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Abstract

Very accurate calculations of atomic and molecular spectra require accounting for the
coupling of the motions of the nuclei and electrons. To fully account for the nucleus—
electron coupling, the nuclei and electrons forming the system have to be treated on an
equal footing without assuming the Born-Oppenheimer approximation (non-BO). This
can be done by first separating out the Hamiltonian representing the motion of the
center of mass from the total nonrelativistic Hamiltonian of the system and then using
in the calculation the remaining part of the Hamiltonian that represents the system's
internal state. In this work, we review some recent developments of methods by our
group for non-BO calculations of atoms and molecules and the results obtained in these
calculations. In particular, the review focuses on the challenges of the non-BO calcula-
tions and ways to overcome these challenges.
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Abbreviations

BO Born-Oppenheimer

CEGF complex explicitly correlated Gaussian function
ECG function explicitly correlated Gaussian function
Non-BO approach non-Born-Oppenheimer approach

QED quantum electrodynamics

1. Introduction

Methods for calculating stationary states of atoms and molecules
without assuming the Born—Oppenheimer (BO) approximation are being
developed for over two decades by the Stanke group at the Nicolaus
Copernicus University and by the Adamowicz group at the University of
Arizona, and their collaborators." * The methods allow for very accurate
calculations of the spectra of small atoms including the leading relativistic
and QED corrections. The non-BO calculations for S, P, D, and F states
of atomic systems with 4 and 5 electrons” ' are among the most accurate
in the literature. Unlike the non-BO methods that employ Gaussian orbitals
developed by others,'" "? our methods employ various types of explicitly
correlated all-particles Gaussian (ECG) functions. As ECGs explicitly
depend on the distance between the particles (electrons and nuclei), they
very efficiently represent their coupled motion and account for the infer—
particle correlation effects. These effects are indispensable in non-BO calcula-
tions, as the Coulombic interactions make particles with like charges avoid
each other and particles with opposite charges to follow each other. The
correlation effects are particularly strong for the nuclei because, due to
their larger masses, they stay apart to a much greater extent than the elec-
trons do. Also, the electrons, particularly the core electrons, follow the
nuclei very closely, and this eftect can also be also very effectively described
by the ECGs.

Without the BO approximation, both isolated atoms and molecules are
spherically symmetric systems represented by an internal Hamiltonian, which
1s spatially isotropic (or atom-like). As the level of the excitation increases,
more radial and angular nodes appear in the atomic or molecular non-BO
wave function. The are some similarities, as well as differences of the atomic
and molecular non-BO wave functions that the ECG basis functions used in
the calculation should enable us to describe. In general, an ECG used in a
non-BO calculation is a product of two factors, an exponential and a pre-
exponential one. The exponent can either be single-centered, exp[—rt'Ar],
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or a multiple-center, exp [ —(r —s)'Ap(r — s)], Gaussian dependent on the
distances between every pair of the N particles (including the reference par-
ticle; after separating out the center-of-mass motion, the Hamiltonian
representing the internal motion of the system depends on the internal coor-
dinates of n = N — 1 pseudoparticles) forming the system, t being a vector
of the internal pseudoparticle coordinates, A being a symmetric 3n X 3n
matrix of exponential parameters, and s being the vector of the shifts of the
Gaussian centers. The Gaussian exp[—t'Ar] can be alternatively represented
as follows:

exp [_ (@ir] + 13 + o+ ayry) + (/3121'%2 + Prarty + +ﬂ(n—1)nr%,,_1)n)},
M

where the first part is a product of # orbitals and the second “correlation”
part shows the explicit dependency of the Gaussian on the squares of all
interparticle distances, ri The preexponential factor of the Gaussian may

include an angular term in the form of a product of Cartesian spherical
harmonics and/or powers of the lengths of the internal coordinate vectors.

In a single-center or a multi-center Gaussian, A, is an n X n (where
A = (A, ® I5)) symmetric matrix, ® is the Kronecker product symbol,
and [;is 2 3 X 3 identity matrix. In the Gaussians, the exponential parameters
are included by the use of a quadratic form involving a vector-matrix-vector
product, (A, ® I3)r. In non-BO calculations of atomic or molecular
bound states, the Gaussians have to be square integrable which effectively
imposes restrictions on the Aj, matrix. The A, matrix must be positive
definite. Rather than restricting the A, matrix elements, Ay, is represented
in a Cholesky factored form as: A, = L;L}, where L, is a lower triangular
matrix and its elements can vary from —oo to + co. With this representation,
A, 1s automatically positive definite. It should also be mentioned that this
form of Ay, matrix does not limit the flexibility of the basis functions since
any allowable choice of the A;, matrix can be represented by some L, matrix.
This is because any symmetric positive-definite matrix can be represented in
a Cholesky factored form.

As the zero-field nonrelativistic non-BO Hamiltonian commutes with
the operators representing the square of the total (electron + nuclei) angular
momentum and its projection on a selected axis, the Hamiltonian eigen-
functions have to transform according to irreducible representations of
the SO(3) symmetry group of rotations. In particular, the ground-state
non-BO molecular wave function is spherically symmetric. In high-
precision calculations of isolated atomic and molecular systems, the angular
symmetry, as well as permutational symmetries of identical particles, the
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symmetry properties have to be strictly enforced. If an external perturbation
(e.g., interaction with an electric field) is present, the symmetry is lowered
and only functions reflecting the new Hamiltonian symmetry have to be
included in the basis set. The complexity of the calculation of the properly
symmetrized ECG Hamiltonian and overlap matrix elements depends
factorially on the numbers of identical particles. Therefore, the application
of ECG methods is currently limited to systems with up to 7—8 particles.

Using single-centered (i.e., s = 0) ECGs with real or complex exponen-
tial parameters (i.e., the A matrix is real or we have A + iB) and with angular
factors in the form of products of Cartesian spherical harmonics and with the
gradient-based variational algorithms, we have performed very accurate cal-
culations of the spectra of small atoms. The calculations have included the
leading relativistic and QED corrections. In particular, the calculations of
atomic systems with 4 and 5 electrons should be mentioned, as our non-
BO calculations performed for S, P, D, and F states of these systems*sfm
are among the most accurate in the literature.

For calculating ground and excited states of atoms and molecules, one
needs to accurately describe radial and angular oscillations of the non-BO
wave functions. In particular, the radial oscillations due to vibrational exci-
tations of the molecule require the use of certain types of ECGs. Treating the
electrons and nuclei on an equal footing as N particles and after separating
out the center of mass from the total nonrelativistic Hamiltonian of the
system, the Hamiltonian representing the system’s internal motion depends
on the n internal coordinates of the N — 1 pseudoparticles. We denote by
r € R" the vector of the internal coordinates in the following description:
1. ECGs with preexponential multipliers in the form of powers of

internuclear distances,

o(r) = [ [T ]7i¥ exv[-¥Ar]  (PECG) @)

i i
where m; and m;; are even nonnegative integers, and A is a real symmetric
positive definite 3n x 3n matrix.' " '/

2. Complex single-center ECGs are of the form:
¢(r) = exp[-r'(A + B)r] (CECG) 3)

CEGs have been used in Refs. 10,18-21. It has been shown that CECGs
are equally if not more efficient than PECGs in describing radial oscil-
lations of excited rovibrational states, even states located near the disso-
ciation threshold.
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3. Real ECGs with shifted centers are of the form

¢(r) = exp[—(r—q)'A(r—q)]  (SECG) )

and have a zero imaginary part B = 0 of the width matrix and a zero
momentum vector p = 0. SECGs have been used in Refs. 22-26.
Including real shifts in the Gaussians enables us to describe radial oscil-
lations and the angular polarization of the wave function due to, for
example, the interaction of the system with the field. These types of
deformations can be also described by appropriate spherical harmonics
factors, though the shifts may be a more effective way for this task. It
should be noted that adding a momentum vector p is equivalent to
introducing a complex shift vector q. The complex shifts allow us
to describe ionization/dissociation events that may happen upon
high-energy irradiation of an atom or a molecule.

To describe the angular/rotational excitations, ECGs have to be multiplied
by products of Cartesian spherical harmonics or by shifting the centers of the
Gaussians as it is done in SECGs. Thus, the shifts quite effectively represent
both the radial oscillations and the angular polarization of the wave function.

The fully complex ECGs enable the accurate description of the following
features of the non-BO wave function: (a) the electron—electron, electron—
nucleus, and nucleus—nucleus correlation effects; (b) the angular and radial
polarization and oscillation caused by the interaction with laser pulses with
variable frequencies and intensities; and (c) ionization/dissociation of the
system. With complex matrix C; and complex shift vectors s, i.e., C, =
A, + iB, and s, = z, + iw,, where z;, and w, are real vectors, ¢,(r) has
the form:

pe(r) = exp[—(r — s¢) (A + By) (r — s1)], ()

where r is the vector of the Cartesian internal coordinates of the particles

forming the system, i = v/—1 and ' denotes vector/matrix transposition.
An alternative, but equivalent, form of ¢,(r) is:

Pp(r) = exp|—(r — z.) (A, + iBy)(r — z) + iw,r]. (6)

Recent work” has shown that such complex Gaussians possess sufficient
flexibility to describe the time-evolving state of an atom or molecular system
subject to strong and short laser pulses with variable frequencies and inten-
sities. The presence of the plane-wave component in the Gaussians allows
the description of the ionization/dissociation dynamics.
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2. Separation of the center-of-mass motion from
the total nonrelativistic Hamiltonian of the system

As the number-crunching power of computers keeps growing over
the years, it becomes possible, at least for the smallest molecular systems,
to reduce the number of approximations to a minimum. In the approach
adopted in this work, we consider few-electron diatomic systems, LiH
and LiH™, without the use of the Born—Oppenheimer approximation.
This means that all particles, i.e., the nuclei and electrons forming the mol-
ecule, are treated on an equal footing. Such an approach, if it only concerns
the internal bound states of the system, necessitates that the center-of-mass
motion 1s removed from the Hamiltonian. This separation in the non-BO
method we have developed is done by starting with the total nonrelativistic
Hamiltonian of the molecule written in terms of laboratory Cartesian coor-
dinates representing the kinetic and potential energies of the nuclei and the
electrons. The general lab-frame nonrelativistic all-particle Hamiltonian of a
system of N particles (N being a sum of the number of nuclei and the number
of electrons) in atomic units is represented by operator:

N 2 N N
P’ Q,Q;
lab i 1<
pr— e +
Hu =2 o, Zf Z|R,.—Rj’ @)

where M;, Q;, R;, P; are the mass, charge, the Cartesian coordinates, and
the corresponding linear momenta of the ith particle, respectively. The fol-
lowing nuclear masses are used in the present calculations: M('H) =
1836.15267389m,, M(CH) = 3670.48296785m,, M(°Li) = 10961.89865m,.
M('Li) = 12786.39228m,, M(’Be) = 16424.2055m,, M('’B) = 18247.
46879m,, M(''B) = 20063.73729m,, M(**N) = 25519.045282m,, and
M("°N) = 27336.528712m,, where mass of electron m, = 1.

Next, Hamiltonian (7) is expressed in terms of new Cartesian coordinates
that comprise the three lab-frame coordinates describing the position of the
system’s center of mass in laboratory Cartesian coordinate frame and the
remaining 3N — 3 coordinates that are internal coordinates. In our
approach, the internal coordinates r; | = R; —R are the Cartesian coordi-
nates of vectors with the origins at a chosen reference particle located at R
(usually the heaviest nucleus in the system, which we can call particle 1)
and ending at the positions of particles 2, 3, ..., N. A transformation of
the total nonrelativistic Hamiltonian to the new coordinates system results
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in its rigorous separation of the lab-frame Hamiltonian into an operator
that represents the kinetic energy of the center-of-mass motion and an
internal Hamiltonian, as described in the next section. The center-of-mass
kinetic energy Hamiltonian depends only on the center-of-mass laboratory
coordinates and the internal Hamiltonian depends only on the internal
coordinates.””

As mentioned, the nonrelativistic calculations in the present work are
carried out using a Hamiltonian that represents the internal state of the mol-
ecule and excludes the motion of the center of mass, i.e., excludes the trans-
lational motion of the system as a whole. The internal Hamiltonian
expressed in terms of the internal Cartesian coordinates, r;, i = 1,...,n,
where n = N — 1 and N is the number of particles (electrons and nuclei)

forming the molecule, is as follows™":

. 1| =1 1 <& " I g
DI ACE D D A B DD D
=1 i=1

—
i, j=1 ooixj=1
i#j

where mj is the mass of the reference nucleus (in the present calculations, the
lithium nucleus) and g is its charge, g; are the charges of the other particles,
u; = mom;/(mo+ m;)is the reduced mass of particle i (m;, i = 1, ..., n, are the
particle masses), r; = |r;|, i = 1, ..., n is the distance from particle n + 1 to
the reference particle, i.e., particle 1, and r; is the distance between particle
j + 1 and particle i + 1. The prime symbol in (8) denotes the matrix/vector
transposition. One can notice that the internal Hamiltonian represents the
motion of n particles, whose charges are the original particle charges, but
the masses are the reduced masses (because of that, one can use the term
“pseudoparticles” to denote the particles described by the internal
Hamiltonian (8)), in the central field of the charge of the reference
nucleus. Thus, the internal Hamiltonian is invariant upon all rotations
around the center of the internal coordinate system and one can think of it
as an “atom-like” Hamiltonian. The eigenfunctions of this Hamiltonian
can be classified using the same symmetries as the wave functions of atoms.
These eigenfunctions and the corresponding eigenvalues (energies) represent
all modes of the internal motions of the molecule including the electronic,
vibrational, and rotational motions. In particular, the ground-state solution
is spherically symmetric, i.e., it is invariant under rotations in 3D.
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The approach used to obtain the internal Hamiltonian (8) and to separate
out the center-of-mass motion from the lab-frame Hamiltonian is a gener-
alization of the standard textbook approach used to reduce a two-body
problem to a one-body problem in quantum mechanics, e.g., in the case
of an electron and proton forming the hydrogen atom.

3. Generation of the Basis set in a non-BO calculation

The calculations described in this work are performed using the
Rayleigh—Ritz wvariational scheme involving minimization of the
Rayleigh quotient:

E(a;c) = mi cH(a)e

{a,g c'S(a)c’ ©)

where H(a) is the matrix of the internal Hamiltonian H, S(a) is the overlap
matrix, and ¢ is a vector of the linear expansion coefficients of the wave
function in terms of the basis functions. Notation E(a;c) indicates that
the energy depends on the nonlinear parameters of the basis functions
(the a vector) and on the ¢ coefficients (the ¢ vector).

In the variational energy minimization, the matrix elements of the L,
matrices of the Gaussians (and the coordinates of the Gaussian shifts, sy,
in the case of shifted Gaussians) that form vector a are fully optimized.
Generating the basis set for the lowest-energy state of a particular spin/spatial
symmetry is initiated with a small, randomly chosen set of functions and
involves incremental addition of new functions and variationally optimizing
them with an approach employing the analytic energy gradient. The new
functions are added to the basis set one by one with L, parameters chosen
as a best guess out of several hundred candidates. The parameters of the can-
didate functions are generated based on the parameters of the functions
already included in the set. After a new function is selected, its i, electron
number index and the L, parameters are optimized. Next the function is
checked for any linear dependency with the functions already included in
the basis set and, if such linear dependency appears, the function is rejected
and replaced by a new function. This new function is then subject to opti-
mization. After a certain number of new functions (usually a hundred) are
added to the basis set, the whole set is reoptimized by cycling over all func-
tions one by one and reoptimizing their L, parameters. After the parameters
of a function are reoptimized, the function is again checked for any linear
dependency with all other functions in the set, and its parameters are reset
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to their original values if the linear dependency within a certain predefined
threshold occurs. The cyclic optimization of all functions is usually repeated
several times. The process of basis set growing continues until satisfactory
convergence is reached for each state.

The optimization of a basis set for the second lowest state of the system is
initiated with a basis set generated for the lowest-energy state. Usually, that
basis set is significantly smaller than the largest basis set generated for this
state, but still provides reasonably good representation in terms of the state’s
energy and the wave function of the state. In the optimization of the basis set
for the second lowest state, the initial basis is augmented by additional func-
tions which are reoptimized along with the functions contained in the initial
basis set to obtain a well-converged solution (i.e., the energy and the wave
function) for the state. A similar procedure is applied to obtain the energy
and the wave function for the third-lowest energy state. In this case, the
optimization is initiated using a basis set generated for the second-lowest
energy state.

A unique feature of our approach is the use of the analytically calculated
first derivatives of the energy functional determined with respect to the
nonlinear Gaussian parameters in their optimizations. The derivatives that
form the gradient vector are determined as:

i
0,E = ) (vech[2cc” — diagec']), (10)

~ ¢'Sc

1 (0vechH B EavechS

oa’ oa’
where vech is an operation that forms a m(m + 1)/2-dimensional vector (m is
the number of the basis functions) of unique matrix elements of a symmetric
matrix. The use of the energy gradient in the minimization of the energy
functional considerably accelerates the convergence of the optimization
process.

4. Examples of non-BO atomic and molecular
calculations

For atomic states with all s electrons, such as 'S states of the beryllium
atom, Gaussians exp[—t’Ar] are used. For atomic states with one p electron
and the remaining electrons being s electrons, such as P states of the lithium
and boron atoms, the Gaussians are: z; exp|—t’Ar|, where z; is the z coor-
dinate of the i electron.

For atomic states with three p electrons, such as for *S states of the nitro-
gen atom, the basis functions can be obtained by coupling together their
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angular momenta using the appropriate Clebsch—Gordan coefficients. Thus,
a linear combination of the following nonnormalized forms of spherical har-
monic functions Y(f =z, Y% = 1/\/§(x,f+ iyl-), and Yfl = 1/\/5(961'— iyi)
expressed in the Cartesian coordinates where the common constant factor
and the 1/ ri" factor were dropped (I; is the angular momentum quantum
number of the ith electron) is generated. Let us suppose that the orbital
quantum numbers of electrons i, j, and k (k in this case is not the index
for the basis function expansion but an electron index) are [;, m;, [, m;, I,
and my. Using the bracket notation, the angular part of the basis functlon
corresponding to particular L and M can be represented as the following
linear combination:

L My= > (L Ml mi G ) e miellyomg B omg)[lomid | )|l me),
iy 11, My
m; + m; +jmk:1\/[

(1)

where the (L M|l; m; L mjk) and (lJ;€ mi|l; m; 1 mk) factors are the
Clebsch-Gordan coefficients.”” With that, the angular part of the basis
function for a state of three p electrons with L = 0 and M = 0 becomes:

(s — xiy;) 2 + (v — xe9,)3 + (3ey; — X7y) 2 (12)

where again the 1/(r'r J r) factor was dropped. Therefore, the full form of

the basis function ¢(r ) is obtained by multiplying together exp[—t'Ajr]and
the angular component (12):

we(r) = { (i — i) 2, + (i Vi, — % vie) 2 + (Kb Vi — %5 Vi) % exp [—1/ Ager]
) ) ) ) ) ) ) ) )
) () () )
= (r'vz ) (r'v};) (r’vi’) exp [—r/Ak,r] . (13)

In the above, vector—vector products are used to replace the angular Cartesian
coordinates. These replacements allow for a more generalized approach in
deriving the expressions for the Hamiltonian matrix elements. The vectors
vV v v vy, v, v, v, and vit used in (13) are sparse 3n vectors
comprising of only one element of a nonzero value of “1” in the position
describing the nonzero-angular-momentum particle and its angular
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coordinate. Note that v, vectors cannot be represented as a Kronecker prod-
uct of an n-component vector v, with I3: v, # v, ® L.

Before ECGs are used to expand the wave function of the considered
state of the system, they have to be appropriately permutation-symmetry
adapted. In the present approach, we use the spin-free formalism for this
adaptation. The approach involves construction of a permutation-symmetry
projector using the standard procedure based on Young operators. In the
case of the doublet states of lithium, the singlet states of beryllium, the dou-
blet states of boron, and the quartet states of the nitrogen, the corresponding
Young operators are chosen as (particle one is the nucleus and particles 2, 3,

.. are the electrons):

(1 + P23)(1 — P34),

(1 — P24)(1 — P35)(1 + P23)(1 + P45),

(1 — P24)(1 — P26 — P46)(1 — P35)(1 + P23)(1 + P45), and

(1+P56)(1+P78)(1—P68)(1—P57)(1—P27—P25)(1—P23—P37—P35)

(1—P34—P24—P47—P45), respectively, where the Pij operator per-

mutes the labels of the i and j electrons. More details about the imple-

mentation of the Young-operator approach in our calculations can be

found in Ref. 30.

It should be noted that the variational optimization of the ECG exponential
parameters is only carried out for the wave functions of the leading isotope of
the atom (e.g., the "Li isotope of the lithium atom). In the calculations of the
other isotopes and in the infinite-nuclear-mass calculations, the basis sets
generated for the leading isotopes are used without reoptimization of their
nonlinear parameters. Our experience with atomic calculations has shown
that adjusting the linear expansion coefficients, ¢, provides a sufficiently
accurate way to account for a relatively small change of the wave function
caused by the change in the nuclear mass.

These are the following bound states of four atomic systems considered
in the calculations performed in this work: the lowest twelve P states of the
lithium atom, the lowest ten 'S states of the beryllium atom, the lowest nine
*P states of the boron atom, and five 'S states of the nitrogen atom. For all the
considered states, except for some lowest states of the lithium atom (for these
states, calculations performed with explicitly correlated Slater functions pro-
duced slightly better energies than those obtained with Gaussians) the total
variational energies obtained in the calculations are the lowest ever obtained
in ab initio calculations for these systems. The optimizations of the ECG
basis sets for each atom are performed for the leading isotope of that atom.
The generated basis are subsequently used in the calculations of other stable
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isotopes of each atom, as well as for an atom with an infinite nuclear mass.
The results for the 2P states of the °Li, "Li, and ®°Li isotopes of the lithium
atom are shown in Table 1, the results for the 'S states of the “Be and “Be
isotopes of the beryllium atom are shown in Table 2, the results for the

Table 1 The total nonrelativistic non-BO energies E, of the n 2P states of isotopes of
the lithium atom °Li, ”Li, *°Li, where n = 2,3,...,13.
State Basis  °Li Li o

2°P 17,000 —7.409 458 110 577 —7.409 557 759 019 —7.410 156 532 650

32P 13,100 —7.336 457 285 733 —7.336 556 363 709 —7.337 151 708 591

4°P 14,000 —7.311 196 254 262 —7.311 295 101 661 —7.311 889 060 748

5°P 14,000 —7.299 596 170 656 —7.299 694 902 379 —7.300 288 166 250

6 2P 14,000 —7.293 328 522 041 —7.293 427 187 815 —7.294 020 055 325
7°P 15,500 —7.289 563 667 252 —7.289 662 291 968 —7.290 254 912 721
8°P 16,000 —7.287 127 026 011 —7.287 225 623 467 —7.287 818 080 395

9°P 16,000 —7.285 460 106 102 —7.287 225 623 467 —7.286 151 027 247
10 °P 17,000 —7.284 269 825 426 —7.284 368 390 101 —7.284 960 650 009
11 2P 17,000 —7.283 390 376 949 —7.283 488 931 330 —7.284 081 129 330

122P 17,000 —7.282 722 235 788 —7.282 820 782 270 —7.283 412 932 799

13°P 17,000 —7.282 300 479 312 —7.284 079 728 671

All values in hartrees.

Table 2 The total nonrelativistic non-BO energies Ene of the n 'S states of isotopes of
the beryllium atom °Be and *Be, where n = 2,3, ...,11.

State Basis °Be “Be

21s 16,000 —14.666 435 526 317 —14.667 356 508 387
31's 16,000 —14.417 335 144 083 —14.418 240 368 939
41s 16,000 —14.369 185 514 672 —14.370 087 938 507
51s 16,000 —14.350 610 429 797 —14.351 511 737 910
6'S 16,000 —14.341 502 934 723 —14.342 403 688 992
71s 16,000 —14.336 366 130 065 —14.337 266 570 323
8ls 17,000 —14.333 186 043 180 —14.334 086 288 670
91s 17,000 —14.331 080 947 170 —14.331 981 063 789
10's 17,000 —14.329 614 861 820 —14.330 514 888 895

1m's 17,000 —14.328 550 996 542 —14.329 450 958 909

All values in hartrees.
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Table 3 The total nonrelativistic non-BO energies E, e of the of n 2P states of isotopes of
the boron atom '°B, ''B, ©B, where n = 2,3, ..., 10.
State Basis '°B B B

2%P 16,000 —24.652 502 680 636 —24.652 626 315 397 —24.653 868 525 181

3°P 16,000 —24.430 973 916 386 —24.431 097 899 360 —24.432 343 606 383

42P 16,000 —24.389 170 171 127 —24.389 294 047 421 —24.390 538 682 291

5°P 16,000 —24.372 547 534 026 —24.372 671 358 362 —24.373 915 471 635

6°P 16,000 —24.364 219 865 377 —24.364 343 660 569 —24.365 587 486 912

7°P 16,000 —24.359 451 263 777 —24.359 575 039 883 —24.360 818 693 430

82P 16,000 —24.356 464 432 488 —24.356 588 195 903 —24.357 831 737 404

92P 16,000 —24.354 455 451 626 —24.354 579 209 823 —24.355 822 673 751

10 °P 16,000 —24.353 024 913 107 —24.353 148 632 914 —24.354 392 079 994

All values in hartrees.

Table 4 The total nonrelativistic non-BO energies E of the of n 2P states of isotopes of
the nitrogen atom™N, °N, N, where n = 2,3, ...,6.
State Basis ‘N SN N

2°P 128 —54.548 106 795 683 —54.548 244 637 939 —54.550 180 140 287
32P 128 —54.070 292 960 572 —54.070 430 919 917 —54.072 368 063 483
4°P 128 —53.899 406 696 128 —53.899 541 400 451 —53.901 432 831 328

5°P 244 —53.701 687 058 152 —53.706 202 762 186 —53.708 150 318 836
6°P 256 —53.122252189 699 —53.122 388 837 119 —53.124 306 684 080

All values in hartrees.

%P states of the '“B, ''B, and B isotopes of the boron atom are shown in
Table 3, and the results for the 'S states of the '*N and ®°N isotopes of the
nitrogen atom are shown in Table 4. An example of non-BO molecular cal-
culations shown in this work concerns all bound states of the HD" ion
corresponding to the zero total angular momentum. There are 23 such states
and they correspond to what is conventionally called the “pure vibrational
excitations.” However, due to the coupling of the motion of the nuclei and
the motion of the electrons that occurs when the system is described without
assuming the Born—Oppenheimer approximation, the vibrational quantum
number is not, strictly speaking, a good quantum number. The challenge in
calculating all 23 bound “vibrational” states of HD" with comparable accuracy
is due to the need of describing the radial oscillations of the wave functions of
these states with equal accuracy. Two approaches are used for this purpose in
this work. In the first one, PECGs are used, and in the second one, CECGs are
used. The results obtained with these two basis sets are compared in Table 5.



Table 5 The total nonrelativistic non-BO energies of the pure vibrational states of HD*.

v Basis Enrel v Basis Enrel v Basis Enrel
0 1700 —0.597 897 968 59 1 1649 —0.589 181 829 50 2 1700 —0.580 903 700 14
*1500 —0.597 897 968 58 *1500 —0.589 181 829 51 *1600 —0.580 903 700 12
3 1780 —0.573 050 546 41 4 1700 —0.565 611 041 73 5 1840 —0.558 575 520 39
*1500 —0.573 050 546 31 *1600 —0.565 611 041 61 *1700 —0.558 575 520 19
6 1740 —0.551 935 947 94 7 1740 —0.545 685 913 88 8 1865 —0.539 820 639 73
*1700 —0.551 935 947 84 *1700 —0.545 685 913 57 *1700 —0.539 820 638 67
9 1865 —0.539 820 639 73 10 1900 —0.534 337 010 93 11 1820 —0.529 233 630 55
*1700 —0.534 337 009 15 *1700 —0.529 233 628 50 *1700 —0.524 510 900 41
12 1800 —0.524 510 903 52 13 1800 —0.520 171 138 12 14 1800 —0.516 218 695 97
*1700 —0.520 171 133 16 *1600 —0.516 218 684 23 *1600 —0.512 660 156 98
15 1800 —0.512 660 174 92 16 1800 —0.509 504 625 62 17 1800 —0.506 763 848 46
*1600 —0.509 504 603 52 *1600 —0.506 763 816 14 *1600 —0.504 452 626 59
18 1800 —0.504 452 661 84 19 1800 —0.502 589 190 42 20 1860 —0.501 194 759 49
*1600 —0.502 589 154 43 *1600 —0.501 194 710 60 *1600 —0.500 292 362 14
21 1940 —0.500 292 416 44 22 1980 —0.499 910 347 15 23 2000 —0.499 865 774 69
*1700 —0.499 910 332 87 *1700 —0.499 865 770 26

The result marked with * are taken from Ref. 31. All values in hartrees.



Nonrelativistic Non-Born-Oppenheimer Approach 277

As one can see, results obtained with the two basis sets are almost equally
accurate with, perhaps, the PECG results being slightly better than the
CECG result—an effect which can be attributed to the larger sizes of the
PECG basis sets.

5. Challenges of non-BO calculations

The computer time for an all-particle non-BO calculation scales as a
product of the factorials of the numbers of identical particles. For an atom,
the scaling factor is the factorial of the number of the electrons. The scaling is
due to the number of terms in the permutation-symmetry operator which
for an atom with n electrons is equal to n!. Thus, each H or S matrix element
is a sum of n! corresponding elemental integrals. The n! time scaling is the
major bottleneck of a non-BO calculation will all-particle ECGs.

Another size-limiting step in the non-BO calculation is the solution of
the secular equation used to determine the energy and the linear expansion
coeflicients of the wave function. At this point, our effort is particularly
focused on creating a procedure for a very fast one-root eigen-problem
solver for complex all-particle ECGs.

6. Summary and future directions

In this work, the procedure for performing non-BO calculations of
small atoms and molecules with all-particle explicitly correlated Gaussian
functions developed in our laboratories is described. The procedure is used
to calculate some Rydberg states of the lithium, beryllium, boron, and nitro-
gen atoms. The basis sets generated for the leading isotope of each atom are
used to calculate energies and wave functions of other stable isotopes of the
atom, as well as the energy of the atom with an infinite nuclear mass. The
results of the calculations can be used to calculate the isotope energy shifts.
Some bottlenecks of the non-BO calculations are discussed.
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