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Background: Consider a noisy observation ¥ = X + N
where X is a random variable, and N is a Gaussian random
variable with zero mean, variance o2, independent from X.
The object of this work is to construct a consistent estimator
for the conditional cumulants of the random variable X given
the observation Y = y, in the empirical Bayes framework. Cu-
mulants are important statistical quantities that provide useful
alternatives to moments and have a variety of applications [1]-
[4]. Given the conditional cumulant generating function

Kx(t]Y =y) =log (E["X|Y =y]) ,y eR,t€R, (1)

the conditional cumulant of order k£ € N (set of non-negative
integers) is defined as

dk

Kx|y=y(k) = WKX@‘Y =y)|t=0,y €R. (2)

t

Concretely, in this work we are interested in the scenario
where we observe n independent and identically distributed
(i.i.d.) copies Y7,...,Y, of a random variable Y and seek to
construct an estimator of x|y —, (k) for all y and a given order
k. Importantly, since neither the distribution nor observations
of the random variable X are available, this puts us in the
empirical Bayes framework [5].

Tools: The construction of the consistent estimator will
rely on the following tools. The first tools is Tweedie’s formula
[5], which connects the conditional expectation E[X|Y = y]
with the marginal pdf fy of Y

2f}/f (y)
fr (y)’

Note that Tweedie’s formula allows one to compute E[X|Y =
y] only from the knowledge of the marginal pdf fy.

The second tool that we will use is the fundamental re-
lationship between conditional cumulants and the conditional
expectation established in [6]

EXY =yl=y+o

yEeR. 3)

dk
Kx|y—y(k+1) = a%d—yk]E[X\Y =yl,ycR keN. 4

This tool will allow us to estimate cumulants providing that
we have a good estimate of the conditional expectation. As the
third tool, we will rely on Lanczos’ generalized derivatives
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[7]-[10] defined as follows. Let f : R — R and define the
following operator: for h > 0

1
Dy f(a) = 2 /_1 fla+ht)P,(t)dt, 2 € R, (5)

where ¢, = 3 227:21" (n+32), and P, is the Legendre
polynomial of order n. The operator in (5) has the following
property:

DY (@) = 1 (@) + O(h*), n €N ©)

This property is useful for showing that empirical estimators
of conditional cumulants are consistent.

Contributions: Inspired by (4) and (6), we consider the
following estimator of xx|y—,: for some h > 0

EX\Y:y(k + 17 h) = a-szf(Lk)m(y)’ Y € Ra k S Na (7)

where the estimator m(y) of E[X|Y = y] is inspired by (8)
and is given by
%
Ay —y+ oty e, ®)
fy ()

where fy (y) = 130 Lk (%) is the kernel density
estimator of fy (y) with bandwidth ¢ > 0 and kernel k(y) =
67;2 . Moreover, f;’/ (y) is the first order derivative of fy (y).
The main result of this work is the following which shows that

the estimator in (7) is consistent.

Theorem 1. Let t, = Y225 ”wglog(n), a= - and w € (0,u)

for some v € (0,%). Moreover, assume that E[X?] < oc.
Then, for every k € Nxqg and 0% > 0

i = ék oln
ImP| max |Kx|y—y (k) — KExiy—y(k; hp)| > —2 _
n—=o0 ||y|< t; | Xy y( ) XY y( ’ ’rb)‘ nQ(T,J:km)

0,

L -
where h,, = (nucfu, )¥T and C, and Cy , are constants that
depend only on k and o.
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