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Software and Societal Systems Dep.

Carnegie Mellon University

Pittsburgh, PA

Abstract—Many organizations seek to ensure that machine
learning (ML) and artificial intelligence (AI) systems work as
intended in production but currently do not have a cohesive
methodology in place to do so. To fill this gap, we propose
MLTE (Machine Learning Test and Evaluation, colloquially
referred to as “melt”), a framework and implementation to
evaluate ML models and systems. The framework compiles state-
of-the-art evaluation techniques into an organizational process
for interdisciplinary teams, including model developers, software
engineers, system owners, and other stakeholders. The MLTE
tooling supports this process by providing a domain-specific
language that teams can use to express model requirements,
an infrastructure to define, generate, and collect ML evaluation
metrics, and the means to communicate results.

Index Terms—machine learning, test and evaluation, machine
learning evaluation, responsible AI

I. INTRODUCTION

Testing is an essential component of product development;

in most science and technology domains, consumers assume

that a product or piece of equipment is tested for safety

considerations before it becomes widely available for use. For

instance, US law requires that pharmaceutical companies test

drugs before making them available for consumption [1], and

the Federal Aviation Administration verifies every aircraft’s

airworthiness [2], [3]. Despite this norm, there is a lack

of accepted best practices for testing software products that

contain machine learning components, hereafter abbreviated

as ML systems. As ML gains significant attention in several

domains and for many real-world problems, the lack of testing

standards becomes more prominent.

Testing ML systems continues to be challenging [4], [5].

While any large software system is complex to develop and

deploy [6], the introduction of ML components introduces

additional challenges such as defining comprehensive require-

ments and evaluation criteria to create high-performing models

[7]. A lack of rigorous ML evaluation can manifest in negative
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real-world outcomes. Amazon’s gender-biased ML resume

vetting tool and the fatal crash caused by a Tesla Model S

operating under Autopilot in May 2016 are two examples that

demonstrate this reality [8], [9]. As more organizations seek

to develop, deploy, and operate ML systems in a growing

number of contexts, it is clear that evaluating these systems

is important and necessary despite presenting significant chal-

lenges [5], [10]–[13].

In this paper, we define Machine Learning Test and Evalu-

ation or MLTE (pronounced “melt”), a framework and imple-

mentation that guide organizations through the ML evaluation

process. Based on state-of-the-art ML research, MLTE gives

teams a tool to more effectively negotiate, evaluate, and

document results throughout ML system evaluation. While

our focus is ML systems, MLTE is motivated by documented

challenges from throughout the ML development life cycle

that make defining and evaluating success difficult. Many

issues that arise in the ML development process and mani-

fest in production are the result of requirements engineering

shortcomings [14], [15]; accordingly, our proposal emphasizes

this element of the procedure. To effectively address as many

challenges as possible, the MLTE process facilitates evaluation

from the inception of a ML project and progresses with

it through completion. While many existing ML workflows

include evaluation as a step along the path to a finished

ML system, we propose that ML system evaluation must be

considered throughout the life cycle of a project.

II. OPEN PROBLEMS AND STATE OF THE ART

Historically, ML research has focused on advancing model

capability, typically in terms of accuracy achieved on bench-

mark problems [16]. Despite the growing adoption of ML

components in software products, most education and research

still has a model-centric view that rarely considers the system

beyond the model [17]. Many practical problems faced by

engineering teams happen at the boundary between ML com-

ponents and other parts of the system: examples include unsta-



ble data dependencies and hidden feedback loops [18], limited

considerations of system-level qualities like fairness and safety

[12], [19], and poor collaboration between data scientists and

software engineers [20]. In the following sections, we describe

three open problems which are representative of commonly-

reported issues throughout the ML development process.

A. Problem 1: Communication Barriers

Research into applications of ML systems and organiza-

tional processes used to implement them reveals that com-

munication is a critical yet often neglected part of prod-

uct development [20], [21]. Organizations often silo team

members into distinct software engineering and data science

roles; intra-team isolation is exaggerated in organizations

that outsource model development. Isolating team members

creates communication barriers that often surface as problems

during integration when team members realize that particular

requirements were not communicated [18], [20]. For example,

data scientists may deliver a model that meets accuracy needs

but has an inference latency that is unacceptably high for

production deployment. Another critical but often ignored

aspect of the development process is negotiating requirements

for the system and individual components [7], [17], [20], [22].

During model development, teams must consider requirements

beyond accuracy such as inference costs, data quality, data

quantity, robustness, or fairness requirements [20], [22], [23].

Failing to define and communicate requirements may lead to

a mismatch of assumptions from involved entities, which can

result in system failures [24].

A final common communication barrier is the process of

communicating ML evaluation results amongst teams and to

external stakeholders [25]. Tools such as MLflow [26] and

Weights and Biases [27] assist model developers with record-

ing experimentation procedures but fail to capture the con-

nection between individual metrics and system outcomes. The

model cards [28] proposal provides an example of ML results

reporting but is intended to document the model rather than the

evaluation process it undergoes. Given the existing challenges

in sharing evaluation results with users [29], organizations

need a method to effectively, consistently, and automatically

communicate the results of ML model evaluation.

To address these communication barriers, organizations

require a process that establishes consistent communication

points, facilitates requirements definition, and offers automated

reporting.

B. Problem 2: Low-Quality or Missing Model Documentation

Once model requirements are defined, organizations must

ensure that the fulfillment of these requirements is documented

appropriately throughout model development. However, re-

quirements documentation remains a challenge for most or-

ganizations [20]. Software engineers or system owners must

express ML requirements, like a model accuracy or robustness

goal, to model developers. In turn, model developers must

be capable of providing evidence that these requirements are

satisfied. While requirements documentation methods from

software engineering are mature, these approaches must be

modified to be appropriate for ML systems [21]. Examples

of proposals for ML documentation include datasheets for

datasets [30], data version control [31], and model cards [28].

However, these proposals focus on models and datasets rather

than the requirements they must fulfill, failing to offer teams a

documentation method that enforces requirements verification

while maintaining comprehensibility.

C. Problem 3: Implementing an Evidence-Based Evaluation

Once requirements are defined and the method by which

they are documented is determined, software engineers and

model developers must evaluate the model against these

requirements and record evaluation results. On one side of

this process, software engineers require an expressive way

to encode requirements specific to the system under devel-

opment. On the other side, model developers must trans-

late requirements into measurable ML metrics and capture

these measurements as evidence that requirements are sat-

isfied. While most ML libraries include facilities for model

evaluation [32], appropriately implementing requirements be-

yond standard offline accuracy measures on held-out data

still entails significant manual effort. A survey of existing

research reveals that there is no ML-specific method for

specifying and implementing system requirements [15], but

examples exist: Breck et al. propose a rubric for quantify-

ing the production readiness of ML systems that includes

prescriptions for implementation far beyond just evaluating

offline model accuracy [33]; the deepchecks project offers

a low-level approach to model requirements implementation

by providing a library of checks that developers can use

to evaluate predictive performance [34]. Both of these tools

provide useful functionality but fail to fully meet teams’

needs because they do not associate the evidence they produce

with requirements. Furthermore, they fail to couple a concrete

implementation with flexibility sufficient to encompass any

ML project. Standardizing and automating model evaluation

through test infrastructure is important; organizations benefit

from a process and tool that allows them to use selected

metrics for model evaluation and export these results as

evidence without disruption to the model development process.

In summary, previous work targeting these open problems

is somewhat narrow in scope. Most attempts either design

processes for particular aspects of ML model development or

introduce a tool addressing specific elements, such as docu-

menting a model’s performance under certain data conditions.

Our proposal differs by defining a repeatable and measurable

process to evaluate ML systems that addresses the entire ML

development life cycle.

III. THE MLTE VISION

To address the three open problems in evaluating ML

systems, we propose Machine Learning Test and Evaluation

(MLTE, pronounced “melt”). MLTE consists of (a) a frame-

work through which organizations evaluate ML models in the

context of their intended use and (b) tooling that supports the





with programmatic tooling, MLTE gives teams not only a

rigorous process but also the tools needed to execute it.

A. Internal Model Testing (IMT)

At the first collaboration point (➀ in Fig. 1), the model

development team and their customers identify model accuracy

goals and suitable evaluation metrics as the first step of

Internal Model Testing (IMT). The MLTE implementation is

structured such that requirements definition directly informs

how the model is subsequently evaluated. After completing

initial collaboration, teams then proceed to the evaluation

portion of IMT (➁ in Fig. 1).

IMT gives teams an opportunity to refine their ML system

implementation plan by conducting team-internal model eval-

uation. In this step, the MLTE approach balances prescriptive-

ness with flexibility by providing examples of common eval-

uations for different types of ML problems, which gives each

team sufficient leeway to focus on the relevant concerns of

their project. Teams select model characteristics from a curated

collection that is organized by ML discipline (e.g., computer

vision, natural language processing), and subsequently select

a suitable method to assess their chosen characteristics. MLTE

prompts teams to evaluate their model with their chosen base-

line and performance metric(s), and MLTE tooling supports

documentation of this process by providing the functionality

to produce and record these results. IMT addresses Problem 2

(Documentation, see Sec. II-B) and Problem 3 (Evaluation, see

Sec. II-C) by providing teams with a way to demonstrate that

their model meets its requirements, and addresses Problem

1 (Communication, see Sec. II-A) through the collaboration

points at ➀ and ➂. An initial exploratory phase in which

performance goals evolve is common in ML projects [40];

accordingly, MLTE provides two negotiation points so that

teams can make an initial plan for requirements, and then

update that plan and add requirements with respect to the

system at collaboration point ➂. Furthermore, we design IMT

to cope with inherent uncertainty [33], [41] by making the

process iterative. We envision that teams make changes to their

model and execute the IMT process as frequently as needed

until the model is ready for System Dependent Model Testing.

B. System Dependent Model Testing (SDMT)

The second phase of MLTE, System Dependent Model

Testing (SDMT) (➃ in Fig. 1), provides a structure and process

for evaluating model capabilities and limitations in the context

of the system into which it will be integrated. The process starts

with a collaboration point (➂ in Fig. 1), during which model

development teams, stakeholders, and system owners describe

requirements by defining a specification. Teams construct a

specification by selecting the characteristics the model must

exhibit to be considered acceptable. These characteristics,

which we refer to as properties, may be any attribute of

the trained model, the procedure used to train it (including

training data), or its ability to perform inference. A property

is ‘abstract’ in the sense that there may be many ways

in which it might be assessed. To assist teams in defining

1 import mlte

2 from mlte.specification import Spec

3 from mlte.property import (

4 TaskEfficacy,

5 TrainingComputeCost

6 )

7 # Initialize the session

8 mlte.set_model("ModelName", "v0.0.1")

9 mlte.set_artifact_store_uri("localhost:8080")

10 # Define the specification

11 spec = Spec(

12 TaskEfficacy(),

13 TrainingComputeCost()

14 )

15 # Persist the specification to artifact store

16 spec.save()

Listing 1. Defining a specification with MLTE.

their requirements, the MLTE framework currently organizes

properties into three categories: functionality, robustness, and

costs. These categories will expand to include new techniques

and categories as research advances. The applicability of the

properties within a given category depends on the type of

ML task, the objective of the system into which the model

is integrated, stakeholder priorities, and value judgments [42].

This process, which occurs at collaboration point ➂, addresses

Problem 1 (Communication) by establishing a communication

waypoint during which system dependent model requirements

must be negotiated. Once populated with properties, the spec-

ification itself serves as an artifact that addresses Problem 2

(Documentation).

MLTE tooling supports requirements negotiation by provid-

ing the ability to programmatically define and persist specifica-

tions. Listing 1 shows use of the MLTE library to perform this

task. Users import types that represent individual properties

and combine instances of these types within a Spec object to

assemble a new specification. Completed Spec objects may

then be persisted to an external artifact store and subsequently

restored for further inspection and manipulation. The ability

to programmatically define a specification addresses Problem

3 (Evaluation) by standardizing the process by which it is

generated and defining its interface.

Following requirements definition, MLTE prescribes an

evidence-based approach to requirements satisfaction (➃ in

Fig. 1). In this paradigm, model developers determine how

the model performs against the requirements set by system

owners by collecting results that attest to the satisfaction of

particular properties. Practitioners produce results by defining

and executing measurements — functions that assess phe-

nomena related to the property of interest. Model developers

define the range of acceptable values for a particular result

by defining one or more associated validators. A validator is

a function that accepts a measurement’s output, compares the

observed output with an acceptable value or range of values,

and produces a result that reflects this comparison. Together,

properties, measurements, results, and validators ensure that



1 # Integrate a result from an external library

2 from sklearn.metrics import accuracy_score

3 from mlte.measurement.result import Real

4 accuracy = Real("accuracy",

accuracy_score(...))→֒

5 # Utilize MLTE-provided measurement

6 from mlte.measurement.cpu import

ProcessCPUUtilization→֒

7 m = ProcessCPUUtilization("cpu stats")

8 cpu_stats = m.evaluate(start_training_job())

9 # Persist results to artifact store

10 Result.save_all(accuracy, cpu_stats)

Listing 2. Generating evidence with internal and external measurements.

teams generate evidence to inform larger decisions about the

functionality of a system.

This evidence-based approach to requirements satisfaction

is labor-intensive, so our programmatic tooling focuses much

of its functionality on easing the burden of implementation. To

simplify the evaluation process, we provide a small collection

of measurement definitions that might not be offered by

existing libraries. More importantly, the tooling implements an

infrastructure for capturing results produced by any ML library

and persisting them in a stable, machine-readable format. Prac-

titioners may utilize existing adaptors defined by the MLTE

library to achieve this integration, or they may develop their

own to add support for user-defined measurements. Listing 2

demonstrates both aspects of this functionality. Users import

internal measurements and evaluate these to produce results,

or wrap the output of external measurements in a suitable

Result type. These Result instances are then persisted to

the same artifact store that houses completed specifications.

The MLTE process concludes with the generation of a

report that encapsulates all of the knowledge gained about

the model and the system as a consequence of the evaluation

process (➄ in Fig. 1). Report production, demonstrated in

Listing 3, ensures that teams have a method through which

they can both examine and display the results of their work.

Users load previously-saved results from the artifact store,

validate these results with provided methods, and combine

the output from validation with a specification to create a

report. Reports give teams a shared artifact to understand the

model, its capabilities, and its context, assisting downstream

integration and maintenance activities. This allows teams to

avoid barriers to creating shared understanding of results

described in Problem 1 (Communication) by giving them a

method and infrastructure for communicating their results.

We design the SDMT section of MLTE to support diverse

ML projects, regardless of discipline. All elements of the

MLTE hierarchy (properties, measurements, results, valida-

tors) are collections of functions that can be expanded by

MLTE users. Such expansions may be maintained internally

(e.g., a team-internal repository of custom measurements) or

may be contributed back to the MLTE ecosystem by updating

the package itself. Because extensibility is a primary feature,

MLTE allows users to rapidly integrate new functionality to

1 # Load the specification

2 from mlte.specification import Spec

3 spec = Spec.load()

4 # Load result(s)

5 from mlte.measurement.result import Real

6 accuracy = Real.load("accuracy")

7 # Validate results, generate report

8 report = spec.bind(

9 {"TaskEfficacy": ["accuracy"]}

10 accuracy.greater_than(0.85)

11 )

12 report.save()

Listing 3. Combining evidence in a report.

suit their specific needs. We envision our existing MLTE tool-

ing as the beginnings of an infrastructure for ML evaluation,

rather than as a fully-realized toolkit.

V. FUTURE PLANS

Overall, the MLTE framework provides guidance that en-

forces specific process steps while retaining flexibility. Fu-

ture research will interrogate this tension between rigor and

flexibility. In particular, we plan to study the role of shared

machine-readable requirements specifications and reported re-

sults as boundary objects [35] between teams. Additionally,

MLTE is still in an early stage of usage; the evaluation

framework and supporting tooling still need to be evaluated by

practitioners. To this end, we will conduct an interview study

that addresses two inquiries: how organizations are currently

evaluating their ML systems, and how MLTE would function

in the context of their organizational processes. Input from

this study will inform the refinement of both the framework

and tooling as we seek to maximize versatility and capability

while maintaining ease-of-use.
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