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Abstract—Many organizations seek to ensure that machine
learning (ML) and artificial intelligence (AI) systems work as
intended in production but currently do not have a cohesive
methodology in place to do so. To fill this gap, we propose
MLTE (Machine Learning Test and Evaluation, colloquially
referred to as “melt”), a framework and implementation to
evaluate ML models and systems. The framework compiles state-
of-the-art evaluation techniques into an organizational process
for interdisciplinary teams, including model developers, software
engineers, system owners, and other stakeholders. The MLTE
tooling supports this process by providing a domain-specific
language that teams can use to express model requirements,
an infrastructure to define, generate, and collect ML evaluation
metrics, and the means to communicate results.

Index Terms—machine learning, test and evaluation, machine
learning evaluation, responsible Al

I. INTRODUCTION

Testing is an essential component of product development;
in most science and technology domains, consumers assume
that a product or piece of equipment is tested for safety
considerations before it becomes widely available for use. For
instance, US law requires that pharmaceutical companies test
drugs before making them available for consumption [1], and
the Federal Aviation Administration verifies every aircraft’s
airworthiness [2], [3]. Despite this norm, there is a lack
of accepted best practices for testing software products that
contain machine learning components, hereafter abbreviated
as ML systems. As ML gains significant attention in several
domains and for many real-world problems, the lack of testing
standards becomes more prominent.

Testing ML systems continues to be challenging [4], [5].
While any large software system is complex to develop and
deploy [6], the introduction of ML components introduces
additional challenges such as defining comprehensive require-
ments and evaluation criteria to create high-performing models
[7]. A lack of rigorous ML evaluation can manifest in negative
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real-world outcomes. Amazon’s gender-biased ML resume
vetting tool and the fatal crash caused by a Tesla Model S
operating under Autopilot in May 2016 are two examples that
demonstrate this reality [8], [9]. As more organizations seek
to develop, deploy, and operate ML systems in a growing
number of contexts, it is clear that evaluating these systems
is important and necessary despite presenting significant chal-
lenges [5], [10]-[13].

In this paper, we define Machine Learning Test and Evalu-
ation or MLTE (pronounced “melt”), a framework and imple-
mentation that guide organizations through the ML evaluation
process. Based on state-of-the-art ML research, MLTE gives
teams a tool to more effectively negotiate, evaluate, and
document results throughout ML system evaluation. While
our focus is ML systems, MLTE is motivated by documented
challenges from throughout the ML development life cycle
that make defining and evaluating success difficult. Many
issues that arise in the ML development process and mani-
fest in production are the result of requirements engineering
shortcomings [14], [15]; accordingly, our proposal emphasizes
this element of the procedure. To effectively address as many
challenges as possible, the MLTE process facilitates evaluation
from the inception of a ML project and progresses with
it through completion. While many existing ML workflows
include evaluation as a step along the path to a finished
ML system, we propose that ML system evaluation must be
considered throughout the life cycle of a project.

II. OPEN PROBLEMS AND STATE OF THE ART

Historically, ML research has focused on advancing model
capability, typically in terms of accuracy achieved on bench-
mark problems [16]. Despite the growing adoption of ML
components in software products, most education and research
still has a model-centric view that rarely considers the system
beyond the model [17]. Many practical problems faced by
engineering teams happen at the boundary between ML com-
ponents and other parts of the system: examples include unsta-



ble data dependencies and hidden feedback loops [18], limited
considerations of system-level qualities like fairness and safety
[12], [19], and poor collaboration between data scientists and
software engineers [20]. In the following sections, we describe
three open problems which are representative of commonly-
reported issues throughout the ML development process.

A. Problem 1: Communication Barriers

Research into applications of ML systems and organiza-
tional processes used to implement them reveals that com-
munication is a critical yet often neglected part of prod-
uct development [20], [21]. Organizations often silo team
members into distinct software engineering and data science
roles; intra-team isolation is exaggerated in organizations
that outsource model development. Isolating team members
creates communication barriers that often surface as problems
during integration when team members realize that particular
requirements were not communicated [18], [20]. For example,
data scientists may deliver a model that meets accuracy needs
but has an inference latency that is unacceptably high for
production deployment. Another critical but often ignored
aspect of the development process is negotiating requirements
for the system and individual components [7], [17], [20], [22].
During model development, teams must consider requirements
beyond accuracy such as inference costs, data quality, data
quantity, robustness, or fairness requirements [20], [22], [23].
Failing to define and communicate requirements may lead to
a mismatch of assumptions from involved entities, which can
result in system failures [24].

A final common communication barrier is the process of
communicating ML evaluation results amongst teams and to
external stakeholders [25]. Tools such as MLflow [26] and
Weights and Biases [27] assist model developers with record-
ing experimentation procedures but fail to capture the con-
nection between individual metrics and system outcomes. The
model cards [28] proposal provides an example of ML results
reporting but is intended to document the model rather than the
evaluation process it undergoes. Given the existing challenges
in sharing evaluation results with users [29], organizations
need a method to effectively, consistently, and automatically
communicate the results of ML model evaluation.

To address these communication barriers, organizations
require a process that establishes consistent communication
points, facilitates requirements definition, and offers automated
reporting.

B. Problem 2: Low-Quality or Missing Model Documentation

Once model requirements are defined, organizations must
ensure that the fulfillment of these requirements is documented
appropriately throughout model development. However, re-
quirements documentation remains a challenge for most or-
ganizations [20]. Software engineers or system owners must
express ML requirements, like a model accuracy or robustness
goal, to model developers. In turn, model developers must
be capable of providing evidence that these requirements are
satisfied. While requirements documentation methods from

software engineering are mature, these approaches must be
modified to be appropriate for ML systems [21]. Examples
of proposals for ML documentation include datasheets for
datasets [30], data version control [31], and model cards [28].
However, these proposals focus on models and datasets rather
than the requirements they must fulfill, failing to offer teams a
documentation method that enforces requirements verification
while maintaining comprehensibility.

C. Problem 3: Implementing an Evidence-Based Evaluation

Once requirements are defined and the method by which
they are documented is determined, software engineers and
model developers must evaluate the model against these
requirements and record evaluation results. On one side of
this process, software engineers require an expressive way
to encode requirements specific to the system under devel-
opment. On the other side, model developers must trans-
late requirements into measurable ML metrics and capture
these measurements as evidence that requirements are sat-
isfied. While most ML libraries include facilities for model
evaluation [32], appropriately implementing requirements be-
yond standard offline accuracy measures on held-out data
still entails significant manual effort. A survey of existing
research reveals that there is no ML-specific method for
specifying and implementing system requirements [15], but
examples exist: Breck et al. propose a rubric for quantify-
ing the production readiness of ML systems that includes
prescriptions for implementation far beyond just evaluating
offline model accuracy [33]; the deepchecks project offers
a low-level approach to model requirements implementation
by providing a library of checks that developers can use
to evaluate predictive performance [34]. Both of these tools
provide useful functionality but fail to fully meet teams’
needs because they do not associate the evidence they produce
with requirements. Furthermore, they fail to couple a concrete
implementation with flexibility sufficient to encompass any
ML project. Standardizing and automating model evaluation
through test infrastructure is important; organizations benefit
from a process and tool that allows them to use selected
metrics for model evaluation and export these results as
evidence without disruption to the model development process.

In summary, previous work targeting these open problems
is somewhat narrow in scope. Most attempts either design
processes for particular aspects of ML model development or
introduce a tool addressing specific elements, such as docu-
menting a model’s performance under certain data conditions.
Our proposal differs by defining a repeatable and measurable
process to evaluate ML systems that addresses the entire ML
development life cycle.

III. THE MLTE VISION

To address the three open problems in evaluating ML
systems, we propose Machine Learning Test and Evaluation
(MLTE, pronounced “melt”). MLTE consists of (a) a frame-
work through which organizations evaluate ML models in the
context of their intended use and (b) tooling that supports the
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Fig. 1. The MLTE Workflow

implementation of this framework. MLTE is unique in that it
gives organizations a process from start to finish that leverages
existing state-of-the-art research on testing ML system capa-
bilities as well as interfaces for tracking experiments. MLTE
is designed for interdisciplinary cross-team coordination and
encourages communication by offering specific collaboration
points and creating shared artifacts (“method standardization”
and “boundary objects” [35]) throughout the ML development
life cycle.

In Figure 1, we outline the MLTE workflow. It starts
with @ a negotiation between model developers and the
model’s consumers (system owners, other stakeholders) re-
garding model quality requirements; then @ goes through
an iterative process of evaluating the model with regard to
those requirements until performance exceeds an agreed-upon
baseline. Next, @ model developers and all model and system
stakeholders conduct an additional negotiation about model
requirements beyond accuracy (e.g., robustness, fairness, in-
ference costs); before @ evaluating those requirements; finally,
® teams use automated reporting functionality to facilitate
communication of their ML evaluation results.

We support each of the steps in the MLTE process with
tooling. This tooling is implemented by embedding a domain-
specific language for requirements specification and evidence
collection in the Python programming language [36] and
exposing this functionality via a library. The Python library
allows practitioners to define, persist, and share requirements
specifications. Furthermore, it provides functionality to gen-
erate, persist, and collect artifacts from ML procedures that
can be used to verify that requirements are satisfied. Finally,
it gives practitioners a mechanism to aggregate this evidence
to generate a human-readable report. The MLTE process

combined with this tooling provides an adaptive, open in-
frastructure to guide requirement generation, simplify testing,
establish consistency, and communicate ML evaluation results.

IV. INITIAL MLTE PROTOTYPE

To meet its goal of facilitating ML system evaluation, the
MLTE prototype consists of preliminary work on both the
process and tooling. As described above, the MLTE process
contains two primary phases supported by three interspersed
collaboration points. In the following section, we detail each
of these phases, the manner in which they address our open
problems, and how we support each with tooling.! MLTE is
still in its early stages, and as such we have not yet completed
an initial empirical evaluation; our plans to do so are discussed
in Section V.

MLTE is built with consideration to related and existing
research on ML processes, such as typical ML workflows [37],
the ML life cycle [10], CRISP-DM [38], and TDSP [39]. These
processes highlight best practices for developing ML systems,
examine challenges inherent in bringing an ML system to
production, and offer a template for teams to follow as they de-
velop ML products and communicate with their stakeholders.
All of these workflows mention requirements as a necessary
input for ML development, and all include evaluation as a step
in their ML process. Where MLTE diverges from this existing
research is in its emphasis on a holistic framework to ensure
effective evaluation of ML systems in the context of wider
stakeholder and system goals. With its built-in communication
points, emphasis on requirements definition, and integration

'The MLTE Package is available at https:/pypi.org/project/mlte-python, the
repository is available at https:/github.com/mlte-team/mlte, and the frame-
work is available at https://github.com/mlte-team/mlte-framework.



with programmatic tooling, MLTE gives teams not only a
rigorous process but also the tools needed to execute it.

A. Internal Model Testing (IMT)

At the first collaboration point (@ in Fig. 1), the model
development team and their customers identify model accuracy
goals and suitable evaluation metrics as the first step of
Internal Model Testing (IMT). The MLTE implementation is
structured such that requirements definition directly informs
how the model is subsequently evaluated. After completing
initial collaboration, teams then proceed to the evaluation
portion of IMT (@ in Fig. 1).

IMT gives teams an opportunity to refine their ML system
implementation plan by conducting team-internal model eval-
uation. In this step, the MLTE approach balances prescriptive-
ness with flexibility by providing examples of common eval-
uvations for different types of ML problems, which gives each
team sufficient leeway to focus on the relevant concerns of
their project. Teams select model characteristics from a curated
collection that is organized by ML discipline (e.g., computer
vision, natural language processing), and subsequently select
a suitable method to assess their chosen characteristics. MLTE
prompts teams to evaluate their model with their chosen base-
line and performance metric(s), and MLTE tooling supports
documentation of this process by providing the functionality
to produce and record these results. IMT addresses Problem 2
(Documentation, see Sec. I[I-B) and Problem 3 (Evaluation, see
Sec. II-C) by providing teams with a way to demonstrate that
their model meets its requirements, and addresses Problem
1 (Communication, see Sec. II-A) through the collaboration
points at @ and ®. An initial exploratory phase in which
performance goals evolve is common in ML projects [40];
accordingly, MLTE provides two negotiation points so that
teams can make an initial plan for requirements, and then
update that plan and add requirements with respect to the
system at collaboration point ®. Furthermore, we design IMT
to cope with inherent uncertainty [33], [41] by making the
process iterative. We envision that teams make changes to their
model and execute the IMT process as frequently as needed
until the model is ready for System Dependent Model Testing.

B. System Dependent Model Testing (SDMT)

The second phase of MLTE, System Dependent Model
Testing (SDMT) (@ in Fig. 1), provides a structure and process
for evaluating model capabilities and limitations in the context
of the system into which it will be integrated. The process starts
with a collaboration point (® in Fig. 1), during which model
development teams, stakeholders, and system owners describe
requirements by defining a specification. Teams construct a
specification by selecting the characteristics the model must
exhibit to be considered acceptable. These characteristics,
which we refer to as properties, may be any attribute of
the trained model, the procedure used to train it (including
training data), or its ability to perform inference. A property
is ‘abstract’ in the sense that there may be many ways
in which it might be assessed. To assist teams in defining

import mlte

1
2 from mlte.specification import Spec

3 from mlte.property import (

4 TaskEfficacy,

5 TrainingComputeCost

6 )

7 # Initialize the session

8 mlte.set_model ("ModelName", "v0.0.1")

9 mlte.set_artifact_store_uri("localhost:8080"
10 # Define the specification

11 spec = Spec(

12 TaskEfficacy (),

13 TrainingComputeCost ()

14 )

15 # Persist the specification to artifact store

16 spec.save ()

Listing 1. Defining a specification with MLTE.

their requirements, the MLTE framework currently organizes
properties into three categories: functionality, robustness, and
costs. These categories will expand to include new techniques
and categories as research advances. The applicability of the
properties within a given category depends on the type of
ML task, the objective of the system into which the model
is integrated, stakeholder priorities, and value judgments [42].
This process, which occurs at collaboration point ®, addresses
Problem 1 (Communication) by establishing a communication
waypoint during which system dependent model requirements
must be negotiated. Once populated with properties, the spec-
ification itself serves as an artifact that addresses Problem 2
(Documentation).

MLTE tooling supports requirements negotiation by provid-
ing the ability to programmatically define and persist specifica-
tions. Listing 1 shows use of the MLTE library to perform this
task. Users import types that represent individual properties
and combine instances of these types within a Spec object to
assemble a new specification. Completed Spec objects may
then be persisted to an external artifact store and subsequently
restored for further inspection and manipulation. The ability
to programmatically define a specification addresses Problem
3 (Evaluation) by standardizing the process by which it is
generated and defining its interface.

Following requirements definition, MLTE prescribes an
evidence-based approach to requirements satisfaction (® in
Fig. 1). In this paradigm, model developers determine how
the model performs against the requirements set by system
owners by collecting results that attest to the satisfaction of
particular properties. Practitioners produce results by defining
and executing measurements — functions that assess phe-
nomena related to the property of interest. Model developers
define the range of acceptable values for a particular result
by defining one or more associated validators. A validator is
a function that accepts a measurement’s output, compares the
observed output with an acceptable value or range of values,
and produces a result that reflects this comparison. Together,
properties, measurements, results, and validators ensure that



# Integrate a result from an external library
from sklearn.metrics import accuracy_score

from mlte.measurement.result import Real

S

accuracy = Real ("accuracy",

< accuracy_score(...))
5 # Utilize MLTE-provided measurement
6 from mlte.measurement.cpu import

<« ProcessCPUUtilization

7 m = ProcessCPUUtilization ("cpu stats")

8 cpu_stats = m.evaluate (start_training_job())
9 # Persist results to artifact store

10 Result.save_all (accuracy, cpu_stats)

Listing 2. Generating evidence with internal and external measurements.

teams generate evidence to inform larger decisions about the
functionality of a system.

This evidence-based approach to requirements satisfaction
is labor-intensive, so our programmatic tooling focuses much
of its functionality on easing the burden of implementation. To
simplify the evaluation process, we provide a small collection
of measurement definitions that might not be offered by
existing libraries. More importantly, the tooling implements an
infrastructure for capturing results produced by any ML library
and persisting them in a stable, machine-readable format. Prac-
titioners may utilize existing adaptors defined by the MLTE
library to achieve this integration, or they may develop their
own to add support for user-defined measurements. Listing 2
demonstrates both aspects of this functionality. Users import
internal measurements and evaluate these to produce results,
or wrap the output of external measurements in a suitable
Result type. These Result instances are then persisted to
the same artifact store that houses completed specifications.

The MLTE process concludes with the generation of a
report that encapsulates all of the knowledge gained about
the model and the system as a consequence of the evaluation
process (® in Fig. 1). Report production, demonstrated in
Listing 3, ensures that teams have a method through which
they can both examine and display the results of their work.
Users load previously-saved results from the artifact store,
validate these results with provided methods, and combine
the output from validation with a specification to create a
report. Reports give teams a shared artifact to understand the
model, its capabilities, and its context, assisting downstream
integration and maintenance activities. This allows teams to
avoid barriers to creating shared understanding of results
described in Problem 1 (Communication) by giving them a
method and infrastructure for communicating their results.

We design the SDMT section of MLTE to support diverse
ML projects, regardless of discipline. All elements of the
MLTE hierarchy (properties, measurements, results, valida-
tors) are collections of functions that can be expanded by
MLTE users. Such expansions may be maintained internally
(e.g., a team-internal repository of custom measurements) or
may be contributed back to the MLTE ecosystem by updating
the package itself. Because extensibility is a primary feature,
MLTE allows users to rapidly integrate new functionality to

# Load the specification

1
2 from mlte.specification import Spec

3 spec = Spec.load()

4 # Load result (s)

5 from mlte.measurement.result import Real
6 accuracy = Real.load("accuracy")

7 # Validate results, generate report

8 report = spec.bind/(

9 {"TaskEfficacy": ["accuracy"]}

10 accuracy.greater_than (0.85)

11 )

12 report.save ()

Listing 3. Combining evidence in a report.

suit their specific needs. We envision our existing MLTE tool-
ing as the beginnings of an infrastructure for ML evaluation,
rather than as a fully-realized toolkit.

V. FUTURE PLANS

Overall, the MLTE framework provides guidance that en-
forces specific process steps while retaining flexibility. Fu-
ture research will interrogate this tension between rigor and
flexibility. In particular, we plan to study the role of shared
machine-readable requirements specifications and reported re-
sults as boundary objects [35] between teams. Additionally,
MLTE is still in an early stage of usage; the evaluation
framework and supporting tooling still need to be evaluated by
practitioners. To this end, we will conduct an interview study
that addresses two inquiries: how organizations are currently
evaluating their ML systems, and how MLTE would function
in the context of their organizational processes. Input from
this study will inform the refinement of both the framework
and tooling as we seek to maximize versatility and capability
while maintaining ease-of-use.
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