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ABSTRACT

Data science pipelines to train and evaluate models with machine

learning may contain bugs just like any other code. Leakage be-

tween training and test data can lead to overestimating the model’s

accuracy during offline evaluations, possibly leading to deployment

of low-quality models in production. Such leakage can happen eas-

ily by mistake or by following poor practices, but may be tedious

and challenging to detect manually. We develop a static analysis

approach to detect common forms of data leakage in data science

code. Our evaluation shows that our analysis accurately detects

data leakage and that such leakage is pervasive among over 100,000

analyzed public notebooks. We discuss how our static analysis ap-

proach can help both practitioners and educators, and how leakage

prevention can be designed into the development process.
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1 INTRODUCTION

Will a promising machine-learned model work when deployed

in production? Typically this question is answered by comparing

model predictions to expected outcomes on test data. However, the

resulting accuracy estimates can be misleading, where the model

performs well on test data, but much worse in production. A com-

mon cause is that the data used for testing is not representative

enough of the production data, thus providing misleading estimates

on the wrong data distribution. A different cause, and the focus

of this paper, is that the test data was used in some form during

model training (directly or indirectly, intentionally or accidentally)

allowing the model to overfit on the test data, thus producing un-

realistically optimistic accuracy estimates. Because data science

pipelines are code, we can use software engineering techniques to

analyze them—which we do in this paper.

In this paper, we design a static analysis approach to detect cases

where model training makes use of test data in data science code,

commonly called data leakage [4, 19]. Data leakage is often the
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1 import numpy as np

2 # generate random data

3 n_samples , n_features , n_classes = 200, 10000, 2

4 rng = np.random.RandomState (42)

5 X = rng.standard_normal ((n_samples , n_features))

6 y = rng.choice(n_classes , n_samples)

7

8 # leak test data through feature selection

9 X_selected = SelectKBest(k=25).fit_transform(X, y)

10

11 X_train , X_test , y_train , y_test = train_test_split(

12 X_selected , y, random_state =42)

13 gbc = GradientBoostingClassifier(random_state =1)

14 gbc.fit(X_train , y_train)

15

16 y_pred = gbc.predict(X_test)

17 accuracy_score(y_test , y_pred)

18 # expected accuracy ~0.5; reported accuracy 0.76

Figure 1: Data leakage may cause a highly-biased test result.

The model learns test data distribution through feature se-

lection, resulting in an over-optimistic test score.

result of using bad practices when writing machine learning code,

ranging from obvious mistakes, such as including test data in the

training data, to more subtle ones that leak test data distribution

information through preprocessing prior to training. For example,

in Fig. 1, we show data science code reporting confidently to find

patterns in random data where the model should not do better

than a random guess: Because decisions during training depend

on both training and test data (feature selection, Line 9) the model

overfits on test data and the evaluation reports significantly inflated

accuracy scores. Our analysis points out common pitfalls in model

accuracy evaluations like the one in our example, which, as we will

show, are pervasive in data science code in public notebooks.

Our analysis has both practical and educational value. On the

practical side, our work contributes to more reliable offline evalua-

tions of machine-learned models, which are an important quality

assurance step when integrating models into software products.

Use of machine learning in software products is increasingly com-

mon, but also very challenging [2, 13, 29]. Reliable offline accuracy

evaluations are important for preventing harm from deploying low-

quality models in production systems, where harm can range from

stress, to discrimination, to fatal accidents [31, 36]. Accuracy results

are also a common quality metric between teams [29], especially

when delegating or entirely outsourcing model development. When

accuracy goals are parts of contracts (or competitions) there may

be an incentive to report inflated accuracy results.

On the educational side, the danger of overfitting and data

leakage is well known and commonly discussed in textbooks [4, 28],

ML library documentation [15, 40], and tutorials [1]. Yet, as we will

show, leakage also occurs in tutorial notebooks, popular notebooks,
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and entries in data science competitions, which others may use

as educational resources or templates. Our analysis, just like other

static analyses, can help raise awareness of coding problems and

nudge students and model developers toward better practices.

Technically, we develop a static data-flow analysis that tracks

how datasets flow through data science code and are used in training

and evaluation functions of machine-learning libraries. To allow

accurate detection, we track specific kinds of transformations and

detect common patterns that lead to leakage. In an evaluation with

data science code from public notebooks, we show that our analysis

is accurate (92.9%) with very few false positives and can analyze

most notebooks within a few seconds. Applying our analysis to

over 100,000 public notebooks, we detect data leakage issues in

nearly 30 percent of them.

In summary, we make the following contributions:

• A summary and formulation of common data leakage prob-

lems.

• A static analysis that can automatically detect data leakage.

• Results from a large-scale study on data leakage in public

notebooks.

• Recommendations on process designs that prevent data leak-

age.

We share our tool and supplementary materials on GitHub.1

2 OVERFITTING AND DATA LEAKAGE IN
MACHINE LEARNING

Machine learning is the discipline of learning generalizable in-

sights from data, typically in the form of a learned function, called

model, that can make predictions for unseen data (e.g., production

data). Developers building models with machine learning tech-

niques usually follow an iterative and exploratory process [20] that

is commonly depicted as a pipeline of multiple steps with feedback

loops, including activities such as data collection, data cleaning,

feature engineering, model training, model evaluation, and model

deployment [2].

In model development, there is always the risk that the trained

model overfits on the data used for training [37]—that is, it learns

the patterns in the specific training data but generalizes poorly to

unseen data. Therefore, it is customary to evaluate the accuracy of

a model on data that was not previously used for training [37]—the

evaluation measures to what degree the model predicts expected

results for unseen data. For the evaluation to provide a meaningful

approximation of the model’s accuracy in production settings, the

unseen data needs to be representative of the distribution of real

data encountered in production.

Overfitting can happen whenever insight is gained from data,

whether it is (a) a machine learning algorithm that is learning model

parameters from data or (b) a human looking at data to make deci-

sions about how to process the data or about what machine learning

algorithm to use. Most importantly, due to the iterative nature of

model development, it is common to evaluate different variants of

a model to see whether accuracy improves with different decisions

(e.g., different feature engineering, different machine-learning algo-

rithm, different hyperparameters; some of this exploration may also

1https://github.com/malusamayo/leakage-analysis

be automated using AutoML approaches [11]). If decisions are based

on prior evaluation, the data used in that evaluation influenced the

training process and the model may overfit on it.

In summary, if we evaluate the model on data that was used in

any form (automated ormanually, directly or indirectly) in the socio-

technical process used for training the model, the evaluation result

may be overly optimistic because the model may have overfit on

that data. In a technical sense, we want a non-interference guarantee

in which the process of training the model is entirely independent

of the data on which the model is evaluated.

Offline/Online Evaluation. The model evaluation we discuss

above is usually executed offline before model deployment. Model

developers could also conduct an online evaluation with production

data after their model is deployed. Typically offline evaluations are

conducted to gain confidence in the model before deployment and

to avoid exposing users to low-quality models in production, just

like software developers rely on unit testing to identify software

bugs rather than only relying on crash reports and bug reports from

users in production.

Training-Validation-Test Splits. In many settings, labeled data

that can be used for training or evaluation is limited and expensive

to gather. Many data science projects start with a single dataset,

from which separate subsets are used for training and evaluation.

The most common approach is to split data three ways into train-

ing data, validation data, and test data. Training data is used to

develop the model and validation data is used for preliminary eval-

uation during model development (including hyperparameter tun-

ing), whereas test data should just be used once as a final unbiased

evaluation of the final model. Validation and test data seem similar

and they are often used in the same type of evaluation functions

in machine learning APIs, but they serve fundamentally different

purposes—validation data is used for decision making during model

development and hence not suitable for an independent evaluation.

The concepts of overfitting and the need to properly split data

into these three sets to achieve unbiased evaluation results are

universally covered in machine learning education and explained

extensively in textbooks and course materials [e.g., 28, 37].

Data Leakage. Despite the conceptual requirement to nevermake

any decisions that influence the model based on data that is used

for evaluating the final model (i.e., noninterference of test data

on model training), in practice, violations of this requirement are

common and known as data leakage (because test data “leaks” into

the training process) [4, 6, 19, 44]. We target three forms of data

leakage:

• Overlap Leakage:An obvious form of leakage occurs when

some or all test data is directly used as input for training

or hyper-parameter tuning. More subtly, leakage can occur

when creating training data based on test data in the form of

data augmentation or oversampling, as in Fig. 2a. We call this

type of leakage overlap leakage, as rows of test data overlap

with rows of training data.

• Multi-Test Leakage: If data is used repeatedly for evalua-

tion, it is highly likely that decisions are made based on that

data, including algorithm selection, model selection, and hy-

perparameter tuning. For example, data scientists may have
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1 # oversampling datasets , new rows are synthesized

based on existing rows

2 X_new ,y_new = SMOTE().fit_resample(X,y)

3 # splits after over -sampling no longer produce

independent train/test data

4 X_train , X_test , y_train , y_test = train_test_split(

X_new , y_new , test_size =0.2, random_state =42)

5

6 rf = RandomForestClassifier ().fit(X_train ,y_train)

7 rf.predict(X_test)

(a) Test data used for training

1 # select the best model with repeated evaluation

2 results = []

3 for clf , name in (

4 (DecisionTreeClassifier (), "Decision Tree"),

5 (Perceptron (), "Perceptron")):

6 clf.fit(X_train , y_train)

7 pred = clf.predict(X_test)

8 score = metrics.accuracy_score(y_test , pred)

9 results.append(score , name)

(b) Test data used repeatedly for model selection

1 # unknown words in test data leak into training data

2 wordsVectorizer = CountVectorizer ().fit(text)

3 wordsVector = wordsVectorizer.transform(text)

4 invTransformer = TfidfTransformer ().fit(wordsVector)

5 invFreqOfWords = invTransformer.transform(wordsVector)

6 X = pd.DataFrame(invFreqOfWords.toarray ())

7

8 train , test , spamLabelTrain , spamLabelTest =

train_test_split(X, y, test_size = 0.5)

9 predictAndReport(train = train , test = test)

(c) Test data leaked in preprocessing

Figure 2: Shortened data leakage examples from public note-

books.

selected the model that works best on the data. Data used

repeatedly in evaluation, as in Figure 2b, can no longer be

considered as unseen test data, but should be considered as

validation data.

• Preprocessing Leakage: When training data and test data

are preprocessed (transformed) together, test data sometimes

influences the transformations of the training data. For ex-

ample, data could be normalized according to the largest

and smallest values in both training and test data, rather

than only based on values from training data. Preprocessing

leakage can occur in many transformations that consider

multiple rows of the dataset, including feature selection (e.g.,

Fig. 1), normalizing data, projecting data with PCA, and vec-

torizing text data (e.g., Fig. 2c). In many practical settings,

training and test data have very similar distributions and pre-

processing leakage has only marginal influence on training

data and hence the model; however, it is easy to construct

examples where the mere knowledge about the distribution

of test data can lead to substantial overfitting (see Fig. 1) and

out-of-distribution predictions are particularly affected.

We target these forms of leakage because they are common

sources of overconfident evaluation results, are discussed frequently

both by practitioners and the literature [4, 44], and could be detected

with static inspection of source code without understanding of the

semantics of the data. Other forms of leakage are beyond the scope

of this paper, including label leakage where unintended features in

the data correlate with labels, leading to shortcut learning [4, 9, 19];

Figure 3: Approach Overview. Our analysis first performs

standard pointer analysis and data-flow analysis, and col-

lects domain-specific information (dataset transformations,

related-data, data-model mappings) from the results. Fi-

nally, leakage is detected using all the information collected.

leakage from incorrect splits of data when dependencies between

rows exist, such as in time-series data [4, 26]—both of these forms

of leakage require a deep understanding of the semantics of the data

and are orthogonal to the three forms of data leakage we address.

3 APPROACH

We developed a static code analysis approach to detect different

forms of data leakage.We analyze how data flows through notebook

code and how it is used for training, validation, and testing. To this

end, we statically collect specific information needed to detect

leakage (see Fig. 3):

• Dataset transformations. In the preprocessing steps,

transformations may leak information across rows, dupli-

cate rows, or transform rows independently. Some of these

transformations could contribute to preprocessing leakage

or overlap leakage. Therefore, we need to track how datasets

are processed. To this end, we label data-flow edges to track

different kinds of dataset transformations.

• Related-data relations. To map data to models and detect

overlap leakage, we need to understand whether datasets

may have originated from the same rows in an original

dataset. We track this with a related-data relation on top

of our standard data-flow relations that tracks which two

variables are related.

• Data-model mappings. To detect leakage, we need to iden-

tify the training/validation/test data for a given model. Here

the key challenge is to differentiate validation and test data.

We collect this information in data-model mappings, built

on top of the related-data relations.

Once we have collected data flows (including data transformations

and related-data relations) and data-model mappings, we can detect

leakage by matching patterns over this information. In the remain-

der of this section, we explain each of these steps using a running

example (Fig. 4).

3.1 Tracking Data Flows

For all leakage detection, we need to identify how datasets and other

computations relate to each other in the notebook. That is, we need

to track how data may be repeatedly transformed and split, possibly

by using information originally derived from other parts of the data,

until it flows into training or evaluation functions of models. To this
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Inputs

V program variables

D ⊆ V datasets

M ⊆ V models

DataFlow ⊆ V × V data flow paths (transitive closure)

DatasetFlow ⊆ D × D data flow paths between datasets

MapEdge ⊆ D × D map-like operations

ReduceEdge ⊆ D × V reduce-like operations

DupEdge ⊆ D × D duplication operations

ModelData ⊆ M × D × P(D) × P(D) models with corresponding

training, validation, and test datasets

Rules

a ∈ D b ∈ D (a, b) ∈ DatasetFlow

(a, b) ∈ RelData
reldata/flow

(b, a) ∈ RelData

(a, b) ∈ RelData
reldata/sym

a ∈ D

(a, a) ∈ RelData
reldata/ref

(a, b) ∈ RelData (a, c) ∈ RelData (a, c) ∈ MapEdge

(b, c) ∈ RelData
reldata/map

(src, a) ∈ DupEdge (a, b) ∈ RelData (a, c) ∈ RelData

(b, c) ∈ RelData
reldata/dup

∃(m, dtr, Dva, Dte) ∈ ModelData, Dva , �
∀(m, dtr, Dva, Dte) ∈ ModelData, Dte = �

multi-test leakage in notebook
leak/multi

(m, dtr, Dva, Dte) ∈ ModelData
∀de ∈ Dte ∪ Dva, (de , dtr) ∈ RelData

leakage due to overlap between dtr and Dte ∪ Dva for modelm
leak/overlap

(m, dtr, Dva, Dte) ∈ ModelData (s, t ) ∈ ReduceEdge
de ∈ Dte ∪ Dva (de, s) ∈ RelData (t, dtr) ∈ DataFlow

leakage between dtr and de through the transformation from s to t
leak/pre

Figure 5: Notations and rules for leakage detection from in-

put relations.

calculating the mean of a column) which may be used subsequently

in a map-like transformation (e.g., replacing missing values with

that mean). Our analysis will later use this information to detect

leaks when data flows through a reduce edge.

In a similar fashion, we also identify transformations that du-

plicate rows (e.g., SMOTE.fit_resample from Fig. 2a) as duplicate

edges, which are potentially problematic because they can create

dependencies between rows within a dataset, making random splits

no longer produce independent datasets.

In our running example (Fig. 4a), we see a preprocessing oper-

ation that may introduce leaks: SelectPercentile.fit, as it uses the

distribution information of the input data. It corresponds to a reduce

edge from X_0 to select. Operation SelectPercentile.transform, on the

other hand, corresponds to a map edge from X_0 to X.

3.1.2 Related-data relations. In many steps for detecting leakage,

we need to identify whether two datasets are related or independent.

For example, to reason about repeated evaluations with test data

(multi-test leakage), we need to understand whether the data used

in two test locations are independent or somehow related. Techni-

cally, we establish a related-data relationship to track whether two

variables relate to each other (RelData in Fig. 5). We consider two

(a) (b) (c)

Figure 6: Related-data relations are usually not transitive (a),

except for duplicate edges (b) or map edges (c). Solid arrow

edges are normal data-flow edges; dotted edges are related-

data relations.

datasets as related (a) if they contain the same data, (b) if one is de-

rived from the other, or (c) if they share rows from the same origin.

First, two datasets with a direct dataset flow (i.e., data-flow that

only considers datasets) relation are considered as related (rule

reldata/flow in Fig. 5). This is commonly the case when one dataset

is a transformed version of another (e.g., Line 9 in our running

example transforms X_0 into X ) or simply assigned from one vari-

able to another. Also, splitting a dataset creates multiple datasets

that are each considered related to the original dataset (e.g., in Line

11 in our running example, X_train and X_test are both related to

X ). Our related-data relationship is reflexive and symmetric (rules

reldata/ref and reldata/sym in Fig. 5).

When two datasets are derived from the same original dataset,

reasoning about their relationship is more complicated. In the com-

mon case that a dataset is split correctly into independent training

and test sets, these two derived datasets should not be considered

as related. However, when two datasets are derived from the same

rows of an original source (e.g., two different ways of normalizing

the entire dataset) they should be considered as related. Ideally,

we would reason about transformations at the row level and con-

sider datasets as related if their rows’ origins in another dataset

overlap, but corresponding dynamic analyses [14, 16, 25] create

runtime overhead and are difficult to adapt to our analysis. Instead,

we approximate the most common patterns statically.

By default, we assume that two datasets derived from the same

origin dataset are derived with a correct split and are hence con-

sidered as not related (Fig 6a). However, if we know that one of

the datasets is derived with a map-like transformation (map edge

in Sec 3.1.1) that dataset shares all rows with the original dataset

and is not involved in a split. Hence, we consider that dataset as re-

lated to all other datasets derived from the same origin (Fig. 6b; rule

reldata/map in Fig. 5). Furthermore, if the origin dataset contains de-

pendent rows (e.g., from a data augmentation step), we assume that

derived datasets are also related, as splits are unlikely to maintain in-

dependence. Hence, we consider all datasets derived from an origin

where data was produced (directly or indirectly) through a duplicate

edge (see Sec 3.1.1) as related (Fig 6c; rule reldata/dup in Fig. 5).

Note that our three heuristics approximate a more accurate dy-

namic analysis, but cannot cover all cases. For example, our heuristic

would identify a split with overlapping rows (a, b = o[:100], o[50:])

as independent, but those mistakes are very rare. We consider that

the cost of increased false positives or more expensive dynamic

analysis outweigh the benefits of detecting such very rare cases.

As we will show in our evaluation in Section 4.2.3, our heuristics
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capture the relationships found in common notebooks to achieve

relatively accurate leakage detection.

3.2 Data-Model Mappings

While data-flow analysis tracks how data is transformed and moves

through the notebook, we can only identify whether data is training

data, validation data, or test data by determining how it is eventually

used.

As a first step, we identify program locations where (usually

preprocessed) data is used for training, validation, and testing. We

identify those locations simply by finding API calls in the notebook

that are typically used for training and evaluation purposes, such

as the fit and predict functions in sklearn’s APIs. We later trace back

the source of the data used in these APIs to processing steps and

original datasets using standard data-flow analysis.

While training data can be identified with distinct function calls,

distinguishing between validation and test data is conceptually

challenging because both are used with the same APIs (e.g., predict).

We cannot reliably infer whether a data scientist intends to use data

for validation or testing purely based on notebook code—this is a

challenge even for human experts who may need to rely on context

clues or documentation. We therefore rely on a simple heuristic that

considers data that is used repeatedly in evaluation as validation

data and all data that is used only once in evaluation as test data. We

consider data to be evaluated repeatedly if its location is within a

loop or if two locations are connected to evaluate the same or related

data as per our data-flow analysis (i.e., variables in both locations

are connected through the related-data relation from Sec. 3.1.2).

Finally, we group each training dataset with the corresponding

validation and test datasets that relate to the same model. We use

standard data-flow analysis to identify which call locations share

the same target object. To account for possible repeated training

of the same model object, we always group training data with all

subsequent validation and test data, until the next training data is

identified. In the end, we derive a series of model-data tuples (Mod-

elData in Fig. 5), where the same training data might correspond to

zero or multiple validation/test datasets. In our example (Fig. 4a),

we show two model-data tuples based on this heuristic: (lr, X_train,

{X_test}, �) and (ridge, X, {X_test}, �).

3.3 Leakage Detection

After collecting the above information, identifying leakage is per-

formed through pattern matching:

• To detect multi-test leakage, we check for a given model

whether there exists at least one piece of test data. Note that

‘test data’ evaluated multiple times will already be identified

as validation data in our analysis (see Sec. 3.2). If for all mod-

els, there is no test data but only validation data detected,

we report multi-test leakage (rule leak/multi in Fig. 5).

• To detect overlap leakage, we check for a given model

whether training data and test/validation data3 are related.

Note that there might be multiple test/validation data in a

3 Note that for overlap/preprocessing leakage, we do not distinguish between test and
validation data. Leakage between training data and validation data is still problematic,
as it defeats the purpose of validation data (i.e., providing independent validation
during model development).

single model-data tuple (see Sec. 3.2 for how we derive the

tuple). Therefore, for a given trained model, we only report

overlap leakage when all of its test/validation data overlaps

with the training data (rule leak/overlap in Fig. 5).

• To detect preprocessing leakage, we check whether training

data contains information from test/validation data through

preprocessing (reduce edges). If training data uses reduced

information from test/validation data (or datasets that are

related to test/validation data), we will report a case of

preprocessing leakage (rule leak/pre in Fig. 5).

In our example, we could find a path from X to X_train and a

path from X_0 to X_test (see Fig. 4c). As X contains reduced infor-

mation from X_0, which is related to X_test, we establish that test

data information is leaked into training data, and there is a prepro-

cessing leakage. Next, because X is related to X_test (as X_test is

transformed from X ), there is an overlap leakage when we evalu-

ate the second model ridge. Finally, the two trained models share

the same test data (X_test), which we will identify as validation

data. Because there is no independent test data used in the final

evaluation, we conclude that there is also a multi-test leakage.

In the fixed version of our example (see Fig. 4b), we see that

the two model-data tuples are changed to (lr, X_train, {X_test},

{X_test_new}) and (ridge,X, {X_test}, {X_test_new}) and hence: (1)

models no longer contain information from X_test, as the reduced

information only comes from X_train (see Fig. 4d)), eliminating the

preprocessing leakage, (2) in all tuples, training data and test/vali-

dation data are no longer related, eliminating the overlap leakage,

and (3) there is independent test data X_test_new that is evaluated

only once, eliminating the multi-test leakage.

3.4 Implementation

To make our analysis easy to extend and modify, our implementa-

tion uses datalog, a language commonly used in declarative program

analysis [3, 42]. Our two-phase implementation first transforms

Python code into datalog facts as an intermediate representation

and then analyzes these facts to generate leakage detection results.

Our analysis design is similar to doop [3], a popular Java program

analysis framework.

In the front end, we generate datalog facts that can be easily

analyzed subsequently. Specifically, we translate complex language

structures into simpler ones, translate assignments (both variables

and fields) to static single assignment form, which ensures that

subsequent analyses are flow-sensitive, and match method invoca-

tions with signatures. To identify datasets and targets of method

invocations, we perform type inference with the off-the-shelf type

inference engine pyright [27].

Based on initial datalog facts, we compute additional facts for

the relations (e.g., RelData, ModelData) described above and subse-

quently detect data leakage using datalog queries. We implement a

standard Anderson-style 2-call-site-sensitive pointer analysis simi-

lar to doop, with special treatment of common language features

(e.g., lists and global variables). The data-flow analysis is built on

pointer analysis and also follows standard implementations.

Our analysis requires specifications of data science APIs. Specifi-

cations are mainly used to provide domain knowledge (e.g., which

APIs are used for training/testing, which APIs behave reduce-like).
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Our current implementation supports three machine learning li-

braries – sklearn, keras, and pytorch – and two libraries commonly

used for data transformations – pandas and numpy. We went

through the official documentation of these libraries to find APIs

that perform data transformations and APIs that perform super-

vised learning. Our analysis can be easily extended to other libraries

by providing their specifications.

4 EVALUATION

We first evaluate the accuracy of our analysis, that is, its ability to

find actual leakage and to avoid false alarms:

• RQ1: How accurate are the results of our analysis?

To ensure that our analysis can be used in an interactive or

continuous integration setting during model development, we also

evaluate efficiency in terms of running time:

• RQ2: How efficient is our analysis?

Finally, after establishing accuracy and efficiency, we use our

analysis to study test-train leakage in a large corpus of notebooks,

exploring common forms and sources of leakage. We will show that

leakage is common across different types of notebooks. In addition,

leakage often manifests itself in nontrivial data flows in notebooks,

in forms that can be tedious or even difficult to detect manually,

providing strong, albeit indirect evidence for the usefulness of our

automated detection:

• RQ3: How prevalent is data leakage in public notebooks?

• RQ4:What do typical leakage issues look like?

4.1 Research Design

We evaluate all four research questions with a corpus of public data

science code in Jupyter notebooks. For different research questions,

we use different subsets of this corpus.

Corpus of notebooks with data science code. To answer our research

questions, we curate a large corpus of public notebooks with data

science code. Specifically, we collect Jupyter notebooks fromGitHub

and Kaggle. GitHub is a common platform for storing data science

code for a range of purposes, from hobby and educational projects,

to research projects and tutorials, to production systems. Kaggle

is a common platform for data science competitions where users

can submit notebooks as solutions to competition problems. We

purposely selected code in notebooks, rather than arbitrary Python

files, because notebooks are the primary environment for develop-

ing data science code [32].

For GitHub, we collected all notebooks from GitHub repositories

created in September 2021 (strictly independent from all notebooks

from earlier periods used during development of our analysis).

Specifically, we used the GitHub search API to identify repositories

with notebook code and partitioned the search space to collect all

81,026 repositories. By selecting all notebooks from a recent time

period, we get a full and representative sample of the different

kinds of notebooks published on GitHub. We collected a total of

280,994 notebooks this way.

For Kaggle, we selected a smaller and more targeted notebook

population, collecting notebooks from two popular competitions,

titanic and housing [17, 18]. For each competition, we collect the 200

notebooks with the most votes and the 200 most recent notebooks,

as of April 12, 2022. We selected these competitions, because they

use tabular data and require significant preprocessing effort. We use

this corpus to understand leakage issues among typical competition

solutions that are prone to data leakage. They are not necessarily

representative of all competition solutions on Kaggle.

We further filter these notebooks to include only those that use

the machine learning libraries supported by our current implemen-

tation (sklearn, keras, and pytorch). The discarded notebooks either

only use not-yet-supported libraries such as tensorflow or do not

train any models. This leaves us with 107,603 GitHub notebooks

and 108,273 in our corpus overall. In Table 1, we show descriptive

statistics of our final corpus.

Analyzing accuracy (RQ1). Establishing ground truth for data leak-

age is challenging and we are not aware of existing datasets. To

evaluate the accuracy of our analysis, we measure both false posi-

tives and false negatives on a sample of notebooks for which we

manually establish ground truth. Due to the substantial manual

effort involved, we perform the analysis on 100 randomly sam-

pled notebooks from our GitHub corpus (which yields an 8 % error

margin with a confidence level of 95 %) [23].

One author manually labeled these 100 notebooks looking for

leakage issues and then compared manual labels with the analysis

results. For all notebooks where the manual labels and analysis

results disagreed, the author sought the expert opinion of a second

author (a trained data scientist). Together they discussed the issue

to determine whether the notebook contained leakage, correcting

the ground truth label if needed. This correction was needed in 7

notebooks, which were incorrectly labeled initially, arguably in-

dicating that manual checking of data leakage is non-trivial and

error-prone, even for experts. Overall our process balances labeling

effort and confidence in the ground truth.

As per our manually established ground truth, 40 of the 100 note-

books contained at least one form of leakage – 20 with preprocess-

ing leakage, 8 with overlap leakage, and 32 with multi-test leakage.

Analyzing efficiency (RQ2). For efficiency, we recorded the execution

time of our analysis for all notebooks in our GitHub corpus. We

record timing separately for the analysis front end (collecting facts),

the type inference, and the actual analysis (datalog engine). We set

a timeout of 5 minutes per notebook. The experiment is conducted

on a Precision 3650 workstation, with Intel(R) Xeon(R) W-1350

CPU and 32GB memory. The time is measured using Python’s time

module (wallclock time).

Analyzing leakage frequency (RQ3). We analyze leakage for the en-

tire corpus and report the frequency with which we raise warnings

for each kind of leakage. Note that we consider at most one warning

per leakage kind per notebook to avoid biasing results with some

notebooks that raise lots of warnings.

To further understand whether leakage associates with certain

types of notebooks, we separately report leakage for different sub-

populations. Specifically, we break down results for the following

subpopulations:

• Popular notebooks are viewed (and possibly reused) by more

people, thus having more potential to spread problematic

practices. We conjecture that popular notebooks come from

more experienced data scientists and are better crafted. We
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Dataset #notebooks LoC #stars Preprocessing Leakage Overlap Leakage Multi-test Leakage Any Leakage

GitHub (all) 107,603 410 1.1 12.3 6.5 18.5 29.6

GitHub (popular) 920 378 95.2 4.9 5.2 15.9 20.9

GitHub (tutorials) 1,157 584 4.2 3.9 2.9 11.3 16.2

GitHub (assignments) 7,576 559 0.6 13.9 7.4 22.0 33.0

Kaggle (top) 312 851 - 56.1 N/A N/A N/A

Kaggle (recent) 358 504 - 55.8 N/A N/A N/A

Table 1: Data Leakage Distribution. LoC is the average number of lines of code across all notebooks in the group. Number of stars is based

on the repository that these notebooks reside in and is also averaged. We show the percentage of notebooks for which we report each leakage

type. For Kaggle notebooks, we only track preprocessing leakage because the other two are infeasible in this setting (marked as N/A in the

table).

identify 920 such popular notebooks as those in GitHub

repositories in our corpus with 10 or more stars.

• Tutorial notebooks similarly are explicitly designed for

teaching others and could spread problematic practices. We

identify 1,157 tutorial notebooks by searching for the phrase

“this tutorial”.

• Assignment notebooks contain solutions to course projects

and assignments. We conjecture that these notebooks better

represent practices of beginners than average notebooks

in our corpus. We identify 7,576 assignment notebooks

on GitHub by searching for the keywords ‘homework’ and

‘assignment.’

• Competition notebooks (popular and recent) are written by a

mix of experienced and learning data scientists, possibly with

an increased incentive to maximize model accuracy. Here, we

report results from the Kaggle notebooks from our corpus.

Analyzing leakage characteristics (RQ4). We measure distance be-

tween different program constructs by measuring lines of code

between them (based on the Python files converted from notebooks

using nbconvert in the default setting) and compare them to the

length of the entire notebook.We expect that issues that span longer

distances are harder to analyze manually. Specifically, we calculate

distance between leakage sources (e.g., reduced data) and training

locations for preprocessing leakage, and distance between different

evaluation locations for multi-test leakage. We report the results

for the entire GitHub corpus.

For the whole dataset and each sub-population, we explore the

distributions of different leakage issues, complexities of these issues,

and also how they are distributed across different sub-populations.

Threats to validity. Establishing accurate ground truth for leakage

is challenging. Our experience shows that even data science experts

looking for leakage may miss it in complex data flows. We adopt a

best effort approach with human labeling and comparisons with

automated results that balance effort with confidence. We share

our data for independent validation.

For RQ3 and RQ4, we report leakage warnings but validating

all warnings is simply infeasible at this scale. Our results should

therefore be interpreted with the error margins established in RQ1.

In addition, warnings about multi-test leakage may be rooted in

settings where independent test data may exist outside of the note-

book; our evaluation would also not detect multi-test leakage if the

same test data was used repeatedly in past versions of a notebook

or is used repeatedly in multiple notebooks. Generally, our analy-

sis provides only a piece of a larger picture that needs to involve

process design and other assurances, as we will discuss in Section 5.

The notebook population in our corpus is representative of public

notebooks on GitHub (and some Kaggle competitions), but may not

generalize to data science code outside of notebooks, acrossmultiple

notebooks, or to proprietary data science pipelines. Readers should

hence be careful when generalizing our results.

Finally, our analysis focuses on the presence of leakage, not

whether data scientists find leakage reports actionable or what

effect leakage has in overestimating the reported accuracy results.

We leave such evaluations to future work but point again to the

fact that leakage is firmly established as problematic in educational

material (cf. Sections 1–2).

4.2 Results

4.2.1 Analysis accuracy (RQ1). Our analysis prototype successfully

executed for 94 of the 100 notebooks in our labeled RQ1 sample;

the remaining 6 notebooks failed due to syntax errors. For the 94

notebooks, our prototype found 15 with preprocessing leakage, 7

with overlap leakage, and 19 with multi-test leakage. All the found

leakage issues were true positives except for one case due to over-

approximation in related-data analysis, yielding a precision of 97.6%

(40 out of 41 detected issues).

On the other hand, our prototype missed 19 issues due to

unsupported libraries (6), mistaking single test cases as test data

(3), storing/loading model in external storage (3), undetected test

data evaluation (3), inaccurate type inference (2), and under/over-

approximation in related-data analysis (2). This yields a recall of

67.8% (40 out of 59).

Overall, our prototype achieves an accuracy of 92.9% (262 out of

282 potential leakages). Analysis for preprocessing/overlap leakage

is more accurate than multi-test leakage in this sample. Based on

these results, we conclude that our analysis is generally accurate.

4.2.2 Analysis overhead (RQ2). Most (92.78 %) of the 107,603

GitHub notebooks in our corpus could be analyzed successfully

within the 5 minute time limit. On average, our analysis completes

within 3.23 seconds, with most of the time (2.20 seconds on average)

spent on type inference. A small percentage of notebooks could not

be analyzed due to syntax errors (7.08 %), timeout (0.09 %; usually

due to explosion from context-sensitivity in our data-flow analysis),

and language features not supported by the front-end parser (0.05 %,

e.g., named expression introduced in PEP 572). We conclude that
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our analysis is efficient enough for interactive use and in continuous

integration settings.

4.2.3 Leakage in public notebooks (RQ3). Our analysis reports at

least one form of leakage for almost a third of all public notebooks in

our GitHub corpus (29.6%, see Table 1). We found frequent evidence

of all three forms of leakage.

Preprocessing leakage is prevalent in notebooks. Overall, our anal-

ysis reported preprocessing leakage for 12.3% of notebooks in our

corpus. The most common sources of leakage during preprocessing

are scaling, computing mean and standard deviation, and using

results of a principal component analysis (PCA) in downstream

data transformations. For text data, the most common source of

preprocessing leakage is vectorizing through counting or tf-idf

over the whole dataset. Zooming in, we reported preprocessing

leakage in 32.9% of those notebooks that scale their data, 8.4% of

those that compute mean or standard deviation, and 13.4% of those

that perform PCA.

Many notebooks lack independent test data. We report multi-test

leakage in 18.5% of all notebooks in our corpus. We also detected

that among all notebooks that train a model, 53.9% contain valida-

tion data (i.e., data that is used repeatedly for evaluation), but 35.0%

of trained models are not evaluated with independent test data.

Models evaluated with validation but without test data represent

28.3% of all trained models in our GitHub corpus.

Training data often overlaps with validation and test data. We

report overlap leakage in 6.5% of all notebooks in our corpus. A

closer look reveals that 8.0% of all trained models are only evaluated

on data that overlaps with its training data.

Leakage is common in both beginner and expert code. When ana-

lyzing the subsets of our corpus, we report leakage in all subsets,

but to different degrees (see Table 1). Assignment notebooks more

representative of beginners are more likely to receive reports for

all leakage types. In contrast, popular notebooks and tutorials most

likely associated with more advanced data scientists are slightly

less likely to receive leakage reports, but leakage is still reported

fairly commonly (20.9 % of popular and 16.2 % of tutorial notebooks).

The fact that leakage seems common even in tutorial notebooks

designed for educational purposes seems concerning.

Finally, the rate of reports of preprocessing leakage is very high

in competition notebooks (>55 %). Indeed, it is not uncommon that

competitors concatenate separately provided train and test data

before preprocessing the combined dataset. The way the competi-

tions are designed (providing values but not labels of test data) may

encourage exploiting leakage to maximize accuracy results, even,

or especially by, experts. At the same time, because test labels are

not provided, we do not report overlap and multi-test leakage. We

will discuss competitions separately in Section 5.2.2.

4.2.4 Leakage characteristics (RQ4). We observe that leakage often

occurs in patterns that make it challenging to detect manually.

Leakage issues exhibit non-local patterns. For preprocessing leak-

age, the average distance between the leakage source (the reduce

edge) and the location where the training data is used is 293 lines

of code. In more than half of the cases, the distance between leak-

age source and training location is more than 20% of the length of

the notebook (see Fig. 7a). This distance illustrates the often long
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Figure 7: Leakage issues exhibit non-local pattern.

processing sequences and non-local data flows that are difficult to

analyze manually.

For multi-test leakage, the average distance between two

locations evaluating models with the same (or related) data is

255 lines of code. In more than 30% of all cases, test location

distance is more than 20% of the whole notebook (see Fig. 7b).

On average, there are 4.4 model-evaluation locations that use the

same (or related) test data in notebooks with a multi-test leakage

warning. This similarly illustrates the non-local reasoning required

to notice this form of leakage.

A single notebook often trains multiple models. Among all note-

books in our GitHub corpus, 65.3% train at least one model (in

sklearn, pytorch, or keras) and 66.0% evaluate at least one model

(5.8% of notebooks do not train but evaluate a model, typically when

loading a pre-trained model). Among the notebooks that do train at

least one model, we found that 54.3% train multiple models. Having

to commonly track multiple models and how data flows into their

training and evaluation can be another challenge when manually

reasoning about leakage.

5 DISCUSSION

Our results indicate that static detection of several forms of data

leakage is feasible and that this kind of leakage is pervasive in

practice. At the same time, it is not a comprehensive solution to

avoid leakage or other forms of overfitting.

5.1 Practical Impact of Data Leakage

Not all leakage issues are equally problematic and some data scien-

tists developing models may consider that some forms of leakage

(e.g., the median of a column) are entirely negligible and that there-

fore warnings about leakage are not actionable and hence effective

false positives [38]. We even found some tutorials where the de-

scription explicitly indicates that developers are aware of leakage

problems but ignore them anyway, such as testing with part of the

training data “for the sake of simplicity”.

We have seen and heard of a large range of different impacts. On

the one hand, we have heard (personal communication) of multiple

cases where models were accidentally evaluated on training data

producing entirely misleading results in research teams at BigTech

companies, and that it is easy to create artificial examples where

preprocessing leakage creates substantially inflated accuracy results

(e.g., Fig. 1). On the other hand, experiments with notebooks in our

corpus often just yielded marginal if any differences in accuracy.4

4Due to the known problems of reproducing public notebooks [34, 46], we were not
able to perform systematic experiments on a larger sample.
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We expect that more substantial leakage, such as evaluating on

the training data mostly stems from simple mistakes (such as using

the wrong variable name) – which practitioners can easily detect

with our analysis. The more subtle leakage through preprocessing

may often have little effect on reported accuracy in most cases,

but we still argue that it represents a bad coding pattern. In our

evaluation, we found that even many tutorials and top competition

solutions leak their test data, let alone homework assignments. We

think that in particular educators should insist on avoiding leakage

in their course materials and homework, and our analysis provides

an easy way to create awareness of the most common patterns

leading to leakage.5

5.2 Process Design for Preventing Data Leakage

While we intend our analyzer to be used primarily as an educa-

tional tool and a tool to surface common mistakes in practice (ei-

ther directly in notebook environments or integrated into code

reviews [38]), a more robust solution can be achieved by design-

ing the process of how responsibilities are assigned. This is par-

ticularly relevant in formal settings where model development is

outsourced [29] and in data science competitions.

5.2.1 Contract se�ings. In settings where a team is given data to

develop amodel as part of a contract (e.g., outsourcing), data leakage

can systematically be avoided if test data is not provided to the

data scientists who develop the model in the first place, but instead

reserved for external evaluation upon delivery.When data scientists

do not have access to test data, they cannot derive any insights

from it, cannot use it repeatedly in evaluations, and cannot even

manually look at data distributions to inform modeling decisions—

even in settings where a data science team would have an incentive

to cheat to present inflated accuracy numbers. The drawback of

such a process design is that an additional external evaluator is

needed who must have enough understanding of the data to be able

to split it appropriately into training and test data (which can be

nontrivial when dependencies exist [10, 26, 39, 43]). The evaluator

also needs to have access to the model to run it locally, to not risk

leaking test data during model inference. Also, the evaluator cannot

repeatedly report results from the evaluation back to the developers

of the model. Notice that test data does not become immediately

useless, but gradually loses confidence which can be accounted for

in scores, as explored in detail elsewhere [7, 35].

In many practical settings though, the team developing the

model is involved in acquiring or collecting the data in the

first place [29]. In such settings, it would be paramount for an

external evaluator to independently collect data, which is often

infeasible or prohibitively costly, as it might require replicating

the expertise gained by the model development team during the

development process. If there is some trust relationship between

model developers and model users, approaches that foster best

practices and avoid common mistakes, such as our static analysis

tool, might be a better pragmatic alternative.

5We see some practitioners and educators agree with this stance. For example, in this
GitHub issue (https://github.com/keras-team/keras/issues/1753), participants actively
discuss the potential problems of tutorials setting a bad example for learners, even
when there technically is no actual leakage problem in the specific example.

5.2.2 Data science competitions. Competitions often pursue a sim-

ilar form of external evaluation, but often make compromises to

better automate the competition, reduce cost and complexity, or

increase engagement with more granular feedback:

Withholding test labels. A common design for Kaggle competi-

tions is to provide test data without labels. The competitors submit

the predicted labels to receive a test score. The operational advan-

tage of this approach is that the competition organizer does not

need to execute the submitted models—it avoids (1) executing sub-

mitted (untrusted) code, (2) having to support a range of different

models, and (3) bearing the cost of model inference during evalu-

ation. While this design prevents overlap leakage and multi-test

leakage, preprocessing leakage is still possible. In fact, our evalua-

tion of the two Kaggle competitions, which both use this design,

shows that competitors often exploit preprocessing leakage.

Limiting repeated submissions.Most competitions allow partici-

pants to submit multiple revisions of a solution, receiving scores for

each of them, risking multi-test leakage. To minimize this risk, some

competitions limit the number of submissions per team. However,

if participants can see other solutions in a leaderboard or create

multiple accounts, leakage is still a concern even if the actual test

data is withheld from competitors.

Partial test scores. Some competitions split their hidden test data

and provide feedback on incremental submissions only with part of

the test data, until finally scoring all submissions exactly once at the

end of the competition with the remainder of yet unused test data.

This effectively separates the hidden evaluation data into validation

and test data. It still allows to provide meaningful preliminary feed-

back on a leaderboard during the competition, without allowing

overfitting in the final results. As a downside, competitors that are

better at extracting insights from partial test scores may have an ad-

vantage in the competition over those that just work with the train-

ing data, hence encouraging explicit attempts to leak information.

While a once-only external evaluation with hidden test data at

the end of the competition may be the cleanest solution, in practice

competition designers will often want to make compromises with

one of the designs above, which each reduce leakage to some extent

but cannot avoid it entirely. Adding our static analyzer to the com-

petition infrastructure could call out bad practices or could remind

observers to not use the same practices outside competitions.

5.3 API Design for Preventing Data Leakage

It is also possible to avoid certain leakage issues through API design.

For example, many ML libraries advocate the use of pipelines for

preprocessing [40]. If correctly used, they could help avoid prepro-

cessing leakage, because the library enforces that only training data

is used to extract parameters for preprocessing.

From our GitHub corpus, we observe that only 5.5% notebooks

use pipelines. Surprisingly, 18.1% of these notebooks still contain

pre-processing leakage. When we inspected samples from these

notebooks, we found that they often do not apply pipelines to the

whole preprocessing stage, and some of them even use pipelines

in the wrong way. This informs us that better education on how

to use these APIs is as important as designing these leakage-proof

APIs themselves.
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5.4 Limitations and Alternatives

Our definitions of leakage and corresponding analyses are limited

to the scope of what is observable statically in data science code

(typically in a notebook). In addition, our static approximation relies

on models of library functions and several heuristics.

Importantly, our approach cannot detect repeated evaluations

that are not present in the notebook (e.g., cells modified and

evaluated repeatedly) and cannot detect test data outside the

notebook. It may therefore issue spurious multi-test leakage

warnings or miss some. Our evaluation also shows that our

analysis misses some leakage but produces few false positives

(recall: 67.8%, precision 97.6%), therefore the reported leakage may

be underestimated. Similar to many static analysis warnings, we

envision warnings as a starting point for reflection and discussion

(e.g., during code review [38]), and not necessarily as a blocking

issue that always needs to be addressed with code changes. For

example, developers might compare several techniques on the

same dataset, while the final test score is computed outside the

notebook. Our approach would report such patterns, but these

false positives should not affect the developer’s workflow.

In an adversarial setting, it is easy to trick our analysis by for

example using meta-programming or coding patterns that exceed

the capabilities of our analysis (e.g., store and load data in a file). Ad-

ditional rules and environment models can strengthen our analysis

but will not overcome fundamental limitations. A sound analysis

for an adversarial setting may be possible but would likely be so

restrictive or create so many false positives to render the approach

impractical. Again, our analysis is not a safeguard against all kinds

of cheating in data science competitions. It better serves as a light-

weight checker that discourages bad practices of data leakage.

Dynamic analysis could improve accuracy in many cases, for ex-

ample tracking the origin of individual rows in the data rather than

our approximations in the related-data relationship. However, dy-

namic analysis would require the entire notebook to be executed for

analysis (with the induced overhead), which can be costly in many

machine learning tasks and may not be feasible when studying

public notebooks that are often hard to reproduce [34].

6 RELATED WORK

Quality Assurance for Data Science Code. Prior work has noted

that data science code is often of low quality—relying heavily on

copied code and code clones [21], ignoring basic coding and style

conventions [45], being poorly documented [5], containing frequent

bugs in data transformations [47], and being hard to reproduce [34,

46]. In a well-known article, Sculley et al. [41] have argued that

data science code is particularly prone to accumulating technical

debt due to complexity and often poor engineering practices. Our

work on data leakage explores another common quality issue that

may lead to unreliable accuracy evaluations.

Static Analysis for Python. Despite its popularity, there are rela-

tively few static analysis frameworks or tools written for Python,

partly due to the difficulties of handling Python’s dynamic features.

Head et al. [12] implemented a static def-use analysis for Python

to perform program slicing that helps data scientists clean, recover,

and compare versions of code. Scapel [24] is a static analysis frame-

work written in Python that integrates several common analyses

(e.g., alias analysis). NBLyzer [44] is a framework specifically writ-

ten for notebook code in Python, where they focus on supporting

notebook actions (e.g., code changes, cell executions). Pysa [8] is

a taint analysis tool that aims to identify potential security issues

in Python code. Lagouvardos et al. [22] proposed a static shape

analysis for Tensorflow programs, which is integrated into the doop

framework. We chose to develop our own analysis, because it gives

us the flexibility to tailor it for the purpose of leakage detection,

where we need to track several custom relations.

Data Leakage Detection. Data leakage detection is a largely

unexplored problem. Kaufman et al. [19] discuss how to manually

perform analyses to detect certain kinds of data leakage in raw data,

in particular label leakage. Deepchecks [6] is a library that aims to

validate machine-learned models and data, which supports dynamic

check for overlap leakage between train and validation/test set by

dynamically inspecting datasets (e.g., whether test data contains

rows that occur identically in training data). Closest to our work

is a customized analysis to detect preprocessing leakage in the

NBLyzer [44] framework. However, their data leakage analysis is

just a demonstration for their framework and does not capture the

full complexity of data leakage. For example, they do not establish

data-model mappings but assume that all training/test locations are

relevant globally (i.e., connected by the same/related models). They

also do not actively distinguish validation data from test data, or

track whether variables might be aliased. This results in a leakage

specification that only poorly approximates the ground truth.

Because their implementation is not publicly available, we did not

compare our approach with theirs in our evaluation. In contrast

to prior work, we detect multiple forms of data leakage and also

detect leakage accurately even when datasets are transformed.

Provenance Tracking for Data Science Code. Provenance tracking

in data science code has been studied extensively [30, 33]. Most

relevant are approaches that track origins of data at the row level in

data analytics code for various frameworks: Titian [16] for Spark,

RAMP [14] for Hadoop, and Newt [25] for Hadoop and Hyracks.

As discussed, we only statically approximate what could be tracked

more accurately with dynamic record-level provenance tracking

approaches, but these approaches need to instrument the frame-

works to track provenance at runtime. Overall, this kind of tracking

is only a building block in our leakage detection.

7 CONCLUSION

We provide a summary of common data leakage problems and pro-

pose a static analysis approach that could automatically detect them.

We find that leakage issues are common in public notebooks and pro-

vide recommendations on process designs to prevent data leakage.
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