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ABSTRACT

Incorporating machine learning (ML) components into software
products raises new software-engineering challenges and exacer-
bates existing challenges. Many researchers have invested signifi-
cant effort in understanding the challenges of industry practitioners
working on building products with ML components, through in-
terviews and surveys with practitioners. With the intention to
aggregate and present their collective findings, we conduct a meta-
summary study: We collect 50 relevant papers that together inter-
acted with over 4758 practitioners using guidelines for systematic
literature reviews. We then collected, grouped, and organized the
over 500 mentions of challenges within those papers. We high-
light the most commonly reported challenges and hope this meta-
summary will be a useful resource for the research community to
prioritize research and education in this field.

1 INTRODUCTION

After decades of effort in machine learning (ML) research to build
better models, researchers from industry and academia have re-
cently started to shift their attention to improving how to build
software products with such models. Incorporating a ML compo-
nent into a software product is often argued to be harder than
incorporating traditional functional components, because of the
specific characteristics of machine learning (e.g., based on data, no
specifications in the traditional sense, fairness concerns) and how
they impact the entire life cycle of the product [42, 50, 59, 84, 112].
While the traditional software development process has challenges
of its own, bringing ML into the picture is argued to break a lot of
existing software architecture and engineering assumptions [50, 59].
This leads initiatives to rethink existing processes and practices
and shift priorities in software teams. As a result, we keep hearing
from practitioners on how they perceive building, deploying, and
incorporating machine learning in software products as a challenge,
even when the initial ML research and model prototypes seemed
promising.

While some practitioners give talks on challenges or write experi-
ence papers (e.g., examples in academic venues surveyed elsewhere
[67, 85]), researchers have also been actively studying the chal-
lenges faced by practitioners when building software products with
ML components across many projects. In recent years, many re-
searchers have interviewed or surveyed practitioners to identify
what has really changed for them with the introduction of machine
learning, often with the goal of identifying challenges, research

Requirements Engineering: Lack of AI literacy causes unrealistic ex-
pectations from customers, managers, and even other team members •
Vagueness in ML problem specifications makes it difficult to map business
goals to performance metrics • Regulatory constraints specific to data and
ML introduce additional requirements that restrict development
Architecture, Design, and Implementation: Transitioning from a
model-centric to a pipeline-driven or system-wide view is considered
important for moving into production, but a difficult paradigm shift for
many teams •ML adds substantial design complexity with many, often
implicit, data and tooling dependencies, and entanglements due to a lack
of modularity • Difficulty in scaling model training and deployment on
diverse hardware • While monitorability and planning for change are
often considered important, they are mostly considered only late after
launching
Model Development: Model development benefits from engineering in-
frastructure and tooling but provided infrastructure and technical support
are limited in many teams • Code quality is not standardized in model
development tools, leading to conflicts about code quality
Data Engineering: Data quality is considered important, but difficult for
practitioners and not well supported by tools • Internal data security and
privacy policies restrict data access and use • Although training-serving
skew is common, many teams lack support for its required detection and
monitoring • Data versioning and provenance tracking are often seen as
elusive, with not enough tool support
Quality Assurance: Testing and debugging ML models is difficult due to
lack of specifications • Testing of model interactions, pipelines, and the
entire system is considered challenging and often neglected • Testing and
monitoring models in production are considered important but difficult,
and often not done • There are no standard processes or guidelines on
how to assess system qualities such as fairness, security, and safety in
practice
Process: Development of products with ML component(s) is often ad-
hoc, lacking well-defined processes • The uncertainty in ML development
makes it hard to plan and estimate effort and time
Organization and Teams: Building products with ML components re-
quires diverse skill sets, which is often missing in development teams •
Many teams are not well prepared for the extensive interdisciplinary col-
laboration and communication needed in ML products • ML development
can be costly and resource limits can substantially curb/limit efforts • Lack
of organizational incentives, resources, and education hampers achieving
all system-level qualities

Table 1: Overview of Identified Challenges

opportunities, and best practices in a rapidly changing field. While
some studies focus on specific aspects, such as challenges regarding
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Figure 1: Research Method

architecture [110], collaboration [78], or fairness [37, 95], many
others explore challenges more broadly. Many of these studies have
identified similar challenges. We believe that we have reached a
point where practices have settled and research on challenges ap-
proaches saturation – we think that now is a good time to step back
and survey the collective findings of the research community.

In this paper, we aim to consolidate knowledge about challenges
in the practice of building software products with ML components,
with a systematic literature survey of existing studies that inter-
viewed or surveyed industry practitioners across multiple projects.
We identified 50 studies of which, 30 conducted interviews, 11
conducted surveys, and nine did both, with a total of over 4758
identified participants (seven studies did not report the number of
participants; some participants may have participated in multiple
studies). Using themeta-summary research method [25, 96, 104], we
analyze, organize, and synthesize findings across all these studies
(as shown in Figure 1), answering the overall research question:
What are the challenges experienced by industry practition-

ers in building software products with ML components?

We group the challenges found in the meta-summary into cat-
egories. In a nutshell, we find practitioners struggle in different
product development stages: (1) requirements engineering, (2) ar-
chitecture, design, and implementation, and (3) quality assurance.
We also find several engineering challenges inML-specific stages, in
particular (4) model development, and (5) data engineering. Other
issues relate to cross-cutting concerns related to (6) process, and (7)
organization and teams. Following the meta-summary method, we
present and organize the challenges mentioned by the practitioners
in the original papers as they have been reported, without attempt-
ing to speculate or pass our own judgments on the findings. Table
?? contains a summary of the findings. We conclude the paper with
a brief discussion, reflecting our own views.

Our key contribution is the meta-summary, which we present
in narrative form in this paper. We additionally provide details
with clear traceability to findings and papers as supplementary
documents [77].

2 SCOPING AND RELATED WORK

With the advance of ML techniques, many organizations have
invested substantial efforts in building products with ML com-
ponents. While there is a large amount of research that focuses
entirely on the challenges that data scientists face in their model-
development work (e.g., development responsibilities [52], data
exploration [63, 75], data-science processes [30, 70], development
in notebooks [20, 33, 88], AutoML [122]), another body of work
focuses on the challenges of building products with those models,
often with interdisciplinary teams, and placing substantial attention
on qualities like safety and observability. The latter work, which
forms the scope of this survey, moves beyond the model-centric
view of classic data-science workflows and considers building auto-
mated pipelines and entire software systems with many ML and
non-ML components, as well as the engineering challenges involved.
It emerges in a growing research community often named Software

Engineering for Machine Learning (SE4ML) studying the engineer-
ing challenges of building both ML components and products that
contain ML components.

Understanding practitioner needs. Academic research is often
criticized for being far removed from the needs faced by practition-
ers in industry [9, 95, 121]. If researchers want to achieve rapid
impact in industry, they need to understand what problems are
important to practitioners; conversely, practitioners may attempt
to attract researchers to work on their problems. Attempts to close
the gap between academia and practice typically need to navigate
a tradeoff between (a) investigating one or few teams in depth with
findings that may not generalize or (b) exploring common problems
across many teams with more shallow engagements. Focused on in-
dividual teams, we see a few ethnographic studies [86, 87], many di-
rect collaborations with an industrial partner [53, 94], and many ex-
perience reports published by practitioners in papers [10, 32, 49, 60],
talks [27, 31, 71], or blog posts [35, 114, 132]. To understand prob-
lems across teams, many researchers conduct interviews across
multiple teams and organizations, e.g., [59, 66, 78, 110, 120], to
be either addressed by the same researchers or reported as open
problems to the community. Other researchers have focused on
surveying practitioners at scale across companies and regions, e.g.,
[45, 58, 123, 131].

In this paper, we go one step further in aggregating and ana-
lyzing results from prior interviews and surveys with over 4758
practitioners, which we hope will help guide future research and
educational activities toward challenges relevant to practitioners.

Previous literature reviews. There have been several prior lit-
erature reviews on topics related to building products with ML
components. Most surveys review academic papers proposing solu-
tions in subfields, such as testing ML components [6, 16, 39, 98, 130],
safety and security [14, 39, 64], data management [91], and even
trying to cover published research on SE4ML broadly [28, 69]. The
closest to our work are two literature surveys that analyze practi-
tioner experience reports published at academic conferences (not
including grey literature) collecting the self-reported challenges of
a few dozen teams [67, 85]. In this work, we specifically perform
a meta-summary of academic papers reporting on interviews and
surveys with practitioners.
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3 RESEARCH METHOD

The goal of this paper is to summarize challenges in building prod-
ucts with ML components, accumulated from industry practitioners
in prior research. To achieve this goal and answer our research
question, we first define the appropriate search strategy and study
selection criteria to find the relevant literature that identifies chal-
lenges through communicating with industry practitioners. We
follow the guidelines for systematic literature review (SLR) for
this paper collection step [51]. Then, we extract the data from the
selected papers and analyze the data to complete the synthesis
process. Several approaches have been explored for synthesizing
qualitative research in software engineering, such as thematic syn-
thesis, meta-ethnography, and meta-summary [40]. As our aim
is to discover patterns or themes of challenges in building prod-
ucts with ML components, as well as get a sense of the priority
of the challenges based on the frequency of reports by industry
practitioners, the meta-summary method is best suited for this re-
search problem [40, 96, 104]. The meta-summary method provides a
well-balanced synthesis mechanism, which is deeper than mapping
studies, and not as exhaustive as meta-ethnography, which requires
significant expertise and experience with the methodology and
its philosophical stance [96]. Thus, we apply the meta-summary
method [25, 96, 104] to perform the quantitative aggregation of the
qualitative evidence that we present as findings. Figure 1 shows
the overview of the research process followed in this study.

3.1 Paper Selection

To increase reliability, reproducibility and objectivity of the pro-
cess for paper selection, we follow the established procedure of
conducting systematic literature reviews [51].

Relevant years. Much of the research on engineering products
withML components was inspired by the seminal 2015ML technical
debt paper by Sculley et al. [105], which outlined various engineer-
ing challenges in building and operating ML infrastructure. For
completeness, we selected the year range of the papers to be from
2010 to 2022.

Publication venues. To search for papers, we select digital li-
braries and databases commonly used by software engineering
review papers, e.g, [21, 46, 65]. We do not filter by the venue, as
we expect to find papers that are published in different communi-
ties including software engineering, human-computer interaction,
and machine learning. Since we aim to aggregate results from ro-
bust empirical studies, we did not include gray literature, such
as blog posts, which typically reflect opinions or individual expe-
rience only. However, we did include arXiv as a data source, as
it contains many relevant academic papers in this field, even if
some have not been peer reviewed. Specifically, we use the fol-
lowing 8 data sources: IEEE Xplore (ieeexplore.ieee.org), ACM
Digital library (portal.acm.org/dl.cfm), Wiley InterScience (www.
interscience.wiley.com), Elsevier ScienceDirect (www.sciencedirect.
com), SpringerLink (www.springerlink.com), EI Compendex (www.
engineeringvillage.com), and arXiv (https://arxiv.org).

Search query. Defining the right scope and corresponding search
query required some iteration. We started by assembling an initial
set of 21 papers as a seed set (a common practice [26, 67]). The seed

Table 2: Paper Selection

Data Source Initial

Search

Result

After Filtering by

Title/Abstract and

Snowballing

Final Selec-

tion

IEEE 69 30 19
ACM 48 11 10
Willey 6 0 0
ScienceDirect 32 5 3
Engineer Village 101 3 0
Springer 6* 3 2
arXiv 79 8 5
Snowballing - 26 11
Total 341 86 50

*abstract filtering from 5612 papers retrieved with fulltext search

set was composed of papers that we knew well from our past work
in this field. We then analyzed the seed set to define the keywords
needed to retrieve those and similar papers.

We realized that our research question has three aspects, and
therefore to retrieve the papers that would satisfy our research
question, we focused on those three parts to formulate the search
query: (A) The paper needs to mention an ML-related key-

word, since we focus on challenges introduced by ML components.
(B) The paper needs to mention a software engineering or

ML deployment-related keyword, since we focus on engineer-
ing challenges that go beyond local concerns of data scientists; for
example the paper should discuss concerns related to actual prod-
uct development where models are deployed and incorporated into
larger software systems. Finally, (C) the paper needs to mention

surveys or interviews, since we are interested in the challenges
mentioned by industry practitioners and these are the most com-
mon relevant research methods; we are not interested in a single-
team case study or ethnographic study, as the challenges found in
such papers may be specific to individual products.

After adding some semantically similar terminologies, we devel-
oped the following search query fragments – A: “machine learning”
OR “artificial intelligence” OR “deep learning” OR “ML component”
OR ”data science”; B: ”software engineering” OR “software systems”
OR ”production-ready systems” OR ”ML systems” OR “deploying
ML” OR “ML deployment”; C: “interview” OR “survey” OR “ques-
tionnaire”. The final query was of the following format “A AND B
AND C.”

We searched with this query within the abstract of the papers
in all the digital data sources except SpringerLink, as it did not
have the option to search within abstracts. For SpringerLink, we
retrieved 5612 papers based on a full-text search, and subsequently
used a custom script to search within the abstracts of these papers.
This provided us with a total of 341 papers from all the sources (see
Table 2).

This search query retrieved 18 of the 21 seed papers. Two papers
were missed because the conducted interviews were not mentioned
in the abstract (the abstract framed the research as a case study),
and one paper was not listed within the libraries searched (only
available on TechRxiv). To account for this difference we performed
one round of snowballing, as explained later in this section.
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Table 3: Inclusion and Exclusion Criteria

Inclusion Criteria

I1: Paper includes software engineering challenges for ML systems
I2: Paper uses interview or survey with industry practitioners (soft-

ware engineers, data scientists, etc.) to identify the challenges
I3: Paper appears in a refereed publication (including conference

proceedings, journal, etc.) or uploaded in arxiv in a publication
format

I4: Paper is written in English

Exclusion Criteria

E1: Paper has a strict ML model view and does not consider the system
or product using the model

E2: Paper interviews/surveys only non-technical people (end-users,
domain experts, etc.)

E3: Paper focuses on ML for software engineering instead of software
engineering for ML systems

E4: Paper falls in the category of gray literature: blog post, technical
report, government report, webinar, poster session, presentation,
etc.

Selection criteria. The initial search returned many papers that
were not directly relevant to our research question. Next, we se-
lected 86 relevant papers by reading the title and abstract, evalu-
ating them against the inclusion and exclusion criteria (see Table
3), which we incrementally refined. Finally, we read the full paper,
and once again evaluated each against the inclusion and exclusion
criteria, which narrowed our set down to 39 papers. Multiple re-
searchers participated in this process and discussed papers at the
boundary.

Most of the papers that were discarded in this round were either
literature surveys in the domain of machine learning for software

engineering (i.e., using ML techniques to facilitate software engi-
neering tasks; not relevant to this study) or used interviews or
surveys to evaluate tools. We also removed papers that have a nar-
row focus or are entirely model-centric, e.g., interviewing only
data scientists about their modeling work (e.g., [24, 36, 47, 81]) or
interviewing only non-technical people (e.g., [13, 34, 101, 118]).

Snowballing. To capture relevant papers that did not match our
keywords in their abstract, we performed one iteration of backward
snowballing [127], which means that we went through the selected
papers’ reference list to find whether we missed any relevant pa-
pers. We analyzed 26 additional papers and considered 11 of them
as relevant based on the inclusion and exclusion criteria, which
included the three papers from the seed set we previously missed.

Final paper set. Overall, our process resulted in a final set of 50
papers. Most of the papers were published recently, since 2019 (see
Figure 2). This sudden explosion of interview and survey studies
with practitioners in recent years justifies our motivation for this
study to aggregate all the findings of these papers. Most of the
papers, 30 out of 50, were published in software engineering venues
(including five atWAIN/CAIN), 11 papers in HCI venues, two papers
in AI Ethics venues, and the seven remaining ones are scattered
over other communities. A total of 947 interviews and 3811 survey

Figure 2: Year Distribution of the Selected Papers

responses were reported in 43 papers, and the seven remaining
papers did not report specific counts of the interviewed or surveyed
practitioners.

Of the 50 papers, 31 papers explicitly list research questions or
the aim of their research as identification of challenges (or issues,
problems, difficulties) in different aspects of building products with
ML components. The other papers do not explicitly set a goal of
identifying challenges but more broadly study the process of build-
ing products with ML components, yet they also report practitioner
challenges in their findings.

3.2 Qualitative Meta-Summary Process

As stated earlier, we used the meta-summary research method
[25, 96, 104] to synthesize the findings from the collected papers.
This method is used to perform quantitative aggregation of qualita-
tive findings, which are necessarily the thematic summaries of the
underlying data from different studies. We conduct the following
steps to perform the synthesis, as per the guidelines.

Extracting findings. Along with the standard metadata (title,
source, venue, year, etc.), we extracted study-specific data regarding
research questions, study method, interview and survey participant
counts, and, most importantly, the challenges reported within the
papers. To maintain consistency in extracting the findings, we con-
sidered only challenges that were derived from the interview and
survey answers in the papers, not challenges derived from other
literature or personal experience of the authors. We extracted chal-
lenges related to building software systems with ML components,
but excluded those that relate exclusively to the data- and model-
related work performed by a data scientist, such as algorithmic
problems, notebook coding, and hyper-parameter tuning. We ex-
tracted a total of 520 excerpts relating to challenges from the 50
papers. We stored all extracted information from each paper in a
spreadsheet for further analysis.

Grouping topically similar findings.We organize the findings
at the level of reported challenges that we extracted from the pa-
pers. Different papers grouped findings in different ways and using
different terminologies; we aimed to find a consistent organiza-
tional principle. For identifying similar topics and grouping those
together, we needed to understand and compare those reported
challenges in their original context. Card sorting is a common tech-
nique for grouping similar findings [41, 116], which we used for
this paper. Following the standard card sorting method, we created
one (virtual) card per reported challenge, and incrementally and
iteratively organized those cards into groups of similar challenges.
Multiple researchers went through all the cards in synchronous and
asynchronous fashion to grasp the different concepts and identify
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relevant themes and clusters around the reported challenges. This
being a collaborative effort, we did not aim for inter-rater agree-
ment between independent grouping by individual researchers, but
instead worked together as a team to build consensus. There were
many rounds of card sorting including moving the cards back and
forth between different clusters, splitting the cards to handle dif-
ferent dimensions, merging similar clusters, and splitting clusters
when we found there was more than one theme, until all involved
researchers were satisfied with the clusters and placement of the
cards. We developed three layers of clustering – the reported chal-
lenges extracted from the papers as the smallest unit, groups of
common themes or patterns in the challenges as the second layer,
and finally a third (or top) layer grouping the second layer clusters
by development stages or cross-cutting concerns for the ease of
reporting results. We performed this card sorting process in an
online platform (miro.com), allowing us to manipulate colors, add
different tags to the cards, add comments, emojis, and so on. We
share the resulting card-sorting board as supplementary documents
[77].

Abstracting and formatting findings. For each of the second
layer clusters we abstracted out the concrete details of the reported
challenges and summarized the clusters based on the identified
themes of the groups. For this, we once again looked into the cards
of each of the clusters individually and attempted to develop broad
statements that capture the content of the cards in that cluster,
which provide the headings of our results presented in Section
4. We wanted to be concise, but also comprehensive to properly
capture the themes in the card. At the same time, as Sandelowski and
Barroso suggested [15], we were careful to preserve the context in
which the findings appeared by going back and forth in the original
papers when confusion arose, moving cards to other clusters or
themes as needed.

Calculating effect sizes. Methods for meta-summaries recom-
mend reporting the frequency of findings in the original sources
[104]. Since many of our analyzed papers ask similar broad research
questions, we can carefully interpret findings mentioned more fre-
quently as more common, though some papers clearly specialize in
specific sub areas such as fairness or software architecture [37, 59].
We do not attempt to count frequencies of mentions within the
papers (“intensity effect size”) because they are not consistently
reported, but just report the percentage of papers reporting on a
challenge theme (“frequency effect size”).

3.3 Limitations and Threats to Validity

All research designs comewith limitations that threaten validity and
credibility of results. As usual, readers should be careful when gen-
eralizing findings beyond what is allowed by the methods. Despite
best efforts in our selection methods (SLR process, snowballing)
we may have missed some relevant papers. In setting clear rules
for scope, we had to do some judgment calls by consensus of all
researchers for a number of papers, for example, whether to include
[3, 7, 12, 36, 109].

As discussed earlier, the meta-summary synthesis method was
chosen deliberately for its fit,but comes with its own limitations:
it does not analyze original raw data, but only what is reported
by other papers. Organizing and categorizing the data required

some interpretation of the papers and some judgment calls. The
method encourages quantification of effect sizes, but those may not
be entirely reliable as the analyzed papers use different methods
and sometimes focus on specific subquestions.

It would have been interesting to analyze findings in additional
dimensions, for example, whether team members in different roles
or projects, or in different application domains, experience different
challenges, or whether different challenges surface depending on
the research method in the original study (e.g., survey vs. interview,
open question vs. closed question). Unfortunately, data in the origi-
nal studies is frequently not reported consistently and with enough
granularity to enable such analyses.

While the meta-summary method can in principle also identify
conflicts within the literature, this was not feasible in our study.
The analyzed papers typically reported challenges, not the absence
or relative importance of certain challenges. Given that different
papers often had a different focus, rather than being replications of
each other, we cannot conclude that not mentioning a challenge
implies that there was no such challenge. Hence, we limited our
analysis to aggregating and grouping reported challenges.

4 RESULTS

We report our findings of the meta-summary in this section using
the layers derived from the card sorting. The top layer includes
development stages (1) Requirements Engineering, (2) Architecture,
Design, and Implementation (with a special focus on (2a) Model De-

velopment and (2b) Data Engineering), and (3) Quality Assurance,

plus (4) Process challenges and (5) Team challenges as crosscutting
concerns. Also, although MLOps, Fairness, and other more specific
categories are often used to organize results in the surveyed papers,
we eventually settled on minimizing the number of cross-cutting
topics. We decided to include operations challenges in the Architec-
ture and Design group, as we consider them primarily as a design
for change issue; and we separate and group various concerns for
specific qualities, such as fairness, in the development stages where
the concerns arise, such as requirements and quality assurance.
Within these top layer headings, we have our second layer clusters
which are the abstracted challenges based on our identified themes,
reported as the sub-headings in the following sections.

4.1 Requirements Engineering

Requirements engineering is known as an important and challeng-
ing stage of any software project, but as a consistent theme, we
find that practitioners argue that the incorporation of ML further
complicates requirements engineering.

Lack of AI literacy causes unrealistic expectations from cus-

tomers, managers, and even other team members [7, 23, 38,

45, 52, 56, 62, 68, 78, 79, 86, 100, 110, 119, 120, 123, 128] (17/50).

Across many studies, many practitioners report that customers fre-
quently have unrealistic expectations of ML capabilities in a prod-
uct, like demanding a complete lack of false positives or expecting
very high accuracy that is infeasible with provided resources (e.g.,
data, funding). Commonly, practitioners similarly blame a lack of
AI literacy on customers not wanting to pay for the continuous
improvement of the model: they have a static view of model de-
velopment [45, 78] only consider paying for coding, as they do
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not understand the need for experimental analysis [62] and even
difficulty convincing engineering teams to invest in collecting high-
quality data [52]. The issue of unrealistic requirements does not
only come from customers, but also from team members within the
company itself: Data scientists find it hard to explain the capabilities
of ML to managers, requirements engineers, and even designers
[23, 38, 78, 79, 86, 123]. According to practitioners, a lack of AI liter-
acy in teammembers manifests particularly in defining and scoping
the project: Stakeholders find it hard to understand the suitability
of applying ML itself [56, 128], scoping and deciding the functional
and non-functional requirements [62, 120], interpreting the model
outcomes [79, 100, 110], and the infrastructure needs (e.g., appropri-
ate data, monitoring infrastructure, retraining requirements) when
building products [79, 120, 128]. Many practitioners also report
that ML-specific system-level qualities like fairness and explainabil-
ity are frequently ignored during requirements elicitation, as the
stakeholders are not aware of them [11, 78, 95, 120].

Vagueness inML problem specificationsmakes it difficult to

map business goals to performancemetrics [30, 37, 56, 58, 61,

62, 66, 78, 79, 86, 95, 100, 110, 115, 119, 120, 123] (17/50). Prac-
titioners across many studies mention the challenge of formulating
the specific software and ML problem in a way that satisfies busi-
ness goals and objectives. ML practitioners find it difficult to map
the high-level business goals to the low-level requirements for a
model. While customers are broadly interested in improving the
business, practitioners often find it difficult to quantify the contribu-
tion of the MLmodel and its return on investment. Also, Responsible
AI initiatives find it difficult to quantify their contributions to the
business, for example, measuring the value added by improving
fairness and explainability, or to deliberate about tradeoffs between
conflicting fairness and business objectives [11, 37, 86, 95]. Even
with some notion of the responsible AI requirements in hand, prac-
titioners find the requirements vague and not concrete enough
to actually implement (e.g., unclear subpopulations and protected
characteristics to balance discrimination) [95, 120]. On the other
hand, practitioners also frequently report that many projects are
exploratory without clear upfront business goals, thus, starting off
the project without clear requirements is pretty common, albeit
often problematic [30, 62, 110, 123].

Regulatory constraints specific to data andML introduce ad-

ditional requirements that restrict development [11, 30, 38,

82, 109, 110, 120] (7/50). Practitioners in multiple studies ex-
pressed how regulatory restrictions constrain ML development
and require audits and involvement from legal teams. Privacy laws
such as GDPR impose additional requirements on ML practitioners
such as ensuring the collection of individual consent [38, 120] and
providing the nontrivial ability to remove individuals from training
data after they revoke consent. Similarly, practitioners in regulated
domains report a need for explainability and transparency that pre-
vents them from using deep learning and post-hoc explainability
techniques [11, 30, 109].

4.2 Architecture, Design, and Implementation

We find that many ML practitioners struggle with designing the
architecture of products with ML components.

Transitioning from a model-centric to a pipeline-driven or

system-wide view is considered important for moving into

production, but a difficult paradigm shift for many teams

[1, 43, 56, 59, 62, 66, 68, 74, 76, 110, 128] (11/50). Practitioners
frequently report challenges in migrating from exploratory model
code, often in a notebook, to deployable production-quality code
in automated ML pipelines [62, 128]. Building an end-to-end ML
pipeline is considered to be a challenge due to the difficulties of inte-
grating various ML and non-ML components in a system operating
within an environment [56, 59, 110], the overwhelming complexity
of integrating many tools and frameworks [66, 68, 74], the need for
engineering skills beyond the comfort zone of some data scientists
[74], and so on. While practitioners emphasized the importance of
pipeline automation for many projects where frequent re-training
and deployment of models are needed, they also consider it time-
consuming, labor-intensive, error-prone, and not well supported
by current tools [1, 43, 66, 76, 110].

ML adds substantial design complexity withmany, often im-

plicit, data and tooling dependencies, and entanglements due

to a lack of modularity [1, 5, 23, 59, 61, 66, 110, 111, 115, 123,

128] (11/50).Many practitioners report challenges from additional
complexity when designing systems incorporating machine learn-
ing, and the traditional software architecture and design practices
no longer fit [23, 59, 61, 128]. ML changes the assumptions in tradi-
tional software systems such as encapsulation and modularity and
causes entanglements of data, source code, and ML models, which
can lead to “pipeline jungles” and “change anything changes every-

thing” integrations that are hard tomaintain [1, 61, 66, 110, 111, 123].
Unlike traditional systems, ML requires the incorporation of data
pipelines that need to handle a high volume of data and often
data architectures of distributed nature, and practitioners also need
to understand and design for the data flow in the entire system
[115, 123, 128]. Practitioners also point out that complexities arise
due to a large amount of surrounding “glue code” to support the ML
models [5, 110], and complicated dependency and configuration
management [5, 123].

Difficulty in scaling model training and deployment on di-

verse hardware [30, 43, 62, 66, 68, 74, 100, 108, 110, 111] (10/50).

Practitioners commonly report difficulty dealing with cloud and
computational resources, evenwith the recent emergence ofMLOps.
Practitioners find the technologies to be difficult to integrate into
the production environment and require substantial time, effort,
and money [30, 62, 66, 68, 74, 100]. Among the common problems
of such deployments, practitioners brought up the mismatch of
development and production environments [62, 111], difficulties in
building a scalable pipeline [30, 43, 66, 108], adhering to serving
requirements such as latency and throughput [66, 110], as well
as undocumented tribal knowledge within the team, hampering
future deployments [111]. Despite the emerging MLOps tooling,
practitioners still raise many questions about how to utilize those
resources and sometimes express being overwhelmed by the sudden
flood of tools and frameworks to choose from [3, 52].

Whilemonitorability and planning for change are often con-

sidered important, they are mostly considered only late af-

ter launching [1, 5, 11, 30, 43, 55, 56, 58, 59, 74, 78, 99, 110, 111,
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128] (15/50). Practitioners report struggling with monitoring their
deployed models for detecting drift, bias, or even failures. While
many highlight monitoring as very important, planning for mon-
itoring is rare [78]. Even for companies that adopt a monitoring
infrastructure, practitioners report struggling with ad-hoc mon-
itoring practices of logging, creating alerts, or doing everything
manually [59, 111]. Similar concerns were raised about model evo-
lution, where practitioners acknowledge it to be important, but
fall behind in planning for change in their architectural design
[1, 5, 30, 43, 110]. Practitioners mentioned that ML-centric software
goes through frequent revisions more than traditional software
(e.g., due to model retraining, or even model replacement for data
change, hyperparameter tuning, or change of domain, etc.), and
the changes tend to be nontrivial and nonlocal, raising the need
for an architecture that supports such changes. As a result, we
find practitioners’ soliciting the need for adapted architectural pat-
terns to design for such post-launch activities for products with ML
components with monitorability as a significant quality attribute
[59, 128].

4.3 Model Development

Although we explicitly exclude challenges relating only to the work
and tools of data scientists when building models, we find reports
of engineering challenges during model development, which we
report in this section.

Model development benefits fromengineering infrastructure

and tooling but provided infrastructure and technical sup-

port are limited in many teams [3, 5, 8, 12, 29, 30, 43, 52, 55,

56, 58, 62, 76, 79, 82, 93, 119, 123, 131] (19/50).ML practitioners
share tooling needs for different tasks including data analysis and
visualization, feature engineering, model development, integration,
evaluation, deployment, monitoring, reproducibility, and support
for specific qualities like privacy, security, and explainability. They
report a lack of adequate tools in these areas and find the existing
tools and techniques to be (a) unavailable in their environment
[8, 30], (b) not automated enough [93], (c) requiring too much ex-
pert knowledge to be used [58, 82, 93, 131], (d) limited to specific
tasks and types of data sets [8, 93], or (e) not suitable for their own
problems [8, 12, 52]. This raises demand for custom tools but many
teams lack the resources and engineering support.

Codequality is not standardized inmodel development tools,

leading to conflicts about code quality [78, 111, 123] (3/50).

Practitioners report that code quality and review processes are
usually not standardized and are inconsistent across development
and production environments. The expectations around code qual-
ity and versioning also differ widely in teams and create conflicts
within teams, especially among team members with different roles
and backgrounds. Practitioners commonly complain about low code
quality in data science code, especially in notebooks.

4.4 Data Engineering

In developing machine learning models, data plays an important
role.While we exclude challenges related exclusively to data-related
work within ML pipelines, we report engineering challenges related
to handling data within the system.

Data quality is considered important, but difficult for practi-

tioners and not well supported by tools [1, 5, 29, 30, 38, 52, 61,

62, 66, 68, 74, 78, 93, 100, 110, 111, 120] (17/50).ML practition-
ers commonly report struggling with validating and improving data
quality. Even with significant research efforts in building tools for
data labeling, cleaning, visualization, and management, data work
is still reported as a problematic area for practitioners. Practitioners
reported that they need to invest significant effort and time in data
pre-processing, cleaning, and assembly [2, 29, 38, 52, 62, 66, 78, 93].
Practitioners also mention their pain points in handling data er-
rors and validating data quality, where better tool support is de-
sired [52, 61, 74, 100, 108, 110, 111, 120]. Although it is common
to associate these data issues within the model building pipeline,
practitioners feel the need for cooperation from other parts of the
organization (e.g., requirements engineers need to identify and
specify requirements regarding data collection, formats, and the
ranges of data and domain experts need to help to understand the
structure and semantics of the data), which they mention is lacking
[38, 78, 93, 100, 120].

Internal data security and privacy policies restrict data ac-

cess and use [5, 30, 48, 52, 56, 62, 66, 68, 78, 100] (10/50). Data
access is often restricted due to security and privacy policies within
organizations, beyond possible regulatory restrictions, e.g., policies
ensuring that customer data is not shared outside the company.
Due to restrictions on the flow of data, ML practitioners need to
deal with additional complexities in the data pipeline, as only a
restricted number of team members can analyze the data and as
they have limited access to the right data and no access to data
locally for model optimization or model debugging due to data
movement constraints [30, 48, 62, 66].

Although training-serving skew is common,many teams lack

support for its required detection and monitoring [5, 30, 58,

66, 78, 111, 128] (7/50). The mismatch between training data and
production data is a common problem in products with ML compo-
nents, where models work well on test data but generalize poorly
to real-world data in production. Even if training the model with a
representative dataset initially, the production environment often
encounters drift toward data distributions that are less well sup-
ported by the model. Practitioners explain that monitoring models
in production for staleness is an important activity that supports
detecting the degradation of model performance and retraining it
with new data if needed. However, they also find it challenging
to set up the monitoring infrastructure and report a lack of tool
support.

Data versioning and provenance tracking are often seen as

elusive, with not enough tool support [1, 38, 43, 56, 68, 108,

119] (7/50). While software engineers routinely adopt mature ver-
sion control systems for code, practitioners report challenges in
versioning data, typically due to the large volumes of data involved.
Practitioners mention that they need to have traceability and trans-
parency to answer questions like “Which data was this model trained

on?” or “Which code or data change made our accuracy deteriorate?”

[43], but it’s not possible for them to keep track of data and models
across the life cycle without technological support [2, 43, 129]. This
is a bigger problem for practitioners in small companies as they do
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not want to invest in storage capacity to version their models and
datasets, though they understand the importance [38].

4.5 Quality Assurance

One of the biggest changes that the incorporation of ML models
has brought into traditional software development is challenging
the traditional notion of correctness, where models are evaluated
for accuracy or fit rather than whether they fully meet a specifica-
tion. Understandably this impacts the conventional processes and
practices associated with testing and quality assurance.

Testing and debugging ML models is difficult due to lack of

specifications [2, 5, 29, 30, 45, 58, 61, 62, 66, 76, 78, 93, 100,

108, 110, 111, 119, 123, 131] (19/50). Practitioners find testing
and debugging of ML models challenging. In particular, they ubiq-
uitously report difficulty establishing quality assurance criteria and
metrics, given that no model is expected to be always correct, but
it is difficult to define what amount and what kind of mistakes are
acceptable for a model [5, 29, 30, 45, 61, 62, 66, 78, 123, 131]. In
particular, practitioners find it difficult to define accuracy thresh-
olds for evaluations. Furthermore, practitioners report finding it
difficult to select adequate test data, specifically curating test data
of sufficient quality and quantity that is representative of the pro-
duction environment [58, 76, 93, 119, 123]. Curating test data for
ML testing is also considered costly and labor-intensive, and practi-
tioners desire methods and tools from the research community for
automated test input generation to reduce this cost [45, 61, 123].
Practitioners consider it a challenge to get labels for test data and
evaluate test quality (e.g., in terms of coverage) due to the diffi-
culty of defining the valid input space and the test oracle problem
[29, 61, 123]. Practitioners also mention the silent failing of models
(i.e., models give wrong answers rather than crashing), the long tail
of corner cases, and the “invisible errors”, that are handled on an ad-
hoc basis without a systematic framework or a standard approach
[29, 111, 123]. Additionally, practitioners raise challenges regarding
evaluating model robustness, on one hand, suffering from the lack
of a concrete methodology [29, 93], and on the other hand, having
various metrics but no consensus on which metric to use [61].

Testing of model interactions, pipelines, and the entire sys-

tem is considered challenging and often neglected [29, 56,

61, 66, 76, 78, 93, 131] (8/50). Testing literature often focuses on
ML models and data quality, but less on how models are integrated
into the system, and even less on the infrastructure to produce the
models. Practitioners find sole unit testing of individual models
insufficient and ineffective, due to the entanglement of models and
different ML components, as well as the difficulty of explaining why
an error occurred due to the low interpretability of individual mod-
els [61, 123, 131]. The lack of pipeline and system testing beyond the
model is also considered a problematic area [29, 56, 76, 78, 93, 131]:
While practitioners tend to focus more on the data- and model-
related issues, the error handling around the model is found to be
insufficient in previous studies [29, 131], leading to system failures
even where the model gives the correct results [76]. Practitioners
also report having no systematic evaluation strategy nor automated
tools and techniques for pipeline and system-level testing [61, 78].

Testing andmonitoringmodels in production are considered

important but difficult, and often not done [61, 78, 93, 110,

111] (5/50).Many practitioners recognize the need to test in pro-
duction (online testing), since offline test data for models may not
be representative, especially as data distributions drift. However,
practitioners consider online testing complex as it is not trivial
for them to design online metrics that do not only depend on the
model but also on the external environment, user interactions af-
ter deployment, and the context of the product overall [61, 111].
Practitioners also find online testing very time-consuming, as it re-
quires longer observation periods to determine meaningful results
[110, 111]. Practitioners also pointed out that there is no surefire
strategy to precisely detect when the model is underperforming in
online testing [111].

There are no standard processes or guidelines on how to as-

sess system qualities such as fairness, security, and safety in

practice [11, 12, 37, 38, 43, 55, 99, 109, 119] (9/50). Research
often discusses how machine learning influences fairness, robust-
ness, security, safety, and other qualities, but practitioners report
that they find evaluating these as challenging. While practitioners
consider these qualities important [43, 55], they often report hav-
ing no effective methodology or concrete guidelines for evaluating
them [12, 37, 38, 55, 99, 109, 119]. Even regarding fairness, which
has received a lot of research attention lately, practitioners report
finding it hard to apply auditing and de-biasing methods due to
not having a proper process in place [37, 38]. Some practitioners
report waiting for complaints from customers rather than being
proactive when it comes to fairness [37], or even blindly expecting
the algorithms to inherently provide qualities like security against
attacks [55].

4.6 Process

Building software products with ML components involves many
moving parts that need to be planned and integrated. Fitting all of
these together in a cohesive process can be challenging.

Development of products with ML component(s) is often ad-

hoc, lacking well-defined processes [5, 7, 30, 45, 52, 56, 62, 76,

115, 119, 123] (11/50).Many practitioners report that they strug-
gle with finding a good process for developing ML components
and products around them [30, 45, 62, 115, 123], often coming up
with ad-hoc strategies and experiencing a lack of good engineer-
ing practices [45, 76]. ML practitioners have explored using the
traditional software development life cycles and found those to be
a poor fit for exploratory development work. Even with a flexible
agile methodology, practitioners identified that small iterations of
sprints cannot fit the initial feasibility study that ML requires, with
the timeline being too fixed and too short [7, 30, 62]. Also, they find
it hard to set expectations for each sprint, as the project objectives
may remain unclear at the beginning and need to be revisited after
the initial investigation [7, 56].

The uncertainty in ML development makes it hard to plan

and estimate effort and time [5, 7, 29, 45, 62, 119, 123] (7/50).

Machine learning work tends to be iterative and exploratory and as
such uncertain, where practitioners cannot estimate upfront how
long it may take to reach a model with a certain level of accuracy
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or whether that is even possible at all; instead, they commonly
progress with many experiments with different algorithms and
datasets [5, 45]. Practitioners, therefore, report having difficulties
setting expectations and (intermediate) deadlines for a project [5, 7,
29, 62, 123] and providing any upfront estimates about effort and
cost [5, 62, 119].

Practitioners find documentationmore important than ever

inML, but find itmore challenging than traditional software

documentation [19, 30, 54, 58, 62, 78, 89, 108, 129] (9/50).Many
practitioners point out various process and coordination challenges
rooted in poor documentation. Some practitioners emphasize that
documentation is even more important when it comes to ML com-
ponents, as human decisions are inscribed in different stages of ML
pipelines and cannot be retrieved from code or data without docu-
mentation [30, 129]. The final model code is the outcome of many
different explorations and experimentations that include multiple
rounds of data processing, feature engineering, hyperparameter
tuning, and other activities. Many problem-specific decisions have
been made in those stages that cannot be understood from the
resulting model or pipeline code. Some argue that not recording
these decisions in documentation causes them to slowly become in-
visible, severely impacting future re-analysis and revisions, or even
model integration and deployment [30, 58, 129]. Others emphasize
that, along with model documentation, data documentation is also
imperative to share hidden information inside the data and create
a shared data understanding, yet mostly missing in organizations
[78, 108]. Others report that, with the incorporation of ML, the
documentation process becomes more complicated as ML practi-
tioners find it difficult to present complex model information in
an accessible way to all levels of stakeholders [19, 54, 89]. It is also
non-trivial for practitioners to decide on the right amount of details
to include in the documentation. They place the blame mostly on
the lack of organizational incentives, resources, and unclear and
vague guidelines for ML documentation [19, 89].

4.7 Organization and Teams

Along with the challenges faced in different development stages,
practitioners also mention challenges they suffer from the organi-
zational and teamwork perspective while building products with
ML components.

Building productswithML components requires diverse skill

sets, which is oftenmissing in development teams [3, 5, 7, 48,

68, 76, 79, 110, 119, 123, 124, 128] (12/50). Incorporation of ML
in a product does not merely mean adding just another component
to the system; it requires people from multiple disciplines to get
involved to support different aspects of this component. The team
requires many diverse skill sets to develop, deploy, and integrate
the model into the complete product, including hardware expertise,
engineering skills, knowledge of math and statistics, business un-
derstanding, UX design ability, operations, and domain expertise.
The lack of this varied expertise in the team is commonly men-
tioned to be a challenge by practitioners [3, 7, 48, 110, 119, 123].
Also, as discussed in the next subsection that communication is
often hindered by a lack of AI literacy or common terminology
[1, 5, 30, 76, 79, 128], cross-disciplinary knowledge seems to be im-
portant for team members to interact and understand each other’s

vocabulary; however, practitioner experiences seem to indicate
that such cross-disciplinary education is not broadly available yet
[29, 111].

Many teams are not well prepared for the extensive interdis-

ciplinary collaboration and communication needed in ML

products [5, 8, 18, 23, 68, 76, 78, 79, 108, 123, 128] (11/50). For
building a product with ML components, team members need to
collaborate with people from different disciplines as mentioned
above, such as business leaders, engineers, designers, and various
other departments inside the company, and even outside the orga-
nization [23, 79, 108, 123, 128]. Practitioners report that they often
struggle to collaborate effectively in such interdisciplinary teams,
because team members often do not understand the concerns of
other members from other backgrounds, like data scientists lacking
knowledge of engineering practices, testing frameworks, contin-
uous integration and delivery, and such [1, 5, 30, 76]; software
engineers lacking AI literacy [30, 76]; and data scientists and soft-
ware engineers not understanding or interacting members with in
with business roles [79, 128]. Practitioners report struggling with
cultural differences, differences in expectations, and conflicting
priorities [5, 8, 68, 79], and they often do not agree on assigned
responsibilities [62, 78]. These multidisciplinary teams also suffer
frommiscommunications arising from inconsistency in their techni-
cal terminologies [18, 76, 78]. Siloing of teams by specialization and
lack of communication across such silos are also observed in many
production settings, fostering integration problems even further
[8, 78].

ML development can be costly and resource limits can sub-

stantially curb/limit efforts [3, 5, 48, 68, 79, 111] (6/50). Prac-
titioners report that organizations involved in the development
of products with ML components often suffer from resource and
budget limitations. Hardware, infrastructure, cloud storage, GPUs,
etc., are expensive, and especially for small companies, it is diffi-
cult to justify such expenditures based on the expected return on
investment from the model.

Lack of organizational incentives, resources, and education

hampers achieving all system-level qualities [12, 48, 55, 79,

82, 95, 99, 109] (8/50). Practitioners mention that organizational
incentives also have an impact on achieving certain qualities of
products withML components. A quality that practitioners reported
frequently as particularly challenging due to the lack of organiza-
tional incentives is fairness [37, 95]. Awareness of potential prob-
lems, including potential consequences from biased models, seems
to be the main reason for lacking responsible AI practices, along
with the lack of organizational incentives and structures, as well as
priority conflicts. Safety, security, and privacy also seem to suffer
from similar issues of awareness, education, resource constraints,
and are often disregarded due to tradeoffs with development cost
[12, 48, 55, 82, 99].

5 DISCUSSION AND CONCLUSIONS

With this meta-summary, we aggregate and summarize the chal-
lenges reported by industry practitioners who build software prod-
ucts with ML components. We find that practitioners report chal-
lenges in all stages of the development process, from the initial
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requirements specification stage to quality assurance of the de-
ployed product. They report a broad range of issues from lacking
process, organizational structure, and team collaboration strategies,
to lacking tool support for data, model building, deployment, and
monitoring.

Old, new, and harder challenges. Arguably, many reported chal-
lenges are not new to software engineers, and likely many software
engineers may have reported similar challenges in non-ML projects.
It seems though that the introduction of machine learning exac-
erbates some universal challenges and introduces new ones. For
example, software engineering literature is well aware that require-
ments engineering is challenging, with customers having unrealistic
expectations and developers directly jumping into coding without
understanding requirements first. While our study does not support
direct comparisons, it seems that these problems haunt ML practi-
tioners more, given howML inspires hopes for amazing capabilities,
but in a way that may be difficult to understand and specify without
substantial ML expertise. Similarly, the software-engineering liter-
ature is full of nuanced discussions of development life cycles and
competing process models, but ML practitioners struggle adopting
even the most flexible agile-inspired processes for their projects
with the uncertainty that ML brings. Also, team collaboration and
organizational challenges are well known in traditional software
engineering, but those seem to become even more central with the
additional complexity and inclusion of more people with different
backgrounds, cultures, and priorities. Other challenges seem new,
such as the data- and model-related challenges associated with
ML components, and several of the reported challenges regarding
architecture and quality assurance stemming from the different
nature of reasoning in machine learning.

Toward better engineering of ML products. A finding from our
study is that there is much more consensus on what the challenges
are, than how to overcome them. Some challenges could be ad-
dressed with new tooling or new practices; for others it may be
possible to simply adopt existing good engineering practices; and
yet others may just be intrinsically hard problems. While we cannot
provide a rigorous summary or analysis, we close by reflecting on
possible directions.

• Requirements Engineering. For the challenges of unreal-
istic requirements, several studies mentioned that practition-
ers found it useful to conduct training sessions with clients
and other team members on AI literacy, before starting the
ML projects [78, 96, 107, 120]. But again, while many practi-
tioners mention suffering from unclear model requirements,
we still do not seem to have a good solution to that, and ad-
ditional research on how to elicit and describe requirements
for models may be needed. Another area for future research
would be to better understand and prepare for regulatory
constraints and provide evidence of compliance.

• Architecture, Design, and Implementation.Machine learn-
ing seems to provide significant challenges to architectural
design of software systems, but arguably many challenges
are similar to other large and complex and distributed soft-
ware systems. While there are nascent discussions on orga-
nizing architecture knowledge as patterns [57, 59, 110, 125],
it does not seem like the field has reached saturation. This

seems to be a field though, where industry-oriented research
(similar to the data architecture of facebook [32]) has more
access to the complicated real-world scenarios where archi-
tectural planning becomes important than what academics
can typically access. From the challenges raised by practi-
tioners, it is apparent that along with the need for design
practices, patterns, and mechanisms to handle system and
model-level considerations (e.g., dependency management,
scalability, monitorability), we also need to support teams in
shifting from model-centric work to system thinking, possi-
bly through tailored education for ML practitioners.

• Model Development and Data Engineering. Consistent
across many papers, we find that ML practitioners desire
more engineering support, such as better infrastructure and
tools for model and data work. Data scientists also indicate
a need for more cooperation from other team members in
terms of support for data, which necessitates better collabo-
ration strategies and data education for the entire team. On
the other hand, a few practitioners highlighted the necessity
of standardization of ML code quality, which may be a low
hanging fruit technically, but may require a change to the
culture and practices in many projects.

• Quality Assurance. Quality assurance for machine learn-
ing, especially for models, is a very active area of research,
with proposals for many different testing strategies to vali-
date different model characteristics covered in multiple lit-
erature surveys [39, 97, 98, 130]. While we found that a lot
of practitioners mentioned concerns about specifying model
adequacy goals, few practitioners showed concerns about
system testing, monitoring in production, and testing for
fairness, security, and safety. We are surprised to not see
more concerns about system-level quality beyond the model,
whichmight indicate either that practitioners do not consider
these testing areas as challenging, or that most organizations
(especially outside of big tech) are not yet mature enough
to even start thinking about such testing needs. Monitoring
though is recognized as an important challenge, with many
available tools but common adoption problems that may be
worth investigating further.

• Process. While there is research on the development pro-
cesses for ML models [70, 117], there seems to be little work
on addressing process challenges that arise when integrat-
ing ML and non-ML work in production projects that are
commonly mentioned by practitioners. We believe that this
is an area with plenty of research opportunities to evaluate
what processes and practices work well in different contexts.

• Organization and Teams. While there is lots of research
on technical issues, practitioners often see organizational
and team issues (such as a lack of AI literacy in teams, unclear
responsibility boundaries, and a lack of team synchroniza-
tion) as some of the most difficult challenges to overcome.
Education and better collaboration strategies seem to be the
factors that might put a positive impact on mitigating many
of the challenges that the practitioners mentioned.

Overall we believe that a lot of progress can be made with bet-
ter education and better adoption of good software engineering
practices. There are plenty research opportunities to adapt existing
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practices, support them with tooling, and create new interventions
altogether. We hope that the collection of challenges, which can
be traced to the original studies where they were raised by practi-
tioners, will be helpful in selecting and prioritizing research and
education in our community.
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