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Storm-snow avalanches are challenging to forecast due to complex alpine terrain and during rapidly changing
weather conditions. They can result in loss of lives and significant economic impact. We describe how a new
device that continuously measures with high-frequency snowflake mass, size, density, and type, the Differential
Emissivity Imaging Disdrometer (DEID), and show how the DEID can be used to aid avalanche forecasting when
coupled with a storm-snow stability model. DEID measurements of snow accumulation, snow water equivalent
(SWE), and snow density obtained during seventeen storms taken at the mid-Collins Snow-Study Plot at Alta Ski
Area in Utah’s Central Wasatch mountain range during winter 2020-2021 show excellent agreement with
infrequent manual measurements. Additionally, two new variables, the Shape Density Index (SDI) and
Complexity, are proposed and used to classify snowflake habit and estimate storm-snow shear strength. We
illustrate how these DEID-derived data can be used to identify layers of concern in the storm snow such as density
inversions, in real-time without digging snow pits. Furthermore, the DEID-data are used to run four variations of
the SNOw Slope Stability model (SNOSS) for the storms investigated. The results are evaluated with data
collected from tilt-board tests, infrasound measurements, and visual observations of avalanches. For a total
fourteen storms analyzed, the DEID-driven SNOSS-modeled minimum stability index predicts the general sta-
bility of the storm-snow as indicated by observed avalanches, both natural and of unknown cause. The results
provide a promising approach for nowcasting instabilities within storm-snow layers with a single instrument.

1. Introduction 2022; Jamieson, 1995). Note that for the scope of this work, the term

storm-snow avalanche is utilized rather than storm slab, since the

Storm-snow avalanches arise due to instabilities within the storm-
snow layer or at the old-snow/storm-snow interface (American
Avalanche Association, 2022). These avalanches often occur in alpine
terrain and are the cause of significant hazards to roadways, motorists,
maintenance personnel, and infrastructure, closing mountain corridors
throughout many areas including Europe, North and South America, and
New Zealand. Key ingredients that can lead to avalanches occurring
within the storm snow are density inversions (i.e., relatively high-
density snow above low-density snow, often refereed to as upside-
down snow) and high snow water equivalent (SWE) rates, which in-
crease the overburden stress on storm snow prior to densification due to
compactive and metamorphic stresses, which in turn increases the
strength of the storm snow below (American Avalanche Association,
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cohesiveness of the slab within the storm-snow layer is not determined,
however the depth and density of the potential slab is examined. Due to
the subtleties of density variation or snow habit changes within the
storm snow and the rapid variability of SWE rate during storms (Singh
et al., 2021) forecasting these avalanches with a high degree of spatial
and temporal accuracy (sub 1 km and 1 h) has plagued avalanche
forecasters and mitigation specialists for decades.

Each year avalanches result in loss of life with significant economic
impact. In Europe, on average 100 persons lose their lives to avalanches
annually. In North America over the last ten years the Colorado
Avalanche Information Center (CAIC) reports that this average has risen
to 27 fatalities from avalanches (CAIC, 2022; EAWS, 2022). Monetary
costs from damages to infrastructure and road closures as a result of
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avalanches can also cause major problems for local economies. Eco-
nomic impacts can be difficult to assess, although 30 years ago Voight
and Coauthors (1990) estimated that property damages, rescues and
snow removal had impacts to the US economy in the millions of dollars.
2014 Icelandic estimates accounting for indirect economic loss along
with loss of life find that each fatality in their country may be equal to
1.2 million US dollars (Johannesson and Porsteinn, 1992).

This study is focused on highway SR-210, located in Little Cotton-
wood Canyon (LCC), Utah, United States, which is a high-traffic
mountain highway. As a result of storms and mitigation work, LCC
closes, on average, 10.4 times for a total 57.3 h per year. On snow years
that significantly exceed average accumulations, those numbers can
more than double. The cost of such closures has been estimated at over
$2.5 million per day, or $106,000 per hour in 2019 dollars (Nalli, 2019).

Currently, storm-slab avalanche forecasting requires in-situ obser-
vations and weather-forecasting products, specifically, accurate obser-
vations of snow density, snow water equivalent (SWE), and precipitation
intensity. Even with these data at limited points in space, forecasting
storm-slab avalanches presents a challenge due to the highly spatio-
temporally varying character of these data and the shear number of
variables associated with storm-slab avalanches. The dynamic nature of
atmosphere-snow interactions presents an ever complex forecasting
problem from a research and practitioner standpoint. Depending on the
region and available observing infrastructure, a variety of techniques are
used to collect the aforementioned variables. Most commonly, snow
scales are combined with acoustic snow depth sensors to measure storm
snow density. However this technique only provides very coarse esti-
mates of total storm water content and density. Operational centers can
sometimes couple such data with manual observations for validation
and comparison, but this approach is costly, only allowing for collection
at rare intervals. Where available, CS725 passive gamma radiation SWE
sensors can continuously monitor the total water content of the snow-
pack (Smith et al., 2016). A need remains for detailed depth profiles of
storm SWE and snow density as currently, this information can only be
determined using primitive snow-pit evaluation tests, often performed
long after the avalanche danger has presented itself as an immediate
public threat.

To address these challenges, snow depth and SWE data can be
ingested into snow-cover models such as SNOWPACK (Bartelt and
Lehning, 2002) or CROCUS (Vionnet et al., 2012) that have hazard
modules to predict snowpack instabilities. Adoption of these models has
been slow due to a combination of mistrust and a significant learning
curve (Morin et al., 2020). Moreover, model development has been
directed primarily at prediction of persistent weak layers in old-snow.

One model that addresses storm-snow avalanches is the mechanical
SNOw Snow Slope (SNOSS) model. The model is based on a stability-
index first developed by Roch (1966) and Fohn (1966) with later re-
finements by Jamieson (1995) and Jamieson and Johnston (1998) and
evaluation by Conway and Wilbour (1999); Hayes et al. (2004) and
Havens et al. (2012). The SNOSS model calculates the ratio of strength to
overburden. The shear strength of the storm snow is calculated with a
power-law relationship based on snow density, where the storm-snow
density is coupled with a densification model for calculating the in-
crease in storm-snow density with time due to metamorphic and over-
burden stresses. The relationship between the strength of the layer is
compared to the overburden weight or the SWE of the overlying snow to
determine a “time to failure” (Conway and Wilbour, 1999). Despite the
need for real-time forecasting of storm-snow avalanches the model has
not been used in operational settings. This is due to a lack of availability
of real-time high resolution storm-snow density data, which is the key
variable driving the model.

A critical need exists for real-time, observationally-based tools, both
hardware and software, that can measure and account for the spatial and
temporal variability in atmospheric and storm-snow-related variables
found in mountainous terrain, and that can be easily adopted by
avalanche forecasters and technicians.
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Here we discuss how a new instrument, the Differential Emissivity
Imaging Disdrometer (DEID) can be used to help guide snow-cover
models. The DEID was developed to capture real-time measurements
of snow density, SWE, and precipitation intensity (PI) on a particle-by-
particle basis at high temporal resolution (Singh et al., 2021; Rees
et al., 2021). Snowflake shape is characterized with a shape density
index or SDI and Complexity. In an operational mode, we show how
these two variables can be used with the SNOSS model to forecast storm-
snow instabilities. Observations collected in Utah’s Wasatch mountains
during the winter of 2020-2021, and results from the storm-snow
instability model, are evaluated and validated against snowpack mea-
surements routinely obtained, such as the Utah Department of Trans-
portation’s (UDOT’s) Intermountain Labs and Snowbound Technologies
Infrasound Detection Systems (Vyas, 2009; Mayer et al., 2020), a high-
density network of standard meteorological stations, and physical ob-
servations from snow professionals and recreationalists managed by the
Utah Avalanche Center (UAC). The goal is to evaluate the potential
contribution to avalanche prediction of real-time measurements of snow
density, SWE, and snowflake characteristics. Three main approaches are
pursued: (i) investigating the relationships of DEID measurements to
stability indices and avalanches, (ii) assessing storm-storm instability
with the DEID data and systematic tilt-board tests, and (iii) evaluating a
snowpack stability index derived solely from DEID data.

2. Methods
2.1. DEID methodology

A complete description of the DEID is presented in Singh et al. (2021)
with additional details given in Rees et al. (2021). Here, we present a
concise summary with an update to the physical approach for computing
the mass and density of a hydrometeor. The DEID consists of an infrared
camera pointed at a hotplate that has low emissivity. To quantify a
hydrometeor’s size/area on the hotplate, the DEID makes use of the fact
that the thermal emissivity of water (¢ > 0.95) is very different from that
of aluminum (¢ < 0.1), such that objects with the same thermodynamic
temperature have different radiative temperatures seen by a thermal
camera (see Fig. 3). The plate thermodynamic temperature is measured
with the thermal camera by placing a high-emissivity (¢ ~ 0.95) poly-
imide tape on the hotplate. The camera records at 15 fps with a reso-
lution 531 pixels x 362 pixels for a spatial resolution of about 0.2 mm/
pixel.

Thermal images of the hotplate provide the area of hydrometeors,
the temperature difference between a hydrometeor on the plate and the
hotplate, and the evaporation time. Individual hydrometeor mass is
determined using the DEID by assuming that the heat gained by a hy-
drometeor is equivalent to the heat lost by the hotplate during evapo-
ration according to,

e | a0 (1,0 - 1.0)a M

(cAT + Le) Jo

Here, m is the mass of the hydrometeor, c is the specific heat capacity
of water, Legy = Ly is applied for liquid hydrometeors and Legy = Ly + Ly
for solid hydrometeors, where L is latent heat of fusion for water and L,
is the latent heat of vaporization of water, T, is the hotplate surface
temperature, T,, is the temperature of the water droplet, and AT is the
temperature difference between the initial and final temperature of a
water droplet on the hotplate. In addition, 7., is the time required to
evaporate the water droplet, and (k/d)eff is an empirical coefficient that
has been determined to be 7.006 x 102 W m 2 K. For a snowflake, the
SWE may be immediately calculated as, SWE = (c1Am)(Apppm,0); C1 is
conversion factor from meters to millimeters (i.e., c;= 10° mmm™1), Am
(kg) is the total hydrometeor mass that falls on the hotplate in a given
time, App (m?)isa rectangular sampling area on the hotplate and SWE is
given in mm of water.
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The SWE accumulation rate (Rswg) can be estimated from the total
mass of water deposited onto the hotplate in each frame as,

Am-fps
prhI’ '

(2)

Rswe = 2

where ¢, is a conversion factor from m s ! tomm hr! (3.6 x 10° mm/h
m? s), fps is the image sampling rate in frames per second, Am (kg) is
the total hydrometeor mass that falls on the hotplate in each recorded
frame that is estimated using Eq. 1, p,, (kg m’3) is the bulk density of
water and Apy, (m?) is a rectangular sampling area on the hotplate that
captures all hydrometeors. Rsyg can also be estimated using a particle-
by-particle method whereby Am in Eq. 2 is the total hydrometeor mass
that falls on the hotplate over a given time interval At, summed over all
individual evaporated hydrometeors.

Snowflake density given by p; = m/V, where m (kg) and V (m ™) are
the mass and volume of an individual snowflake, respectively. Hydro-
meteor volume V can be estimated by assuming a spherical particle of
equivalent circular diameter Deg such that V = (n/6)D% (Rees et al.,
2021). However, since snow particles are typically aspherical, a meth-
odology for estimating density based on the heat flux to a hydrometeor
(that is independent of shape) was developed (Singh et al., 2023). The
heat flux from the hotplate into a single snowflake is,

H
E=

AeTevp’

3

where A, is the maximum observed area of the snowflake on the hotplate
before it evaporates. H = mL,q, is the total energy required to melt and
evaporate the snowflake from the hotplate. From observations, we find
that for a given area and evaporation time, multiple values of E can be
obtained for a given value of snowflake mass due to varying amounts of
liquid water, suggesting a correlation between snowflake density and
the heat flux. Thus, we hypothesize that the heat-flux method can be
used to compute the density of different types of snowflakes through
comparison to a reference as follows,

E
Py = /’oE_O- “)

Values for pg and Ey were determined from field measurements and
validated in laboratory experiments. The average density (p,) prior to
settling over a given period can be calculated from DEID data using the
ratio of the total mass to total volume in a given time interval, namely,
- Zi:'\im,-

=N (5)
Zi:l\{ n; / Ps.i

where m; (kg) is the mass of the ith snowflake, ps ; (kg m~3) is the density

of the i snowflake and N is the total number of snowflakes on the plate

measured during the given period. From the average density of the

snowflakes in each frame, the snow precipitation rate or precipitation

intensity (in mm hhH is,
Am-fps

Pl = c2— .
PsAnp

(6)

Note that the difference between the calculation of Plg,ow and Rswr is
the average density of the phase of the evaporating hydrometeor in the
denominator in Eq. 2 and Eq. 6, namely p,, for Rswg and p, for Plgow.
Total snow accumulation, HST (mm), is then computed by multiplying
the precipitation rate by the time interval between samples (1/fps), then
summed over the period of interest such as for a storm or every hour.

2.2. Instability model

The evolution of fresh snowpack instability can be determined using
DEID measurements in combination with a simple physics-based model,
such as the SNOw Slope Stability model (SNOSS) (Hayes et al., 2004). A
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stability index can be defined as the ratio of the strength of a buried layer
to the shear stress imposed by the overburden stress from the snowpack
above, such that the snowpack becomes unstable when the stability
index value approaches and falls below unity (Conway and Wilbour,
1999; Hayes et al., 2004; Havens et al., 2012). Fig. 1 is a schematic of
storm snow over old snow and the corresponding coordinate system
used herein. In order to evaluate the stability index, the following pa-
rameters are required: the shear strength of the buried layers, which
depend on grain shape, type, and density of the grain, and the imposed
shear stress from the weight of the overburden, adjusted for slope angle
for the terrain of interest. Following Jamieson and Johnston (2001), the
shear strength (in kPa) of a buried layer (a(z,t)) at a depth z and at time t
after the snow begins to accumulate is expressed as,

B
p
) =A=) 7
a(z,1) (p[> %)

where ps(z, t) is the density of a given snowpack layer, p; is density of ice
(pi =917 kg m>) and 1 and j are empirical constants that depend on the
ice-grain form. This formulation is related to the Young’s modulus of ice,
which provides a power-law behavior that is supported through manual
observations (Perla et al., 1982; Jamieson, 1995). Traditionally, A and g
are determined by fitting experimental measurements of the shear
strength of precipitation particles performed using a strain gauge. In the
present work, we use two sets of precipitation-particle values. The first
are values recommended by Jamieson and Johnston (2001): 1 = 5.32
kPa and # = 1.35, and the second are DEID-derived values that are
explained in Sec. 2.5. Results from both methods are computed (a)
assuming a constant density in time and (b) using a densification model,
using four different shear-strength models. The four models, shown in in
Table 1, suggest a possible range for forecasted stabilities that may help
increase predictive accuracy through ensemble averaging.

Over the course of a storm, each layer of buried storm snow increases
in density through metamorphic stresses in addition to stresses from the
gravitational component of the overburden weight (o,,(t) = g [ Rswe.
cos?0dp). For simplicity, the metamorphic stress (o, (t)) is assumed to be
a constant (75 Pa) and is added to the overburden stress (Conway and
Wilbour, 1999). This value assumes that the near-surface (5-10 cm)
densification of the storm snow is dominated by metamorphic stress, but
is driven by the gravitational component for layers that are deeper than
5 to 10 cm from the surface. By assuming a viscous densification law for
dry storm snow, the density of the snow (p,(t)) can be expressed at each
layer and point in time by the following ordinary differential equation:

1 dp, 1
p;(t) dt - E[Gm(t) +62z(t)]' (8)

Here, 1,(t) represents the compactive viscosity for dry snow, which
was experimentally determined by Kojima (1967) and modified with an
Arrhenius-type temperature term by Conway and Wilbour (1999),

)
n() = Bie \ ) oHT ©

The following constants, B; = 6.5 x 1077 Pa s, By = 19.3, the acti-
vation energy E = 67.3 kJ! mol~}, the universal-gas constant R =
0.008314 kJ ! mol~! K1, and the layer temperature T, = 273 K were
utilized in the calculation of #,,. Eqs. 8 and 9 can be discretized and
solved with a simple Euler’s method for an initial density profile pro-
vided by the DEID. Thus, with a coupled model and DEID data, a high-
resolution map of snow-layer density can be obtained that is a function
of time. It should be noted that the compactive viscosity (7,;) and the
metamorphic stresses (o) were derived for dry storm snow and may
need to be altered for wet or mixed precipitation particles.

The overburden stress (W), or the average static shear stress on
terrain with a slope angle (), is expressed as,
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6= Slope Angle
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Fig. 1. Coordinate convention reference for a storm-snow avalanche on a slope with an inclination angle 6.

Table 1
A summary of the four model variations evaluated during the study as well as the
ensemble of the models.

Model A B Description
(kPa)
Jamieson 2001, no 5.32 1.35 Constant coefficients of
densification strength
Jamieson 2001, with 5.32 1.35 Constant coefficients of
densification strength
SDI & Complexity, no SDI Complexity  Coefficients are a function of
densification snowflake structure
SDI & Complexity, with SDI Complexity  Coefficients are a function of
densification snowflake structure
Ensemble - - Average of all model outputs
!
W(z,t) = g/ Rswe (1)sin(0)cos(0)dt, (10)
0

where Rgwg(t) is SWE rate at time t. Hence, the stability index (SI) is the
ratio of the shear strength (Eq. 7) to the overburden stress of the over-
laying snow (Eq. 10),

SI(z,1) = an

For values of SI>1, the snowpack is expected to be stable, and for SI
<1, instability is anticipated. The DEID provides real-time values of p;
and Rswg(t) so that the stability index can, for the first time, be calcu-
lated in real-time during a storm to forecast time to failure within storm-
snow layers.

2.3. New microphysical parameters: SDI and complexity

We now introduce two new parameters, the hydrometeor shape
density index (SDI) and the Complexity, that can be easily measured
with the DEID for classification of precipitation particle type. SDI is
defined as the ratio of the cross-sectional snowflake area A, on the
hotplate to the melted area of a spherical water droplet Ag,, that has the
same mass (Eq. 12),

A,

Ao

SDI = 12)

The melted area of a spherical droplet of the same mass can be
expressed (after some algebra) as,

m O\ 2
Ao = Cspi Q)—) . 13)
30

Here, Csp; = 1.21 is a geometric constant, m is the mass of the
snowflake, and pp,o the density of liquid water, which is taken to be
1000 kg m~3. A schematic showing the method of SDI calculation is
supplied in Fig. 2. The minimum value of SDI is near unity for spherical
snow particles that have a density close to water.

Particle Complexity is defined as the ratio of the area of the smallest
ellipse containing a particle cross-section to A, of the hydrometeor
measured on the hotplate as illustrated in Fig. 3. The areas used to
calculate each individual particle’s Complexity and SDI are determined
here using Matlab’s image processing toolbox, Regionprops (MajorAx-
isLength and MinorAxisLength),

nab
A,

Complexity = 14)

where a and b are the major and minor axis length of ellipse that fit over
the snowflake. The minimum value of Complexity is unity for a circular
snow particle. Differences between definitions for derived region prop-
erties inside language-dependent image-processing tool boxes may lead
to slight differences in the derived ellipses of the particles.

2.4. Identification of snowflake habit using SDI and complexity

A laser-SLR camera system, which provides images of falling snow-
flakes is used to correlate DEID measured variables to snow-crystal type.
A 7-cm thick laser sheet for illuminating snowflakes was generated by
merging three green 10-W lasers (520 nm wavelength) and then
focusing the laser into a plane with spherical lenses. High-resolution
images of snowflakes were acquired using a Nikon D850 SLR camera
with a Nikon AF-S VR Micro-Nikkor 105 mm f/2.8 G IF-ED lens. The

Snowflake
. Water droplet
top view
m,p, A, m, Ay, 0, PHyo
©
© -
g o
After IS ‘ D
melting & & e
& > SDI =
© © H, o0
g g 2
(8] (8]
3+ @ 1 =

Fig. 2. Physical and mathematical interpretation of snowflake SDI. A, is the
cross sectional area of snowflake, Ap, is the area of spherical water droplet
after melting. The down arrow indicates decreasing water droplet area after
melting (a smaller area for less dense snowflakes). Less dense snowflakes have a
higher SDIL
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Minor axis length
Major axis length

Snowflake

Fitted ellipse

Fig. 3. (a) Illustration of the major-axis length and minor-axis length of the
ellipse fit over a snowflake; (b) a black and white image showing melting
snowflakes on the hotplate of the DEID as seen by the thermal camera during a
snow event. Using Matlab’s image-processing toolbox, the DEID tracks indi-
vidual hydrometeors as they impact the hotplate, melt, and evaporate. Through
tracking this process and measuring the snowflake area, as well as the area of
the ellipsoid containing the snowflake, the SDI and Complexity are derived.
Note that potential differences between language-dependent image-processing
tool boxes may lead to slight differences in the derived ellipses of the particles.

laser sheet is oriented such that falling snowflakes are imaged as they
enter the light-sheet plane. The bottom of the laser sheet was situated
about 2 cm above the hotplate of the DEID so that 2-D images of falling
snowflakes obtained by the SLR camera could be directly correlated with
DEID measurements. The type of snowflake crystal was categorized
based on the international classification for seasonal snow on the ground
(Fierz et al., 2009). We categorized six habits of the snowflake (Praz
et al.,, 2017), planar crystal (combining stellars and plates), graupel
(combining hail and graupel), columnar crystal, irregular crystal,
aggregate and small particles. Irregular crystals and aggregates were
separated by their aspect ratio due to their anticipated structural dif-
ferences, with columns aggregating more spherically and plates more
elongated (Dunnavan et al., 2019).

Planar
crystal

Columnar
crystal

Graupel Irregular

crystal

Aggregate Small
particle

!

Fig. 4. Various snowflake images obtained from the SLR camera taken at the
Alta-Collins snow-study plot. Black and white images of six types of snowflakes
are illustrated. Each type consists of five samples.
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Fig. 4 shows example images of the six different hydrometeor types.
As snowflakes rotate as they fall in the laser plane, an advantage of the
classification technique is that snapshots are obtained from multiple
angles of each hydrometeor without necessitating use of multiple cam-
eras, as is the case for devices such as the Multi-Angle Snowflake Camera
(Garrett et al., 2012). Identification of crystal type was based on all
images of individual snowflakes captured by the SLR to represent one
type of crystal. After landing, the SDI and Complexity of each type of
crystal are calculated using the measured mass and area of an individual
snowflake from the DEID. For each snowflake habit, 21 samples were
taken and correlated with the corresponding SDI and Complexity. This
process was done by visually inspecting individual snowflakes (Fig. 4). A
summary of snowflake habit as a function of SDI and Complexity is
provided in Table 2. Due to the limited number of samples, some overlap
between classifications exist. Further studies are underway to refine the
classification technique.

2.5. Relating SDI and Complexity to shear strength

Extensive past research has examined the shear strength of buried
old-snow-layer crystal structure as a function of density and grain type
(Schweizer et al., 2006). Casson, Stoelinga and Locatelli (2008) explored
the importance of storm-snowflake habit on the shear-strength rela-
tionship with data collected from Snoqualmie Pass. Their work revealed
that simple shear-strength parameterizations that only consider the
density for precipitation particles may oversimplify the intricacies of the
strength of each snowflake habit. In other words, different snowflake
habits may lead to different bonding or interlocking between snowflakes
and therefore affect the overall shear strength. For example, we antici-
pate that dendrite-dendrite and needle-needle bonding differs and is
both a function of density and snowflake habit. Based on our work
linking SDI and Complexity to snowflake habit, we hypothesize that the
coefficients of strength can be substituted with these variables such that
A = ¢3SDI (with units of kPa through multiplying by conversion factor
c3= 1 kPa) and # = Complexity (unitless).

To test this hypothesis, we calculate the mean of SDI and Complexity
for 5 mm deep freshly-fallen snow layers and calculate the shear
strength from Eq. 7. The habit for each 5 mm layer is computed by
averaging the Complexity and SDI for each layer and determining the
snowflake habit following Table 2. The calculated shear strengths is then
compared against the standard fixed-coefficient models from Jamieson
and Johnston (2001), Conway and Wilbour (1999), Brun and Rey
(1987), and Perla et al. (1982) (Fig. 5). We find fair agreement and
behavior (increasing strength with increasing density) between the
newly propose SDI and Complexity model and the accepted models;
hence, we further explore the utility of SDI and Complexity in the text
that follows.

2.6. Experimental site and setup

Data were collected from 2020 October to 2021 May in Upper Little
Cottonwood Canyon, Utah, USA at the Alta Ski Area mid-Collins Snow
Study Plot (40.5763° N, 111.6383° W, 2920 m above sea level). The
mid-Collins Snow Study Plot is ~24 m wide from east to west and 45 m
from north to south. The plot is roped off and off-limits to resort guests,

Table 2
Preliminary estimates of the relationship between SDI, Complexity and snow-
flake crystal subclass.

Crystal Subclass SDI - 2 (kPa) Complexity -
Planar crystals 6.12-14.89 1.21-1.53
Columnar crystals 13.65-19.89 1.41-1.59
Graupel 3.21-6.53 1.10-1.18
Irregular Crystals 16.23-21.83 1.31-1.49
Aggregates 18.75-28.30 1.18-1.34
Small particles 2.11-8.96 1.00-1.21
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Fig. 5. Shear strength of snow layers (each 5 mm

1200 T T T T ; - ) -
thick) as a function of snow density using Eq. 7,
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so the snow surface remains protected and undisturbed. The study plot is
surrounded by trees and open to the sky, providing an ideal setting for
measuring snowfall. At a larger scale, the study plot sits in the Collins
drainage, surrounded by Mt. Baldy (elevation of 3374 m) to the south-
west, with extending ridge lines to the north that decrease in elevation to
the highway (Utah SR-210). For further details, see Fig. 6a, which pro-
vides a topographic map of the area around the study site (red star).
Fig. 6b shows the DEID and supporting instrumentation. The appa-
ratus was placed on a permanent 6 m tall, 10.16 cm x 10.16 cm square
steel box-section tower with two pulleys/winches mounted to a concrete
base, which allowed the experimental apparatus to be raised and low-
ered as snow accumulated throughout the winter. A mounting system
constructed from 80/20 T-slot aluminum (Columbia City, Indiana, USA)

(a)

e
Fredrick  {
Tunnel

NS ——
® - Alta Ski Area- {

Cecret
Lake

Sugarloaf
Mountain

430

Paure

was fixed to the pulley/winch system on the tower. The DEID was
attached to the mounting system, suspended in the air and off the snow
surface, allowing for direct snowfall onto the hotplate. The DEID’s in-
dividual components were all carefully connected to the 80/20
aluminum frame. The DEID consists of a hotplate with a feedback
controller and a thermal camera pointing at the hotplate. The hotplate is
a Systems and Technology International, Inc. HP-606-P. The custom
hotplate has a heated area of 0.1524 m x 0.1524 m and a thickness of
0.0508 m. Note the thermal camera sampling area of the hotplate is 6.5
cm X 8.7 cm and is powered by a 120 V, 5 Amp supply with a digital
proportional-integral-derivative (PID) feedback control mechanism to
control the plate temperature. The top plate surface is composed of a
6061 aluminum alloy with a thermal conductivity, k = 205 W m™* K~}
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Fig. 6. (a) Topographic map showing the location of the Alta Ski Area mid-Collins Snow Study plot marked with a star and (b) photograph of the DEID experimental

setup during Winter 2020-2021.
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which was roughened using 2000 grit sandpaper in a linear motion
across the plate yielding long straight grooves. To maintain strong
thermal contact, the aluminum plate was fixed to the top of the heater
with thermal paste. A piece of Kapton® tape with high total hemi-
spherical emissivity (¢=0.95) is affixed to the top of the aluminum plate
to measure the actual surface temperature using the thermal camera.
The maximum operating temperature of the hotplate for Alta field ex-
periments was 106 °C. The thermal camera used for all experiments is an
uncooled microbolometer Infratec Vario HD 700 thermal camera with
432 x 288-pixel resolution, sampling at a rate of 15 Hz. Note that the
thermal camera only measures the correct temperature of the surface
when the emissivity of the plate surface is high (i.e, when a hydrometeor
lands on the surface). Otherwise, the low emissivity of the plate surface
renders the background brightness temperature small.

In addition to the system’s main components, Alta Ski Area provided
a wired ethernet connection that enables rapid transfer of images from
the computer located at the study plot to a workstation at the University
of Utah where post processing of the images occurred. Storms were
delineated by continual monitoring of the National Weather Service and
University of Utah forecasting products (https://weather.utah.edu/).
Prior to the onset of snowfall the DEID was turned on and would collect
data until precipitation stopped. During these events data transfer was
performed every 1 h, corresponded to approximately 1.2 GB of data.
During winter 2020-2021, images were downloaded in batches during
or after the storm and processed with a Matlab script described in Singh
et al. (2021).

To compliment this deployment, we made use a wide variety of
snow-measuring instruments and manual-observation boards that are
routinely deployed and maintained by the Alta Avalanche Office at the
mid-Collins study plot. The observation boards used included three main
manual snow measuring boards that are used for measuring the amount
of snowfall at different time intervals during a storm, specifically at 12 h,
24 h, and at the end of the storm duration. These snow boards are 30 cm
x 30 cm with a 60 cm long measuring stick projecting from the center of
the board. The Alta Avalanche Office visits the site at each time interval
and records the height of snow measurements and uses a Snowmetrics
snow density kit containing a spring scale, tube, and scraper to measure
the density and weight of the storm snow. The weight and density
measurements acquired from these boards were used to validate those
same measurements from the DEID. The site also has four automated
snow measuring devices, including a NOAH II all-weather precipitation
gauge from ETI instruments and a Novalynx rain gauge. This instrument
collects and records the weight of the storm snow and generates auto-
mated hourly SWE data that are transferred to Mesowest (thttps:
//mesowest.utah.edu), making the data easily accessible. Additionally,
the site has three Campbell Sci. Inc. SR50 ultrasonic snow-depth sensors
that record the height of snow and automatically upload the data to
Mesowest every hour. These SR50 sensors also measure running totals
on a 12 h, total depth, and a storm frequency. Lastly, the site also has a
live camera pointed at another 12 h snowboard that is illuminated with
lights for 24 h recording.

2.7. Snowboard tilt tests

To better understand the relationship between the DEID’s density
profiles and storm-snow instability, we designed a repeatable shear-
stability test based on standard tilt-board and shovel-tilt tests. A tilt-
board stability test is an easy method to quickly identify unstable
layers in storm snow (Schweizer et al., 1998). The basic method was first
developed over fifty years ago by Schleiss and Schleiss (1970) to
investigate shear instabilities in storm snow. As described by McClung
and Schaerer (2006), a tilt-board test makes use of an isolated 30 cm x
30 cm block of snow, no >40-cm deep that is placed on a metal plate.
The plate is transferred to a horizontal board that pivots to 15°. The plate
is tapped when at 15° until failure and the location of the failure plane is
measured. The standard field variant of the method, the shovel tilt test,
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isolates an approximately 30 cm x 30 cm column (again, no thicker than
40 cm) on a shovel which is tilted at 15° and then tapped until shear
occurs; tests are rated as Easy, Moderate, or Hard (Greene et al., 2004).

The tilt board used in our study, shown in Fig. 7, is a modified version
of the standard method described above. We used a Snowmetrics snow
board which is made of plastic and is 41 cm x 41 cm x 1.25 cm. We
placed the snow board on an 80/20 T-slot aluminum frame that affixed
to the same crank-up mast as the DEID. Alta Ski Patrol used this modified
tilt board test every 12 h during their morning and afternoon observa-
tions at the mid-Collins Study Plot.

Alta Ski Patrol kept the snow board as close to the ground as possible
to avoid wind and other factors altering the natural snowfall. They used
the following methodology: 1) Using a snow-saw, an initial cut was
made around the storm snow, taking care not to disturb the test sample.
Once complete, the remaining test slab had the same dimensions as the
snow board. 2) Using the hand crank on the tower, the snow board was
then raised off the ground to a height where the tilt of the board could be
positioned to 30°. 3) The test would then begin with taps from the wrist
and continue until there was a shear failure within the storm snow; ‘no
failure’ was recorded if there was no failure reported after 30 taps. 4) A
detailed record of the test was saved and if possible the grain type in the
the failure plane was recorded. This sequence would repeat every 12 h
with storm snow at approximately 04:00 and 16:00 LT.

2.8. Infrasound and Utah Avalanche Center observations

To aid in the validation of the storm-snow instability model, we used
data collected from UDOT’s infrasound detection systems (Vyas, 2009;
Mayer et al., 2020). The infrasound systems in LCC are produced by
Intermountain Labs and Snowbound Technologies and are deployed in
all prominent slide paths within LCC. The systems detect the precise
timing and location of avalanches by listening for the low frequencies
generated by avalanches in motion. Once an avalanche is in motion, the
infrasound systems detects the frequency and gives specific details about
the avalanche, time in motion, power, and where it started and ended.
To provide a larger picture of the avalanche activity in LCC and the
surrounding region, the storm-snow instability model was assessed
using observational data collected by the UAC through a web portal
submitted by recreationalists and snow professionals. Data for this study
can be found through their online archives (https://utahavalanchecente
r.org/avalanches).

3. Results
3.1. Stability results

Over the course of the winter, the DEID captured data from
numerous storms. For this report, data from fourteen storms occurring
between 12 December 2020 and 26 April 2021 are presented. To un-
derstand the conditions and avalanche hazards after each storm, data
collected from the DEID, the infrasound detection system, and visual
observations from the UAC were combined. A summary of these results
can be found in Table 3. Table 3 provides details on the storm start time,
end time, total snow accumulation, total SWE, max SWE rate, mean and
range of storm-snow density, maximum density gradient in the storm
snow, and the ensemble averaged stability index from the four members
of the model. It should be noted that all of these variables are measured
directly or derived solely from DEID observations. The columns that
follow the DEID-derived data provide insight into the avalanche con-
ditions in the Central Wasatch Mountains from tilt-board test results at
the mid-Collins site, time of first infrasound avalanche detected in LCC,
and post-storm 3-day total number of avalanches in the Central Wasatch.

Of the fourteen storms observed and reported in Table 3, three
storms from the 2020-2021 season were identified for density profiles
and forecasted storm-snow avalanche problem as noted by the UAC and
post-storm activity. Data collected by the UAC can be found in their
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Fig. 7. (a) Tilt board deployed in the field with the DEID (b) SOLIDWORKS rendering of the tilt board.

Table of DEID measured parameters and snow stability metrics during winter 2020-2021 for ten different snow events observed in Little Cottonwood Canyon. Tilt
board test are “POS” or “NEG” for positive or negative results, and if a positive result occurs, the number of taps are shown. Infrasound - indicates if infrasound results
were positive and when. UAC observations indicate the total number of avalanches reported during that period and the number of trigger types in the format unknown/
user/natural/explosive. Natural avalanches are in boldface type. NA indicates data “not available™.

Storm-Snow Stability Metrics

Storm Start Storm End Total Snow Total SWE Max SWE P (kg/m3, 3 SLyin  Tilt Board Infrasound UAC Observed
Time/Day (MST)  Time/Day (mm) (mm) Rate (mm/h) range) 621max Test Avalanches
(MST) (kg/m*)

0100 12/12 2000 12/12 292 10.66 5.16 34 [12,190] 17 1.30 NA NEG 5(1/3/1/0)

1917 12/13 0830 12/15 147 10.34 2.57 72 [11,238] -130 6.55 NA NEG 8 (0/8/0/0)

0600 12/17 0700 12/18 413 27 11.24 63 [13,266] 200 1.22 NA POS: 0025 41 (7/16/18/0)
12/18

0900 12/22 0900 12/23 314 15.38 31 54 [19,214] 12 1.14 NA NEG 11 (5/4/2/0)

0845 01/22 0600 01/24 457 34.37 50 71 [21,420] -29 0.96 NA NEG 27 (5/12/10/0)

0600 02/03 2000 02/05 488 31.75 28.93 70 [11,275] 200 1.29 POS POS: 1515 34 (4/6/24/0)
02/05

2125 02/11 1600 02/14 862 51.81 8.91 57 [16,266] 56 091 POS POS: 0244 155 (10/5/72/69)
02/12

0000 02/15 2000 02/17 1078 65.15 29 57 [12,309] 178 0.47 NA POS: 0058 114 (4/1/55/54)
02/16

1611 02/26 1600 02/27 402 24.13 13.01 59 [13,187] 76 1.50 NA POS: 0730 12 (2/5/5/0)
02/27

0743 03/20 2000 03/22 598 33.35 9.11 50 [14,495] 22 1.39  POS POS: 0735 8 (2/4/2/0)
03/21

0715 03/25 0600 03/26 323 16.79 24.02 54 [15,432] 53 379 NA NEG 10 (1/4/5/0)

1727 04/13 2052 04/14 628 40.49 43.99 66 [18,342] 55 0.83 NA NEG 13 (3/7/3/0)

0222 04/15 2310 04/15 352 20.84 11.95 42 [12,187] 230 1.57 NA NEG 17 (3/11/3/0)

0433 04/26 1300 04/26 272 35 11.4 83 [23,488] -180 1.43 NA NEG 7 (2/4/1/0)

digital archives at utahavalanchecenter.org. These storms can be sum-
marized as follows:

1. 12 December 2020: Avalanche observations indicated that one
natural avalanche occurred in the storm snow and three user-
triggered avalanches occurred; the forecast demonstrated that the
storm snow was sensitive to skier-triggering following the storm
through photos and videos. Report details can be found at https://ut
ahavalanchecenter.org/forecast/salt-lake/12/13/2020.

. 27 February 2021: Avalanche forecasts for the region were for storm
and wind-transported snow at mid to upper elevations. One notable
skier-triggered avalanche was on steep southeast-facing terrain,
which broke 300-450 mm from the snow surface. Report details can
be found at https://utahavalanchecenter.org/forecast/salt-lake/2/
28/2021.

3. 20 March 2021: For this case, two natural avalanches and four skier-
triggered avalanches that were 300-450 mm deep and that failed in
the storm snow were reported. Report details can be found at https://
utahavalanchecenter.org/forecast/salt-lake/3/22/2021.

To better understand the DEID-based instability model presented in
Section 2.2, detailed results from the stability model are supplied in
Figs. 8 through 13. These results are solely produced by the DEID and
highlight the input, derived, and final variables (outputs) for each of our
three case studies described above. The results and figures serve as po-
tential tools that could be used to produce real-time forecasting sce-
narios. Figs. 8, 10, and 12 show results for the model run with
coefficients derived from Jamieson and Johnston (2001) coupled with
the Conway and Wilbour (1999) densification model. Other model-
member results are not shown since they show similar trends for each
case. For each case, subplot (a) shows a density profile of the snowfall
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Fig. 8. Avalanche forecasting plots produced with data from the DEID for storm beginning on 12 December 2020. (a) The measured and modeled density profile of
the storm snow, (b) The modeled storm-snow density over the course of the storm, (c) the modeled shear strength of the storm snow, (d) the measured overburden
force of the storm snow, (e) the stability index (ratio of subplot c to subplot d), and (f) the predicted time to failure in seconds of the storm snow.
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Fig. 9. Storm-snow/old-snow interface plots of (a) stability index (SI) and (b) the time to failure (t) for storm snow data beginning on 12 December 2020.

during the storm (solid line) and a density profile of the storm snow at
the end of storm computed with the densification model. Subplot (b) is
the storm-snow density showing its evolution/densification over the
time of the storm, which is used to compute the storm-snow strength
over time (c) and overburden (d). Lastly, subplots (e) and (f) present the
stability index (SI), which is the ratio of subplot (d) to (c), and the time
to failure, computed following the method of Conway and Wilbour

(1999).
Figs. 9, 11, and 13 provide the stability index and time to failure at

the interface between the old snow and storm snow using the four
variations of the stability model presented in Table 1 and an ensemble of
all model’s outputs. The approach of presenting an ensemble of models
is akin to the weather forecasting approach where multiple models with
a variety of initial conditions are supplied to statistically understand the
agreement of multiple models. It should also be noted that this figure can
be produced for any storm layer of interest, but the interface between
the old snow and storm snow is discussed here for simple interpretation

of the results.
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Fig. 10. Avalanche nowcasting plots produced with data from the DEID for a storm beginning on 26 February 2021. (a) The measured and modeled density profile of
the storm snow, (b) Modeled storm-snow density over the course of the storm, (c) the modeled shear strength of the storm snow, (d) the measured overburden force of
the storm snow, (e) the stability index (ratio of subplot ¢ to subplot d), and (f) the predicted time to failure in seconds of the storm snow.
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Fig. 11. Storm-snow/old-snow interface plots of (a) stability index (SI) and (b) the time to failure (ty) for storm snow data beginning on 26 February 2021.

Details from the storm on 12 December are shown in Figs. 8 and 9.
This storm produced 292 mm of snow and 10.7 mm of SWE (Table 3).
Initial density profiles from the storm snow (Fig. 8a and b) show low-
density (20-30 kg m®) snow in the lowest 150 mm with higher-
density snow (60 kg m?) above these layers at 50 mm and from 150
mm to 200 mm. This high level of detail in the storm-snow density in-
dicates the existence of slight density inversions, which are also present
in the strength profile (Fig. 8c). Here, blue contours indicate weaker
snow, as seen at the interface between the old snow and storm snow,
while red contours indicate stronger snow. The SI shown in Fig. 8e

10

indicates fragile snow at the end of the storm in a layer that starts at the
new-snow/old-snow interface and goes up to 150 mm. This is further
substantiated in the time to failure plot (Fig. 8f) that shows blue vertical
lines indicating 1000 s to failure at 10:40 on 12 December 2020. From
this analysis, we find that the SNOSS model with coefficients of strength
from the Jamieson and Johnston (2001) accompanied with the densi-
fication model did predict the onset of natural avalanches. Despite this
model’s success, the ensemble of models (black line in Fig. 9b) predicted
more stable conditions (minimum SI of 1.29). This result is indicative of
a very sensitive snowpack and is further substantiated in the UAC
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observational results shown in Table 3. A total five avalanches were
reported with one natural, three user triggered, and one unknown
trigger.

The 26 February 2021 storm produced a sensitive snowpack that led
to five natural avalanches reported by the UAC and a natural avalanche
observed with the infrasound (see Table 3). The initial density profile
(Fig. 10a) from the storm does indicates a slight inversion, however, the
low stability index near the surface is in part driven by the large over-
loading from the high precipitation rates observed over the course of the
storm, tipping the scales toward instability. This can be observed in

11

Fig. 10f, which presents the time to failure model. Here, areas of red
indicate strengthening, with vertical lines of light colour being associ-
ated with moments of high precipitation and increasing instability.
These periods are identified at approximately 08:00 on 27 February
2021 and at noon on the same day. Both of these time periods correlated
with a small natural avalanche cycle that was captured by the infra-
sound detection system (Table 3).

The last case study was 20 March 2021. During this storm, a total of
598 mm of snow consisting 33.4 mm of SWE fell at the site (Table 3). The
snowpack density decreased in the lowest 200 mm above the storm-
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snow/old-snow interface and then increased with a strong density
inversion from 200 mm-350 mm as shown in Fig. 12a. According to the
UAC observations (see Table 3), eight avalanches were reported that
failed on the 200 mm-350 mm layer. Furthermore, the infrasound sys-
tem indicated a natural avalanche at 07:35 on 21 February. Not only did
the models capture this modest variation in SI within the storm snow,
the SDI-Complexity model without densification and the Jamieson and
Johnston (2001) model with densification both correctly predicted the
onset of natural avalanches within the problematic layers (Figs. 12).

3.2. Tilt-board test results

DEID data from the 3 February 2021 storm is used to illustrate the
ability of the DEID to identify weak layers both in terms of density and
snowflake characteristics. As shown in Table 3, this storm lasted over
two days producing 488 mm of snow and 31.8 mm of SWE. Furthermore,
the maximum SWE rate observed by the DEID was nearly 29 mm/h.
During a 12-h period on 5 February 2021 DEID data were captured and
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compared to Alta Ski Patrol’s manual observations and tilt-board tests.
Fig. 14 presents a schematic of the tilt-board test results (a) along with
profiles of the storm-snow density (b), SDI (c), Complexity (d), SWE rate
(e), and modeled shear strength (f). Here, we use the SNOSS model with
strength coefficients from the SDI-Complexity model without densifi-
cation. This model was chosen since SDI and Complexity account for
snowflake habit and therefore can be used to help interpret shear
strength as a function of both density and crystal type. The horizontal
red lines in Fig. 14 represent the weak layer/failure plane within the
storm snow that failed during the tilt-board test.

For this test, 12-h of storm snow accumulated onto the board. During
the test, the board was raised from the snow surface, tilted to 30°, and
tapped following the procedure in Section 2.7. A shear failure occurred
at a height of 152 mm from the board’s surface after the fourth tap. To
understand this result, we provide a detailed account of the variables
measured by the DEID. Specifically, Fig. 14c shows a profile of SDI,
which decreased throughout the storm cycle to its minimum at the weak
layer snow height, from a value of ~9 to 5, a reduction of 44%.

120

O !
1.2 1.3 1.4
Complexity

1.5

300 400 500
Shear strength (Pa)

0
100 200 600 700

Fig. 14. 5-min averaged DEID data from a snow event on 5 Feb 2021 that correspond to a tilt-board test in which the snowpack failed at 152 mm from base (z = 0) in
4 taps (red, horizontal line). (a) Schematic of tilt-test set-up; (b) height of snow vs. density; (c) height of snow vs. SDI; (d) height of snow vs. Complexity; (e) height of
snow vs. SWE rate (f) Height of snow vs. shear strength. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Meanwhile, Fig. 14d presents the snowflake Complexity, which
increased from 1.3 to 1.5 at the shear layer (global maximum). From Eq.
7, we see that shear strength increases linearly with SDI, while
Complexity acts as the exponent to the density ratio of snow to ice (since
A = SDI and g = Complexity for this model). Hence, the observed
decrease in SDI and increase in Complexity led to weaker snow.
Furthermore, from Section 2.4, the trend and combination of SDI and
Complexity indicate that the snowflake habit migrated during this
period from a columnar crystal to a planar-crystal habit. Finally, Fig. 14e
shows that the SWE rate had a notable peak just above the height of the
weak layer, indicating rapid development of overburden. The p, SDI and
Complexity allows us to estimate the snow’s shear strength and conclude
that the layer located at 152 mm from the storm snow/old-snow inter-
face is the weakest in the storm snow. A global minimum in shear
strength is correctly modeled using DEID measurements inputs in
agreement with results from the manually observed tilt-board test, in
which a shear failure was observed at the same height, 152 mm. This
result illustrates the power of the DEID to not only capture density
profiles in great detail but to help determine storm-snow instabilities
driven by variations in the habit of falling snowflakes.

4. Discussion

Within the SNOSS model, there is high sensitivity to the coefficients
of strength, 4 and f, used in Eq. 7 (see Fig. 5). Currently, strength co-
efficients are only defined for the predominate grain classification. For
storm snow there is only one classification, precipitation particles. Here,
we present and assess the SDI and Complexity parametrization for shear
strength that accounts for grain habit, as shown in Section 2.4. While
this shear-strength model requires further in-situ validation to relate SDI
and Complexity to snowflake habit (Sec. 2.4) and snowflake habit to
shear strength with shear frame tests, the method has begun to
demonstrate here its ability to account for the varying strengths of
different precipitation particles that owes to their structure.

It is known from expert experience that the type of snowflake habit
influences shear-strength of the snowpack. Yet, currently, all storm-
snow strength parametrizations (Fig. 5) assume the same shear-
strength coefficient for precipitation particles and to behave solely as
a function of snow density. The difficulty appears not to be a lack of
awareness by practitioners but instead an inability to measure real-time
snowflake type, and of measuring snow pack shear-strength immedi-
ately after a snowfall. Only the measured density of the layer is available
as a diagnostic for determination of snowpack shear-strength (Eq. 7).

To assess the newly proposed SDI and Complexity shear strength
parametrization in the context of the existing shear strength parame-
trizations, four strength formulations, as described in Section 2.2, as well
as the ensemble of all members, are utilized to statistically predict the
onset of storm snow avalanches. The four models and a summary of their
performance are summarized in Table 4.

Of the four models, we found that the ensemble average of the
members, Jamieson and Johnston (2001) with densification, and the SDI
and Complexity model without densification provided the best

Table 4
A summary of the shear-strength model evaluations. Jamieson 2001 is
abbreviation for Jamieson and Johnston (2001).

an

Model Tendency Explanation

Jamieson 2001, without Conservative Lowest coefficients of strength,
densification model with constant density

Jamieson 2001, with Fair Lowest coefficients of strength,
densification model with increasing density

SDI & Complexity, without Fair Larger coefficients of strength,
densification model with constant density

SDI & Complexity, with Liberal Larger coefficients of strength,
densification model with increasing density

Ensemble Fair Average of all models
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predictions of the onset of natural avalanches. Although, as highlighted,
the behavior of the stability index (SI) may vary across different regions
or snow packs. By aggregating results from the SNOSS model and the
natural avalanche activity, a specific SI may be used to further under-
stand and refine each SI for a region of interest. For example, Jamieson
2001 without densification may predict a critical SI value of 0.5 whereas
the SDI and Complexity model with densification may predict a critical
SIof 3. The reason for the discrepancy may lie within the uncertainties in
coefficients for the strength and the densification model parameters.
With instruments such as the DEID, specific strength coefficients can be
related to grain type and begin to narrow this uncertainty or refine the
parametrizations. Furthermore, with the availability of more storms and
DEID data, we can begin to validate Table 2. This validation would allow
SI predictions and storm-snow avalanche forecasting solely with DEID
data.

A critical point of difference among storm-snow stability models is
the inclusion (or exclusion) of a density compression or densification
model. The goal of any densification model is to account for compression
the snowpack experiences due to metamorphic and vertical overburden
stresses over the period of interest. In these models, snow is treated as a
fluid that compresses based on the compactive viscosity of the snow.
Initial observations from the SNOSS model outputs suggest that the re-
sults from the densification model compresses the snowpack more
rapidly than anticipated. For example, on 2021 March 20 the snowpack
at 200 mm was computed to increase from 45 kg m ™ to 110 kg m 3 in
under 24 h, a 244% increase. We hypothesize that the reason for this
observation is that the original densification model parameters, pri-
marily the compactive viscosity, were determined “post-storm “, rather
than capture and applied during snowfall as performed here with the
DEID. Traditional methods for capturing these parameters require dig-
ging snow pits, hours or even days after the storm snow has settled,
compressed, and begun to undergo metamorphism. This gap in data
collection from snowfall to observation impacts avalanche forecasting
ability, as well as broader snowpack and hydrology models, which rely
on densification models.

Moreover, the compactive viscosity is only a function of broad
morphological classification and does not refine grain type for storm
snow beyond the precipitation particle classification. Casson et al.
(2008) performed a study to classify compactive viscosity as a function
of precipitation type although no clear conclusions could be drawn.
With the new high-resolution data from the DEID we anticipate being
able to assess the compactive viscosity concurrent with an ongoing
storm over short time scales of order of 1 h as well as for specific pre-
cipitation particle types. Identification of compactive viscosity terms as
a function of crystal type at relevant storm timescales may enable
improved storm-snow densification models for more accurate avalanche
forecasting.

The SI, Eq. 11, represents the ratio of the shear strength of the storm
snow to the overburden stress. Generally, when the SI value falls below
unity, it is forecasted that the snowpack is unstable and natural ava-
lanches may occur. Complicating factors in interpretation of SI
computed at a single location for application to an entire region include
terrain, spatial variability in snow accumulation, and differences in
elevation and aspect. While the single location SNOSS assessment has
these limitations, the results shown in Fig. 15 offer an initial look at the
correlation between the minimum stability index (Sly,) calculated as
the minimum SI over a storm from the ensemble averaged SI from the
members in Table 1, and the number of reported natural and unknown
triggered avalanches (Ax) observed in the Central Wasatch from the
storm’s start to three days post storm from the UAC observation data-
base. The error bars in Fig. 15 present the standard deviation among the
models. The corresponding Slnin versus Ax analysis provides greater
context for interpreting the value of the SI as well as demonstrating the
convergence or confidence of the SNOSS model’s SI output. Initial
findings suggest that, as anticipated, when Sy, decreases, there is
increased instability and the number of avalanches observed increases.
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Fig. 15. The total number of natural and unknown triggered avalanches reported to the UAC from storm’s end to three day post storm, compared to the ensemble
averaged stability index. The error bars represent the standard deviation between the models for each case.

This relationship demonstrates the power the DEID and SNOSS model
can employ for real time operational forecasting where storm snow
avalanches are prevalent, an otherwise impossible task without real-
time DEID data.

With more comprehensive measurements than presented here, it
may become possible to make regional predictions of the number of
avalanches using the SNOSS model. For example, in Fig. 15 reported
widespread (>6 Ax) natural and unknown triggered avalanches began
when the Sl fell below a value of 1.5. Further studies designed relate
the SNOSS model outputs to natural storm snow avalanches may be able
to unlock more insight into the physical meaning of the spectrum of SI
each model presents. We hypothesize that other data may be used to
adapt this for applicability to regions outside of LCC, such as reactive-
ness of storm snow to explosive triggers, which is regularly documented
by avalanche mitigation personal.

5. Conclusion

We have presented results that highlight the Differential Emissivity
Imaging Disdrometer’s potential for obtaining real-time measurements
of critical variables required for prediction of snowpack instability and
avalanche forecasting. Accurate measurements of precipitation in-
tensity, snow density, and accumulation of snow and water are
measured with the DEID in a particle-by-particle fashion. None of these
measurements were previously available at such high resolution. These
basic variables by themselves are valuable to avalanche forecasters who
often use heuristics based on these variables (e.g., Perla, 1970) to pro-
vide warnings in their forecasts. However, despite the advancements in
measurement techniques and in weather and avalanche forecasting,
predicting the onset of storm-snow avalanches is still a complex issue.
Works from Dkengne Sielenou et al. (2021); Pérez-Guillén et al. (2022)
demonstrate the impact large data aggregation can have on region-wide
avalanche forecasting, but the inherent local-scale temporal and spatial
variability of avalanches will continue to be a challenge.

We have introduced two new parameters based on DEID measure-
ments including the snow density index (SDI), which is the ratio of the
actual projected snowflake area measured on the DEID’s hotplate to the
melted area of the snowflake, and the snowflake’s Complexity, or the
ratio of the area of the smallest ellipse altogether containing the particle
cross-section to the actual cross-sectional area of the hydrometeor.
Preliminary results indicate that classification of snowflake habit based
on these parameters is possible using the DEID. Bair et al. (2012) noted
that in half of all U.S. avalanche fatalities, the type failure crystal, or
grain type at the bed surface of the avalanche, is not known because the
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crystals can metamorphose in the snowpack and are difficult to
measured during a storm. Continuous measurements from the DEID
combined with simple shear-strength models provide stability indices of
storm snow and time-to-failure metrics. These results highlight potential
nowcasting products that a coupled DEID and SNOSS model can provide.

Following on the work presented here, future objectives include
exploiting, for example, the DEID’s ability to estimate the depth of shear
layers within fresh storm snow and the overburden weight. These data
could be combined with slide-path areas and elevation profiles to yield
estimates of the potential destructive scale and energy of a storm-snow
avalanche (Schleiss and Schleiss, 1970). The analysis could be per-
formed for relevant slide paths of interest either in real time (now-
casting) or in a forecasting manner. In addition, we have found that the
parameterization of the compactive viscosity in the SNOSS model may
be too aggressive, leading to overly rapid densification and producing
higher shear strengths within the modeled snowpack (Eq. 7). We hy-
pothesize that improvements to the SNOSS model can be made by per-
forming field and lab experiments to refine parameters related to grain
structure. Furthermore, what remains poorly understood is how mix-
tures of different snow-grain types impact the strength of different
layers. Currently, our SNOSS or stability-index model employs a linear
average of SDI and Complexity for all types of snow crystals contained in
a 5-mm layer, which then are used to compute the strength of the layer
(e and p). It is not clear if this is the best way to aggregate snowflake
habit to determine snow strength. Future work should investigate the
relationship between snow-crystal type and shear strength using DEID
differentiation of particle types and manual measurements of shear
strength from shear frame tests.

In summary, we explored a simple and promising snow-stability
index model that makes use of unique, highly detailed continuous
measurements of key snowflake parameters using the Differential
Emissivity Imaging Disdrometer. Future studies could include sophisti-
cated, physics-based avalanche models such as SNOWPACK or CROCUS.
Combining advanced avalanche modeling tools with the DEID di-
agnostics and Infrasound Detection Systems can be expected to provide
the ingredients necessary to significantly advance the state of science for
avalanche forecasting.
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