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Background: Consider a noisy observation Y = X +N
where X is a random variable, and N is a Gaussian random
variable with zero mean, variance σ2, independent from X .
The object of this work is to construct a consistent estimator
for the conditional cumulants of the random variable X given
the observation Y = y, in the empirical Bayes framework. Cu-
mulants are important statistical quantities that provide useful
alternatives to moments and have a variety of applications [1]–
[4]. Given the conditional cumulant generating function

KX(t|Y = y) = log
(
E[etX |Y = y]

)
, y ∈ R, t ∈ R, (1)

the conditional cumulant of order k ∈ N (set of non-negative
integers) is defined as

κX|Y=y(k) =
dk

dtk
KX(t|Y = y)|t=0, y ∈ R. (2)

Concretely, in this work we are interested in the scenario
where we observe n independent and identically distributed
(i.i.d.) copies Y1, . . . , Yn of a random variable Y and seek to
construct an estimator of κX|Y=y(k) for all y and a given order
k. Importantly, since neither the distribution nor observations
of the random variable X are available, this puts us in the
empirical Bayes framework [5].

Tools: The construction of the consistent estimator will
rely on the following tools. The first tools is Tweedie’s formula
[5], which connects the conditional expectation E[X|Y = y]
with the marginal pdf fY of Y

E[X|Y = y] = y + σ2 f
′
Y (y)

fY (y)
, y ∈ R. (3)

Note that Tweedie’s formula allows one to compute E[X|Y =
y] only from the knowledge of the marginal pdf fY .

The second tool that we will use is the fundamental re-
lationship between conditional cumulants and the conditional
expectation established in [6]

κX|Y=y(k + 1) = σ2k dk

dyk
E[X|Y = y], y ∈ R, k ∈ N. (4)

This tool will allow us to estimate cumulants providing that
we have a good estimate of the conditional expectation. As the
third tool, we will rely on Lanczos’ generalized derivatives

[7]–[10] defined as follows. Let f : R → R and define the
following operator: for h > 0

D
(n)
h f(x) =

cn
hn

∫ 1

−1

f(x+ ht)Pn(t)dt, x ∈ R, (5)

where cn = 1
2

√
22n+2

π Γ
(
n+ 3

2

)
, and Pn is the Legendre

polynomial of order n. The operator in (5) has the following
property:

D
(n)
h f(x) = f (n)(x) +O(h2), n ∈ N. (6)

This property is useful for showing that empirical estimators
of conditional cumulants are consistent.

Contributions: Inspired by (4) and (6), we consider the
following estimator of κX|Y=y: for some h > 0

κ̂X|Y=y(k + 1;h) = σ2kD
(k)
h m̂(y), y ∈ R, k ∈ N, (7)

where the estimator m̂(y) of E[X|Y = y] is inspired by (8)
and is given by

m̂ (y) = y + σ2 f̂
′
Y (y)

f̂Y (y)
, y ∈ R, (8)

where f̂Y (y) = 1
n

∑n
i=1

1
ak

(
y−Yi

a

)
is the kernel density

estimator of fY (y) with bandwidth a > 0 and kernel k(y) =
e−y2/2
√
2π

. Moreover, f̂ ′
Y (y) is the first order derivative of f̂Y (y).

The main result of this work is the following which shows that
the estimator in (7) is consistent.

Theorem 1. Let tn =
σ2
√

w log(n)

3 , a = 1
nu and w ∈ (0, u)

for some u ∈
(
0, 1

8

)
. Moreover, assume that E[X2] < ∞.

Then, for every k ∈ N>0 and σ2 > 0

lim
n→∞

P

[
max
|y|≤ tn

2

∣∣κX|Y=y(k)− κ̂X|Y=y(k;hn)
∣∣≥ C̃k,σ tn

n
2(u−w)

1+k

]
= 0,

where hn = ( Cσ

nu−w )
1

k+1 and Cσ and C̃k,σ are constants that
depend only on k and σ.
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