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A B S T R A C T   

Storm-snow avalanches are challenging to forecast due to complex alpine terrain and during rapidly changing 
weather conditions. They can result in loss of lives and significant economic impact. We describe how a new 
device that continuously measures with high-frequency snowflake mass, size, density, and type, the Differential 
Emissivity Imaging Disdrometer (DEID), and show how the DEID can be used to aid avalanche forecasting when 
coupled with a storm-snow stability model. DEID measurements of snow accumulation, snow water equivalent 
(SWE), and snow density obtained during seventeen storms taken at the mid-Collins Snow-Study Plot at Alta Ski 
Area in Utah’s Central Wasatch mountain range during winter 2020–2021 show excellent agreement with 
infrequent manual measurements. Additionally, two new variables, the Shape Density Index (SDI) and 
Complexity, are proposed and used to classify snowflake habit and estimate storm-snow shear strength. We 
illustrate how these DEID-derived data can be used to identify layers of concern in the storm snow such as density 
inversions, in real-time without digging snow pits. Furthermore, the DEID-data are used to run four variations of 
the SNOw Slope Stability model (SNOSS) for the storms investigated. The results are evaluated with data 
collected from tilt-board tests, infrasound measurements, and visual observations of avalanches. For a total 
fourteen storms analyzed, the DEID-driven SNOSS-modeled minimum stability index predicts the general sta
bility of the storm-snow as indicated by observed avalanches, both natural and of unknown cause. The results 
provide a promising approach for nowcasting instabilities within storm-snow layers with a single instrument.   

1. Introduction 

Storm-snow avalanches arise due to instabilities within the storm- 
snow layer or at the old-snow/storm-snow interface (American 
Avalanche Association, 2022). These avalanches often occur in alpine 
terrain and are the cause of significant hazards to roadways, motorists, 
maintenance personnel, and infrastructure, closing mountain corridors 
throughout many areas including Europe, North and South America, and 
New Zealand. Key ingredients that can lead to avalanches occurring 
within the storm snow are density inversions (i.e., relatively high- 
density snow above low-density snow, often refereed to as upside- 
down snow) and high snow water equivalent (SWE) rates, which in
crease the overburden stress on storm snow prior to densification due to 
compactive and metamorphic stresses, which in turn increases the 
strength of the storm snow below (American Avalanche Association, 

2022; Jamieson, 1995). Note that for the scope of this work, the term 
storm-snow avalanche is utilized rather than storm slab, since the 
cohesiveness of the slab within the storm-snow layer is not determined, 
however the depth and density of the potential slab is examined. Due to 
the subtleties of density variation or snow habit changes within the 
storm snow and the rapid variability of SWE rate during storms (Singh 
et al., 2021) forecasting these avalanches with a high degree of spatial 
and temporal accuracy (sub 1 km and 1 h) has plagued avalanche 
forecasters and mitigation specialists for decades. 

Each year avalanches result in loss of life with significant economic 
impact. In Europe, on average 100 persons lose their lives to avalanches 
annually. In North America over the last ten years the Colorado 
Avalanche Information Center (CAIC) reports that this average has risen 
to 27 fatalities from avalanches (CAIC, 2022; EAWS, 2022). Monetary 
costs from damages to infrastructure and road closures as a result of 
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avalanches can also cause major problems for local economies. Eco
nomic impacts can be difficult to assess, although 30 years ago Voight 
and Coauthors (1990) estimated that property damages, rescues and 
snow removal had impacts to the US economy in the millions of dollars. 
2014 Icelandic estimates accounting for indirect economic loss along 
with loss of life find that each fatality in their country may be equal to 
1.2 million US dollars (Jóhannesson and Porsteinn, 1992). 

This study is focused on highway SR-210, located in Little Cotton
wood Canyon (LCC), Utah, United States, which is a high-traffic 
mountain highway. As a result of storms and mitigation work, LCC 
closes, on average, 10.4 times for a total 57.3 h per year. On snow years 
that significantly exceed average accumulations, those numbers can 
more than double. The cost of such closures has been estimated at over 
$2.5 million per day, or $106,000 per hour in 2019 dollars (Nalli, 2019). 

Currently, storm-slab avalanche forecasting requires in-situ obser
vations and weather-forecasting products, specifically, accurate obser
vations of snow density, snow water equivalent (SWE), and precipitation 
intensity. Even with these data at limited points in space, forecasting 
storm-slab avalanches presents a challenge due to the highly spatio- 
temporally varying character of these data and the shear number of 
variables associated with storm-slab avalanches. The dynamic nature of 
atmosphere-snow interactions presents an ever complex forecasting 
problem from a research and practitioner standpoint. Depending on the 
region and available observing infrastructure, a variety of techniques are 
used to collect the aforementioned variables. Most commonly, snow 
scales are combined with acoustic snow depth sensors to measure storm 
snow density. However this technique only provides very coarse esti
mates of total storm water content and density. Operational centers can 
sometimes couple such data with manual observations for validation 
and comparison, but this approach is costly, only allowing for collection 
at rare intervals. Where available, CS725 passive gamma radiation SWE 
sensors can continuously monitor the total water content of the snow
pack (Smith et al., 2016). A need remains for detailed depth profiles of 
storm SWE and snow density as currently, this information can only be 
determined using primitive snow-pit evaluation tests, often performed 
long after the avalanche danger has presented itself as an immediate 
public threat. 

To address these challenges, snow depth and SWE data can be 
ingested into snow-cover models such as SNOWPACK (Bartelt and 
Lehning, 2002) or CROCUS (Vionnet et al., 2012) that have hazard 
modules to predict snowpack instabilities. Adoption of these models has 
been slow due to a combination of mistrust and a significant learning 
curve (Morin et al., 2020). Moreover, model development has been 
directed primarily at prediction of persistent weak layers in old-snow. 

One model that addresses storm-snow avalanches is the mechanical 
SNOw Snow Slope (SNOSS) model. The model is based on a stability- 
index first developed by Roch (1966) and Fohn (1966) with later re
finements by Jamieson (1995) and Jamieson and Johnston (1998) and 
evaluation by Conway and Wilbour (1999); Hayes et al. (2004) and 
Havens et al. (2012). The SNOSS model calculates the ratio of strength to 
overburden. The shear strength of the storm snow is calculated with a 
power-law relationship based on snow density, where the storm-snow 
density is coupled with a densification model for calculating the in
crease in storm-snow density with time due to metamorphic and over
burden stresses. The relationship between the strength of the layer is 
compared to the overburden weight or the SWE of the overlying snow to 
determine a “time to failure” (Conway and Wilbour, 1999). Despite the 
need for real-time forecasting of storm-snow avalanches the model has 
not been used in operational settings. This is due to a lack of availability 
of real-time high resolution storm-snow density data, which is the key 
variable driving the model. 

A critical need exists for real-time, observationally-based tools, both 
hardware and software, that can measure and account for the spatial and 
temporal variability in atmospheric and storm-snow-related variables 
found in mountainous terrain, and that can be easily adopted by 
avalanche forecasters and technicians. 

Here we discuss how a new instrument, the Differential Emissivity 
Imaging Disdrometer (DEID) can be used to help guide snow-cover 
models. The DEID was developed to capture real-time measurements 
of snow density, SWE, and precipitation intensity (PI) on a particle-by- 
particle basis at high temporal resolution (Singh et al., 2021; Rees 
et al., 2021). Snowflake shape is characterized with a shape density 
index or SDI and Complexity. In an operational mode, we show how 
these two variables can be used with the SNOSS model to forecast storm- 
snow instabilities. Observations collected in Utah’s Wasatch mountains 
during the winter of 2020–2021, and results from the storm-snow 
instability model, are evaluated and validated against snowpack mea
surements routinely obtained, such as the Utah Department of Trans
portation’s (UDOT’s) Intermountain Labs and Snowbound Technologies 
Infrasound Detection Systems (Vyas, 2009; Mayer et al., 2020), a high- 
density network of standard meteorological stations, and physical ob
servations from snow professionals and recreationalists managed by the 
Utah Avalanche Center (UAC). The goal is to evaluate the potential 
contribution to avalanche prediction of real-time measurements of snow 
density, SWE, and snowflake characteristics. Three main approaches are 
pursued: (i) investigating the relationships of DEID measurements to 
stability indices and avalanches, (ii) assessing storm-storm instability 
with the DEID data and systematic tilt-board tests, and (iii) evaluating a 
snowpack stability index derived solely from DEID data. 

2. Methods 

2.1. DEID methodology 

A complete description of the DEID is presented in Singh et al. (2021) 
with additional details given in Rees et al. (2021). Here, we present a 
concise summary with an update to the physical approach for computing 
the mass and density of a hydrometeor. The DEID consists of an infrared 
camera pointed at a hotplate that has low emissivity. To quantify a 
hydrometeor’s size/area on the hotplate, the DEID makes use of the fact 
that the thermal emissivity of water (ε > 0.95) is very different from that 
of aluminum (ε < 0.1), such that objects with the same thermodynamic 
temperature have different radiative temperatures seen by a thermal 
camera (see Fig. 3). The plate thermodynamic temperature is measured 
with the thermal camera by placing a high-emissivity (ε ≈ 0.95) poly
imide tape on the hotplate. The camera records at 15 fps with a reso
lution 531 pixels × 362 pixels for a spatial resolution of about 0.2 mm/ 
pixel. 

Thermal images of the hotplate provide the area of hydrometeors, 
the temperature difference between a hydrometeor on the plate and the 
hotplate, and the evaporation time. Individual hydrometeor mass is 
determined using the DEID by assuming that the heat gained by a hy
drometeor is equivalent to the heat lost by the hotplate during evapo
ration according to, 

m =
1

(
cΔT + Leqv

)

∫ τevp

0
(k/d)effA(t)

(
Tp(t) − Tw(t)

)
dt. (1) 

Here, m is the mass of the hydrometeor, c is the specific heat capacity 
of water, Leqv = Lv is applied for liquid hydrometeors and Leqv = Lv + Lf 
for solid hydrometeors, where Lf is latent heat of fusion for water and Lv 
is the latent heat of vaporization of water, Tp is the hotplate surface 
temperature, Tw is the temperature of the water droplet, and ΔT is the 
temperature difference between the initial and final temperature of a 
water droplet on the hotplate. In addition, τevp is the time required to 
evaporate the water droplet, and (k/d)eff is an empirical coefficient that 
has been determined to be 7.006 × 103 W m−2 K−1. For a snowflake, the 
SWE may be immediately calculated as, SWE = (c1Δm)(AhpρH2o); c1 is 
conversion factor from meters to millimeters (i.e., c1= 103 mm m−1), Δm 
(kg) is the total hydrometeor mass that falls on the hotplate in a given 
time, Ahp (m2) is a rectangular sampling area on the hotplate and SWE is 
given in mm of water. 
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The SWE accumulation rate (RSWE) can be estimated from the total 
mass of water deposited onto the hotplate in each frame as, 

RSWE = c2
Δm⋅fps
ρwAhp

, (2)  

where c2 is a conversion factor from m s−1 to mm hr−1 (3.6 × 106 mm/ h 
m−1 s), fps is the image sampling rate in frames per second, Δm (kg) is 
the total hydrometeor mass that falls on the hotplate in each recorded 
frame that is estimated using Eq. 1, ρw (kg m−3) is the bulk density of 
water and Ahp (m2) is a rectangular sampling area on the hotplate that 
captures all hydrometeors. RSWE can also be estimated using a particle- 
by-particle method whereby Δm in Eq. 2 is the total hydrometeor mass 
that falls on the hotplate over a given time interval Δt, summed over all 
individual evaporated hydrometeors. 

Snowflake density given by ρs = m/V, where m (kg) and V (m−3) are 
the mass and volume of an individual snowflake, respectively. Hydro
meteor volume V can be estimated by assuming a spherical particle of 
equivalent circular diameter Deff such that V = (π/6)Deff

3 (Rees et al., 
2021). However, since snow particles are typically aspherical, a meth
odology for estimating density based on the heat flux to a hydrometeor 
(that is independent of shape) was developed (Singh et al., 2023). The 
heat flux from the hotplate into a single snowflake is, 

E =
H

Aeτevp
, (3)  

where Ae is the maximum observed area of the snowflake on the hotplate 
before it evaporates. H = mLeqv is the total energy required to melt and 
evaporate the snowflake from the hotplate. From observations, we find 
that for a given area and evaporation time, multiple values of E can be 
obtained for a given value of snowflake mass due to varying amounts of 
liquid water, suggesting a correlation between snowflake density and 
the heat flux. Thus, we hypothesize that the heat-flux method can be 
used to compute the density of different types of snowflakes through 
comparison to a reference as follows, 

ρs = ρ0
E
E0

. (4) 

Values for ρ0 and E0 were determined from field measurements and 
validated in laboratory experiments. The average density (ρs) prior to 
settling over a given period can be calculated from DEID data using the 
ratio of the total mass to total volume in a given time interval, namely, 

ρs =

∑ N
i=1mi

∑ N
i=1mi

/
ρs,i

, (5)  

where mi (kg) is the mass of the ith snowflake, ρs, i (kg m−3) is the density 
of the ith snowflake and N is the total number of snowflakes on the plate 
measured during the given period. From the average density of the 
snowflakes in each frame, the snow precipitation rate or precipitation 
intensity (in mm h−1) is, 

PIsnow = c2
Δm⋅fps
ρsAhp

. (6) 

Note that the difference between the calculation of PIsnow and RSWE is 
the average density of the phase of the evaporating hydrometeor in the 
denominator in Eq. 2 and Eq. 6, namely ρw for RSWE and ρs for PIsnow. 
Total snow accumulation, HST (mm), is then computed by multiplying 
the precipitation rate by the time interval between samples (1/fps), then 
summed over the period of interest such as for a storm or every hour. 

2.2. Instability model 

The evolution of fresh snowpack instability can be determined using 
DEID measurements in combination with a simple physics-based model, 
such as the SNOw Slope Stability model (SNOSS) (Hayes et al., 2004). A 

stability index can be defined as the ratio of the strength of a buried layer 
to the shear stress imposed by the overburden stress from the snowpack 
above, such that the snowpack becomes unstable when the stability 
index value approaches and falls below unity (Conway and Wilbour, 
1999; Hayes et al., 2004; Havens et al., 2012). Fig. 1 is a schematic of 
storm snow over old snow and the corresponding coordinate system 
used herein. In order to evaluate the stability index, the following pa
rameters are required: the shear strength of the buried layers, which 
depend on grain shape, type, and density of the grain, and the imposed 
shear stress from the weight of the overburden, adjusted for slope angle 
for the terrain of interest. Following Jamieson and Johnston (2001), the 
shear strength (in kPa) of a buried layer (α(z, t)) at a depth z and at time t 
after the snow begins to accumulate is expressed as, 

α(z, t) = λ
(

ρs

ρi

)β

, (7)  

where ρs(z, t) is the density of a given snowpack layer, ρi is density of ice 
(ρi = 917 kg m−3) and λ and β are empirical constants that depend on the 
ice-grain form. This formulation is related to the Young’s modulus of ice, 
which provides a power-law behavior that is supported through manual 
observations (Perla et al., 1982; Jamieson, 1995). Traditionally, λ and β 
are determined by fitting experimental measurements of the shear 
strength of precipitation particles performed using a strain gauge. In the 
present work, we use two sets of precipitation-particle values. The first 
are values recommended by Jamieson and Johnston (2001): λ = 5.32 
kPa and β = 1.35, and the second are DEID-derived values that are 
explained in Sec. 2.5. Results from both methods are computed (a) 
assuming a constant density in time and (b) using a densification model, 
using four different shear-strength models. The four models, shown in in 
Table 1, suggest a possible range for forecasted stabilities that may help 
increase predictive accuracy through ensemble averaging. 

Over the course of a storm, each layer of buried storm snow increases 
in density through metamorphic stresses in addition to stresses from the 
gravitational component of the overburden weight (σzz(t) = g 

∫
RSWE

cos2θdt). For simplicity, the metamorphic stress (σm(t)) is assumed to be 
a constant (75 Pa) and is added to the overburden stress (Conway and 
Wilbour, 1999). This value assumes that the near-surface (5–10 cm) 
densification of the storm snow is dominated by metamorphic stress, but 
is driven by the gravitational component for layers that are deeper than 
5 to 10 cm from the surface. By assuming a viscous densification law for 
dry storm snow, the density of the snow (ρz(t)) can be expressed at each 
layer and point in time by the following ordinary differential equation: 

1
ρz(t)

dρz

dt
=

1
ηzz

[σm(t) + σzz(t) ]. (8) 

Here, ηzz(t) represents the compactive viscosity for dry snow, which 
was experimentally determined by Kojima (1967) and modified with an 
Arrhenius-type temperature term by Conway and Wilbour (1999), 

ηzz(t) = B1e
B2

(
ρz (t)

ρi

)

eE/RTz . (9) 

The following constants, B1 = 6.5 × 10−7 Pa s, B2 = 19.3, the acti
vation energy E = 67.3 kJ−1 mol−1, the universal-gas constant R =

0.008314 kJ−1 mol−1 K−1, and the layer temperature Tz = 273 K were 
utilized in the calculation of ηzz. Eqs. 8 and 9 can be discretized and 
solved with a simple Euler’s method for an initial density profile pro
vided by the DEID. Thus, with a coupled model and DEID data, a high- 
resolution map of snow-layer density can be obtained that is a function 
of time. It should be noted that the compactive viscosity (ηzz) and the 
metamorphic stresses (σm) were derived for dry storm snow and may 
need to be altered for wet or mixed precipitation particles. 

The overburden stress (W), or the average static shear stress on 
terrain with a slope angle (θ), is expressed as, 

T.J. Morrison et al.                                                                                                                                                                                                                             



Cold Regions Science and Technology 210 (2023) 103839

4

W(z, t) = g
∫ t

0
RSWE(t)sin(θ)cos(θ)dt, (10)  

where RSWE(t) is SWE rate at time t. Hence, the stability index (SI) is the 
ratio of the shear strength (Eq. 7) to the overburden stress of the over
laying snow (Eq. 10), 

SI(z, t) =
α(z, t)
W(z, t)

. (11) 

For values of SI ≫1, the snowpack is expected to be stable, and for SI 
≤1, instability is anticipated. The DEID provides real-time values of ρs 
and RSWE(t) so that the stability index can, for the first time, be calcu
lated in real-time during a storm to forecast time to failure within storm- 
snow layers. 

2.3. New microphysical parameters: SDI and complexity 

We now introduce two new parameters, the hydrometeor shape 
density index (SDI) and the Complexity, that can be easily measured 
with the DEID for classification of precipitation particle type. SDI is 
defined as the ratio of the cross-sectional snowflake area Ae on the 
hotplate to the melted area of a spherical water droplet AH20 that has the 
same mass (Eq. 12), 

SDI =
Ae

AH2O
. (12) 

The melted area of a spherical droplet of the same mass can be 
expressed (after some algebra) as, 

AH20 = CSDI

(
m

ρH20

)2/3

. (13) 

Here, CSDI = 1.21 is a geometric constant, m is the mass of the 
snowflake, and ρH20 the density of liquid water, which is taken to be 
1000 kg m−3. A schematic showing the method of SDI calculation is 
supplied in Fig. 2. The minimum value of SDI is near unity for spherical 
snow particles that have a density close to water. 

Particle Complexity is defined as the ratio of the area of the smallest 
ellipse containing a particle cross-section to Ae of the hydrometeor 
measured on the hotplate as illustrated in Fig. 3. The areas used to 
calculate each individual particle’s Complexity and SDI are determined 
here using Matlab’s image processing toolbox, Regionprops (MajorAx
isLength and MinorAxisLength), 

Complexity =
πab
Ae

, (14)  

where a and b are the major and minor axis length of ellipse that fit over 
the snowflake. The minimum value of Complexity is unity for a circular 
snow particle. Differences between definitions for derived region prop
erties inside language-dependent image-processing tool boxes may lead 
to slight differences in the derived ellipses of the particles. 

2.4. Identification of snowflake habit using SDI and complexity 

A laser-SLR camera system, which provides images of falling snow
flakes is used to correlate DEID measured variables to snow-crystal type. 
A 7-cm thick laser sheet for illuminating snowflakes was generated by 
merging three green 10-W lasers (520 nm wavelength) and then 
focusing the laser into a plane with spherical lenses. High-resolution 
images of snowflakes were acquired using a Nikon D850 SLR camera 
with a Nikon AF-S VR Micro–Nikkor 105 mm f/2.8 G IF-ED lens. The 

Fig. 1. Coordinate convention reference for a storm-snow avalanche on a slope with an inclination angle θ.  

Table 1 
A summary of the four model variations evaluated during the study as well as the 
ensemble of the models.  

Model λ 
(kPa) 

β Description 

Jamieson 2001, no 
densification 

5.32 1.35 Constant coefficients of 
strength 

Jamieson 2001, with 
densification 

5.32 1.35 Constant coefficients of 
strength 

SDI & Complexity, no 
densification 

SDI Complexity Coefficients are a function of 
snowflake structure 

SDI & Complexity, with 
densification 

SDI Complexity Coefficients are a function of 
snowflake structure 

Ensemble – – Average of all model outputs  

Fig. 2. Physical and mathematical interpretation of snowflake SDI. Ae is the 
cross sectional area of snowflake, AH20 is the area of spherical water droplet 
after melting. The down arrow indicates decreasing water droplet area after 
melting (a smaller area for less dense snowflakes). Less dense snowflakes have a 
higher SDI. 
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laser sheet is oriented such that falling snowflakes are imaged as they 
enter the light-sheet plane. The bottom of the laser sheet was situated 
about 2 cm above the hotplate of the DEID so that 2-D images of falling 
snowflakes obtained by the SLR camera could be directly correlated with 
DEID measurements. The type of snowflake crystal was categorized 
based on the international classification for seasonal snow on the ground 
(Fierz et al., 2009). We categorized six habits of the snowflake (Praz 
et al., 2017), planar crystal (combining stellars and plates), graupel 
(combining hail and graupel), columnar crystal, irregular crystal, 
aggregate and small particles. Irregular crystals and aggregates were 
separated by their aspect ratio due to their anticipated structural dif
ferences, with columns aggregating more spherically and plates more 
elongated (Dunnavan et al., 2019). 

Fig. 4 shows example images of the six different hydrometeor types. 
As snowflakes rotate as they fall in the laser plane, an advantage of the 
classification technique is that snapshots are obtained from multiple 
angles of each hydrometeor without necessitating use of multiple cam
eras, as is the case for devices such as the Multi-Angle Snowflake Camera 
(Garrett et al., 2012). Identification of crystal type was based on all 
images of individual snowflakes captured by the SLR to represent one 
type of crystal. After landing, the SDI and Complexity of each type of 
crystal are calculated using the measured mass and area of an individual 
snowflake from the DEID. For each snowflake habit, 21 samples were 
taken and correlated with the corresponding SDI and Complexity. This 
process was done by visually inspecting individual snowflakes (Fig. 4). A 
summary of snowflake habit as a function of SDI and Complexity is 
provided in Table 2. Due to the limited number of samples, some overlap 
between classifications exist. Further studies are underway to refine the 
classification technique. 

2.5. Relating SDI and Complexity to shear strength 

Extensive past research has examined the shear strength of buried 
old-snow-layer crystal structure as a function of density and grain type 
(Schweizer et al., 2006). Casson, Stoelinga and Locatelli (2008) explored 
the importance of storm-snowflake habit on the shear-strength rela
tionship with data collected from Snoqualmie Pass. Their work revealed 
that simple shear-strength parameterizations that only consider the 
density for precipitation particles may oversimplify the intricacies of the 
strength of each snowflake habit. In other words, different snowflake 
habits may lead to different bonding or interlocking between snowflakes 
and therefore affect the overall shear strength. For example, we antici
pate that dendrite-dendrite and needle-needle bonding differs and is 
both a function of density and snowflake habit. Based on our work 
linking SDI and Complexity to snowflake habit, we hypothesize that the 
coefficients of strength can be substituted with these variables such that 
λ = c3SDI (with units of kPa through multiplying by conversion factor 
c3= 1 kPa) and β = Complexity (unitless). 

To test this hypothesis, we calculate the mean of SDI and Complexity 
for 5 mm deep freshly-fallen snow layers and calculate the shear 
strength from Eq. 7. The habit for each 5 mm layer is computed by 
averaging the Complexity and SDI for each layer and determining the 
snowflake habit following Table 2. The calculated shear strengths is then 
compared against the standard fixed-coefficient models from Jamieson 
and Johnston (2001), Conway and Wilbour (1999), Brun and Rey 
(1987), and Perla et al. (1982) (Fig. 5). We find fair agreement and 
behavior (increasing strength with increasing density) between the 
newly propose SDI and Complexity model and the accepted models; 
hence, we further explore the utility of SDI and Complexity in the text 
that follows. 

2.6. Experimental site and setup 

Data were collected from 2020 October to 2021 May in Upper Little 
Cottonwood Canyon, Utah, USA at the Alta Ski Area mid-Collins Snow 
Study Plot (40.5763◦ N, 111.6383◦ W, 2920 m above sea level). The 
mid-Collins Snow Study Plot is ~24 m wide from east to west and 45 m 
from north to south. The plot is roped off and off-limits to resort guests, 

Fig. 3. (a) Illustration of the major-axis length and minor-axis length of the 
ellipse fit over a snowflake; (b) a black and white image showing melting 
snowflakes on the hotplate of the DEID as seen by the thermal camera during a 
snow event. Using Matlab’s image-processing toolbox, the DEID tracks indi
vidual hydrometeors as they impact the hotplate, melt, and evaporate. Through 
tracking this process and measuring the snowflake area, as well as the area of 
the ellipsoid containing the snowflake, the SDI and Complexity are derived. 
Note that potential differences between language-dependent image-processing 
tool boxes may lead to slight differences in the derived ellipses of the particles. 

Fig. 4. Various snowflake images obtained from the SLR camera taken at the 
Alta-Collins snow-study plot. Black and white images of six types of snowflakes 
are illustrated. Each type consists of five samples. 

Table 2 
Preliminary estimates of the relationship between SDI, Complexity and snow
flake crystal subclass.  

Crystal Subclass SDI - λ (kPa) Complexity - β 

Planar crystals 6.12–14.89 1.21–1.53 
Columnar crystals 13.65–19.89 1.41–1.59 
Graupel 3.21–6.53 1.10–1.18 
Irregular Crystals 16.23–21.83 1.31–1.49 
Aggregates 18.75–28.30 1.18–1.34 
Small particles 2.11–8.96 1.00–1.21  
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so the snow surface remains protected and undisturbed. The study plot is 
surrounded by trees and open to the sky, providing an ideal setting for 
measuring snowfall. At a larger scale, the study plot sits in the Collins 
drainage, surrounded by Mt. Baldy (elevation of 3374 m) to the south
west, with extending ridge lines to the north that decrease in elevation to 
the highway (Utah SR-210). For further details, see Fig. 6a, which pro
vides a topographic map of the area around the study site (red star). 

Fig. 6b shows the DEID and supporting instrumentation. The appa
ratus was placed on a permanent 6 m tall, 10.16 cm × 10.16 cm square 
steel box-section tower with two pulleys/winches mounted to a concrete 
base, which allowed the experimental apparatus to be raised and low
ered as snow accumulated throughout the winter. A mounting system 
constructed from 80/20 T-slot aluminum (Columbia City, Indiana, USA) 

was fixed to the pulley/winch system on the tower. The DEID was 
attached to the mounting system, suspended in the air and off the snow 
surface, allowing for direct snowfall onto the hotplate. The DEID’s in
dividual components were all carefully connected to the 80/20 
aluminum frame. The DEID consists of a hotplate with a feedback 
controller and a thermal camera pointing at the hotplate. The hotplate is 
a Systems and Technology International, Inc. HP-606-P. The custom 
hotplate has a heated area of 0.1524 m × 0.1524 m and a thickness of 
0.0508 m. Note the thermal camera sampling area of the hotplate is 6.5 
cm × 8.7 cm and is powered by a 120 V, 5 Amp supply with a digital 
proportional-integral-derivative (PID) feedback control mechanism to 
control the plate temperature. The top plate surface is composed of a 
6061 aluminum alloy with a thermal conductivity, k = 205 W m−1 K−1 

Fig. 5. Shear strength of snow layers (each 5 mm 
thick) as a function of snow density using Eq. 7, 
where λ and β are SDI (kPa) and Complexity (unit
less), respectively and are compared with previously 
reported shear strength for weak layers by Conway 
and Wilbour (1999) – red solid circles, Perla et al. 
(1982) – blue solid diamonds Brun and Rey (1987) – 
hollow stars and Jamieson and Johnston (2001) – 
black hollow triangles. (For interpretation of the ref
erences to colour in this figure legend, the reader is 
referred to the web version of this article.)   

Fig. 6. (a) Topographic map showing the location of the Alta Ski Area mid-Collins Snow Study plot marked with a star and (b) photograph of the DEID experimental 
setup during Winter 2020–2021. 
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which was roughened using 2000 grit sandpaper in a linear motion 
across the plate yielding long straight grooves. To maintain strong 
thermal contact, the aluminum plate was fixed to the top of the heater 
with thermal paste. A piece of Kapton® tape with high total hemi
spherical emissivity (ε=0.95) is affixed to the top of the aluminum plate 
to measure the actual surface temperature using the thermal camera. 
The maximum operating temperature of the hotplate for Alta field ex
periments was 106 ◦C. The thermal camera used for all experiments is an 
uncooled microbolometer Infratec Vario HD 700 thermal camera with 
432 × 288-pixel resolution, sampling at a rate of 15 Hz. Note that the 
thermal camera only measures the correct temperature of the surface 
when the emissivity of the plate surface is high (i.e, when a hydrometeor 
lands on the surface). Otherwise, the low emissivity of the plate surface 
renders the background brightness temperature small. 

In addition to the system’s main components, Alta Ski Area provided 
a wired ethernet connection that enables rapid transfer of images from 
the computer located at the study plot to a workstation at the University 
of Utah where post processing of the images occurred. Storms were 
delineated by continual monitoring of the National Weather Service and 
University of Utah forecasting products (https://weather.utah.edu/). 
Prior to the onset of snowfall the DEID was turned on and would collect 
data until precipitation stopped. During these events data transfer was 
performed every 1 h, corresponded to approximately 1.2 GB of data. 
During winter 2020–2021, images were downloaded in batches during 
or after the storm and processed with a Matlab script described in Singh 
et al. (2021). 

To compliment this deployment, we made use a wide variety of 
snow-measuring instruments and manual-observation boards that are 
routinely deployed and maintained by the Alta Avalanche Office at the 
mid-Collins study plot. The observation boards used included three main 
manual snow measuring boards that are used for measuring the amount 
of snowfall at different time intervals during a storm, specifically at 12 h, 
24 h, and at the end of the storm duration. These snow boards are 30 cm 
× 30 cm with a 60 cm long measuring stick projecting from the center of 
the board. The Alta Avalanche Office visits the site at each time interval 
and records the height of snow measurements and uses a Snowmetrics 
snow density kit containing a spring scale, tube, and scraper to measure 
the density and weight of the storm snow. The weight and density 
measurements acquired from these boards were used to validate those 
same measurements from the DEID. The site also has four automated 
snow measuring devices, including a NOAH II all-weather precipitation 
gauge from ETI instruments and a Novalynx rain gauge. This instrument 
collects and records the weight of the storm snow and generates auto
mated hourly SWE data that are transferred to Mesowest (thttps: 
//mesowest.utah.edu), making the data easily accessible. Additionally, 
the site has three Campbell Sci. Inc. SR50 ultrasonic snow-depth sensors 
that record the height of snow and automatically upload the data to 
Mesowest every hour. These SR50 sensors also measure running totals 
on a 12 h, total depth, and a storm frequency. Lastly, the site also has a 
live camera pointed at another 12 h snowboard that is illuminated with 
lights for 24 h recording. 

2.7. Snowboard tilt tests 

To better understand the relationship between the DEID’s density 
profiles and storm-snow instability, we designed a repeatable shear- 
stability test based on standard tilt-board and shovel-tilt tests. A tilt- 
board stability test is an easy method to quickly identify unstable 
layers in storm snow (Schweizer et al., 1998). The basic method was first 
developed over fifty years ago by Schleiss and Schleiss (1970) to 
investigate shear instabilities in storm snow. As described by McClung 
and Schaerer (2006), a tilt-board test makes use of an isolated 30 cm ×
30 cm block of snow, no >40-cm deep that is placed on a metal plate. 
The plate is transferred to a horizontal board that pivots to 15◦. The plate 
is tapped when at 15◦ until failure and the location of the failure plane is 
measured. The standard field variant of the method, the shovel tilt test, 

isolates an approximately 30 cm × 30 cm column (again, no thicker than 
40 cm) on a shovel which is tilted at 15◦ and then tapped until shear 
occurs; tests are rated as Easy, Moderate, or Hard (Greene et al., 2004). 

The tilt board used in our study, shown in Fig. 7, is a modified version 
of the standard method described above. We used a Snowmetrics snow 
board which is made of plastic and is 41 cm × 41 cm × 1.25 cm. We 
placed the snow board on an 80/20 T-slot aluminum frame that affixed 
to the same crank-up mast as the DEID. Alta Ski Patrol used this modified 
tilt board test every 12 h during their morning and afternoon observa
tions at the mid-Collins Study Plot. 

Alta Ski Patrol kept the snow board as close to the ground as possible 
to avoid wind and other factors altering the natural snowfall. They used 
the following methodology: 1) Using a snow-saw, an initial cut was 
made around the storm snow, taking care not to disturb the test sample. 
Once complete, the remaining test slab had the same dimensions as the 
snow board. 2) Using the hand crank on the tower, the snow board was 
then raised off the ground to a height where the tilt of the board could be 
positioned to 30◦. 3) The test would then begin with taps from the wrist 
and continue until there was a shear failure within the storm snow; ‘no 
failure’ was recorded if there was no failure reported after 30 taps. 4) A 
detailed record of the test was saved and if possible the grain type in the 
the failure plane was recorded. This sequence would repeat every 12 h 
with storm snow at approximately 04:00 and 16:00 LT. 

2.8. Infrasound and Utah Avalanche Center observations 

To aid in the validation of the storm-snow instability model, we used 
data collected from UDOT’s infrasound detection systems (Vyas, 2009; 
Mayer et al., 2020). The infrasound systems in LCC are produced by 
Intermountain Labs and Snowbound Technologies and are deployed in 
all prominent slide paths within LCC. The systems detect the precise 
timing and location of avalanches by listening for the low frequencies 
generated by avalanches in motion. Once an avalanche is in motion, the 
infrasound systems detects the frequency and gives specific details about 
the avalanche, time in motion, power, and where it started and ended. 
To provide a larger picture of the avalanche activity in LCC and the 
surrounding region, the storm-snow instability model was assessed 
using observational data collected by the UAC through a web portal 
submitted by recreationalists and snow professionals. Data for this study 
can be found through their online archives (https://utahavalanchecente 
r.org/avalanches). 

3. Results 

3.1. Stability results 

Over the course of the winter, the DEID captured data from 
numerous storms. For this report, data from fourteen storms occurring 
between 12 December 2020 and 26 April 2021 are presented. To un
derstand the conditions and avalanche hazards after each storm, data 
collected from the DEID, the infrasound detection system, and visual 
observations from the UAC were combined. A summary of these results 
can be found in Table 3. Table 3 provides details on the storm start time, 
end time, total snow accumulation, total SWE, max SWE rate, mean and 
range of storm-snow density, maximum density gradient in the storm 
snow, and the ensemble averaged stability index from the four members 
of the model. It should be noted that all of these variables are measured 
directly or derived solely from DEID observations. The columns that 
follow the DEID-derived data provide insight into the avalanche con
ditions in the Central Wasatch Mountains from tilt-board test results at 
the mid-Collins site, time of first infrasound avalanche detected in LCC, 
and post-storm 3-day total number of avalanches in the Central Wasatch. 

Of the fourteen storms observed and reported in Table 3, three 
storms from the 2020–2021 season were identified for density profiles 
and forecasted storm-snow avalanche problem as noted by the UAC and 
post-storm activity. Data collected by the UAC can be found in their 
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digital archives at utahavalanchecenter.org. These storms can be sum
marized as follows:  

1. 12 December 2020: Avalanche observations indicated that one 
natural avalanche occurred in the storm snow and three user- 
triggered avalanches occurred; the forecast demonstrated that the 
storm snow was sensitive to skier-triggering following the storm 
through photos and videos. Report details can be found at https://ut 
ahavalanchecenter.org/forecast/salt-lake/12/13/2020.  

2. 27 February 2021: Avalanche forecasts for the region were for storm 
and wind-transported snow at mid to upper elevations. One notable 
skier-triggered avalanche was on steep southeast-facing terrain, 
which broke 300–450 mm from the snow surface. Report details can 
be found at https://utahavalanchecenter.org/forecast/salt-lake/2/ 
28/2021.  

3. 20 March 2021: For this case, two natural avalanches and four skier- 
triggered avalanches that were 300–450 mm deep and that failed in 
the storm snow were reported. Report details can be found at https:// 
utahavalanchecenter.org/forecast/salt-lake/3/22/2021. 

To better understand the DEID-based instability model presented in 
Section 2.2, detailed results from the stability model are supplied in 
Figs. 8 through 13. These results are solely produced by the DEID and 
highlight the input, derived, and final variables (outputs) for each of our 
three case studies described above. The results and figures serve as po
tential tools that could be used to produce real-time forecasting sce
narios. Figs. 8, 10, and 12 show results for the model run with 
coefficients derived from Jamieson and Johnston (2001) coupled with 
the Conway and Wilbour (1999) densification model. Other model- 
member results are not shown since they show similar trends for each 
case. For each case, subplot (a) shows a density profile of the snowfall 

Fig. 7. (a) Tilt board deployed in the field with the DEID (b) SOLIDWORKS rendering of the tilt board.  

Table 3 
Table of DEID measured parameters and snow stability metrics during winter 2020–2021 for ten different snow events observed in Little Cottonwood Canyon. Tilt 
board test are “POS” or “NEG” for positive or negative results, and if a positive result occurs, the number of taps are shown. Infrasound - indicates if infrasound results 
were positive and when. UAC observations indicate the total number of avalanches reported during that period and the number of trigger types in the format unknown/ 
user/natural/explosive. Natural avalanches are in boldface type. NA indicates data “not available”.  

Storm-Snow Stability Metrics 

Storm Start 
Time/Day (MST) 

Storm End 
Time/Day 
(MST) 

Total Snow 
(mm) 

Total SWE 
(mm) 

Max SWE 
Rate (mm/h) 

ρ (kg/m3, 
range) 

δρ
δz

⃒
⃒
⃒
max 

(kg/m4) 

SImin Tilt Board 
Test 

Infrasound UAC Observed 
Avalanches 

0100 12/12 2000 12/12 292 10.66 5.16 34 [12,190] 17 1.30 NA NEG 5 (1/3/1/0) 
1917 12/13 0830 12/15 147 10.34 2.57 72 [11,238] - 130 6.55 NA NEG 8 (0/8/0/0) 
0600 12/17 0700 12/18 413 27 11.24 63 [13,266] 200 1.22 NA POS: 0025 

12/18 
41 (7/16/18/0) 

0900 12/22 0900 12/23 314 15.38 31 54 [19,214] 12 1.14 NA NEG 11 (5/4/2/0) 
0845 01/22 0600 01/24 457 34.37 50 71 [21,420] - 29 0.96 NA NEG 27 (5/12/10/0) 
0600 02/03 2000 02/05 488 31.75 28.93 70 [11,275] 200 1.29 POS POS: 1515 

02/05 
34 (4/6/24/0) 

2125 02/11 1600 02/14 862 51.81 8.91 57 [16,266] 56 0.91 POS POS: 0244 
02/12 

155 (10/5/72/69) 

0000 02/15 2000 02/17 1078 65.15 29 57 [12,309] 178 0.47 NA POS: 0058 
02/16 

114 (4/1/55/54) 

1611 02/26 1600 02/27 402 24.13 13.01 59 [13,187] 76 1.50 NA POS: 0730 
02/27 

12 (2/5/5/0) 

0743 03/20 2000 03/22 598 33.35 9.11 50 [14,495] 22 1.39 POS POS: 0735 
03/21 

8 (2/4/2/0) 

0715 03/25 0600 03/26 323 16.79 24.02 54 [15,432] 53 3.79 NA NEG 10 (1/4/5/0) 
1727 04/13 2052 04/14 628 40.49 43.99 66 [18,342] 55 0.83 NA NEG 13 (3/7/3/0) 
0222 04/15 2310 04/15 352 20.84 11.95 42 [12,187] 230 1.57 NA NEG 17 (3/11/3/0) 
0433 04/26 1300 04/26 272 35 11.4 83 [23,488] - 180 1.43 NA NEG 7 (2/4/1/0)  
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during the storm (solid line) and a density profile of the storm snow at 
the end of storm computed with the densification model. Subplot (b) is 
the storm-snow density showing its evolution/densification over the 
time of the storm, which is used to compute the storm-snow strength 
over time (c) and overburden (d). Lastly, subplots (e) and (f) present the 
stability index (SI), which is the ratio of subplot (d) to (c), and the time 
to failure, computed following the method of Conway and Wilbour 
(1999). 

Figs. 9, 11, and 13 provide the stability index and time to failure at 

the interface between the old snow and storm snow using the four 
variations of the stability model presented in Table 1 and an ensemble of 
all model’s outputs. The approach of presenting an ensemble of models 
is akin to the weather forecasting approach where multiple models with 
a variety of initial conditions are supplied to statistically understand the 
agreement of multiple models. It should also be noted that this figure can 
be produced for any storm layer of interest, but the interface between 
the old snow and storm snow is discussed here for simple interpretation 
of the results. 

Fig. 8. Avalanche forecasting plots produced with data from the DEID for storm beginning on 12 December 2020. (a) The measured and modeled density profile of 
the storm snow, (b) The modeled storm-snow density over the course of the storm, (c) the modeled shear strength of the storm snow, (d) the measured overburden 
force of the storm snow, (e) the stability index (ratio of subplot c to subplot d), and (f) the predicted time to failure in seconds of the storm snow. 

Fig. 9. Storm-snow/old-snow interface plots of (a) stability index (SI) and (b) the time to failure (tf) for storm snow data beginning on 12 December 2020.  
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Details from the storm on 12 December are shown in Figs. 8 and 9. 
This storm produced 292 mm of snow and 10.7 mm of SWE (Table 3). 
Initial density profiles from the storm snow (Fig. 8a and b) show low- 
density (20–30 kg m3) snow in the lowest 150 mm with higher- 
density snow (60 kg m3) above these layers at 50 mm and from 150 
mm to 200 mm. This high level of detail in the storm-snow density in
dicates the existence of slight density inversions, which are also present 
in the strength profile (Fig. 8c). Here, blue contours indicate weaker 
snow, as seen at the interface between the old snow and storm snow, 
while red contours indicate stronger snow. The SI shown in Fig. 8e 

indicates fragile snow at the end of the storm in a layer that starts at the 
new-snow/old-snow interface and goes up to 150 mm. This is further 
substantiated in the time to failure plot (Fig. 8f) that shows blue vertical 
lines indicating 1000 s to failure at 10:40 on 12 December 2020. From 
this analysis, we find that the SNOSS model with coefficients of strength 
from the Jamieson and Johnston (2001) accompanied with the densi
fication model did predict the onset of natural avalanches. Despite this 
model’s success, the ensemble of models (black line in Fig. 9b) predicted 
more stable conditions (minimum SI of 1.29). This result is indicative of 
a very sensitive snowpack and is further substantiated in the UAC 

Fig. 10. Avalanche nowcasting plots produced with data from the DEID for a storm beginning on 26 February 2021. (a) The measured and modeled density profile of 
the storm snow, (b) Modeled storm-snow density over the course of the storm, (c) the modeled shear strength of the storm snow, (d) the measured overburden force of 
the storm snow, (e) the stability index (ratio of subplot c to subplot d), and (f) the predicted time to failure in seconds of the storm snow. 

Fig. 11. Storm-snow/old-snow interface plots of (a) stability index (SI) and (b) the time to failure (tf) for storm snow data beginning on 26 February 2021.  
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observational results shown in Table 3. A total five avalanches were 
reported with one natural, three user triggered, and one unknown 
trigger. 

The 26 February 2021 storm produced a sensitive snowpack that led 
to five natural avalanches reported by the UAC and a natural avalanche 
observed with the infrasound (see Table 3). The initial density profile 
(Fig. 10a) from the storm does indicates a slight inversion, however, the 
low stability index near the surface is in part driven by the large over
loading from the high precipitation rates observed over the course of the 
storm, tipping the scales toward instability. This can be observed in 

Fig. 10f, which presents the time to failure model. Here, areas of red 
indicate strengthening, with vertical lines of light colour being associ
ated with moments of high precipitation and increasing instability. 
These periods are identified at approximately 08:00 on 27 February 
2021 and at noon on the same day. Both of these time periods correlated 
with a small natural avalanche cycle that was captured by the infra
sound detection system (Table 3). 

The last case study was 20 March 2021. During this storm, a total of 
598 mm of snow consisting 33.4 mm of SWE fell at the site (Table 3). The 
snowpack density decreased in the lowest 200 mm above the storm- 

Fig. 12. Avalanche nowcasting plots produced with data from the DEID for storm beginning on 12 December 2020. (a) The measured and modeled density profile of 
the storm snow, (b) The modeled storm-snow density over the course of the storm, (c) the modeled shear strength of the storm snow, (d) the measured overburden 
force of the storm snow, (e) the stability index (ratio of subplot c to subplot d), and (f) the predicted time to failure in seconds of the storm snow. 

Fig. 13. Storm-snow/old-snow interface plots of (a) stability index (SI) and (b) the time to failure (tf) for storm snow data beginning on 20 March 2021.  
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snow/old-snow interface and then increased with a strong density 
inversion from 200 mm–350 mm as shown in Fig. 12a. According to the 
UAC observations (see Table 3), eight avalanches were reported that 
failed on the 200 mm–350 mm layer. Furthermore, the infrasound sys
tem indicated a natural avalanche at 07:35 on 21 February. Not only did 
the models capture this modest variation in SI within the storm snow, 
the SDI–Complexity model without densification and the Jamieson and 
Johnston (2001) model with densification both correctly predicted the 
onset of natural avalanches within the problematic layers (Figs. 12). 

3.2. Tilt-board test results 

DEID data from the 3 February 2021 storm is used to illustrate the 
ability of the DEID to identify weak layers both in terms of density and 
snowflake characteristics. As shown in Table 3, this storm lasted over 
two days producing 488 mm of snow and 31.8 mm of SWE. Furthermore, 
the maximum SWE rate observed by the DEID was nearly 29 mm/h. 
During a 12-h period on 5 February 2021 DEID data were captured and 

compared to Alta Ski Patrol’s manual observations and tilt-board tests. 
Fig. 14 presents a schematic of the tilt-board test results (a) along with 
profiles of the storm-snow density (b), SDI (c), Complexity (d), SWE rate 
(e), and modeled shear strength (f). Here, we use the SNOSS model with 
strength coefficients from the SDI-Complexity model without densifi
cation. This model was chosen since SDI and Complexity account for 
snowflake habit and therefore can be used to help interpret shear 
strength as a function of both density and crystal type. The horizontal 
red lines in Fig. 14 represent the weak layer/failure plane within the 
storm snow that failed during the tilt-board test. 

For this test, 12-h of storm snow accumulated onto the board. During 
the test, the board was raised from the snow surface, tilted to 30◦, and 
tapped following the procedure in Section 2.7. A shear failure occurred 
at a height of 152 mm from the board’s surface after the fourth tap. To 
understand this result, we provide a detailed account of the variables 
measured by the DEID. Specifically, Fig. 14c shows a profile of SDI, 
which decreased throughout the storm cycle to its minimum at the weak 
layer snow height, from a value of ≈9 to 5, a reduction of 44%. 

Fig. 14. 5-min averaged DEID data from a snow event on 5 Feb 2021 that correspond to a tilt-board test in which the snowpack failed at 152 mm from base (z = 0) in 
4 taps (red, horizontal line). (a) Schematic of tilt-test set-up; (b) height of snow vs. density; (c) height of snow vs. SDI; (d) height of snow vs. Complexity; (e) height of 
snow vs. SWE rate (f) Height of snow vs. shear strength. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Meanwhile, Fig. 14d presents the snowflake Complexity, which 
increased from 1.3 to 1.5 at the shear layer (global maximum). From Eq. 
7, we see that shear strength increases linearly with SDI, while 
Complexity acts as the exponent to the density ratio of snow to ice (since 
λ = SDI and β = Complexity for this model). Hence, the observed 
decrease in SDI and increase in Complexity led to weaker snow. 
Furthermore, from Section 2.4, the trend and combination of SDI and 
Complexity indicate that the snowflake habit migrated during this 
period from a columnar crystal to a planar-crystal habit. Finally, Fig. 14e 
shows that the SWE rate had a notable peak just above the height of the 
weak layer, indicating rapid development of overburden. The ρ, SDI and 
Complexity allows us to estimate the snow’s shear strength and conclude 
that the layer located at 152 mm from the storm snow/old-snow inter
face is the weakest in the storm snow. A global minimum in shear 
strength is correctly modeled using DEID measurements inputs in 
agreement with results from the manually observed tilt-board test, in 
which a shear failure was observed at the same height, 152 mm. This 
result illustrates the power of the DEID to not only capture density 
profiles in great detail but to help determine storm-snow instabilities 
driven by variations in the habit of falling snowflakes. 

4. Discussion 

Within the SNOSS model, there is high sensitivity to the coefficients 
of strength, λ and β, used in Eq. 7 (see Fig. 5). Currently, strength co
efficients are only defined for the predominate grain classification. For 
storm snow there is only one classification, precipitation particles. Here, 
we present and assess the SDI and Complexity parametrization for shear 
strength that accounts for grain habit, as shown in Section 2.4. While 
this shear-strength model requires further in-situ validation to relate SDI 
and Complexity to snowflake habit (Sec. 2.4) and snowflake habit to 
shear strength with shear frame tests, the method has begun to 
demonstrate here its ability to account for the varying strengths of 
different precipitation particles that owes to their structure. 

It is known from expert experience that the type of snowflake habit 
influences shear-strength of the snowpack. Yet, currently, all storm- 
snow strength parametrizations (Fig. 5) assume the same shear- 
strength coefficient for precipitation particles and to behave solely as 
a function of snow density. The difficulty appears not to be a lack of 
awareness by practitioners but instead an inability to measure real-time 
snowflake type, and of measuring snow pack shear-strength immedi
ately after a snowfall. Only the measured density of the layer is available 
as a diagnostic for determination of snowpack shear-strength (Eq. 7). 

To assess the newly proposed SDI and Complexity shear strength 
parametrization in the context of the existing shear strength parame
trizations, four strength formulations, as described in Section 2.2, as well 
as the ensemble of all members, are utilized to statistically predict the 
onset of storm snow avalanches. The four models and a summary of their 
performance are summarized in Table 4. 

Of the four models, we found that the ensemble average of the 
members, Jamieson and Johnston (2001) with densification, and the SDI 
and Complexity model without densification provided the best 

predictions of the onset of natural avalanches. Although, as highlighted, 
the behavior of the stability index (SI) may vary across different regions 
or snow packs. By aggregating results from the SNOSS model and the 
natural avalanche activity, a specific SI may be used to further under
stand and refine each SI for a region of interest. For example, Jamieson 
2001 without densification may predict a critical SI value of 0.5 whereas 
the SDI and Complexity model with densification may predict a critical 
SI of 3. The reason for the discrepancy may lie within the uncertainties in 
coefficients for the strength and the densification model parameters. 
With instruments such as the DEID, specific strength coefficients can be 
related to grain type and begin to narrow this uncertainty or refine the 
parametrizations. Furthermore, with the availability of more storms and 
DEID data, we can begin to validate Table 2. This validation would allow 
SI predictions and storm-snow avalanche forecasting solely with DEID 
data. 

A critical point of difference among storm-snow stability models is 
the inclusion (or exclusion) of a density compression or densification 
model. The goal of any densification model is to account for compression 
the snowpack experiences due to metamorphic and vertical overburden 
stresses over the period of interest. In these models, snow is treated as a 
fluid that compresses based on the compactive viscosity of the snow. 
Initial observations from the SNOSS model outputs suggest that the re
sults from the densification model compresses the snowpack more 
rapidly than anticipated. For example, on 2021 March 20 the snowpack 
at 200 mm was computed to increase from 45 kg m−3 to 110 kg m−3 in 
under 24 h, a 244% increase. We hypothesize that the reason for this 
observation is that the original densification model parameters, pri
marily the compactive viscosity, were determined “post-storm “, rather 
than capture and applied during snowfall as performed here with the 
DEID. Traditional methods for capturing these parameters require dig
ging snow pits, hours or even days after the storm snow has settled, 
compressed, and begun to undergo metamorphism. This gap in data 
collection from snowfall to observation impacts avalanche forecasting 
ability, as well as broader snowpack and hydrology models, which rely 
on densification models. 

Moreover, the compactive viscosity is only a function of broad 
morphological classification and does not refine grain type for storm 
snow beyond the precipitation particle classification. Casson et al. 
(2008) performed a study to classify compactive viscosity as a function 
of precipitation type although no clear conclusions could be drawn. 
With the new high-resolution data from the DEID we anticipate being 
able to assess the compactive viscosity concurrent with an ongoing 
storm over short time scales of order of 1 h as well as for specific pre
cipitation particle types. Identification of compactive viscosity terms as 
a function of crystal type at relevant storm timescales may enable 
improved storm-snow densification models for more accurate avalanche 
forecasting. 

The SI, Eq. 11, represents the ratio of the shear strength of the storm 
snow to the overburden stress. Generally, when the SI value falls below 
unity, it is forecasted that the snowpack is unstable and natural ava
lanches may occur. Complicating factors in interpretation of SI 
computed at a single location for application to an entire region include 
terrain, spatial variability in snow accumulation, and differences in 
elevation and aspect. While the single location SNOSS assessment has 
these limitations, the results shown in Fig. 15 offer an initial look at the 
correlation between the minimum stability index (SImin) calculated as 
the minimum SI over a storm from the ensemble averaged SI from the 
members in Table 1, and the number of reported natural and unknown 
triggered avalanches (Ax) observed in the Central Wasatch from the 
storm’s start to three days post storm from the UAC observation data
base. The error bars in Fig. 15 present the standard deviation among the 
models. The corresponding SImin versus Ax analysis provides greater 
context for interpreting the value of the SI as well as demonstrating the 
convergence or confidence of the SNOSS model’s SI output. Initial 
findings suggest that, as anticipated, when SImin decreases, there is 
increased instability and the number of avalanches observed increases. 

Table 4 
A summary of the shear-strength model evaluations. Jamieson 2001 is an 
abbreviation for Jamieson and Johnston (2001).  

Model Tendency Explanation 

Jamieson 2001, without 
densification model 

Conservative Lowest coefficients of strength, 
with constant density 

Jamieson 2001, with 
densification model 

Fair Lowest coefficients of strength, 
with increasing density 

SDI & Complexity, without 
densification model 

Fair Larger coefficients of strength, 
with constant density 

SDI & Complexity, with 
densification model 

Liberal Larger coefficients of strength, 
with increasing density 

Ensemble Fair Average of all models  
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This relationship demonstrates the power the DEID and SNOSS model 
can employ for real time operational forecasting where storm snow 
avalanches are prevalent, an otherwise impossible task without real- 
time DEID data. 

With more comprehensive measurements than presented here, it 
may become possible to make regional predictions of the number of 
avalanches using the SNOSS model. For example, in Fig. 15 reported 
widespread (>6 Ax) natural and unknown triggered avalanches began 
when the SImin fell below a value of 1.5. Further studies designed relate 
the SNOSS model outputs to natural storm snow avalanches may be able 
to unlock more insight into the physical meaning of the spectrum of SI 
each model presents. We hypothesize that other data may be used to 
adapt this for applicability to regions outside of LCC, such as reactive
ness of storm snow to explosive triggers, which is regularly documented 
by avalanche mitigation personal. 

5. Conclusion 

We have presented results that highlight the Differential Emissivity 
Imaging Disdrometer’s potential for obtaining real-time measurements 
of critical variables required for prediction of snowpack instability and 
avalanche forecasting. Accurate measurements of precipitation in
tensity, snow density, and accumulation of snow and water are 
measured with the DEID in a particle-by-particle fashion. None of these 
measurements were previously available at such high resolution. These 
basic variables by themselves are valuable to avalanche forecasters who 
often use heuristics based on these variables (e.g., Perla, 1970) to pro
vide warnings in their forecasts. However, despite the advancements in 
measurement techniques and in weather and avalanche forecasting, 
predicting the onset of storm-snow avalanches is still a complex issue. 
Works from Dkengne Sielenou et al. (2021); Pérez-Guillén et al. (2022) 
demonstrate the impact large data aggregation can have on region-wide 
avalanche forecasting, but the inherent local-scale temporal and spatial 
variability of avalanches will continue to be a challenge. 

We have introduced two new parameters based on DEID measure
ments including the snow density index (SDI), which is the ratio of the 
actual projected snowflake area measured on the DEID’s hotplate to the 
melted area of the snowflake, and the snowflake’s Complexity, or the 
ratio of the area of the smallest ellipse altogether containing the particle 
cross-section to the actual cross-sectional area of the hydrometeor. 
Preliminary results indicate that classification of snowflake habit based 
on these parameters is possible using the DEID. Bair et al. (2012) noted 
that in half of all U.S. avalanche fatalities, the type failure crystal, or 
grain type at the bed surface of the avalanche, is not known because the 

crystals can metamorphose in the snowpack and are difficult to 
measured during a storm. Continuous measurements from the DEID 
combined with simple shear-strength models provide stability indices of 
storm snow and time-to-failure metrics. These results highlight potential 
nowcasting products that a coupled DEID and SNOSS model can provide. 

Following on the work presented here, future objectives include 
exploiting, for example, the DEID’s ability to estimate the depth of shear 
layers within fresh storm snow and the overburden weight. These data 
could be combined with slide-path areas and elevation profiles to yield 
estimates of the potential destructive scale and energy of a storm-snow 
avalanche (Schleiss and Schleiss, 1970). The analysis could be per
formed for relevant slide paths of interest either in real time (now
casting) or in a forecasting manner. In addition, we have found that the 
parameterization of the compactive viscosity in the SNOSS model may 
be too aggressive, leading to overly rapid densification and producing 
higher shear strengths within the modeled snowpack (Eq. 7). We hy
pothesize that improvements to the SNOSS model can be made by per
forming field and lab experiments to refine parameters related to grain 
structure. Furthermore, what remains poorly understood is how mix
tures of different snow-grain types impact the strength of different 
layers. Currently, our SNOSS or stability-index model employs a linear 
average of SDI and Complexity for all types of snow crystals contained in 
a 5-mm layer, which then are used to compute the strength of the layer 
(α and β). It is not clear if this is the best way to aggregate snowflake 
habit to determine snow strength. Future work should investigate the 
relationship between snow-crystal type and shear strength using DEID 
differentiation of particle types and manual measurements of shear 
strength from shear frame tests. 

In summary, we explored a simple and promising snow-stability 
index model that makes use of unique, highly detailed continuous 
measurements of key snowflake parameters using the Differential 
Emissivity Imaging Disdrometer. Future studies could include sophisti
cated, physics-based avalanche models such as SNOWPACK or CROCUS. 
Combining advanced avalanche modeling tools with the DEID di
agnostics and Infrasound Detection Systems can be expected to provide 
the ingredients necessary to significantly advance the state of science for 
avalanche forecasting. 
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