,,, then W is spin, H{(W) = 0, and Qy, = E3 @ H.
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SYMPLECTIC HATS 2253

(2) IfK is of type 10,54, 121,95, OF 121475, then W is spin, H; (W) = 0, and Qy, = Eg.
(3) IfK isof type m(12n,,,), then W is spin, H;(W) = 0, and Qy, = H.

(4) IfK is of type m(12n4,3), then W is an integral homology ball.

(5) IfK is of any of the following topological types, then W is a rational homology ball:

m(8x), m(946), 1014, m(10;s5),  m(11ns),
m(11n,3,), 11ny3y, mA1lnys,), m(12ny5), m(12n593),

12nsg,, 121505, m(12n451), mM(12n45), 12ngsg.

Theorem 1.18. Let (2,(K), £ ) denote the r-fold cyclic cover of (S*, &), branched over the
transverse knot K of Table 1. Let (W, w) be an exact filling of (Z,(K), §k ).

(1) IfK is a quasipositive braid closure of knot type m(8,), m(9,4), 10149, M(10;55), m(11ns,), and
r = 3,4, then W is a spin rational homology ball.

(2) If K is a quasipositive braid closure of knot type m(11n,3,), 111,39, m(11n,7,), m(12ns;3),
121545, m(12ng3g), and r = 3, then W is a spin rational homology ball.

(3) IfK is a quasipositive braid closure of knot type 8,, and r = 3,4, then W is spin and b,(W) =
2(r —1).

6.1 | The pretzel knot P(—2,3,7)

In this section, we prove Part (1) of Theorem 1.15 and so we focus on K = P(—2, 3,7) = 12n,,,; this
is a quasipositive knot with determinant 1, whose branched double cover is Z(K) = —X(2, 3, 7)
[60], that is, a Brieskorn sphere with its orientation reversed. This case will be paradigmatic for
the other examples considered later.

For convenience we will denote the standard generators of the braid group B; by x and y. The
knot K is represented by the braid word xy’x?y’ € B;. We also recall the notation g 1 8’ intro-
duced just before Lemma 3.7 to indicate the braid g’ is obtained from f by adding the square of a
generator.

Lemma 6.2. The knot K has a genus-5, degree-6 hat H in CP?.

Proof. We are going to exhibit a genus-5 symplectic cobordism Z from K to T ;. Since T 5 is the
only cusp of the rational curve V((zy — x%)* — xy>) [30], it has a disk hat of genus 0. Gluing the
cobordism and the latter hat, we obtain the desired result.

The symplectic cobordism X is obtained by performing a sequence of positive crossing changes,
isotopies, and conjugations. The starting point will be the braid xy*x?y’, whose closure is a
transverse representative of K with self-linking number 9, and the goal will be the braid (xy)!!,
whose closure is the unique transverse representative of T ;; with self-linking number 19. Recall
that in the 3-braid group, we have the relation xyx = yxy, and that the closures of braids are
insensitive to conjugation (that we are going to denote with ~). We are also going to denote
with A% = (xy)? = (xyx)? the full twist, which lies in the center of By (in fact, it generates it).
To ease readability, we also underline the point of the braid word where we have introduced a
new crossing.
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2254 | ETNYRE AND GOLLA

We start by observing the following fact: given any word w € B;, with two crossing changes we
can turn w, = wxy*"*! into w; = wA?xy**~!. In fact,

wy = wxy? T wxyxxy® 1 wxyxxyxxy* ! = wlxyx)*xy*" ! = wA?xy* ! = w,.

We denote such an operation by w, T1 w;.
The sequence goes as follows:

xy?x?y7 1 xy’xy’xy” = xy(yxy)yxy’ ~ yxyyxyyxyy> = xyxyxyxyxy’

=A%xyxy> 11 A’xyA>xy® 11 A*xyA%xy = APxyxy = (xp)'L. m
We now use this hat for K to build a nice symplectic cap for Z(K).

Proposition 6.3. Thereis a symplectic cap (C, w) for Z(K) that embeds in a symplectic K3 surface.
Moreover, H,(C) = 0, the intersection form of C is Eg @ 2H, and the canonical divisor K -~ vanishes.

Proof. Since K is quasipositive, it bounds a symplectic surface F of genus equal to the quasipositive
genus of K, which in turn can be computed from the self-linking number of K by the adjunction
formula in Lemma 2.13, see also [10].

In this case, g(K) = ¢,(K) = 5, hence g(F) = 5. Glue F and the hat H from Lemma 6.2 together:
this yields a smooth symplectic curve D C CP? of the same degree as the degree of the hat; that
is, D has degree 6 and genus 10.

Since the symplectic isotopy problem is true in degree 6 [74] (see also [75]), D is isotopic to a
complex curve of degree 6, and the branched double cover of CP? branched over a smooth sextic
is a K3 surface (see, for example, [40, Corollary 7.3.25]).

Let (C, ) be the double cover of CP? \ B* branched over H and Z(F) be the double cover
of B* branched over F. We note that (S°, £4) in CP? has a neighborhood that looks like a piece
[a,b] x S* of the symplectization of (S, £,4) and D intersects this neighborhood in [a, b] x K.
The branched covering construction of contact and symplectic manifolds shows that a piece of
the symplectization of Z(K) lies above [a, b] x S* in the cover and so (C, ) is a cap for £ (and
2(F) is afilling).

One may easily compute b,(Z(F)) = 10 (see, for instance, [40, section 7]); moreover, since Z(K)
is an integral homology sphere, the intersection forms on H,(Z(F)) and H,(C) are both unimod-
ular. The intersection form on K3 is 2Eg @ 3H, and thus b,(X) = b,(K3) — b,(2(F)) = 12 and
b2+ (X) < 3. The only unimodular intersection form of rank 12 and b; < 3isEg + 2H.

Finally, the canonical class K is the restriction of K53 = 0 to X, hence it vanishes, too. O

With the Calabi-Yau cap (C, w.) in hand, Theorem 1.15 Part (1) will follow from the following
results.

Proposition 6.4. Suppose that a contact rational homology 3-sphere (Y, £) has a Calabi-Yau cap
(C,wc) with b; (C) = 2and b,(C) = 7. Then all exact symplectic fillings embed in a K3 surface, have
finite first homology, and have the same Betti numbers and signature. Moreover, if Y is an integral
homology sphere, then every filling has trivial first homology.

The proof is essentially the proof of [ 76, Proposition 3.1], cf. [50, Theorem 1.3].
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Proof. Suppose (W, wy,) is an exact symplectic filling of (Y, £), and let
(X5 CO) = (C7 CUc) U(Y,g) (W’ CUW)

Let also K denote the canonical class of X.
Since W is an exact filling and C is a Calabi-Yau cap, it follows that

Ky - [w] = Kxly - [ww] + Kxlc - [0c] = Kxly -0+ 0 [wc] = 0.

The facts that by (X) > 2 and Ky - [wy] = 0 together imply that the only Seiberg-Witten basic
classes for X are +Ky [78]. Since K is represented by a symplectic embedded surface [79] and
Ky - [wx] = 0, in fact Ky = 0, therefore X is symplectically minimal [31].

Hence, the symplectic Kodaira dimension of X is 0 [48], and therefore X has the rational homol-
ogy of either a K3 surface, or of an Enriques surface, or of a T2-bundle over T2 [4, 47, 61]. However,
C cannot embed in a torus bundle T over the torus, since b,(C) > 7 > 6 > b,(T). Neither can C
embed in an Enriques surface E: indeed, b5 (C) > 2 > 1 = b} (E).

Hence, X is a rational homology K3, that is, |H;(X)| = n < 0. Consider the kernel of the
Abelianization map 7,(X) — H,(X), and the cover (X, ®) associated to its kernel. As signature
is multiplicative under finite covers we see o(X) = —16n, but since X is also a compact symplec-
tic manifold of Kodaira dimension 0, its signature must be 0, —8, or —16. Thus, n = 1 and we have
H,(X)=0.

Let us look at the Mayer—Vietoris long exact sequence for X = W Uy C:

Hy(Y) —» H(C)® H,(W) - H;(X) =0.

Since Y is a rational homology sphere, H,(W) is finite. If Y is an integral homology sphere,
H,(W) = 0.

Finally, since Y is a rational homology sphere, the intersection forms of W and of C are non-
degenerate, and their direct sum embeds as a full-rank sub-lattice of H,(X) =~ 2E; @ 3H. The
statements on b,(W) and o(W) readily follow; an Euler characteristics argument implies that
b;(W) is invariant, too. O

Proof of Theorem 1.15 Part (1). The cap (C,w) of Proposition 6.3 is a Calabi-Yau cap, and it has
b; (C) = 2 and b,(C) = 12 > 7. Therefore, by Proposition 6.4, all exact fillings of £ are spin and
have the same Betti numbers and signature. In the proof of Proposition 6.3, we saw a filling with
b, =10and o = 8.

Since —X(2,3,7) is an integral homology sphere, the intersection form of any filling is
unimodular; since the filling is spin, it is also even. In particular, the intersection form is
Ey ® H. O

We now establish Remark 1.16 by constructing infinitely many symplectic fillings of —Z(2, 3, 7).
We begin by constructing one such filling.

Lemma 6.5. The contact structure £ is filled by the plumbing of Lagrangian spheres according to
the graph E, in Figure 4.
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2256 ETNYRE AND GOLLA

FIGURE 4 ThegraphE,.

FIGURE 5 Two contact surgery diagrams; the thicker components correspond to contact +1-surgery, the
others to Legendrian surgery. The arrows indicate the handleslides described in the proof of Lemma 6.5.

Note that, in fact, E;,, as a lattice, is isomorphic to Eg @ H, by classification of indefinite
unimodular forms (or by direct inspection).

Proof (sketch). By lifting the monodromy of the disk open book for (S3, &), adapted to the
3-braid xy*x?y’, and converting to a contact surgery diagram as in [45], we obtain the diagram
on the left of Figure 5. Here (+1)-contact surgery is performed on the darker knots and (—1)-
contact surgery is performed on the other knots. Since the darker knots are unlinked unknots,
doing (+1)-surgery along them can also be viewed as attaching a 1-handle.

By successively handlesliding [16] the topmost unknot on the next one (as indicated by the long
arrow on the top left), and performing the three handleslides indicated by the other three arrows,
we obtain the diagram on the right.

We can now cancel the two bottommost knots, and perform a last handleslide as indicated
by the arrow. The remaining contact (+1)-framed knot cancels with the remaining ‘big’ (—1)-
framed knot, leaving with the diagram comprising ten tb = —1 unknots that link according to the
E,, graph.

This exhibits & as the boundary of the E,, plumbing of Lagrangian spheres, as required. ~ []

Proof of Remark 1.16. By Lemma 6.5, £ is the boundary of the plumbing (P, wp) of Lagrangian
spheres, plumbed according to the E;, graph. We can deform the symplectic structure wp to make
all spheres symplectic [39].
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Since the E;, plumbing is not negative definite and its boundary is a homology sphere, it admits
a family {N.} of open neighborhoods with concave boundary [49].

In particular, there is a symplectic structure on X(K) X [0, 1] such that both boundary compo-
nents are convex, and this is obtained by removing N, from P for some sufficiently small £. We
can now cap off the component Z(K) x {0} with caps with arbitrarily large b; [24]. O

6.2 | Quasipositive knots with few crossings

In this section, we will prove the other cases of Theorem 1.15 using the same technique as in the
previous subsection. In particular, we begin by finding quasipositive knots with degree-6 hats.

Lemma 6.6. A quasipositive representative of each of the following knots has a degree-6 hat:
m(820), m(946), 10124, 10140, m(10155), m(llnso), m(11n132), 1171139, m(11n172), m(12n121),
m(12n,y5), 12n59,, m(12n4;5), M(120493), 121473, 121555, 12155, M(1205,;), Mm(12n54g), 12Ng35.

We will prove the statement only for m(8,), m(944), 10149, and m(12n,,5), as a sample. The rest
of the proof can be found in Appendix A.

In the following, we denote with x, y the generators of B; and with x, y, z the generators of B,.
In what follows, we use T, to denote the insertion of k pairs of crossings and we underline the
new generators (or the generator that has been switched from negative to positive as well as the
original negative crossing, or the negative full twist that we simplify), ~ to denote conjugation,
and ~, to denote Markov destabilization. We also use A? to denote the Garside element in B;.

Proof. The knots are all quasipositive according to KnotInfo [54]. We argue case by case.
m(8,,): This is the closure of the 3-braid x>yx~3y. We can write

Xyxy 1, FPyxy = xtyx ~p=x°,

and T, s is the singularity at the point (0 : 0 : 1) of the degree-5 curve V(x?z* — y°), hence it has
a degree-5 (and hence a degree-6 as well) hat.
m(9,,): This is the closure of the 4-braid xy~!xy~!zyx~'yz. We can write

xy txylzyxlyz 1 xyxylzyx~lyz = yxzyx~lyz = yzxyx~lyz
= yzy_lxyzz = z_lyzxyzz ~ yzxy2 ~ zxy3 ~ x3y ~p x?

The closure of the latter is T, ; with its maximal self-linking number, hence we have produced a
degree-3 (and hence degree-6) hat.
10, 40: This is the closure of the 4-braid x 3yx>yzy~'z. We have

xPyx’yzy iz 1y xyx’y(zyz) = xyx’y’zy ~p (xyx)x’y’
~ (xyx)y® = yxy® ~p=y’,

and the latter is the singularity of the degree-4 curve V((zy — x2)> — xy*)at (0 : 0 : 1) [30].
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-1

m(12n;,4): This knot is the closure of the 4-braid xyzx~'zy=2xy~lzyxy~!. We have:

1 1

xXyzx~

zy?xy lzyxy™t 15 xyzxTlzxyzyxy = xyz’yzyxy ~ yz*yzyxyx

= yz’yzy’xy ~p y2°yzy’ 1 yzy’zyzy’ = A’zy® ~ A’yzy® = (yz2),

hence we have produced a cobordism from m(12n;,5) to T 5, and T} 5 is the singularity at the
point (1 : 0 : 0) of the degree-5 curve V(x?z3 — y°). O

With care one could determine the genus of the hats constructed in the proof of Lemma 6.6,
but note that it is not necessary. If K is any knot in the lemma it is quasipositive and so bounds a
symplectic surface in B*. That together with the hat H for K will give a symplectic surface D in
CP? of degree 6, which has to have genus 10 by the Adjunction Equality. So, the genus of the hat
can be computed from the genus of the symplectic surface K bounds in B* (or, equivalently, one
can compute the self-linking of K and use the equation in Lemma 2.13).

KnotInfo [54] tells us that the 4-ball genus of

m(85), M(944), 10149, M(10;55), m(11nsy), m(11n,3,), 111,39, m(110;7,),

m(12n,,5), m(12n393), 12Rsg,, 121545, M(12145; ), M(12n,5), and 12ngsg
is 0, the 4-ball genus of
10,44, 12159,, and 121,75

is 4, and m(12n,,;) has 4-ball genus 1.

Recall that the determinant of a knot is the order of the first homology group of its branched
double cover; therefore, a knot has determinant 1 if and only if its branched double cover is
a homology sphere. In particular, the intersection form of any smooth 4-manifold bounding
the branched double cover is unimodular, if the knot has determinant 1. The above knots with
determinant 1 are

10y =Ts s, m(12n,,,), 12n,9,, m(12n3,5), and 12n,,;.

Proof of Theorem 1.15, Items (2)—(5). Each of these knots has a Calabi-Yau cap, obtained by taking
the double cover of CP? \ B*, branched over the hat of Lemma 6.6.

Knots in Items (3)-(4) have determinant 1, therefore the intersection form of their fillings is
unimodular, and their rank is determined by the quasipositive genus of the knot. For knots in
Item (2), the cover of B* branched over the quasipositive surface the knot bounds has b, = 8.
Thus, the cap has second Betti number 14 and also must have signature —8. Similarly for the knot
in Item (3), the cap has second Betti number 20 and signature —16; and for the knot in Item (4)
the cap has second Betti number 22 and signature —16. Thus, they all satisfy the assumptions of
Proposition 6.4. The statement for these knots follows immediately.

For knots in Item (5), the cap has second Betti number 22 and signature —16, so it is a full-rank
sublattice of the intersection lattice of a K3. It follows that the complement of the cap in the K3
is a rational homology ball. So, Proposition 6.4 says all exact fillings must be rational homology
balls. O
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6.3 | Other cyclic covers

So far, we have only considered the case r = 2, and made use of the fact that a (symplectic) K3
surface is a double cover of CP2 branched over a smooth sextic. In fact, one can see that the K3 is
also

+ adouble cover of CP! x CP! branched over a smooth curve of bi-degree (4,4);
* atriple cover of CP! x CP! branched over a smooth curve of bi-degree (3,3);
« a quadruple cover of CP? branched over a smooth quartic.

This can be seen by the ramification formula for branched covers [3, Lemma 1.17.1] and an Euler
characteristic computation. The former shows that the canonical divisor of each of the previous
branched covers vanishes, and the second that the Euler characteristics is 24; the two conditions
together identify K3 surfaces.

Moreover, as we noted in Proposition 4.12, we can find hats for T; 5 and T, in the Hirze-
bruch cap H, = CP! X CP!. The homology computation of Proposition 4.12 shows that the
curves obtained by coning off the singularities have bi-degrees (3,3) and (4,4), respectively.
(Note that one needs to change basis in order for the computation to work: however, there is a
symplectomorphism ¢ : H, — H, such that ¢.(S, + F,) = S,.)

Thus, as we did in the previous subsections we can create a Calabi-Yau cap for (Z,(K), {x ) if
we can find a cobordism from K to:

T;s ifr =3;
T34,T57,Tys#Ty 3, or #T,5, ifr=4.

In the last line, the first two get their degree-4 hats from [30] (and are given by V(zy® — x*) and
W(zy — x?)?> — xy3)) and the third comes from Lemma 4.10.

We do not explore all possibilities here, but rather restrict to a few examples. We note, how-
ever, that many of the computations carried out in the previous subsection can be used to give
restrictions to 3-fold and 4-fold branched covers of some of the knots listed.

Proof of Theorem 1.18. For each of the knots in the first class, which are all slice and quasipositive,
we have found a symplectic cobordism to either T, ; (see the proof of Lemma 6.6, which gives
cobordisms to T 5,1 for k < 3 and hence to T, ;). Since these are singularities of a degree-4 curve
in CP?, we can find a degree-4 projective hat for each of them. Taking the 4-fold branched cover
of the hat yields a Calabi-Yau cap with second Betti number 22 and b; = 3, thus allowing us to
apply Proposition 6.4.

For all the knots in the first class, and the knots in the second class, we can also find cobor-
disms to T’ 5 (note that one may easily use Lemma 2.8 to construct a cobordism from T, ; to T 5
and the rest follow from the proof of Lemma 6.6), and thus obtain a hat in the Hirzebruch sur-
face CP! x CP! of bi-degree (3,3). Taking the cyclic 3-fold cover of the cap branched over the hat,
yields another Calabi-Yau cap with second Betti number 22 and b2+ = 3, and we can again apply
Proposition 6.4.

Finally, can similarly argue for 8,;; this is not a knot we have encountered before. It is the

closure of the quasipositive 3-braid x>yx~—2y?, and it has quasipositive genus 1. There is a genus-1
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cobordism to T, ;#T, 5 (obtained by adding two positive x generators that cancel x~2). It therefore
admits a degree-4 projective hat and a bi-degree-(3,3) hat in CP! x CP'.

One may see the degree-4 projective hat in several different ways; for instance, it is clas-
sically known that there is a rational curve of degree 4 in CP? whose singularities are three
simple cusps (that is, of type T} 3); replacing one of the three singularities with a cusp yields the
desired cap. Alternatively, one can deform a T’; 4-singularity to T, ; #T, ; by adding two generators
(underlined) to the braid x>y? to get to (xyx)xy(yxy) = yxyxyxyx = (yx)*.

One may see the bi-degree-(3,3) hat by noting we can add two more generators to a braid word
for T5 4 to get T 5; as we have already observed, the latter knot has such a hat.

Itis easy to check that the corresponding caps have second Betti numbers 16 and 18, respectively;
moreover, we claim that these caps have b2+ = 3, thus allowing once again to apply Proposition 6.4.
To prove the claim, we note that each of the two caps contains the complement of a filling of the
r-fold cover of S3 branched over T, ;#T, 3; the cover is X(2,3,r)#X(2,3,r), endowed with the
standard contact structure on each summand. These manifolds, however, possess only negative
definite fillings (for instance, because they are Heegaard Floer L-spaces [70], or because they are
connected sums of links of simple singularities [66]). In particular, the complement of the filling
of (2,3, r)#X(2, 3,r) already has b; = 3, and a fortiori so does the cap of Z,(8,;). O

We are now ready to prove Theorem 1.19. We recall that this theorem says: Let (W, wy;,) be a
Stein filling of (£(2, 3, 7), &.,,)- Then W has H,(W) = 0 and either H,(W) = E; @ 2H or H,(W) =
(—1); moreover, both cases occur.

In what follows, we denote with F the field with two elements; all Heegaard Floer homology
groups will be taken with coefficients in F.

Proof of Theorem 1.19. We begin by proving the last assertion; the Milnor fiber M of the singular-
ity {x? + y* + z” = 0} is a Stein filling of (£(2, 3,7), &.,,,) that has H,(M) = 0 (as it is homotopy
equivalent to a wedge of spheres), it is spin, has b,(M) = 12 and o(M) = —8, therefore it realizes
the first case. This can be seen, for instance, by viewing M as the double cover of B*branched over
a quasipositive surface for T ;; since the latter has genus 5 and signature —8, the computations
above follow.

The minimal resolution of the singularity {x? + y* + z’ = 0}, on the other hand, is a neighbor-
hood of a rational curve (that is, a sphere, possibly singular) with a singularity of type T, ; and
self-intersection —1; this can be seen, for instance, from the normal crossing divisor resolution of
the singularity, which is given by the following plumbing graph:

-2 -1 =7

-3

This is clearly not a minimal manifold, since the central vertex represents a —1-sphere; blowing
it down, and then blowing down the contractions of the —2- and —3-spheres yields the desired
curve. This gives a minimal holomorphic filling of (£(2, 3, 7), §.,,); indeed, minimality follows
from the adjunction formula, since the only primitive second homology class is represented by
a symplectic curve of genus 1. See, for example, [62, Example 1.22] for a reference. Now, work of
Bogomolov and de Oliveira [9, Theorem 2’] asserts that this holomorphic filling can be deformed
to a Stein filling.
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Let us now prove that these are the only two possibilities for the cohomology of fillings of
(2(2,3,7), Ecan)-

Let K be the representative of T; ; with maximal self-linking number; as mentioned above, the
contact 3-manifold (£(2, 3, 7), &.,,,) is the double cover of (S3, &) branched over K.

Since there is a deformation from T, to T 7, K has a degree-6 projective hat F, which has
genus 10 — ¢g(K) = 4. The double cover (C, w.) of the projective cap, branched over F, is a cap
for (2(2,3,7), &.,p) that has H,(C) = Eg @ H. If W is not negative definite, then gluing C U W, we
obtain a symplectic Calabi-Yau 4-manifold X: this essentially follows from Proposition 6.4, except
that we need to use that b} (X) > 2 instead of b} (C) > 2.

Since b,(X) > 10, we know that X is not a T2-bundle over T?; since b} (X) > bJ(C) +1> 2, X
cannot be an Enriques surface, either. Thus, as in the proof of Proposition 6.4, X is a K3 surface
and we see that H,(W) =~ E; @ 2H.

If W is negative definite, we argue that its intersection form is diagonalizable: indeed, the Hee-
gaard Floer correction term of £(2, 3, 7) (in its unique spin® structure) vanishes [69, section 8.1];
by [69, section 9], W has diagonalizable intersection form .

Let ¢ = c(€,,,), so that ¢ is the Ozsvath-Szabd contact invariant of Ecan, where c is the image of
c under the isomorphism from HF*(-2(2, 3,7), 8;) to HF"(-Z(2, 3, 7),55), [34, Theorem 2.10].

Recall from [69, section 8.1] that, as graded vector spaces, HFt(—2(2, 3,7)) = T((J)r) @ Fo) where
T+ =F[U,U'/U - F[U] is a tower, and the subscript indicates that the degree of the bottom of
the tower, the element that we call 1 € HFt(—2(2, 3, 7)), is in degree 0, whereas the element Uk
lives in degree 2k. In fact, Ozsvath and Szabé compute the group HF(Z(2, 3,7)), from which
HF*(—2(2,3,7)) can be recovered by duality [71, Proposition 2.5]. Recall also from [69, Proof
of Theorem 9.1 and Proposition 9.4] that if Z is a cobordism from Y to Y’, two integral homol-
ogy spheres, and 8 is any spin¢ structure on Z, then the map Fg‘?g : HF®(Y) —» HF*(Y’) is an
isomorphism if and only if Z is negative definite.

With these generalities in mind, let us go back to the case at hand. Since &, has a fill-
ing M with b; (M) > 0 (M the Milnor fiber mentioned above), c¢ is not conjugation-invariant in
HF'(-2(2,3,7)), that is, ¢ # c. Indeed, Fz\+/1 50(c) =1 € HF(—S?) by functoriality of the contact
invariant, but F;\} ﬁo(l) = 0, because M is not negative definite.

Therefore, since HF(J)r (2(2,3,7)) = F®2, ¢ is not conjugation-invariant, and 1 is, we deduce that
HF](2(2,3,7)) = {0,1,c,c}.

Suppose now b = b,(W) > 1. Since W is a Stein filling of Z(2, 3, 7), which is an integral homol-
ogy sphere, H,(W) = 0, and therefore H*(W) is torsion free. It follows that spin® structures on
W correspond to characteristic covectors in H*(W), via the first Chern class. We are interested in
spin¢ structures 8 whose associated cobordism map F v+v ; has degree 0, as these are the only spin®
structures whose cobordism maps act non-trivially on c; since

8)2 — 2y(W) = 30(W 32 +b
degF;.Vﬁ:Cl() )((4) o( ))=01()4+’

asking that the degree be 0 corresponds to asking that cf(é) = —b. There are exactly 2° such spin®
structures on W. In fact, their first Chern classes are in one-to-one correspondence with linear

The proof of Theorem 9.1 only uses the fact that d(S?) = 0. In fact, the statement that Ozsvath and Szabo prove is the
following: if W is a negative definite 4-manifold whose boundary is an integral homology sphere Y with d(Y) = 0, then
W has diagonalizable intersection form.
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combinations of the form Zf’zl +e;, where {ej, ..., ¢y} is an orthonormal basis of H>(W). Since
b > 1,2 > 4, hence there are at least four such spin® structures, as asserted.
We also claim that, for each such spin® structure 8, either F;;, 4(c) #0or F:V g(c) # 0. For, if both

vanished, then ker F;;, s would contain 0, ¢, ¢ and hence be zero; however, we know that F;rV 5
is a non-zero homomorphism (because W is negative definite and deg F;,’g = 0, we know that
F ;;, ;(1) = 1). In particular, if b > 2, there are at least two spin® structures such that F;rV () #0;
however, this contradicts a result of Plamenevskaya [72, Proof of Theorem 4], asserting that the
canonical spin® structure is the only spin® structure 8 on W such that Fy;, 5(c) # 0.

So far, we have proved that b < 1. We now argue that b > 0. Indeed, if b = 0, then W is a rational
homology ball filling of (£(2,3,7), £.,,); since £(2,3,7) is an integral homology sphere and W,
which is a Stein domain, has a handle decomposition with no 3-handles, we know that H; (W) = 0.
But then W has even intersection form and H, (W) = 0, therefore it is spin. This contradicts the
fact that (2, 3, 7) has Rokhlin invariant 1.

Summing up, if W is negative definite, then we necessarily have b,(W) = 1, and since the
intersection form is unimodular, H,(W) = (—1). [l

Note that in the proof we are using the assumption that W is a Stein filling rather than just an
exact one: indeed, we are using it in the second half of the proof, to exclude the case that W is a
rational homology ball, as well as when we are using functoriality of the Ozsvath-Szabd contact
invariant under Stein cobordisms. In fact, what we prove is that exact fillings are either negative
definite or have intersection form Eg @ 2H, and that Stein fillings that are negative definite have
b, =1.

We also observe that we can exhibit a Stein filling of (£(2, 3, 7), §.,,) as a handlebody. Let A be
a Legendrian trefoil with tb A = 0. There are two such trefoils, with rotation numbers +1, corre-
sponding to two non-isotopic, conjugate contact structures on X(2,3,7) = Sil(T2,3)- Since there
are exactly two tight contact structures on 2(2, 3, 7) [55], one of these two contact structure is the
canonical one, and the corresponding handlebody is a Stein filling W with Qy;, = (—1).

The same argument can be applied to show that all exact fillings of (£(2,4, 5), £.,,) are either
negative definite or have second Betti number 12 and signature —8; the argument is slightly easier,
since the first homology group here is H,(2(2, 4, 5)) = Z /57, and therefore X(2, 4, 5) cannot bound
arational homology ball. (By contrast, (2, 3, 7) does bound a smooth, non-spin rational homology
ball.)

APPENDIX A: CONSTRUCTING THE SYMPLECTIC COBORDISMS VIA BRAIDS
We begin by presenting the computation we omitted in the proof of Proposition 4.6.

Lemma A.1. In the braid group B, with standard generators o4, ... , 0s, the following identity holds:
(O'l 65)5 = O’l 0'30'20'30'4650-1 0-30'20'30'304650-1 0-30'20'30'4030-50-1 0'20'30'40'5.
Proof. We will only use the commutation relations 0;0; = 0;0; whenever |i — j| > 1and the braid
relation 0,0,,,0; = 0;,10;0;,;.
We start by canceling the factors o, and o5(o -+ 05) which appear on the left and on the right,

respectively, of each side of the equality. We are left to prove that

0,030405010,0304050,0,030,050,0,0304 = 030,0304050,030,03030,050,030,030403.
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We will abide by the convention that we underline generators when something happens to them
(for example, we underline o, if we are using the commutation relation to move the generator o,

to the left). We have
0,030405010,030,050,0,030,050,0,030,
A

= 0,0304050,0,0,0304050,0304050,0,050,

0,0304050,010,030,050,0304,05010,030,

= 0,030,0405010,030,0405030405010,030

0'30'20'30'40'50'1030'20'30'40'30'50405010'20'30'4

= 030,03040501030,030403040504010,0304

030,030,0501030,03030,03050,0,0,030,

as required. Ll

Here we provide the remaining computations to complete the proof of Lemma 6.6. We use the
notation above; for braids on 5 strands we use the letter w for the fourth generator. To de-clutter the
notation, we also use capital letters to denote inverses. Finally, we will use facts about (symplectic
or complex) curves quite freely.

Proof of Lemma 6.6 (continued). We argue case by case.

10,,,: As noted above, this is T; 5. This is the link of the degree-5 curve {x*z* — y° = 0} at
(0 : 0 : 1), therefore it has a degree-5 (and hence a degree-6) hat.

m(10,55): This is the closure of the 3-braid x>yX?yX?2y. We can write

¥yX2yX2y 1, X*yx’yx’y = x*(xyx)*xy ~ A%yx® 11 A*(yx) = (yx);

since there is a cobordism from T, to T5,;, and T, is the singularity of a degree-6 curve,
m(10,55) has a degree-6 hat.

m(11ns): This is the closure of the 4-braid x2yXyzY xY?z. As above:

x’yXyzYxY?%z 1, x’yXyzyxz = x*yXy(zyz)x = x’yXy*zyx ~p,
~p X2yXy*x 1 x2yxy’x = X°yx? ~p x7,

and the latter is the singularity of a degree-4 curve.

m(11n,;,): This is represented by the 4-braid X?yxzY xY zy?. We now have, using the relation
ZYXYZ = ZXYXZ = XZYZX = XYZYZ:

X?yxzYxYzy* 1; yxzyxyzy® = yx*yzyx* ~p yx*y*xy* = (yx)*,

and the latter is the singularity of a degree-4 curve.
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11n,;4:As noted above, this is the closure of the 5-braid x?yXzYzwZyZw. Using the relations
wzyzw = yzwzy (analogue as in the previous case) and x*yx = xyxy = yxy*:

Pyxlzy lzwz lyz w15 (FPyx)zyz(wzyzw) = yxy*zyzyzwzy ~p
~p yy*zyzyz’y = y’A’zy ~ AN zy)’ = (zy),

and the latter is the singularity of a degree-5 curve.
m(11n;,,,):As above, this is the closure of the 4-braid xyXyxzY xY?z. We can write

xyXyxzYxY?z 1, XyXyXzyxz = xyxyx(zyz)x = xyxyxyzyx ~p= A%yx ~ (xy)*,

which is the singularity of a degree-4 curve.
m(12n,,,): This is the closure of the 4-braid xyX?yzY xy?z?Y. We have

xyX2yzYxy*z*Y 13 xy(yzy)xy’z’y = x(yzy)zxy*z’y =
= (xzyz*X)y*z°y = z(xyx)z’y*z’y = zyxyz*y’z’y ~p

2,22

~p zy*z?y*z%y 1, zyzzﬁzyzzy_zzy = zyA* = (zy)/,

and the latter has a cobordism to (zy)!!, hence it has a degree-6 hat.
m(12n,,5): This is the closure of the 5-braid wZyZyX?wyzY zyx. We will use the identities
wzyzw = yzwzy and A? = yz2yz>2. We write

wZyZyX’wyzYzyx 1, WZYZYyWYZyZyX ~p (wzyzw)y?*zyzy = (yzwzy)y*zyzy ~p
~p y2°y’zyzy 1 (y2°yz2)y*zyzy = A’y*zyzy 1
1 A%yz’yzyzy = A*yz = (yz),

which is the singularity of a degree-6 curve.
12n,,,: This is the closure of the 4-braid xy*x3yZy?xz*. We can write

xy*x3yZy*xz* = xy*x3y(Zy*z)xz = xy2x3y222sz 1 xy*x3y?22yxz =

= xy*x*y*z(zyz)x = xy*x*y*(zyz)yx = xy*x*yzy*x ~p,

253y 1 yxy - yxy yxiyt = A2yt

~p xy?x’y’x ~ yx’y
T4 A%yxy’xy’xy’xy’xy® = Ayxy® = Axyxy = (xp)'.

m(12n54;): This is the closure of the 5-braid yZwZyX?zywz?yx. In the following, we will use
the identity wzyzw = yzwzy:

yZwZyX’zywz’yx 13 yz(wzyzw)yz*yx ~p, yz(wzyzw)yz’y = yz(yzwzy)yz’y ~p
~p yzyz*y*2’y 1, yzyzy’zy*zy’zy ~ (y2)’,

and we conclude as in the cases above.
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12n,,;: This knot is the closure of the 4-braid xy*z?y3xY z. We write
XY Z2YxY 2 T Xy 22y xyz ~ Y200z = Y422V xyz ~p Y22Y5Z ~ 29225 1
15 zyz2yz2yz%yz%y° = A*yz> 11 A%yz3 ~ ASzyz? = ASyzyz = (yz)!h.

12nsg,: This knot is the closure of the 5-braid xYxyzwYwzyZWyZ; using the identity
wzyzw = yzwzy, we compute

xYxyzwYwzyZWyZ 15 (xyx)yzwy(wzyzw)yz = yxy*zy*(wzw)zy’z ~p,
~p ¥'2y*z2wz’y’z ~p y’2y’2’y’z 15 2y’ 2 yzy’ 2’y zy2’y ~
~ (y2)°zy’2’y? 1~ (y2)°y’zy’2%y* = (v2)'.

12n,4g: This is the closure of the 3-braid xY3xYxyXy?3.
xY*xYxyXy® T xYxyxyxy® = (yx)*,

whose closure is T 4.
m(12n,,,): This is the closure of the 3-braid Y°x*y?x; using the identity y?xy’x = (yx)>.

Yoxty’x 16 yxy’xy’xy*xy’x = (yx)’.
m(12n,4,): This is the closure of the 4-braid z—2y?zy~2z%yxy~'x.
Zyzzﬁzzyxix 13 yzixyx = y2z3y§y ~p ¥*zZ3y3,

and the closure of y?z®y* is the connected sum T, s#T, 3, has a degree-4 hat (which is algebraic,
since it comes from a rational cuspidal curve).

12ng;4: this knot is the closure of the 5-braid xyZwXyzxYWzw. Using the braid identities
XYZyXx = zZyXyz, wzyzw = yzwzy, and zy’zy? = A%

xyZwXyzxYWzw 1, xyzwxyzxywzw = xyzw(xyx)zy(wzw) = (xyzyx)y(wzyzw)z =

= zyxyzy’zwzyz ~p zy*zy*zlyz = A*(zy)* = (zy)°. m

APPENDIX B: THE GENERALIZED THOM CONJECTURE

Here, we give an alternative proof of the generalized Thom conjecture, Theorem 1.20. Recall that
the theorem asserts that if F is a symplectic surface in a symplectic manifold (X, w) with boundary
K in the contact manifold Y = 0X, then F is genus-minimizing in its homology class, relative to
its boundary.

Proof of Theorem 1.20. Fix a Seifert surface S for K in Y, and a Legendrian approximation L of K;
let rotg(L) and slg(K) be the rotation number of L and self-linking number of K relative to S.
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Attach a Weinstein handle to (X, w) along L, thus obtaining a symplectic 4-manifold (X’, »’)
with convex boundary. Let F be the surface obtained by capping off F with the core of the Wein-
stein handle. We can embed (X’,’) in a minimal K#hler surface (Z,w,) with b;‘ (Z) > 1 by
[53].

Since b; (Z) > 1, the canonical class K, of Z is a Seiberg-Witten basic class [81], and we can
apply the adjunction inequality to any surface G in the homology class [F]:

2 - 29(G) < (¢(2),[G]) = [G] - [G] = (¢,(2),[F]) - [F] - [F]. (B.1)

We now set out to compute the right-hand side.

Call F' the surface obtained by capping off F with the Seifert surface —S, and S’ be the surface
obtained by capping off S with the core of the Weinstein handle. Clearly, we have that [F'] + [S] =
[F]. Moreover, by [38, Proposition 2.3],

(€1(2), [S']) = (e, (X"), [S]) = rotg(L).
Since F is symplectic, by Lemma 2.13 (and the following remark) we have
(€1(2), [F']) = (c,00), [F']) = slg(K) + 1 — 2g(F) + [F'] - [F'].
Thus,
(€1(2), [F]) = (c1(2), [F'] + [S']) = sls(K) + 1 = 29(F) + [F'] - [F'] + rotg(L).

Finally, the Weinstein handle is attached with contact framing—1 (hence smooth framing
tb(L) — 1); therefore, the last summand in (B.1) is

[F]-[F]1=[F']-[F'1+[S']-[S'] = [F'] - [F'] + tb(L) — 1.
Putting the everything together, and recalling that tb(L) = slg(K) + rotg(L), we obtain

2-29(G) < slg(K) + 1 —2g(F) + [F'] - [F'] + rotg(L) — [F'] - [F'] — tb(L) + 1

=2-—29(F). m
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