
Elevating Jupyter Notebook Maintenance Tooling

by Identifying and Extracting Notebook Structures

Yuan Jiang

Carnegie Mellon University

Christian Kästner

Carnegie Mellon University

Shurui Zhou

University of Toronto

Abstract—Data analysis is an exploratory, interactive, and of-
ten collaborative process. Computational notebooks have become
a popular tool to support this process, among others because
of their ability to interleave code, narrative text, and results.
However, notebooks in practice are often criticized as hard to
maintain and being of low code quality, including problems
such as unused or duplicated code and out-of-order code exe-
cution. Data scientists can benefit from better tool support when
maintaining and evolving notebooks. We argue that central to
such tool support is identifying the structure of notebooks. We
present a lightweight and accurate approach to extract notebook
structure and outline several ways such structure can be used to
improve maintenance tooling for notebooks, including navigation
and finding alternatives.

I. INTRODUCTION

Data science is a field that extracts insights from data and

applies these insights across a broad range of applications.

Data science work is usually exploratory and iterative, and

often collaborative [1]–[3]. Computational notebooks enable

their users to interleave code, visualizations, and narrative

texts in a single document [2]. They have become the primary

coding environment for data scientists, with millions of data

science notebooks shared publicly each year [4].

While computational notebooks are very popular among

data scientists, many practitioners and researchers report prob-

lems [5], [6]. Previous work examining millions of notebooks

and dozens of interviews has shown that many notebooks

are “messy” and most contain minimal to no documentation

and structuring (in markdown cells) that could facilitate easy

understanding [5], [7]. Understanding is essential for collab-

oration, reuse, and maintenance though. Poor quality code

in public notebooks makes them unreliable for inexperienced

learners [8]. Common problems manifest in dead-ends, dupli-

cated code, and tangled or scattered code [9]. Our goal is to

make it easier to build tooling that helps notebook practitioners

understand, navigate, modularize, and maintain notebook code.

In this paper, we lay the foundation for maintenance tooling

with an efficient algorithm to identify and extract Jupyter note-

book structures as labeled dependency graphs, as summarized

in Figure 1. We automatically label each notebook cell with

machine learning (ML) stages (e.g., data collection, training,

evaluation) and extract data dependency relations among the

cells. Each labeled node in the output graph represents a code

cell, and every directed edge represents a def-use relation

between a pair of cells. In a preliminary evaluation, we

show that our approach is accurate and very lightweight,

Fig. 1. Summary of Our Workflow: a Jupyter notebook is passed to our
algorithm, which labels notebook cells with ML stages and generates a
data dependency graph. The labeled dependency graph can be useful for
applications such as navigation, annotation and documentation generation,
merging and splitting cells, and finding structural patterns in a notebook
dataset.

outperforming prior approaches in terms of lower complexity,

higher accuracy, and lower execution time. Finally, we discuss

potential tooling based on our labeled dependency graph by

sketching a navigation tool and reporting structural patterns

commonly found in notebooks.

We make all implementation code and manually la-

beled data available at github.com/cindyyuanjiang/Jupyter-

Notebook-Project.

II. BACKGROUND & RELATED WORK

A computational notebook is an interactive literate pro-

gramming document which is executed in the computational

environment; Python notebooks in the Jupyter environment are

the most popular of these [7]. Literate programming refers to

the concept of combining code and natural language which

allows programmers to express their thoughts behind the logic

of a program [3]. An interactive computational notebook

environment allows code parts, known as cells, to be executed

incrementally to produce immediate results and visualizations.

Because notebook users are free to execute any cell at any

time, the execution marks may not be in chronological order

from top down.

A. Previous Analysis or Tools to Improve Jupyter Notebooks

Coding practices in notebooks and the popular computa-

tional notebook environments like Jupyter themselves have

been studied extensively (e.g., [3], [5], [7], [9], [10]), revealing

many poor practices and pain points that hamper understand-

ing and maintenance. Many researchers have subsequently

tried to address various problems through improved tooling.



A common theme are attempts to improve documentation:

Wang et al. [9] implemented a deep-learning-based automated

documentation generation system, creating documentation for

source code, retrieving online API documentation for source

code, and nudging users to write documentation. Yang et

al. [11] used program synthesis techniques and dynamic pro-

gram analysis to generate documentation for data wrangling

code which summarizes data transformations on representative

examples from data. Rule et al. [12] designed a Jupyter

notebook extension for cell folding to aid navigation and

comprehension.

Other tooling focuses on managing variants and revisions:

For example, Kery et al. [13] designed and implemented a

lightweight local versioning plugin into Jupyter notebooks

for data scientists to better explore and understand their past

analysis choices, using algorithmic and visualization tech-

niques. Head et al. [6] introduced code gathering tools to help

data scientists clean and recover different versions of code in

cluttered notebooks using software slicing.

Finally, several papers focus on supporting data scientists

with structuring their code into ordered cells: Titov et al. [14]

proposed an algorithm for automatically resplitting cells into

more semantically cohesive units. Wenskovitch et al. [15]

designed a visualization approach to communication by dis-

playing the dependencies between the cells of a notebook,

using dynamic analysis.

Each of these tools developed custom infrastructure from

scratch. We aim to encourage more maintenance tooling

for notebooks by providing a common underlying analysis

infrastructure that can extract the structure in a notebook.

B. Labeling Notebook Cells

In addition to dependencies between cells, it is often useful

to understand what different parts of a notebook are doing.

Data science code is often structured according to a con-

ceptual data science pipeline, which starting from model re-

quirements, considers data collection, data cleaning, labeling,

feature engineering, model training, model evaluation, and

deployment [16]. In notebooks, particularly data cleaning and

feature engineering (collectively called data wrangling [11],

[17]), model training, and model evaluation are common.

Understanding which pipeline stages correspond to which

notebook cells can be helpful for various understanding

and maintenance tasks and is a core of our approach. Past

approaches to identify stages either relied on very simple

heuristics or relied heavily on expensive ML classification. On

one end, Venkatesh et al. [18] simply labeled cells by API calls

contained in them; on the other end, Zhang et al. [17] used

a weakly supervised transformer architecture to classify code

snippets which jointly models data science code and natural

language annotations. Our proposed work outperforms both of

these approaches, providing labels accurately and fast.

III. METHODS

To provide the foundation for more maintenance tooling

for notebooks, to address their common “messy” and undoc-

umented nature in an exploratory and iterative workflow, we

develop an algorithm to identify and extract structures from

Jupyter notebooks as directed, labeled dependency graphs

where every node represents a code block (usually a notebook

cell), every edge represents a data dependency relation, and

nodes are labeled corresponding to their stages in the ML

pipeline. In Figure 3, we illustrate the resulting output graph

for an excerpt of a notebook. By default, we use notebook cells

as the granularity for graph nodes because an ideal notebook

cell can be viewed as a proto-function and reused to do one

dedicated action [14]. To build the labeled dependency graph,

we proceed in two steps: identifying dependencies between

cells and mapping cells to ML stages.

A. Data Dependency

We used standard data flow analysis to identify def-use

chains in a notebook’s code. We then group these dependencies

by code blocks (cells), representing dependencies among cells

as directed edges in our graph.

We and others [7] found that most notebook code is

fairly simple, hence even fairly simple and fast data-flow

analysis provides accurate results (e.g., context sensitivity

and pointer analysis add little benefit). We largely reused the

static data-flow analysis from the python-program-analysis

package developed by Microsoft [9] and modified it as

follows: First, we did not track dependencies from import

statements because they obfuscate the dependency graph

without adding value for maintenance tasks. Second, we made

the tool conservative with regards to dependencies resulting

from function side effects, assuming that a function call

might modify its arguments, therefore treating the function

as a definition site of its arguments. We made the latter

change in preferring occasional false positive dependencies

between cells over missing edges or high analysis costs from

inter-procedural analysis of library code.

B. Identifying ML Stages

We label each node in our dependency graph with a corre-

sponding stage of the ML pipeline. Commonly, an ML pipeline

consists of data collection, data cleaning, labeling, feature

engineering, model training, and model evaluation [16]. As

in prior work [11], [17], we combine data cleaning, labeling,

and feature engineering collectively as data wrangling to avoid

potential overlapping of their meanings. We define the most

relevant stages – Data Collection, Data Wrangling, Training,

Evaluation, and Exploration – with corresponding examples

in Figure 2. Our labels are similar to prior classification by

Zhang et al. [17] because they are all based on standard stages,

but we do not include the Import stage because it is not very

important from a maintenance perspective.

Human developers can map most cells clearly to one or

multiple of these stages (as we will show in our evaluation).

While investigating notebooks, we found that some cells may

correspond to multiple stages, for example, both perform fea-

ture engineering and data exploration in the same cell. Usually

though one stage is clearly the dominant purpose of a cell. To

avoid the complexity of having multiple labels, we agreed on



Fig. 2. ML Stage Definitions

a priority order, assigning always the stage with the highest

priority if multiple stages may apply. As sole exception, we

introduce a dedicated label for cells that perform both training

and evaluation, as they often co-occur and neither stage should

be considered as subsumed by the other. Our final priority

order is: Training+Evaluation > Training or Evaluation >

Data Collection > Data Wrangling > Exploration. If a cell

does not correspond to any stage, we label it as “N/A”.

While there are several different strategies to identify stages

for code fragment, we develop a simple but accurate heuristics-

based approach that does not rely on textual documentation in

the notebook and avoids computationally expensive and brittle

ML techniques.

As recognized in prior work [4], [15], data science code

often uses a small set of popular libraries for typical ML

activities. We use knowledge about such APIs as the seed for

our labels. We build an API-to-stage mapping for commonly

used ML libraries (currently scikit-learn, Keras, and pandas).

We map API calls to specific stages by inspecting their

functionalities in the respective official API references. To

correctly distinguish API calls with the same name (e.g., ‘fit’

used for Training in KNeighborsClassifier or used for Data

Wrangling in PCA in scikit-learn), we use a type inference

tool pyright [19] to identify which library class makes the

API call.

We use known APIs as seeds to identify stages for a

cell and propagate information from there along data-flow

edges. We found that identifying a cell’s stage solely by API

calls contained in the cell is insufficient, but that notebook

users often put logically related statements in the same cell

or structurally close to one another. We hence propagate

information as follows: Every time we analyze a statement,

we consider two scenarios based on the number of child

statements it has according to the data-flow analysis.

• One child statement: if the current statement and its

child statement are in the same code cell or the current

statement is the closest parent to the child statement with

regard to their location in the source code, we propagate

the current statement’s labels to the child statement.

• Multiple child statements: for every pair of the current

statement and one of its child statements, we follow the

same mechanism in the previous case.

After the algorithm traverses every data-flow edge between

statements in the source code for propagating information, it

labels each cell with the highest-priority label existing in that

cell.

IV. PRELIMINARY EVALUATION

To be useful in tooling for maintenance and evolution, our

labeled dependency graph needs to be accurate and fast to

compute. The latter is important both when analyzing many

notebooks (e.g., when indexing reusable structures for search)

and when computing analyses in the background (e.g., within

a notebook plugin).

First, we evaluate the accuracy of our algorithm, especially

cell labelings. Second, we measure the performance of each

step in our algorithm.

A. Dataset

We assemble a dataset of all public notebooks scraped from

GitHub repositories created on two specific days, January

1 (704 notebooks) and January 6 (1629 notebooks), 2021.

Both are weekdays, though January 1 is a holiday in many

countries. We expect that January 1 skews more toward hob-

byists whereas January 6 represents a more typical workday,

together covering a comprehensive representative of notebooks

on GitHub. We sample by release days rather than popularity

to get a full cross section of notebooks typically published

on GitHub; we evaluate on recent notebooks that represent

the state of practice now, rather than performing longitudinal

analysis of historic data.

B. Accuracy

To evaluate the correctness of the output data dependency

graphs, we need to measure the accuracy of the node labelings

and the dependencies between cells.

Accuracy of Node Labelings. To evaluate accuracy, we

need to establish ground truth of the correct label. We establish

ground truth manually.

To assure reliability of manual labeling, we first created ex-

plicit labeling instructions and evaluated inter-rater agreement

among three labelers. Specifically, two authors independently

labeled 102 and 153 cells from two different sets of 6 note-

books randomly selected from our dataset, and a third author

independently labeled all 255 cells of these 12 notebooks,

until each cell had two independent labels. We computed

agreement with Cohen’s kappa and discussed disagreements





where the cells are and how the dependencies are reflected in

the notebook.

Notebook Patterns. Extracting structures from a large set

of notebooks allows us to find patterns among them, useful

for a variety of tasks. Users can search over code structures

of public notebooks. A plugin may highlight alternative cells

to the one currently edited. Analysis tools might indicate when

a user’s notebook has an unusual structure. Researchers and

tool builders can learn about common or uncommon patterns

and use this information to develop tools that are useful for a

large number of notebook users. Our graph provides a good

abstraction for analyzing patterns.

As an example, we identify (1) when notebooks train

multiple models in parallel (models trained independently in

different cells on shared or separate input data), (2) when

they compare the results of multiple models, and (3) when

they contain deadends. We record the number of these pattern

occurrences over all 2333 notebooks from the January 1 and

January 6 datasets.

Parallel training processes happen when users explore mul-

tiple ML training models on a shared or separate datasets. In

such settings, developer tools could help to prune no longer

needed branches, merge branches, or even make manually

explored differences accessible to AutoML tools. Among all

2333 notebooks in our dataset, 169 notebooks contain parallel

training processes on a shared dataset and 575 notebooks

contain parallel training processes on separate datasets. In

total, 32% of the notebooks explore alternatives in training

processes.

In contrast, explicit comparison between different evaluation

processes is rare. We found only 83 notebooks among the ones

analyzed, which accounts for less than 4% of all notebooks.

It seems more common to simply print accuracy numbers and

to compare them manually than to compare them in code.

Finally, deadends – data wrangling or exploration cells

with no children in the data dependency graphs – occur in

almost every notebook analyzed (94%). Tooling could suggest

cleanup mechanisms, manual or automated.

VI. CONCLUSION

We implemented an efficient algorithm to identify and

extract Jupyter notebook structures as labeled data dependency

graphs, where nodes represent cells and directed edges repre-

sent data dependency relations among cells. The algorithm

involves generating data dependency information of cells and

labeling cells with ML stages. Our evaluation shows that our

methods achieve high accuracy for labeling cells and fast

runtime performance. We sketch a navigation tool prototype

using data dependency graphs generated from our methods and

discuss a number of patterns in our notebook dataset. Given

the efficient runtime, tool builders can run our analysis in the

browser background and use our data dependency graphs for

various purposes like navigation, documentation generation, or

learning about notebook structures in general.

ACKNOWLEDGMENT

Kästner’s work was supported in part by NSF award

2131477. Zhou’s work was supported in part by Natural Sci-

ences and Engineering Research Council of Canada (NSERC),

RGPIN2021-03538. We thank Chenyang Yang for his help

with generating our dataset.

REFERENCES

[1] N. Nahar, S. Zhou, G. Lewis, and C. Kästner, “Collaboration challenges
in building ml-enabled systems: Communication, documentation, engi-
neering, and process,” in Proc. ICSE, 2022.

[2] K. Patel, J. Fogarty, J. A. Landay, and B. Harrison, “Investigating
statistical machine learning as a tool for software development,” in Proc.

CHI, pp. 667–676, 2008.
[3] M. B. Kery, M. Radensky, M. Arya, B. E. John, and B. A. Myers,

“The story in the notebook: Exploratory data science using a literate
programming tool,” in Proc. CHI, 2018.

[4] F. Psallidas, Y. Zhu, B. Karlas, M. Interlandi, A. Floratou, K. Karanasos,
W. Wu, C. Zhang, S. Krishnan, C. Curino, and M. Weimer, “Data
science through the looking glass and what we found there,” ArXiv,
vol. abs/1912.09536, 2019.

[5] S. Chattopadhyay, I. Prasad, A. Z. Henley, A. Sarma, and T. Barik,
“What’s wrong with computational notebooks? pain points, needs, and
design opportunities,” in Proc. CHI, 2020.

[6] A. Head, F. Hohman, T. Barik, S. M. Drucker, and R. DeLine, “Man-
aging messes in computational notebooks,” in Proc. CHI, 2019.

[7] J. F. Pimentel, L. G. P. Murta, V. Braganholo, and J. Freire, “A large-
scale study about quality and reproducibility of Jupyter notebooks,” in
Proc. Conf. Mining Software Repositories (MSR), pp. 507–517, 2019.

[8] J. Wang, L. Li, and A. Zeller, “Better code, better sharing: On the need
of analyzing Jupyter notebooks,” in Proc. ICSE-NIER, p. 53–56, 2020.

[9] A. Y. Wang, D. Wang, J. Drozdal, M. J. Muller, S. Park, J. D. Weisz,
X. Liu, L. Wu, and C. Dugan, “Documentation matters: Human-centered
AI system to assist data science code documentation in computa-
tional notebooks,” ACM Transactions on Computer-Human Interaction,
vol. 29, 2022.

[10] A. Rule, A. Tabard, and J. D. Hollan, “Exploration and explanation in
computational notebooks,” Proc. CHI, 2018.

[11] C. Yang, S. Zhou, J. L. C. Guo, and C. Kästner, “Subtle bugs every-
where: Generating documentation for data wrangling code,” in Proc.

ASE, pp. 304–316, 2021.
[12] A. Rule, I. Drosos, A. Tabard, and J. D. Hollan, “Aiding collaborative

reuse of computational notebooks with annotated cell folding,” in Proc.

CHI, 2018.
[13] M. B. Kery and B. A. Myers, “Interactions for untangling messy history

in a computational notebook,” in Proc. Symposium on Visual Languages

and Human-Centric Computing (VL/HCC), pp. 147–155, 2018.
[14] S. D. Titov, Y. Golubev, and T. Bryksin, “Resplit: Improving the

structure of Jupyter notebooks by re-splitting their cells,” ArXiv,
vol. abs/2112.14825, 2021.

[15] J. E. Wenskovitch, J. Zhao, S. A. Carter, M. L. Cooper, and C. North,
“Albireo: An interactive tool for visually summarizing computational
notebook structure,” in Proc. Visualization in Data Science (VDS), pp. 1–
10, 2019.

[16] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagap-
pan, B. Nushi, and T. Zimmermann, “Software engineering for machine
learning: A case study,” in Proc. ICSE-SEIP, 2019.

[17] G. Zhang, M. Merrill, Y. Liu, J. Heer, and T. Althoff, “Coral: Code rep-
resentation learning with weakly-supervised transformers for analyzing
data analysis,” EPJ Data Science, vol. 11, 2022.

[18] A. P. S. Venkatesh and E. Bodden, “Automated cell header generator for
Jupyter notebooks,” in Proc. International Workshop on AI and Software

Testing/Analysis, p. 17–20, 2021.
[19] Microsoft, “Pyright.” https://github.com/microsoft/pyright, 2020.
[20] M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochemia

medica, vol. 22, no. 3, pp. 276–282, 2012.


