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Abstract

Very accurate calculations of atomic and molecular spectra require accounting for the

coupling of the motions of the nuclei and electrons. To fully account for the nucleus–

electron coupling, the nuclei and electrons forming the system have to be treated on an

equal footing without assuming the Born–Oppenheimer approximation (non-BO). This

can be done by first separating out the Hamiltonian representing the motion of the

center of mass from the total nonrelativistic Hamiltonian of the system and then using

in the calculation the remaining part of the Hamiltonian that represents the system’s

internal state. In this work, we review some recent developments of methods by our

group for non-BO calculations of atoms andmolecules and the results obtained in these

calculations. In particular, the review focuses on the challenges of the non-BO calcula-

tions and ways to overcome these challenges.
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Abbreviations
BO Born-Oppenheimer

CEGF complex explicitly correlated Gaussian function

ECG function explicitly correlated Gaussian function

Non-BO approach non-Born-Oppenheimer approach

QED quantum electrodynamics

1. Introduction

Methods for calculating stationary states of atoms and molecules

without assuming the Born–Oppenheimer (BO) approximation are being

developed for over two decades by the Stanke group at the Nicolaus

Copernicus University and by the Adamowicz group at the University of

Arizona, and their collaborators.1–4 The methods allow for very accurate

calculations of the spectra of small atoms including the leading relativistic

and QED corrections. The non-BO calculations for S, P, D, and F states

of atomic systems with 4 and 5 electrons5–10 are among the most accurate

in the literature. Unlike the non-BOmethods that employ Gaussian orbitals

developed by others,11–13 our methods employ various types of explicitly

correlated all-particles Gaussian (ECG) functions. As ECGs explicitly

depend on the distance between the particles (electrons and nuclei), they

very efficiently represent their coupled motion and account for the inter–

particle correlation effects. These effects are indispensable in non-BO calcula-

tions, as the Coulombic interactions make particles with like charges avoid

each other and particles with opposite charges to follow each other. The

correlation effects are particularly strong for the nuclei because, due to

their larger masses, they stay apart to a much greater extent than the elec-

trons do. Also, the electrons, particularly the core electrons, follow the

nuclei very closely, and this effect can also be also very effectively described

by the ECGs.

Without the BO approximation, both isolated atoms and molecules are

spherically symmetric systems represented by an internal Hamiltonian, which

is spatially isotropic (or atom-like). As the level of the excitation increases,

more radial and angular nodes appear in the atomic or molecular non-BO

wave function. The are some similarities, as well as differences of the atomic

and molecular non-BO wave functions that the ECG basis functions used in

the calculation should enable us to describe. In general, an ECG used in a

non-BO calculation is a product of two factors, an exponential and a pre-

exponential one. The exponent can either be single-centered, exp �r0Ar½ �,
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or a multiple-center, exp �ðr� sÞ0Akðr� sÞ
� �

, Gaussian dependent on the

distances between every pair of the N particles (including the reference par-

ticle; after separating out the center-of-mass motion, the Hamiltonian

representing the internal motion of the system depends on the internal coor-

dinates of n ¼ N � 1 pseudoparticles) forming the system, r being a vector

of the internal pseudoparticle coordinates, A being a symmetric 3n � 3n

matrix of exponential parameters, and s being the vector of the shifts of the

Gaussian centers. The Gaussian exp �r0Ar½ � can be alternatively represented

as follows:

exp � α1r
2
1 + α2r

2
2 + ⋯ + αnr

2
n

� �

+ β12r
2
12 + β13r

2
13 + ⋯ + βðn�1Þnr

2
ðn�1Þn

� �h i

,

(1)

where the first part is a product of n orbitals and the second “correlation”

part shows the explicit dependency of the Gaussian on the squares of all

interparticle distances, r2ij . The preexponential factor of the Gaussian may

include an angular term in the form of a product of Cartesian spherical

harmonics and/or powers of the lengths of the internal coordinate vectors.

In a single-center or a multi-center Gaussian, Ak is an n � n (where

A ¼ Ak � I3ð Þ ) symmetric matrix, � is the Kronecker product symbol,

and I3 is a 3� 3 identity matrix. In the Gaussians, the exponential parameters

are included by the use of a quadratic form involving a vector-matrix-vector

product, r0 Ak � I3ð Þr . In non-BO calculations of atomic or molecular

bound states, the Gaussians have to be square integrable which effectively

imposes restrictions on the Ak matrix. The Ak matrix must be positive

definite. Rather than restricting the Ak matrix elements, Ak is represented

in a Cholesky factored form as: Ak ¼ LkL
0
k, where Lk is a lower triangular

matrix and its elements can vary from�∞ to +∞. With this representation,

Ak is automatically positive definite. It should also be mentioned that this

form of Ak matrix does not limit the flexibility of the basis functions since

any allowable choice of theAkmatrix can be represented by some Lkmatrix.

This is because any symmetric positive-definite matrix can be represented in

a Cholesky factored form.

As the zero-field nonrelativistic non-BO Hamiltonian commutes with

the operators representing the square of the total (electron + nuclei) angular

momentum and its projection on a selected axis, the Hamiltonian eigen-

functions have to transform according to irreducible representations of

the SO(3) symmetry group of rotations. In particular, the ground-state

non-BO molecular wave function is spherically symmetric. In high-

precision calculations of isolated atomic and molecular systems, the angular

symmetry, as well as permutational symmetries of identical particles, the
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symmetry properties have to be strictly enforced. If an external perturbation

(e.g., interaction with an electric field) is present, the symmetry is lowered

and only functions reflecting the new Hamiltonian symmetry have to be

included in the basis set. The complexity of the calculation of the properly

symmetrized ECG Hamiltonian and overlap matrix elements depends

factorially on the numbers of identical particles. Therefore, the application

of ECG methods is currently limited to systems with up to 7–8 particles.

Using single-centered (i.e., s¼ 0) ECGs with real or complex exponen-

tial parameters (i.e., theAmatrix is real or we haveA+ iB) and with angular

factors in the form of products of Cartesian spherical harmonics and with the

gradient-based variational algorithms, we have performed very accurate cal-

culations of the spectra of small atoms. The calculations have included the

leading relativistic and QED corrections. In particular, the calculations of

atomic systems with 4 and 5 electrons should be mentioned, as our non-

BO calculations performed for S, P, D, and F states of these systems5–10

are among the most accurate in the literature.

For calculating ground and excited states of atoms and molecules, one

needs to accurately describe radial and angular oscillations of the non-BO

wave functions. In particular, the radial oscillations due to vibrational exci-

tations of the molecule require the use of certain types of ECGs. Treating the

electrons and nuclei on an equal footing as N particles and after separating

out the center of mass from the total nonrelativistic Hamiltonian of the

system, the Hamiltonian representing the system’s internal motion depends

on the n internal coordinates of the N � 1 pseudoparticles. We denote by

r � Rn the vector of the internal coordinates in the following description:

1. ECGs with preexponential multipliers in the form of powers of

internuclear distances,

ϕðrÞ ¼
Y

i

rmi

i

Y

i>j

r
mij

ij exp½�r0Ar� ðPECGÞ (2)

wheremi andmij are even nonnegative integers, andA is a real symmetric

positive definite 3n � 3n matrix.14–17

2. Complex single-center ECGs are of the form:

ϕðrÞ ¼ exp½�r0ðA + iBÞr� ðCECGÞ (3)

CEGs have been used in Refs. 10,18–21. It has been shown that CECGs

are equally if not more efficient than PECGs in describing radial oscil-

lations of excited rovibrational states, even states located near the disso-

ciation threshold.
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3. Real ECGs with shifted centers are of the form

ϕðrÞ ¼ exp½�ðr� qÞ0Aðr� qÞ� ðSECGÞ (4)

and have a zero imaginary part B ¼ 0 of the width matrix and a zero

momentum vector p ¼ 0. SECGs have been used in Refs. 22–26.

Including real shifts in the Gaussians enables us to describe radial oscil-

lations and the angular polarization of the wave function due to, for

example, the interaction of the system with the field. These types of

deformations can be also described by appropriate spherical harmonics

factors, though the shifts may be a more effective way for this task. It

should be noted that adding a momentum vector p is equivalent to

introducing a complex shift vector q. The complex shifts allow us

to describe ionization/dissociation events that may happen upon

high-energy irradiation of an atom or a molecule.

To describe the angular/rotational excitations, ECGs have to be multiplied

by products of Cartesian spherical harmonics or by shifting the centers of the

Gaussians as it is done in SECGs. Thus, the shifts quite effectively represent

both the radial oscillations and the angular polarization of the wave function.

The fully complex ECGs enable the accurate description of the following

features of the non-BO wave function: (a) the electron–electron, electron–

nucleus, and nucleus–nucleus correlation effects; (b) the angular and radial

polarization and oscillation caused by the interaction with laser pulses with

variable frequencies and intensities; and (c) ionization/dissociation of the

system. With complex matrix Ck and complex shift vectors sk, i.e., Ck ¼
Ak + iBk and sk ¼ zk + iwk, where zk and wk are real vectors, ϕk(r) has

the form:

ϕkðrÞ ¼ exp½�ðr� skÞ0ðAk + iBkÞðr� skÞ�, (5)

where r is the vector of the Cartesian internal coordinates of the particles

forming the system, i ¼
ffiffiffiffiffiffiffi

�1
p

and 0 denotes vector/matrix transposition.

An alternative, but equivalent, form of ϕk(r) is:

ϕkðrÞ ¼ exp½�ðr� zkÞ0ðAk + iBkÞðr� zkÞ+ iw0
kr�: (6)

Recent work27 has shown that such complex Gaussians possess sufficient

flexibility to describe the time-evolving state of an atom or molecular system

subject to strong and short laser pulses with variable frequencies and inten-

sities. The presence of the plane-wave component in the Gaussians allows

the description of the ionization/dissociation dynamics.
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2. Separation of the center-of-mass motion from
the total nonrelativistic Hamiltonian of the system

As the number-crunching power of computers keeps growing over

the years, it becomes possible, at least for the smallest molecular systems,

to reduce the number of approximations to a minimum. In the approach

adopted in this work, we consider few-electron diatomic systems, LiH

and LiH�, without the use of the Born–Oppenheimer approximation.

This means that all particles, i.e., the nuclei and electrons forming the mol-

ecule, are treated on an equal footing. Such an approach, if it only concerns

the internal bound states of the system, necessitates that the center-of-mass

motion is removed from the Hamiltonian. This separation in the non-BO

method we have developed is done by starting with the total nonrelativistic

Hamiltonian of the molecule written in terms of laboratory Cartesian coor-

dinates representing the kinetic and potential energies of the nuclei and the

electrons. The general lab-frame nonrelativistic all-particle Hamiltonian of a

system ofN particles (N being a sum of the number of nuclei and the number

of electrons) in atomic units is represented by operator:

H lab
nr ¼

X

N

i¼1

P2
i

2M i
+
X

N

i¼1

X

N

j 6¼i

QiQj

|Ri �Rj|
, (7)

where Mi, Qi, Ri, Pi are the mass, charge, the Cartesian coordinates, and

the corresponding linear momenta of the ith particle, respectively. The fol-

lowing nuclear masses are used in the present calculations: M(1H) ¼
1836.15267389me, M(2H) ¼ 3670.48296785me, M(6Li) ¼ 10961.89865me,

M(7Li) ¼ 12786.39228me, M(9Be) ¼ 16424.2055me, M(10B) ¼ 18247.

46879me, M(11B) ¼ 20063.73729me, M(14N) ¼ 25519.045282me, and

M(15N) ¼ 27336.528712me, where mass of electron me ¼ 1.

Next, Hamiltonian (7) is expressed in terms of newCartesian coordinates

that comprise the three lab-frame coordinates describing the position of the

system’s center of mass in laboratory Cartesian coordinate frame and the

remaining 3N � 3 coordinates that are internal coordinates. In our

approach, the internal coordinates ri�1 ¼ Ri �R1 are the Cartesian coordi-

nates of vectors with the origins at a chosen reference particle located at R1

(usually the heaviest nucleus in the system, which we can call particle 1)

and ending at the positions of particles 2, 3, …, N. A transformation of

the total nonrelativistic Hamiltonian to the new coordinates system results
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in its rigorous separation of the lab-frame Hamiltonian into an operator

that represents the kinetic energy of the center-of-mass motion and an

internal Hamiltonian, as described in the next section. The center-of-mass

kinetic energy Hamiltonian depends only on the center-of-mass laboratory

coordinates and the internal Hamiltonian depends only on the internal

coordinates.28

As mentioned, the nonrelativistic calculations in the present work are

carried out using a Hamiltonian that represents the internal state of the mol-

ecule and excludes the motion of the center of mass, i.e., excludes the trans-

lational motion of the system as a whole. The internal Hamiltonian

expressed in terms of the internal Cartesian coordinates, ri, i ¼ 1,…, n ,

where n ¼ N � 1 and N is the number of particles (electrons and nuclei)

forming the molecule, is as follows28:

Ĥ¼�1

2

X

n

i¼1

1

μi
r0

ri
rri +

1

m0

X

n

i, j¼1

i6¼j

r0
ri
rrj

0

B

B

B

B

@

1

C

C

C

C

A

+
X

n

i¼1

q0qi

ri
+
X

n

i>j¼1

qiqj

rij
, (8)

wherem0 is the mass of the reference nucleus (in the present calculations, the

lithium nucleus) and q0 is its charge, qi are the charges of the other particles,

μi ¼ m0mi= m0+ mið Þ is the reduced mass of particle i (mi, i ¼ 1,…, n, are the

particle masses), ri ¼ jrij, i ¼ 1,…, n is the distance from particle n + 1 to

the reference particle, i.e., particle 1, and rij is the distance between particle

j + 1 and particle i + 1. The prime symbol in (8) denotes the matrix/vector

transposition. One can notice that the internal Hamiltonian represents the

motion of n particles, whose charges are the original particle charges, but

the masses are the reduced masses (because of that, one can use the term

“pseudoparticles” to denote the particles described by the internal

Hamiltonian (8)), in the central field of the charge of the reference

nucleus. Thus, the internal Hamiltonian is invariant upon all rotations

around the center of the internal coordinate system and one can think of it

as an “atom-like” Hamiltonian. The eigenfunctions of this Hamiltonian

can be classified using the same symmetries as the wave functions of atoms.

These eigenfunctions and the corresponding eigenvalues (energies) represent

all modes of the internal motions of the molecule including the electronic,

vibrational, and rotational motions. In particular, the ground-state solution

is spherically symmetric, i.e., it is invariant under rotations in 3D.
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The approach used to obtain the internal Hamiltonian (8) and to separate

out the center-of-mass motion from the lab-frame Hamiltonian is a gener-

alization of the standard textbook approach used to reduce a two-body

problem to a one-body problem in quantum mechanics, e.g., in the case

of an electron and proton forming the hydrogen atom.

3. Generation of the Basis set in a non-BO calculation

The calculations described in this work are performed using the

Rayleigh–Ritz variational scheme involving minimization of the

Rayleigh quotient:

E a; cð Þ ¼ min
a,cf g

c0HðaÞc
c0SðaÞc , (9)

where H(a) is the matrix of the internal Hamiltonian H, S(a) is the overlap

matrix, and c is a vector of the linear expansion coefficients of the wave

function in terms of the basis functions. Notation E a; cð Þ indicates that

the energy depends on the nonlinear parameters of the basis functions

(the a vector) and on the c coefficients (the c vector).

In the variational energy minimization, the matrix elements of the Lk
matrices of the Gaussians (and the coordinates of the Gaussian shifts, sk,

in the case of shifted Gaussians) that form vector a are fully optimized.

Generating the basis set for the lowest-energy state of a particular spin/spatial

symmetry is initiated with a small, randomly chosen set of functions and

involves incremental addition of new functions and variationally optimizing

them with an approach employing the analytic energy gradient. The new

functions are added to the basis set one by one with Lk parameters chosen

as a best guess out of several hundred candidates. The parameters of the can-

didate functions are generated based on the parameters of the functions

already included in the set. After a new function is selected, its ik electron

number index and the Lk parameters are optimized. Next the function is

checked for any linear dependency with the functions already included in

the basis set and, if such linear dependency appears, the function is rejected

and replaced by a new function. This new function is then subject to opti-

mization. After a certain number of new functions (usually a hundred) are

added to the basis set, the whole set is reoptimized by cycling over all func-

tions one by one and reoptimizing their Lk parameters. After the parameters

of a function are reoptimized, the function is again checked for any linear

dependency with all other functions in the set, and its parameters are reset
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to their original values if the linear dependency within a certain predefined

threshold occurs. The cyclic optimization of all functions is usually repeated

several times. The process of basis set growing continues until satisfactory

convergence is reached for each state.

The optimization of a basis set for the second lowest state of the system is

initiated with a basis set generated for the lowest-energy state. Usually, that

basis set is significantly smaller than the largest basis set generated for this

state, but still provides reasonably good representation in terms of the state’s

energy and the wave function of the state. In the optimization of the basis set

for the second lowest state, the initial basis is augmented by additional func-

tions which are reoptimized along with the functions contained in the initial

basis set to obtain a well-converged solution (i.e., the energy and the wave

function) for the state. A similar procedure is applied to obtain the energy

and the wave function for the third-lowest energy state. In this case, the

optimization is initiated using a basis set generated for the second-lowest

energy state.

A unique feature of our approach is the use of the analytically calculated

first derivatives of the energy functional determined with respect to the

nonlinear Gaussian parameters in their optimizations. The derivatives that

form the gradient vector are determined as:

∂aE ¼ 1

c0Sc
∂vechH

∂a0
� E

∂vechS

∂a0

� �0
vech½2cc0 � diagcc0�ð Þ, (10)

where vech is an operation that forms am(m+ 1)/2-dimensional vector (m is

the number of the basis functions) of unique matrix elements of a symmetric

matrix. The use of the energy gradient in the minimization of the energy

functional considerably accelerates the convergence of the optimization

process.

4. Examples of non-BO atomic and molecular
calculations

For atomic states with all s electrons, such as 1S states of the beryllium

atom, Gaussians exp�r0Ar½ � are used. For atomic states with one p electron

and the remaining electrons being s electrons, such as 2P states of the lithium

and boron atoms, the Gaussians are: zi exp�r0Ar½ �, where zi is the z coor-

dinate of the i electron.

For atomic states with three p electrons, such as for 4S states of the nitro-

gen atom, the basis functions can be obtained by coupling together their
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angular momenta using the appropriate Clebsch–Gordan coefficients. Thus,

a linear combination of the following nonnormalized forms of spherical har-

monic functions Y 0
1 ¼ zi, Y

1
1 ¼ 1=

ffiffiffi

2
p

xi+ iyið Þ, and Y�1
1 ¼ 1=

ffiffiffi

2
p

xi� iyið Þ
expressed in the Cartesian coordinates where the common constant factor

and the 1=r lii factor were dropped (li is the angular momentum quantum

number of the ith electron) is generated. Let us suppose that the orbital

quantum numbers of electrons i, j, and k (k in this case is not the index

for the basis function expansion but an electron index) are li, mi, lj, mj, lk,

and mk. Using the bracket notation, the angular part of the basis function

corresponding to particular L and M can be represented as the following

linear combination:

jL Mi¼
X

mi,mj,mk

mi +mj +mk¼M

ðL M jli mi ljk mjkÞðljk mjkjlj mj lk mkÞjli miijlj mjijlk mki,

(11)

where the L M jli mi ljk mjk

� �

and ljk mjkjlj mj lk mk

� �

factors are the

Clebsch–Gordan coefficients.29 With that, the angular part of the basis

function for a state of three p electrons with L ¼ 0 and M ¼ 0 becomes:

�

xjyi � xiyj
�

zk + xiyk � xkyið Þzj +
�

xkyj � xjyk
�

zi, (12)

where again the 1=ðr lii r
lj
j r

lk
k Þ factor was dropped. Therefore, the full form of

the basis function ϕk(r) is obtained by multiplying together exp �r0Akr½ �and
the angular component (12):

ψk rð Þ¼ xjkyik �xikyjk
� �

zkk + xikykk �xkkyik
� �

zjk + xkkyjk �xjkykk

� �

zik
	 


exp �r0Akr½ �

¼ r0vxj
k

� �

r0vyi
k

� �

r0vzk
k

� �

� r0vxi
k

� �

r0vyj
k

� �

r0vzk
k

� �

+ r0vxi
k

� �

r0vyk
k

� �

r0vzj
k

� �

� r0vxk
k

� �

r0vyi
k

� �

r0vzj
k

� �

+ r0vxk
k

� �

r0vyj
k

� �

r0vzi
k

� �

� r0vxj
k

� �

r0vyk
k

� �

r0vzi
k

� �

exp �r0Akr
� �

: (13)

In the above, vector–vector products are used to replace the angular Cartesian

coordinates. These replacements allow for a more generalized approach in

deriving the expressions for the Hamiltonian matrix elements. The vectors

v
xi
k , v

yi
k , v

zi
k , v

xj
k , v

yj
k , v

zj
k , v

xk
k , v

yk
k , and v

zk
k used in (13) are sparse 3n vectors

comprising of only one element of a nonzero value of “1” in the position

describing the nonzero-angular-momentum particle and its angular
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coordinate. Note that vk vectors cannot be represented as a Kronecker prod-

uct of an n-component vector vk with I3: vk 6¼ vk � I3.

Before ECGs are used to expand the wave function of the considered

state of the system, they have to be appropriately permutation-symmetry

adapted. In the present approach, we use the spin-free formalism for this

adaptation. The approach involves construction of a permutation-symmetry

projector using the standard procedure based on Young operators. In the

case of the doublet states of lithium, the singlet states of beryllium, the dou-

blet states of boron, and the quartet states of the nitrogen, the corresponding

Young operators are chosen as (particle one is the nucleus and particles 2, 3,

… are the electrons):

(1 + P23)(1 � P34),

(1 � P24)(1 � P35)(1 + P23)(1 + P45),

(1 � P24)(1 � P26 � P46)(1 � P35)(1 + P23)(1 + P45), and

(1+P56)(1+P78)(1�P68)(1�P57)(1�P27�P25)(1�P23�P37�P35)

(1�P34�P24�P47�P45), respectively, where the Pij operator per-

mutes the labels of the i and j electrons. More details about the imple-

mentation of the Young-operator approach in our calculations can be

found in Ref. 30.

It should be noted that the variational optimization of the ECG exponential

parameters is only carried out for the wave functions of the leading isotope of

the atom (e.g., the 7Li isotope of the lithium atom). In the calculations of the

other isotopes and in the infinite-nuclear-mass calculations, the basis sets

generated for the leading isotopes are used without reoptimization of their

nonlinear parameters. Our experience with atomic calculations has shown

that adjusting the linear expansion coefficients, c, provides a sufficiently

accurate way to account for a relatively small change of the wave function

caused by the change in the nuclear mass.

These are the following bound states of four atomic systems considered

in the calculations performed in this work: the lowest twelve 2P states of the

lithium atom, the lowest ten 1S states of the beryllium atom, the lowest nine
2P states of the boron atom, and five 1S states of the nitrogen atom. For all the

considered states, except for some lowest states of the lithium atom (for these

states, calculations performed with explicitly correlated Slater functions pro-

duced slightly better energies than those obtained with Gaussians) the total

variational energies obtained in the calculations are the lowest ever obtained

in ab initio calculations for these systems. The optimizations of the ECG

basis sets for each atom are performed for the leading isotope of that atom.

The generated basis are subsequently used in the calculations of other stable
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isotopes of each atom, as well as for an atom with an infinite nuclear mass.

The results for the 2P states of the 6Li, 7Li, and ∞Li isotopes of the lithium

atom are shown in Table 1, the results for the 1S states of the 9Be and ∞Be

isotopes of the beryllium atom are shown in Table 2, the results for the

Table 1 The total nonrelativistic non-BO energies Enrel of the n
2
P states of isotopes of

the lithium atom 6Li, 7Li, ∞Li, where n ¼ 2, 3,…, 13.

State Basis 6Li 7Li ∞Li

2 2P 17,000 �7.409 458 110 577 �7.409 557 759 019 �7.410 156 532 650

3 2P 13,100 �7.336 457 285 733 �7.336 556 363 709 �7.337 151 708 591

4 2P 14,000 �7.311 196 254 262 �7.311 295 101 661 �7.311 889 060 748

5 2P 14,000 �7.299 596 170 656 �7.299 694 902 379 �7.300 288 166 250

6 2P 14,000 �7.293 328 522 041 �7.293 427 187 815 �7.294 020 055 325

7 2P 15,500 �7.289 563 667 252 �7.289 662 291 968 �7.290 254 912 721

8 2P 16,000 �7.287 127 026 011 �7.287 225 623 467 �7.287 818 080 395

9 2P 16,000 �7.285 460 106 102 �7.287 225 623 467 �7.286 151 027 247

10 2P 17,000 �7.284 269 825 426 �7.284 368 390 101 �7.284 960 650 009

11 2P 17,000 �7.283 390 376 949 �7.283 488 931 330 �7.284 081 129 330

12 2P 17,000 �7.282 722 235 788 �7.282 820 782 270 �7.283 412 932 799

13 2P 17,000 �7.282 300 479 312 �7.284 079 728 671

All values in hartrees.

Table 2 The total nonrelativistic non-BO energies Enrel of the n
1
S states of isotopes of

the beryllium atom 9Be and ∞Be, where n ¼ 2, 3,…, 11.

State Basis 9Be ∞Be

2 1S 16,000 �14.666 435 526 317 �14.667 356 508 387

3 1S 16,000 �14.417 335 144 083 �14.418 240 368 939

4 1S 16,000 �14.369 185 514 672 �14.370 087 938 507

5 1S 16,000 �14.350 610 429 797 �14.351 511 737 910

6 1S 16,000 �14.341 502 934 723 �14.342 403 688 992

7 1S 16,000 �14.336 366 130 065 �14.337 266 570 323

8 1S 17,000 �14.333 186 043 180 �14.334 086 288 670

9 1S 17,000 �14.331 080 947 170 �14.331 981 063 789

10 1S 17,000 �14.329 614 861 820 �14.330 514 888 895

11 1S 17,000 �14.328 550 996 542 �14.329 450 958 909

All values in hartrees.
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2P states of the 10B, 11B, and ∞B isotopes of the boron atom are shown in

Table 3, and the results for the 1S states of the 14N and ∞N isotopes of the

nitrogen atom are shown in Table 4. An example of non-BO molecular cal-

culations shown in this work concerns all bound states of the HD+ ion

corresponding to the zero total angular momentum. There are 23 such states

and they correspond to what is conventionally called the “pure vibrational

excitations.” However, due to the coupling of the motion of the nuclei and

the motion of the electrons that occurs when the system is described without

assuming the Born–Oppenheimer approximation, the vibrational quantum

number is not, strictly speaking, a good quantum number. The challenge in

calculating all 23 bound “vibrational” states of HD+with comparable accuracy

is due to the need of describing the radial oscillations of the wave functions of

these states with equal accuracy. Two approaches are used for this purpose in

this work. In the first one, PECGs are used, and in the second one, CECGs are

used. The results obtained with these two basis sets are compared in Table 5.

Table 3 The total nonrelativistic non-BO energies Enrel of the of n
2
P states of isotopes of

the boron atom 10B, 11B, ∞B, where n ¼ 2, 3,…, 10.
State Basis 10B 11B ∞B

2 2P 16,000 �24.652 502 680 636 �24.652 626 315 397 �24.653 868 525 181

3 2P 16,000 �24.430 973 916 386 �24.431 097 899 360 �24.432 343 606 383

4 2P 16,000 �24.389 170 171 127 �24.389 294 047 421 �24.390 538 682 291

5 2P 16,000 �24.372 547 534 026 �24.372 671 358 362 �24.373 915 471 635

6 2P 16,000 �24.364 219 865 377 �24.364 343 660 569 �24.365 587 486 912

7 2P 16,000 �24.359 451 263 777 �24.359 575 039 883 �24.360 818 693 430

8 2P 16,000 �24.356 464 432 488 �24.356 588 195 903 �24.357 831 737 404

9 2P 16,000 �24.354 455 451 626 �24.354 579 209 823 �24.355 822 673 751

10 2P 16,000 �24.353 024 913 107 �24.353 148 632 914 �24.354 392 079 994

All values in hartrees.

Table 4 The total nonrelativistic non-BO energies Enrel of the of n
2
P states of isotopes of

the nitrogen atom14N, 15N, ∞N, where n ¼ 2, 3,…, 6.

State Basis 14N 15N ∞N

2 2P 128 �54.548 106 795 683 �54.548 244 637 939 �54.550 180 140 287

3 2P 128 �54.070 292 960 572 �54.070 430 919 917 �54.072 368 063 483

4 2P 128 �53.899 406 696 128 �53.899 541 400 451 �53.901 432 831 328

5 2P 244 �53.701 687 058 152 �53.706 202 762 186 �53.708 150 318 836

6 2P 256 �53.122 252 189 699 �53.122 388 837 119 �53.124 306 684 080

All values in hartrees.
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Table 5 The total nonrelativistic non-BO energies of the pure vibrational states of HD+.

ν Basis Enrel ν Basis Enrel ν Basis Enrel

0 1700 �0.597 897 968 59 1 1649 �0.589 181 829 50 2 1700 �0.580 903 700 14

*1500 �0.597 897 968 58 *1500 �0.589 181 829 51 *1600 �0.580 903 700 12

3 1780 �0.573 050 546 41 4 1700 �0.565 611 041 73 5 1840 �0.558 575 520 39

*1500 �0.573 050 546 31 *1600 �0.565 611 041 61 *1700 �0.558 575 520 19

6 1740 �0.551 935 947 94 7 1740 �0.545 685 913 88 8 1865 �0.539 820 639 73

*1700 �0.551 935 947 84 *1700 �0.545 685 913 57 *1700 �0.539 820 638 67

9 1865 �0.539 820 639 73 10 1900 �0.534 337 010 93 11 1820 �0.529 233 630 55

*1700 �0.534 337 009 15 *1700 �0.529 233 628 50 *1700 �0.524 510 900 41

12 1800 �0.524 510 903 52 13 1800 �0.520 171 138 12 14 1800 �0.516 218 695 97

*1700 �0.520 171 133 16 *1600 �0.516 218 684 23 *1600 �0.512 660 156 98

15 1800 �0.512 660 174 92 16 1800 �0.509 504 625 62 17 1800 �0.506 763 848 46

*1600 �0.509 504 603 52 *1600 �0.506 763 816 14 *1600 �0.504 452 626 59

18 1800 �0.504 452 661 84 19 1800 �0.502 589 190 42 20 1860 �0.501 194 759 49

*1600 �0.502 589 154 43 *1600 �0.501 194 710 60 *1600 �0.500 292 362 14

21 1940 �0.500 292 416 44 22 1980 �0.499 910 347 15 23 2000 �0.499 865 774 69

*1700 �0.499 910 332 87 *1700 �0.499 865 770 26

The result marked with * are taken from Ref. 31. All values in hartrees.



As one can see, results obtained with the two basis sets are almost equally

accurate with, perhaps, the PECG results being slightly better than the

CECG result—an effect which can be attributed to the larger sizes of the

PECG basis sets.

5. Challenges of non-BO calculations

The computer time for an all-particle non-BO calculation scales as a

product of the factorials of the numbers of identical particles. For an atom,

the scaling factor is the factorial of the number of the electrons. The scaling is

due to the number of terms in the permutation-symmetry operator which

for an atom with n electrons is equal to n!. Thus, eachH or Smatrix element

is a sum of n! corresponding elemental integrals. The n! time scaling is the

major bottleneck of a non-BO calculation will all-particle ECGs.

Another size-limiting step in the non-BO calculation is the solution of

the secular equation used to determine the energy and the linear expansion

coefficients of the wave function. At this point, our effort is particularly

focused on creating a procedure for a very fast one-root eigen-problem

solver for complex all-particle ECGs.

6. Summary and future directions

In this work, the procedure for performing non-BO calculations of

small atoms and molecules with all-particle explicitly correlated Gaussian

functions developed in our laboratories is described. The procedure is used

to calculate someRydberg states of the lithium, beryllium, boron, and nitro-

gen atoms. The basis sets generated for the leading isotope of each atom are

used to calculate energies and wave functions of other stable isotopes of the

atom, as well as the energy of the atom with an infinite nuclear mass. The

results of the calculations can be used to calculate the isotope energy shifts.

Some bottlenecks of the non-BO calculations are discussed.
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