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Conditional Mean Estimation in Gaussian Noise:
A Meta Derivative Identity With Applications
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Abstract— Consider a channel Y = X + N where X is an
n-dimensional random vector, and N is a multivariate Gaussian
vector with a full-rank covariance matrix Kn. The object under
consideration in this paper is the conditional mean of X given
Y =y, that is y — E[X|Y = y]. Several identities in
the literature connect E[X|Y = y] to other quantities such
as the conditional variance, score functions, and higher-order
conditional moments. The objective of this paper is to provide a
unifying view of these identities. In the first part of the paper,
a general derivative identity for the conditional mean estimator
is derived. Specifically, for the Markov chain U «— X « Y,
it is shown that the Jacobian matrix of E[U|Y = y] is given
by Kx'Cov(X,U|Y = y) where Cov(X,U|Y = y) is the
conditional covariance. In the second part of the paper, via
various choices of the random vector U, the new identity is
used to recover and generalize many of the known identities
and derive some new identities. First, a simple proof of the
Hatsel and Nolte identity for the conditional variance is shown.
Second, a simple proof of the recursive identity due to Jaffer
is provided. The Jaffer identity is then further explored, and
several equivalent statements are derived, such as an identity
for the higher-order conditional expectation (i.e., E[X*|Y]) in
terms of the derivatives of the conditional expectation. Third,
a new fundamental connection between the conditional cumulants
and the conditional expectation is demonstrated. In particular,
in the univariate case, it is shown that the k-th derivative of
the conditional expectation is proportional to the (k + 1)-th
conditional cumulant. A similar expression is derived in the
multivariate case.

Index Terms— Vector Gaussian noise, conditional mean
estimator, conditional cumulant, minimum mean squared error.
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I. INTRODUCTION

ONSIDER a model given by the following input-output
relationship:

Y =X+N, ey

where N € R” is a zero mean, normally distributed with
the covariance matrix Ky, and independent of X € R".
Throughout the paper Ky is assumed to be a positive definite
matrix, and we make no assumptions about the probability
distribution of X. In the case of n = 1, we denote Kn = 2.
Also throughout the paper deterministic scalar quantities are
denoted by lowercase letters, scalar random variables are
denoted by uppercase letters, vectors are denoted by bold
lowercase letters, random vectors by bold uppercase letters,
and matrices by bold uppercase sans serif letters (e.g., z, X,
x, X, X).

In this work, we are interested in studying properties of the
conditional mean estimator of the input X given the output Y
according to (1), that is

EX|Y =y] = /deX‘Y:y(x), y € R™. )

The conditional expectation is of interest in view of the
wide range of applications of the conditional expectation
in fields such as estimation theory and information theory.
For example, the conditional expectation is known to be the
unique optimal estimator under a very large family of loss
functions, namely Bregman divergences [3]. In this work,
we will view the conditional mean estimator as a function
of channel realizations, that is y — E[X|Y = y], and will be
interested in characterizing analytical properties of the con-
ditional expectation. Specifically, we focus on characterizing
various derivative identities involving conditional expectations
and will show a few applications of these identities.

There are several derivative identities in the literature that
relate the conditional mean estimator to other quantities such
as the score function and the conditional variance. Such
identities are often used in information theory to give way
to estimation theoretic arguments (e.g., the -MMSE relation-
ship [4], [S]). In estimation theory such identities are often
used to design new estimation procedures (e.g., empirical
Bayes [6], [7]) or establish connections to detection theory [8].
Perhaps the most well-known such identity is

EX|Y =y] =y +KnVylog fy(y), y e R"  (3)
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where fy(y) is the probability density function (pdf) of

Y. We note that the quantity Vylog fv(y) = vf%‘{y(f')

commonly known as the score function. The scalar version of
the identity in (3) has been derived by Robbins in [9] where
he credits Maurice Tweedie for the derivation. The vector
version of the identity in (3) was derived by Esposito in [10].
Therefore, throughout this paper, we refer to the identity in
(3) as Tweedie-Robbins-Esposito identity or TRE for short.

The observation that, via the TRE identity, the conditional
expectation can be represented in terms of only the marginal
distribution of the output Y has led to the development of
the empirical Bayes procedure [9]; the interested reader is
referred to [7] for an overview of this procedure. In addition
to developing statistical procedures the TRE identity in (3)
can considerably simplify the computation of E[X|Y = y]
itself as we do not need to derive the conditional distribution
Px|y and only need to compute fy(y) and the gradient of
fv(y). For an example of such an application, the inter-
ested reader is referred to [11] where the TRE identity was
used to compute E[X|Y = y] for the case where X is
uniform on a sphere in R™. In information theory, the TRE
identity has also been used in the proofs of the scalar and
vector versions of the -MMSE relationship in [12] and [5],
respectively.

In addition, to the TRE identity, first and higher-order deriv-
atives of the conditional expectation also find a wide variety
of applications. The first-order derivatives and gradients of
the conditional expectation, which were first characterized by
Hatsell and Nolte in [13], have been used to derive a vector
version of the I-MMSE relationship in [5], prove Lipschitz
continuity of the minimum mean squared error (MMSE)
in [14], study sparse mixtures in [15], and derive converse
bounds in network information theory [16], [17]. Higher-order
derivatives of the conditional expectation have recently been
used in [18] in the context of finding the best polynomial
approximation of the conditional expectation.

The first goal of this work is to show that many of the
known identities in the literature can be derived systematically
from a single unifying derivative identity. The second goal is
to show that the new identity leads to generalizations of the
previously known identities and can be used to discover new
identities.

is

A. Contributions and Paper Outline

The contribution and the outline of the paper are as follows:

o In Section II, Theorem 1 presents a new identity for the
Jacobian of the conditional mean. Throughout the paper,
this identity will be used for systematic proofs of old and
new identities.

o In Section III, Proposition 1 presents a simple proof
of a vector version of the Hatsel-Nolte identity, which
relates the Jacobian of the conditional expectation to the
conditional variance.

o In Section IV, we study recursive derivative identities for
the conditional expectation and show:

— In Section IV-A, Proposition 2 shows that the main
identity in Theorem 1 can lead to a simple proof of
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a recursive identity due to Jaffer. To the best of our
knowledge, Jaffer’s identity is not well-known and
until now has had no applications;

In Section I'V-B, Proposition 3 provides an alternative
integral version of Jaffer’s identity. This new integral
identity is shown to be very powerful and leads to
simple proofs of old results and several new results.
In particular, we have the following three new results.
First, in Proposition 3, the integral version of Jaffer’s
identity leads to an expression for all higher-order
derivatives of the conditional expectation in terms
of Bell polynomials. Second, in Proposition 3, the
integral version of Jaffer’s identity leads to a rep-
resentation of higher-order conditional expectations
(i.e., E[X*]Y]) in terms of the derivatives of the
conditional expectation. Third, in Proposition 4, the
integral version of Jaffer’s identity is used to gen-
eralize the TRE identity to higher-order conditional
expectation. This generalized TRE identity maintains
the property that E[X*|Y] depends on the joint
distribution only through the marginal of Y.

In Section IV-C, Proposition 5 and Proposition 6 pro-
vide two vector generalizations of Jaffer’s identity.

o In Section V, we establish several new fundamental
connections between the conditional expectations and the
conditional cumulants and show:

In Section V-A, Proposition 7, for the univariate
case, shows that the k-th derivative of the condi-
tional expectation is proportional to the (k -+ 1)-th
conditional cumulant. Interestingly, Proposition 7, in
combination with the TRE identity, shows that the
conditional cumulants depend on the joint distrib-
ution only through the marginal of Y. Moreover,
the combination of the TRE identity and Proposi-
tion 7 is used to study the properties of Px|y—,.
In particular, it is shown that while Pxy—, is sub-
Gaussian, it can be strictly sub-Gaussian only on a
set of measure zero. Finally, Theorem 2 establishes a
new derivative identity that connects the higher-order
derivative of the conditional expectation and the par-
tial derivatives of the cumulant generating function;
and

In Section V-B, the univariate results of Section V-A
are generalized to the multivariate case. Specifically,
Theorem 3 and Theorem 8 establish connections
between the partial derivatives of the conditional
cumulant generating function, the partial derivatives
of the conditional cumulants, and the partial deriva-
tives of the conditional expectation.

In Section V-C, Theorem 4 establishes a power series
expansion of the conditional expecation.

o In Section VI, we study identities relating the conditional
expectation to quantities such as the conditional distribu-
tion PX‘Y, the pdf of Y, and the information density of
the pair (X,Y) and show:

In Section VI-A, for the multivariate case, Propo-
sition 10 and Proposition 12 establish the gradient
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of the information density and the Hessian of the
information density. In addition, for the univariate
case, in Proposition 13, every k-th order derivative
of the information density is determined.

— In Section VI-B, the inverse version of the TRE
identity is discussed and is used to show that the con-
ditional expectation uniquely determines the input
distribution provided the noise’s covariance matrix
is full rank.

— In Section VI-C, the identities for the information
density are used to find two new alternative repre-
sentations of the MMSE.

o Section VII concludes the paper. All of the identities are
summarized in Table 1.

B. Notation

The set of all positive integers is denoted by N, [n] is the set
of integers {1,...,n}, and R™ is the set of all n-dimensional
real-valued vectors. All logarithms in the paper are to the base
e. All vectors in the paper are column vectors.

For random vectors U € R™, X € R" and Y € RF
we define the conditional variance matrix and the conditional
cross-covariance matrix as follows:

Var(X|Y) =E [XXT|Y] -E[X|Y]E [XT|Y], 4

Cov(X,U[Y) =E [XUT|Y] -EX|Y]E[UT|Y]. (5
The MMSE matrix is denoted by

MMSE(X|Y) = E [(X - EX|Y]))(X — E[X[Y])']. (6)

As usual, we refer to the trace of the MMSE matrix as the
MMSE and denote it by

mmse(X|Y) = E[|X ~EX[Y]|"]. ()

The standard basis vectors for R" are denoted by e;, i €
[n]. For a matrix A, we use [A];; to denote the entry of row 4
and column j. The Euclidian norm of a vector x € R" in this
paper is denoted by ||x||. The inner product between vectors
u and v is denoted by u - v.

The gradient of a function f : R™ — R is denoted by

Of (x of(x)]"
vxf(x): éf,](jl)’.”’ éfén)

The Jacobian matrix of a function f : R™ — R" is denoted
by

€ R™. (8)

Afi(x)  9f2(x) A fm (%)
oz oxq Ox
0h1(x)  0f2(x) 0 fm(x)
Lfx) =] %= o O [ e Rrxm(9)
Oh(x)  Ofa(x) 8 fm (%)
RE2S Oy, Oy,
The Hessian matrix of a function f : R” — R is denoted by
’f(x)  2’fx) % f (%)
61% Ox10xo Ox10xy,
Phx)  9f(x) 9% f(x)
Dif(X) _ | 92201y Ox2 01201, c R™X".
PhHx) Pfa(x) 92 fin (%)
Ox,0x1 Ox,0xo 02w,
(10)
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The (n,k)-th partial Bell polynomial is denoted by
Byk(z1,. .., Zn_g+1) and the n-th complete Bell polynomial
is denoted by

n
Bn(xl,...,:cn):ZBn,k(xl,...,xn,kJrl). (11)
k=1

Finally, the pdf of a zero mean Gaussian random vector
with a covariance matrix K is denoted by ¢k (+).

II. A NEW IDENTITY FOR THE CONDITIONAL
EXPECTATION

The first main result of this paper is the following general
identity.

Theorem 1: Suppose that random vectors U € R™ X €
R™, and Y € R" satisfy the following conditions:

U < X « Y form a Markov chain, in that order; (12)
E[JU[IX]|Y =y] < oo,y € R";and (13)
E[U[[1Y =y] < oo,y € R™ (14)

Then,
LE[U]Y =y] = Ki'Cov(X, U[Y =y),y € R*. (15)

Proof: See Appendix A. [ |
It is not difficult to see that conditions in Theorem 1 are
rather mild. For example, by using Bayes’ formula, we have

that

Consequently, since fy(y) > 0, E[||U|||Y =y] < oo if
and only if E[||U| ¢ky(y — X)] < oo. Therefore, in order
to violate the conditions in Theorem 1 one needs to find
[[U|| that goes to infinity faster than a Gaussian density.
In particular, by setting U = X, the above discussion shows
that E [X|Y = y] always exists.

In the rest of the paper, it is shown that many of the known
identities in the literature can be derived systematically from
the identity in Theorem 1. Moreover, we use this new identity
to derive several generalizations of the previously known
identities and discover some new identities. Specifically, this
will be done by evaluating Theorem 1 with different choices of
Usuchas U=X, U =14(X), U= (XX")*1X keN
and U = etTX, t € R”. For all these choices the conditional
expectations will be finite.

(16)

III. THE VARIANCE IDENTITY OF HATSELL AND NOLTE

Our first application is to use (15) to recover a variance
identity shown by Hatsell and Nolte in [13]. By setting U = X
in (15), we arrive at the following identity.

Proposition 1: Fory € R"

JLEX[Y = y] = Ky'Var(X|Y = y). A7)

The identity in (17) has been first derived by Hatsell and
Nolte in [13] for the case of Ky = I. The general version in
(17) was first derived in [5]. In terms of applications, in [5],
the identity in (17) was used, together with the TRE identity
in (3), to give a proof of the vector version of the [-IMMSE
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relationship; in [14], the scalar version of the identity in (17),
was used to show that the minimum mean squared error is
Lipschitz continuous with respect to the Wasserstein distance;
and in [15], the identity in (17) was used to show log-convexity
of the function akin to the log-likelihood ratio.

The identity of Hatsell and Nolte in (17) can be used to
make various statements about the minimum and maximum
‘slope’ of E [X|Y =y].

Corollary 1: For every y € R”

0<Tr,EX[Y =y]). (18)
In addition, if || X|| < R, then
Tr(I,E XY =y]) < R*Tr (Ky'). (19)

Proof: The proof of the lower bound follows by using (17)
together with the properties that both variance are positive
definite matrices and that the trace of the product of two
positive definite matrices is non-negative. To show the upper
bound in (19), we use (17) together with the Cauchy-Schwarz
inequality

Tr(WEX|Y =y]) = Tr(Var(X|Y = y)Ky')  (20)
< R*Tr (Ky') . 1)
|

Several new applications of (17) will be given in subsequent
sections. For example, in Section VI the identity in (17) will
be used to show the concavity of the information density.

IV. RECURSIVE IDENTITIES FOR HIGHER-ORDER
CONDITIONAL MOMENTS

In this section, we study recursive identities for higher-order
conditional moments. The treatment of the scalar and vector
case will be done separately. We begin by first showing a
simple proof of the recursive identity due to Jaffer.

A. Jaffer’s Identity

In [19], Jaffer has shown the following identity, which now
easily follows from our main result in Theorem 1.
Proposition 2: Fory ¢ Rand k € N U {0}

E[XkJrlD/ _ y}

= oniyE[XﬂY =y|+E[X"Y =y EX|Y =y]. (22)

Proof: Letting U = X* in Theorem 1, we arrive at
d

—E[X*Y =
XY =]
1
= —Cov(X, X Y =y) (23)
g
1 ,
= 5 (BIX**|Y = y) — ELX*|Y = yEX|Y =y)).
(24)
This concludes the proof. [ |

To the best of our knowledge, Jaffer’s identity in (22)
has had no applications and is not well-known. In what
follows, we develop several alternative representations and
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generalizations of Jaffer’s identity and also show the utility of
Jaffar’s identity. Specifically, we will first derive an alternative
but equivalent integral version of Jaffer’s identity and show
how this new identity can be used to prove the uniqueness
of the conditional mean estimator. In Section V, this identity
will be used to show a new fundamental connection between
conditional cumulants and conditional expectations.

B. A New Perspective on Jaffer’s Identity

Next, we show that Jaffer’s identity has an alternative
integral version. This new integral representation leads to
several interesting consequences. The following lemma will
be useful in deriving this new representation.

Lemma 1: Let f; : R — R be a sequence of functions with
k € NU {0} such that

Fil) = L fuaa) + fia @)k =1.2,, @)

with fy = 1.
Then, the following statements hold:
o The solution to (25) is given by

dk

felw) =e I fl(t)dt@eﬁ Ale)de (26)
— By (fl(o)(x), o 1""‘”(@) RCY)
o The derivatives of f; are given by
. k+1
1( )(J)) = Z CmBk*+1,m (fl (37)7 s fk’—m+2(x)) )
m=1
(28)

where ¢, = (=1)™ " (m — 1)
Proof: See Appendix B. [ |
Using Lemma 1, we can now present an alternative integral
version of Jaffer’s identity. In addition, we also provide an
expression for all higher-order derivatives of the conditional

expectation.
Proposition 3: For y € R and k € N
E[X*Y =y]
1y NG LA _
— o2k JYEIX|Y=tldt 4 [VE[X|Y=t]dt (29)
dy*
X X
= o2FBy <E<0> {—2|Y = y} ..., BE¢:D [—2|Y = y]) ,
o o
(30)

where E) [X|Y = y] = ;‘TZE[XW = y|. Moreover,

dk

d—ykE[XW =y

k+1

2
=0 § Cm
m=1

X X k—m+2
g g

where ¢, = (=1)™"1(m — 1)..

)

€19
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Fig. 1. Plot of E[X*|Y = y] vs. y for k = 1,2,3 and 4.

Proof: First, observe that Jaffer’s identity in (22) can be

re-written as
k—1
X
- Y =
( 02) Y=y

{32
(-

X\ A1
() s
Hence, if we take fi(y) = E [(%)k Y = y} , then the Jaffer’s
identity is of the same the form as the recurrence relationship
in (25). In view of this observation, the proof now follows by
applying the results in Lemma 1. [ ]

Example: The second and third Bell polynomials are given
by

+E (32)

Bo(z1, 22) = 2} + a2, (33)
B3 (w1, 29, 23) = 23 + 32129 + T3. (34)
Therefore, using (30), we have that
E[X?)Y =y] = B*[X[Y = y] + ED [X|Y =y], (39)
and

E[X?Y =y| = c’E*[X|Y = y]
+30°E[X|Y = y]EV[X|Y = y] + ' E@[X|Y = 9]
(36)

As an illustration of this procedure the k-th order con-
ditional expectation for > = 1 of a random variable X
uniformly distributed on {—2,0,2} is plotted in Fig. 1.

An important feature of the integral version of Jaffer’s
identity in (29) is that every higher-order conditional moment
is determined by the first-order conditional moment.

Another identity, equivalent to that in (29) and which allows
expressing higher-order conditional moments in terms of the
pdf of Y, is shown next.

Proposition 4: For any k € N and y € R

i (W)
Iy (y)(b;zl (y)

EX*Y =y = (37

1887

Alternatively, let t — H,, (t), m € NU{0} be a probabilistic
Hermite polynomial; then

2k Zm 0 (m) s M)(y) (;Z';?Lm Hem (’L%)
fy(y) ’
(38)

EXFY =y] =

where ¢ = v/—1.
Proof: First, observe that using the scalar TRE identity
in (3) we have that

/Oy@dt_/o% + %bg(fy( ))> dt (39

2

=Lt log(fv () -

log(fy(0)).
(40)

Inserting (40) into (29) leads to (37). The proof of (38)
follows by applying the generalized product rule to (37) and
the following derivative [20, eq. 19.13.3]:

dm .2 (=)™
e = (=9) H., (zg) €207,
dym, om o

(41)

|

The identity in (37) can be thought of as a generalization of

the TRE identity in (3) to the higher-order moments. Indeed

for k = 1, we recover the TRE identity. Similarly to the TRE

identity, the important feature of the identity in (37) is that

E[X*]Y] depends on the joint distribution Py only through
the marginal pdf of Y.

C. Vector Generalizations of Jaffer’s Identity

Given the fact that there is no unique generalization of
higher-order moments to the vector case, several vector gener-
alizations of the identity in (22) are possible. Next, we present
two such generalizations.

The first generalization of (22) is in terms of the powers of
a matrix.

Proposition 5: For k € Nandy € R"

B [(XXDHY = y] = Kndy B [(XXT)* 71 X]Y =]

+EX[Y =y]E [X"(XX)" Y =y]. 42)

Proof: The proof follows by evaluating (15) with U =
(XXT)k¥~1X and noting that UT = XT(XXT)k~1, [
The second generalization of (22) allows for different
exponents across elements of X.
Proposition 6: For every m € [n], v; € NU {0}, € [n]
and y € R”

(e]Kn'X)"
dym 1:[1 N
=E| J] (efKn'X)" (el Kn'X)"" " [Y =y
i=1:1#m
n
H TKle E[ 7r1KN1X|Y y}
=1
43)
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Proof: The proof follows by evaluating (15) with U

[T, (el Ky'X)™. |
In the case when Ky is a diagonal matrix with [KnJ;; =
o2 the identity (43) reduces to
n
E|xgtt I X0y =y
i=l:i#m
, d .
= O3B lH XY = y]
ym, i=1
n
+E([] XY = y] E[X.|Y =y]. (44
i=1

V. IDENTITIES FOR THE CONDITIONAL CUMULANTS

This section establishes a new connection between the
conditional cumulants and the conditional expectation. For
ease of exposition, we first focus on the univariate case and
then generalize the results to the multivariate case.

A. The Univariate Case

Consider the conditional cumulant generating function
Kx@t[Yy =y) =log (Ee'*|Y =y]),y e R,t eR. (45)
The k-th conditional cumulant is given by

dk
Kx|y=y(k) = @KX(HY =y)

Remark 1: The conditional moment generating (i.e., E[e
Y = y]) is well-defined in view of (16). An alternative way
to argue this is to use the fact all ¢ € R, the conditional
distribution Px|y—, is sub-Gaussian [21].

It is well-known that the cumulants and the moments of a
random variable U have a one-to-one correspondence with the
inverse relationship given by

O,keN,teIR{. (46)

.-
tX|

k
ko (k) =) emBrm (01, fthemy1),  (47)
m=1

where p,, = E[U™] [22, Example 11.4]. This expression
together with the integral version of Jaffer’s identity in (31)
leads to the following simple relationship between the condi-
tional expectation and the conditional cumulants.

Proposition 7: For y € R and k € NU {0}

k

d
Uzkd—ykE[XW =y| = kxjy=y(k +1).

Proof: First, let X, ~ Px‘yzy and let U = % Second,
by using the scaling property of cumulants, we have that

(48)

1
Ky (k) = ﬁf@X\Y:yUf)- (49)

Next, by using (47), for £ > 1 we have that

1
X k—m+1
)

ﬁ/ﬁmy:y(k‘)

k
X
= E CmBk’m <E |:_2y:|,...,E
a

m=1

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 3, MARCH 2023

Fig. 2. Plot of kx|y—,(k) vs. y for k =1,2,3 and 4.

1 dkfl
= EWE[X?/]’ (5D
where the last step follows by using (31). This concludes the
proof. [ |
From Proposition 7, we make the following two
observations:

e ForkeN

d
an—me‘y:y(k) = Kx|y—y(k+1); and (52)

o By using the TRE identity, we arrive at a new the
representation of cumulants in terms of only fy

d
Kx|y=y(1) =y +0°—log fy (y),

™ (53)
d2
Kx|y—y(2) =0 + U4d—y2 log fy (y), (54)
dk
kxjy—y(k) = 0* —log fy(y),k >3. (55

dy
In other words, the conditional cumulants depend on
the joint distribution Pxy only through the marginal
distribution Py .
Example: In the case when X is standard Gaussian the
conditional expectation E[X|Y = y] is a linear function of
y. Therefore, by using (48), we have that

1
KxX|y=y(1) = T o2? (56)
o2
Kx|y—=y(2) = T o2 (57)
Kxly—y(k) =0, k > 3. (58)

Note that this is as expected since Px|y is Gaussian, and
for the Gaussian distribution only the first and the second
cumulants are non-zero.

Example: Consider an example of a random variable X €
{-3,0,3} with a uniform distribution. Fig. 2 shows plots of
Kx|y—y VS. y for several values of k.

One more example of the expression for the conditional
cumulants will be given in Section V-B for the case of X
distributed uniformly on {—R, R}.

We next show a small application of the new identity
in (48).
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Example:A random variable U with mean p = E[U] is said
to have a sub-Gaussian distribution if there exists a 42 such
that e

E {e”\(U_“’)} <e* 7, A eR. (59)
The quantity 72 is known as a proxy variance. The distribution
is said to be strictly sub-Gaussian if Var(U) = ~v. In [21],
it was shown that for an arbitrary distribution of X, the
conditional distribution Px|y—, is sub-Gaussian for all y.
We now use the identity in (55) to answer if Pxjy—, is
strictly sub-Gaussian. As shown in [23, Prop. 4.3] a necessary
condition for strict sub-Gaussianity requires that the third
cumulant is zero. Therefore, a necessary condition for Px|y—,
to be strictly sub-Gaussian is

0= Iix|y:y(3), \V’y e R. (60)

This certainly holds if X is Gaussian. Moreover, as shown in
Fig. 2, for a non-Gaussian example, the above can be zero for
some values of y. However, this set of y’s must necessarily
be of Lebesgue measure zero for a non-Gaussian X. To see
this, suppose that 0 = rx|y—y(3),y € S where S is a set
of positive Lebesgue measure. Then, since x x|y—, (k) is real-
analytic (see Lemma 2 below in Section V-C), by the identity
theorem for real-analytic functions [24], it follows that 0 =
Kx|y=y(3) for all y € R. Next, using this and the identity in
(55), we arrive at a differential equation
d3
0= f@X\Y:y(3) = UGd—y3 log fy(y),y € R.

The solution to (61) states that log fy (y) must be a quadratic
function and implies that Y must be Gaussian. This further
implies that X is Gaussian and contradicts our assumption
that X is non-Gaussian. In conclusion, for a non-Gaussian
X, the distribution Px|y—, can only be strictly sub-Gaussian
on a set of Lebesque measure zero.

We conclude this section by showing that Theorem 1 can
be used to get a more general identity than that in (48).

Theorem 2: For y € R and k € NU {0}

dk+1 k+1

d
Kx(tY = y) = o*0 o

(61)

Errsy Kx(tY =y)

2 X pixgy -
+ o REIXIY =)

Proof: First, consider the case of £ = 0. By setting U =
etX , t € R in Theorem 1, we arrive at

(62)

d

L RxtlY =)
LERN]Y =y

_ dy

T EREY =y ©2

| 1EXNY =y BNy = yBXY =),
7 B Y =y

_ 1 BN =] By =B =)o
= BV = 4]
1 /d

— oz (R Y =) ~EXY =) 9
1 /d

— o (§xtaly =) - BxIY =41). (67
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The rest of the proof follows by using (67) together with a
simple induction. u

Alternatively, we could have used Theorem 2 to show the
derivative identity in (48). This approach has the benefit of
avoiding the use of Bell polynomials. This alternative view
will be taken in the next section to derive a multivariate
generalization of the identity in (48).

B. The Multivariate Case

Consider the multivariate conditional cumulant generating
function

Kx(t|]Y =y) =log (E[etTX|Y = y]) ,y €R"t € R™.
(68)

The conditional cumulants are now defined as

Y
o, 1Y = V)lcor

Kx|y—y(51,.,85) = TR
P

(69)

where j € N and s1,...,s; € [n]. Note that the cumulants
are the same for all permutations of the sequence s1,...,s;.
The above definitions follow the conventions of [25].
It is instructive to consider the following example.
Example: Let X ~ N(O,1). Then, X|Y = y ~
N (EX|Y =y],Var(X|Y =y)) where

EX|Y =y] = (1+Kn)'y,y €R",
T =Var(X|]Y =y) = Kn(l + Kn) ', y € R?,

(70)
(71)

with the moment generating function given by
5t
E[etTX|Y =yl = etT]E[XlY:y}eTz,t eR" y eR", (72)

and the cumulant generating function given by

tTXt
Kx(t]Y =y) =t"E[X|Y = y] +

,teR" y € R™.
(73)
Using the definition in (69), the cumulants are calculated to
be
J=1: kxjy=y(s1) = E[X, [Y =y], 51 € [n],
j =2: "@X|Y:y(81582) = [2]817827 51,82 € [TZL
J >3 kxjy=y(s1,...,5;) =0, 51,...,5; € [n].

We first show a multivariate generalization of Theorem 2,
which follows by letting U = e* X in Theorem 1.

Theorem 3: Let k] = ] Ky (i.e., the i-th row of Kgh).
Then, for j € Nand y € R"

I Kx(t]Y =
W = kI Vek!, V.. k] Vi Kx(t[Y =)
s -+ OYs,
I-IE[X|Y =
. O EX[Y =y] (74)
! aym s 8y5j—1
Proof: See Appendix E. [ |

Remark 2: The first term on the right side of (74) can be
equivalently written as

ki Vik],Vi.. .k ViKx(t[Y =y)
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(75)

where kg, . is p;’s entry of ks,. This representation will
be useful in the next proof, which relates the conditional
cumulants and the conditional moments.

The next result generalizes the derivative identity in (48) to
the multivariate case.

Proposition 8: Let kI = el Ky' and k,,; = el K'es.
Then, for j € Nand y € R”

r PIEX]Y = y]

5 0ys, - - .6ysj_1
n n J
_ Z Z Hksi,pi"ix|Y:y(p1"'"pj)' (76)
p1=1 pj=Lli=1

Proof: The proof follows by showing that for every j
we have that Ltgy” = 0. See Appendix F for the
details. e ]

In the case when Ky is a diagonal matrix the above
simplifies to

-1 1
IIE[X Y =y]
EX[Y—y(815-..,8j) = o2 . . ,
(17
where we let H?:l ol ., =1

Closed-form expressions for the conditional expectation are
rare in the univariate case and even more so in the multivariate
case. In particular, not many examples of E[X|Y = y] are
known when X has a non-product distribution. The next
example computes the first two cumulants for one of the
rare cases when we do have a closed-form expression for the
conditional expectation.

Example: Consider a case when X is distributed uni-
formly on {x € R"™ : [[x]| R} (e, (n — 1)-sphere
of radius R) and let Ky = |. This distribution has sev-
eral applications in information theory and estimation theory.
For example, in information theory, this distribution is the
capacity-achieving distribution for an amplitude-constrained
channel [11]. In estimation theory, this distribution has been
shown to be the least favorable distribution for the problem
of estimating a bounded normal mean [26]. The conditional
expectation for this distribution is given by [11]

EX|Y =y] = —ha(Rllyl), y € R", (78)

|| H
where h, (1) I" (lt( 77 and where I, (+) is the modified Bessel
function of the ﬁrst kind of order v. Next, using Proposition 8,
we characterize the first two conditional cumulants of this
distribution. For j = 1, kxjy—y(s1) = E[X.,|Y = y],
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in (79), shown at the bottom of the page. The proofs for
7 = 2 can be found in Appendix D. For the case of n
1, the distribution under consideration becomes uniform on
{—R,R} and as expected the expression in (79) reduces

2
to kxjy—y(2) = W?Ry)) , which is the derivative of
E[X|Y = y] = Rtanh(Ry).

C. Power Series Expansion of the Conditional Expectation

In this section, we find the power series expansion of the
conditional expectation in terms of the conditional cumulants.
The fact that a power series expansion exists follows from the
next result.

Lemma 2: The functions y +— E[X*|Y = y],k € N and
Y kx|y—y(k), k € N are real-analytic.

Proof: Note that by the TRE identity in (3)

2 dny( )
fry)

Hence, since the ratios and sums of analytic functions are
analytic, E[X|Y = y] is real-analytic provided that fy (y) is
real-analytic. The analyticity of fy is a known consequence
of convolution with Gaussian measures (see e.g., [27, p. 242]).
Since E[X|Y = y| is real-analytic, the identities in (30)
and (48) imply that E[X*|Y = y] and rx|y—,(k) are also
real-analytic. n

Before studying the Taylor series of the conditional expec-
tation, it is instructive to consider the following example.

Example:For X uniformly distributed on {—1, 1}, the con-
ditional expectation is given by

EX|Y =yl=y+o (80)

[X|Y—y]—tanh( ) y € R.

By using the Taylor series of tanh(-) around zero

[20, Eq. 4.5.64], we have that
o 22k(22k _

=2 (2k)!

k=1

1)bog (i)qu

o2

EX]Y = y]

where b,, is the n-th Bernoulli number.

The key observation here is that even in this simple case,
the Taylor expansion has a finite radius of convergence.
Therefore, in general, we cannot expect to get a power series
representation of E[X|Y y] that converges for all R
(i.e., the power series with an infinite radius of convergence).

We now show two bounds on the absolute value of the
conditional cumulants. Together with the identity in (48),
these bounds produce bounds on the rate of growth of the
conditional expectation. In addition, these bounds will be used
to characterize the Taylor series expansion of the conditional
expectation.

Proposition 9: For y € R and k € N

and for j = 2 the expression for fﬁ}X‘Y:y(Sl,SQ) is given |“X|Y:y(k)| < zkflkkE[|X|k|Y =] (81)
Rysp s R%ysyvey 2
Sra h" (Rllyl) + =525+ (1 — £=rha (Rllyl) — (ho (RllyI))™) . s1# s2
lyll Iyl HYII
Fxpy=y(s1,52) = IIyH R2y? 2 (79)
R “than + e (1= kg (Rlyl) - (hy (RIYD)?) . s1= 52
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< agly|" + br, (82)
where
ap = kk2k71(2max(§71,1) +2), (83)
be = kF(2max(G-LDHRES [X2] L B[ X|F]).  (84)
Proof: See Appendix C. [ |

The next result provides a power series representation for
the conditional expectation. In addition, it also finds a lower
bound on the radius of converges in the case when X is
bounded.

Theorem 4: Fix some a € R. Then, for every X there exists
some 74, > 0 such that

e
Kx|y=a(k +1)
E[X|Y = y]:Z W(y - a)ka |y - a| < To,a-
k=0 ’

(85)

In addition, if |X| < A, then r, 4 > 2"—;.

Proof: From Lemma 2, we have that for every a € R there
exits an r, o > 0 such that E[X|Y = y| has a power series
representation on (@ — 7' q,a + r'o,q). Moreover, by using

(48), this power series is given by

o R(k) —u
EZE[MY )y — o

E[X|Y =y = . (86)
a(k+1 ,
_ Z ”“X‘Yk'o_% )(y —a)*. (87

Finally, the radius of convergence for | X| < A can be found
as follows by using the root test:

1

—oE+ 1) *
Tg,q = limsup HX'YMQ—(%)‘ (88)
n— o0 e
1
. 28 (k + DFHIE[IX|FHY = 4] | *
> llrrzrljo%p ( ) k!ﬂ% = ] (89)
Zk(k + 1)k+1Ak’+1 %
> limsu 90
= limsup o2k (90)
2
o
= — 91
7 Ae’ O

where (89) follows from the bound in (81); (90) follows by
using E[| X |[*+1|Y] < A**1; and (91) follows from the limit
1

: (kD TR g
limsup,,_, ‘ ] == [ ]

Remark 3: It is important to note that since the conditional
cumulants can be expressed in terms of fy and derivatives of
fy (see (55)), the power series can also be expressed in terms
of fy only.

The approximation of the conditional expectation with poly-
nomials of degree k& has been recently considered in [18].
Using results from Bernstein’s approximation theory, the
authors of [18] were able to quantify the average approxi-
mation error as a function of the degree k.
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VI. IDENTITIES FOR DISTRIBUTIONS, THE INFORMATION
DENSITY AND THE MMSE

In this section, we study identities between the conditional
expectation and quantiles such the conditional distribution
Px|y, the pdf of Y and the information density of the pair
(X,Y). As a small application, we show how such identities
can be used to find lower bounds on the MMSE.

A. An Alternative View and Generalization of the TRE
Identity, and Higher-Order Derivative of the
Information Density

Let the information density be defined as

dPxy
d(PX (9 Py)

In this section, we are interested in characterizing derivatives
of the information density with respect to the variable y.

We start this section by observing the following alternative
version of the TRE identity, which establishes the gradient of
information density.

Proposition 10: For x,y € R"

LPxy (X3y) = log (x,y), x,y € R". (92

Vyirey () = KN (x —EX[Y =y]).  (93)
Proof: Fix some x and y. Then,
fyix(ylx)
wwmzwm%%%— (94)
¢KN (y - X)
=V, log —————= 95
= —Ky' (v —x) = Vy log fx (y) (96)
= —Ky' (v — %) — K (EXY =y] —y) 97)
= Ky (x —E[X[Y =y]), (98)
where in (96) we have used Vy log ¢k (y —x) = —Kx' (y —

x); and (97) follows by using the TRE identity in (3). This
concludes the proof. [ |
Using Theorem 1 and setting U = 14(X), A C R", the
TRE identity can be generalized as follows.
Proposition 11: Let A C R™ be a measurable set such that
P[X € A] > 0. Then, for y € R"

Vylog (PX € AY =y])

=K EX|Y =y, X € A|-EX|Y =y]). (99

Proof: Let U =14(X) in Theorem 1. This choice of U
implies the following:

EUIY =]

EXUY =y]

=P[X € AlY =], (100)
—EX[Y =y,X € AP[X € A]Y = y].
(101)

Combining (100) and (101) with the identity in (15) we arrive
at
VyPX € AlY =]
PX € AY =]
— Ky (EIX|Y = y,X € 4]

-EX[Y =y]), (102)
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where we have used that P[X € A] > 0. The proof is

concluded by observing that Vy log(P[X € AY =y|) =
YV PXEA|Y=y] -
PXcAlY=y] *
To see that (99) is a generalization of (93) suppose that X
is a discrete random vector. Then, by setting A = {x} where

x is a point of support of X, the identity in (99) reduces to
Vy log (P[X = x[Y =v])

= vyLva (X; }’)
= Ky' (x — E[X[Y =y)),

(103)
(104)

where we have used that EX|Y =y, X =x] = x.

As an application of Proposition 10 and Proposition 11,
we now characterizing the Hessian of the information density
and the Hessian of the log of the posterior distribution.
Again, the key ingredient in the proof will be the identity
in Theorem 1.

Proposition 12: For (x,y) € R" x R™:

o (Hessian of the Information Density)

DiLPXY (x;y) = —Kg'Var(X|Y = y)Ky'.  (105)

o (General Case) Let A C R" be a measurable set such
that P[X € A] > 0. Then,

D} log P[X € A]Y =y) = Ky (Var(X|Y—y,X €A

—Var(X|Y = y)> Kn'-

(106)

Proof: See Appendix G. [ ]

By choosing a specific family of sets .4, we next illustrate
an example of how the identity in (105) can be used to study
other quantities such the conditional cumulative distribution
function (cdf).

Example: Consider a family of sets given by A =
(—o0,t], t > 0. With this choice, we have that P[X € A|Y =
y] is equal to the conditional cumulative distribution function
F(X <t]Y =y) and by using (99), we arrive at

d2
—log (F(X <ty =
e og (F(X <t)Y =y))

~ Var(X|Y =y, X <t)—Var(X|Y =y)
= - ,

(107)
g

Now, consider the case of X ~ A(0,1). Then, X|Y =y ~
2
N (1752, 155=)- Moreover, since X |[{X < t} is a truncated
Gaussian [28], it can be shown that

Var (XY =y, X <1t)

_d? _BweBE) ([ sBw)\?
TThe (l S ( >)> o

where
t— Y
1402

/_o2 '
1+02
Consequently, from (106) we have that

2

d
a2 log (F(X < t]Y =y))

Bly) =
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_ 1 BwoBy) [ oBw)\
- o2<1+o—2>< (3() +(¢>(ﬂ(y))>>' o

From Proposition 12 we have the following corollary.

Corollary 2: The mapping (x,y) — D?,LPXY (x;y) is only
a function of the variable y. Moreover, y — tpy (;y) is a
concave function.

We were not able to locate an explicit statement of the above
result in the literature. The equivalent statement was produced
as an intermediate step in a proof used in [15, p. 2229] where
convexity of the function akin to the log-likelihood ratio was
shown.

So far we have characterized the first and the second
order derivatives of the information density and discussed
generalizations of these identities. The next result provides
an expression for all the higher-order derivatives in the scalar
case.

Proposition 13: For k > 2 and (z,y) € R x R

dk 1
d—ykLny(x;y) = —ﬁfﬁmy:y(k)- (111)
Proof:
dk dk=t 1
@pry(x;y) = W;(x—E[XIY:y]) (112)
1
= _ﬁ’@X\Y:y(k)v (113)

where in (112) we have used (93); and in (113) we have
used (48). [ |

B. An Inverse TRE Identity

The TRE identity shows that the conditional expectation
is completely determined by fy. It is also possible to have
an inverse statement that shows that E[X|Y] completely
determines fy.

Proposition 14: For y € R"

fr() = cexp < K- ExiY = o) - dt) C(19)

where 0 < ¢ < oo is the normalization constant and is given
by

= / exp (jgy Ky (t —EX[Y =t]) - dt) dy.

(115)
Proof: The TRE expression in (3) can be rewritten as

Vylog(fy(y)) = K§'(y — EX[Y =y]). (116)

Using the fundamental theorem of calculus for the line inte-
gral, we have that

fou(F(v)) ~ lou(x(0)) = § Kx!(6 ~ EIXIY — 1)) -t
(117)
or equivalently
fx(y) = fy(0)exp (7{:’ K;Il(t —EX|Y =t])- dt) )
(118)
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After integrating both sides of (118), we arrive at

1

fx(0) = = :

Jon exp ($) Ki' (6 — E[X[Y = t]) - dt) dy
(119)

Letting ¢ = fy(0) and noting that
1 xTky'x
0< fy(0) = ———E [e_ 2 } < oo (120)
(2m)zdet? (Kn)

concludes the proof. [ |

We now use the representation of fy in Proposition 14 to
show the following important result on the uniquness of the
conditional expectation.

Corollary 3: The conditional expectation E[X|Y] is a
bijective operator of Px or fy. In other words, for Y; =
X1+ N7 and Yy = X5 +N> where Ny and N5 are Gaussian
with the same covariance matrix,

EXq|Y:=y]=E[Xo[Y2=y],Vy € R"
<:>lesz2
— le(Y) = fYZ(Y)) Vy € R"™.

Proof: First, let Px, = Px,, then it is immediate that

(121)

EXq[Y: =y] =E[X;[Y: =y], Vy € R". (122)
Now, suppose that
EXq|Y: =y] =E[X;[Y: =y], Vy € R". (123)
Then, by using (114) we have that
S (y) = fr.(y), Vy € R™. (124)

The fact that (124) implies that Px, = Px, follows from the
standard argument that uses characteristics functions. [ |

Corollary 3 has important ramification in estimation theory.
In particular, combining Corollary 3 and [14, Thm. 1] leads to
a conclusion that the mmse(X|Y) is a strictly convex function
of the input distribution Px. This can further be used to argue
that optimization problems of the following form have unique
maximizers:

max mmse(X|Y), (125)

PxeP

where P is some compact set of probability distributions. The
interested reader is referred to [29] for more details.

C. Representations of the MMSE

In this section, we use properties developed for the informa-
tion density to find alternative representations of the MMSE.
These representations are then used to find lower bounds on
the MMSE.

Proposition 15:

o (Gradient Representation)

E[Vytree (6 Y) (Vyire (G Y))T]

= KN MMSE(X|Y)Ky' (126)
Consequently,
mmse(X[Y) = E [[|[KnVytry (X5 Y)|2] . (127)
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o (Hessian Representation)

E [DYtrey (X;Y)] = —KN'MMSE(X|Y)KY'
(128)
Consequently,

mmse(X|Y) = —Tr (KJE [DYtrey (X5 Y)]) . (129)

Proof:  First, observe that the MMSE matrix can be
represented as

MMSE(X|Y) = E [Var(X|Y)]. (130)

The proof of (127) now follows by using the expression for the
conditional variance in Proposition 10, and the proof of (128)
follows from the expression in Proposition 12. This concludes
the proof. [ |

As was recently shown in [30], identities of the type in
Proposotion 15 can be used to derive new Bayesian lower
bounds on the MMSE.

VII. CONCLUSION AND OUTLOOK

This work has derived a general derivative identity for
a conditional mean estimator. This identity has been used
to recover several known derivative identities, such as the
Hatsel and Nolte identity for the conditional variance and
the recursive Jaffer’s identity. Moreover, several new identities
have been derived, the most notable of which include: a new
integral version of Jaffer’s identity, the identity that connects
higher-order conditional moments and the derivatives of the
conditional expectation via Bell polynomials, and the identity
that shows that the derivatives of the conditional expectation
are proportional the conditional cumulants. All of the derived
identities are summarized in Table I (top of the next page).

One interesting future direction is to generalize the identities
derived in this paper to more general noise settings; see for
example [31] on a recent extension to the exponential family.
Another interesting future direction would be to examine
whether the main identity in Theorem 1 can shed light on the
vector generalization of the single crossing property in [32].

APPENDIX A
PROOF OF THEOREM 1

First, observe that

d
dy—m¢KN (y - X)

1 d
= 30y~ X) = = X) KN (v = X) (13D
= ok (v — X)e KN (X — ). (132)

Second, for the moment assume that the interchange of expec-
tation and differentiation is allowed, and observe the following
sequence of steps:

d

. U]Y =y]
d Py (¥ — X)
a dym]E {U fx(y) } (139
o d ¢KN (y - X)
= [U dym fY (Y) :| (139
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TABLE I
LIST OF IDENTITIES

Name Identity
Two Main | TRE Identity (3) EX|]Y =y =y + KN%‘&({)
Identities Tdentity (15) LEUY =y =Ky Cov(X,U[Y =y), U X Y
Variance Hatsell and Nolte (17) JyEX|Y =y] = K;11Var(X|Y =y)
N ] Jaffer’s Identity (22) E[X*H|Y = y] =02 %E[XHY =y|+ E[Xk|Y =y| EIX]Y =y])
I 7T — 4
Ic:efrllltl;i;::]: Integral version of Jaffer’s | E[X*|Y = y] —o2ke" 5210 E[left]dtddkk ooz JUEIXTY=0dt
Identity (29) Y
Vector Jaffer’s Identity (Ver- | E[(XXT)F[Y = y[= KnJyE[(XXT)FIX[Y = y]
sion 1) (42)
FEX]Y = yE[XT(XXT)F 1Y = y]
Conditional Expectation via | E[X*|Y = y] = 02FBy, (E<0> [%IY = y] L EGD) [%\Y - y])
Higher-Order Derivatives (30)
F—m+2
Derivatives of the Conditional d L EX|Y = y] =02 Z CmBkJrl m (E[f—”Y = y] ,,IEK%) " Y = yJ)
Expectation (31) Y
( 7
fy(y)e2f’2> - _im
dy L kY p(k—m) ( Ir)n He 7
Generalized TRE Identity (37) | E[X*|Y = y] = o2¥ L =% Zhzo (m) 1Y nyZ; zrr Hem (1)
J;Y (y)e 202
- . _ 2k dF —
Identities for Conditional Cumulants and | & X|y=y(k+1) =0 WIE[X Y =y]
Conditional Conditional Expectation (48)
Cumulants Recursion for Conditional Cu- 02§—ynx|y:y(k +1) = kx|y=—y(k +2)
mulants (52)
Conditional Cumulants Gener- ;t’j:rll Kx(Y =y) = % x(tY =) + F E(X]Y = y]
ating Function and Conditional
Expectation (62)
L . T ¥ EX|Y=y] _ n A et 3 .
Mt ety o Con | 1, 5T 5 T s 1)
tional Expectation (76)
Identities for | Inverse TRE Identity (114) Fy(y) = cexp ( Y K (6 — E[X[Y = t]) - dt>
Dlzt;:;):l}t::ns gradi'fm(ggl; the Information | Vyi(x;y) = K' (x — EX[Y =y]))
- ensity
Information == fient of the Conditional | Vy log (F[X € A[Y = y]) = K (BX|Y = y, X € A —EX|Y = y])
Density Distribution (99)
Hessian of Information Den- D?,L(x;y) = Ky Var(X[Y = y)KL'
sity (105)
g_essi_%n ~of (]tt(;es) Conditional D?, log (PX € A[Y =y]) = K (Var(X[Y =y, X € A) — Var(X[Y = y)) K
1stribution
. . dF 1
Higher-Order Derivatives of | Tripy, (2;y) = — —pkx|y=y(k), k>3
Information Density (111) Y
d d . 3
_k |y Prn (y — X) E[U]Y = y] AYm () where the equalities follow from: (133) using Bayes’ formula;
x(y) x(y) (136) using the expression in (132); and (138) using the TRE
(135) identity in (3).

~ E[Uel Ky XY = 3]

oIy (¥)
fx(y)
I:Uef”K 1:X'|-Y- = y}

~E[U]Y =]

_E[U[Y =ylel, (Kle ;

=E [UemKN1X|Y y}

—E [U|Y = Y] E [ mKN1X|Y Y}
=K [UXT|Y y] K em
—E[UJY =y]E XY =y] K{'en

= Cov(U,X|Y = y)Ky'

e"l’

~E[U]Y =y]e,Ky'y

vny (Y)
fx(y)

) (137)

Now using the definition of Jacobian in (9), we have that

E[U]Y =y] = (Cov(U,X|Y =y)K5')'  (141)
(136) = Ky'Cov' (U, X[Y =y) (142)
= Ky'Cov(X,U|Y =y),  (143)

where we have used the symmetry of Ky and the property
that Cov' (U, X|Y =y) = Cov(X,U[Y =y).

Therefore, to conclude the proof, we require to show that
the interchange of differentiation and expectation in (134)

(138) is permitted. A sufficient condition for the interchange of
differentiation and expectation is given by the Leibniz integral
rule, which requires verifying that

(139)

(140) [HU d_ dkny —X) m < o0. (144)

dym fY
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To this end, note that

E|: d ¢KN y X H:|
dym

i

[ ¢>KN( -X) ¢KN(y X)L fy(y)

_ dym d

—F I U( Fx(¥) %) ) ]

(145)

B _d

o)

+E U¢KN( = (d)ym ] (146)

Y

where the last step follows by using the triangle inequality.
We now bound each term of (146) separately. The first term
in (146) is bounded by

¢KN(y X)
E U—dy’"
["=%5
ot o I
ey
=E[||Ue] Ky' (X — yH|Y y] (148)

<E[|Uej,Ky'X|| Y = y] +E [||Uep Ky'y|| Y = y]
(149)
< el KSIE[[UIIX) Y = y]

+ [le), KNy E U] Y =y]. (150)

where (148) follows by using sing Bayes’ formula; and (150)
follows by using the Cauchy-Schwarz inequality.
The second term in (146) can be rewritten as

(bKN (y - X) d?in fY (Y)

El YR ]
4 fy(y)
_ dym
) HU e ‘Y y] (151)
|79 fx (y)]
= WE [HUH ‘Y = .Y} : (152)

Therefore, by combining (150) and (152), the condition in
(144) holds if

E[[[O[[X[[Y =y] < o0,y € R,
EfJO[IY =y] < oo,y € R™.

(153)
(154)

This concludes the proof.

APPENDIX B
PROOF OF LEMMA 1

First, we multiply both side of (25) by efo /1()dt which
leads to

Ju(a)eld 51O

d ;. x
:afk’—l (J?)efo f1 (t)dt+fk_1 () f1 (J?)efo f1(t)dt

L (o),

(155)

(156)
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where the last expression is due to the product rule. Now, let

hi(z) = fio(x)els 1O (157)

Then, the expression in (156) implies that
d
h = —hi_ 158
k(z) i 1(z), (158)
which by using the recursion k& — 1 times implies that
dkfl dkfl v Ot

hi(2) = To=h(2) = 9= (fl(x)efo 1) ) . (159)

Furthermore, by applying the chain rule in (159), we arrive at
d* Jo Fi(®)dt

hk(l‘) = @e o J1 . (160)

The proof of (26) is concluded by using the definition of hy (z)
in (158).

To show the expression in (27) recall the Faa di Bruno
formula for the higher-order chain rule [22, Thm. 11.4]: given
two k € N differentiable functions ¢(¢) and &(%)

d*¢(g(t))

dtk

B Z £0m) (g (g(l)(x)7...,g(k’—m+1)(m)). (161)

Next, by letting g(x fo f1(t)dt, the expression in (26) can
be re-written as
dk
fk(x) = e*g(m)@eg(z) (162)
k
= e—g(gc) Z eg(x)Bk’,m (g(l)(m)a s 7g(k—m+1)(x))
m=1
(163)
— By ( (1)(x),...,g(k)(x)) (164)
=B (0@ V@), (165)

where (163) follows by using the Faa di Bruno formula in
(161); (164) follows from (11); and (165) follows by noting
that (") (2) = fm=Y(z),m € N.

To show (28), we use the inversion formula for the Bell
polynomial [22, Rem. 11.3] which asserts the following: if

yk’:Bk’(tl;---;tk); (166)

then
k
=3

Setting y, = fr(x) and t;, =
R (@)

“m —1)'Brm(y1, .- (167)

7yk7m+1)~

fl(kfl) (x) leads to

- 1) Bk m (fl( ) T fk’—m/'i‘l(x))'

(168)

The proof is concluded by using a change of variable from
k—1tok.
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APPENDIX C
PROOF OF PROPOSITION 9

First, observe that
|kxy=y (k)] < K"E[[X — EX|Y][*]Y =]
< PIRFE[|IX Y = g,

(169)
(170)

where in (169) we have used the bound in [33, eq. (4)]; and
in (170) we have used |a + b|* < 28=1(|a|* + |b]*), k > 1.

We now show a bound on E[|X|*|Y = g], which is a
generalization of the bound shown in [34, Proposition 1.2].
First,

E[|X[*Y =y
Fyix W) <y (v) y)
x> f @) ( )
E[| X |*] +/ W) .
Frix @le)>Fv () v(y)
(172)
Next, we bounds the second term in (172)
fyix(ylz) > fy(y) (173)
1
= (y—2)? <20%log | ———— (174)
V2ro? fy (y)
Sy —a] < | 20%log [t (175)
B V2ro? fy (y)
= |z| < |yl + 4| 202 log S (176)
- V2na? fy (y)
= |zfF <281 [ JylF + | 202 log N ’
V2ro? fy (y)
(177)
= Jal* <271 (Iyl* +2 (4* + E[X%)?) (178)
= |J)|k < 2k—1(2max(§—1,1) 4 2)|y|k
omax(F-LU+RES X2, (179)

where (176) follows from the reverse triangle inequality; (177)
follows by using the bound |a+b|* < 25~ 1(|a*+|b|*), k > 1;
(178) follows by using Jensen’s inequality to

Fr(y) = —— E[ ‘(“5)2] (180)
= — [§] 20
v V2mo?
1 [w-x?]
> e (181)
2mo?
- 1 _ y24E[x? d (182)
e 22 ; an
T V27mo?

(179) follows form the bound |a + b|F < 2max(F=L1)(|q|F 4
[0*), & > 0.
Combining (172) and (179) concludes the proof.
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APPENDIX D
PROOF OF THE EXPRESSION IN (79)

The first ingredient of the proof is the following derivative
expression:

d L@ . 2w-11LF# ( I(t) )2 (183)
dt I, (1) t I,_1(t) I,_1(t))
which follows form the identities dtI (t) = 51,1 (t) -7 L.(1)
and 1, (t) = 41,(t) + L4 (t) [35].

Next, consider the case of s; # so. Then,

IE[X,,|Y =]
Ysy
o 1 IyRlyl)
= T T 1 (Rl (159
_ Rywts, T3(RIVD | Ry 0 Iz(RIVI) oo
Iyl Tz 2 (RIYI) Iyl 9ys, Tz -1(Ry])
 Ry,ys, I3(Rlyll)
~ iyl L&yl
L Fysys, <1_ n—1 Iy(Rlyl) ( s (Rlyl) )2>
[y [? Rlyll Iz—1(Rlyll)  \Iz-1(Rl¥l)/) |~
(186)

where the last equality follows by using the derivative expres-
sion in (183).
The proof for s; = s, follows along the similar lines.

APPENDIX E
PROOF OF THEOREM 3

It is sufﬁcient to characterize only the second order partial
derivatives 59,00 dy Kx(t[Y = y) and then apply a simple
induction.

Let U = et'X Then, by using Theorem 1, we have that the
gradient of the cumulant generating function can be expressed
as

VyEx(t|Y =y)
_ VyE[t X|Y = y]

EXY =) e
Ky Cov(X,UY =y)
T EEXY -y (159
Kn'(EXet™X|Y = y] — EX|Y = y]E[e"' X|Y = y])
XY = y]
(189)
= Ky (Velog (B Y = y])-E[X[Y =y])  (190)
= KN VeKx (t]Y = y) - KN EXY =], (191)

E[Xe* X|Y=y]
Elet"™X|Y=y]

where in (190) we have used that
ViE[e' XY T
S g (Y =)
Consequently, the partial derivative with respect to ¢ is given
by
0

(tY =y) = k] Ve Ex(t[Y = y) - k] E[X[Y =y],

(192)
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where we have used that k] = eiTKI(I1 (i.e., the i-th row of with the identity Di f(x) = JxVxf(x). To show the general

N -
Next, by differentiating with respect to j, we arrive at
82
Kx(t|Y =
Oy XY =)
0
=5;UJVkaY=nyJMmY:yD (193)
J

0
:HW@WMMW:w—H@EMW:ﬂJDQ
J
where (194) comes from using the partial derivative formula
in (192).

APPENDIX F
PROOF OF PROPOSITION 8

P Kx (t[Y=y)

To see this note that
9yYs, ...(')ysj

|t—o = O for every j

8jKX(t|Y _ y) B o7 log (E[etTX|Y = y])

1
0y, .. O, Do Oy, (195)
pi-t Bl XY =y
Oy -0y, E[eTX[Y =]
(196)
= 9y) . (197)

(E[etTX|Y — y])max(l,Q(]fl))

We do not attempt to find the exact expression for g(y)
and only observe that it contains terms of the form

o* tTX —
ml@[e Y = y] for some & > 1. We next show

that % [et'X|Y = y] evaluated at t = 0 is equal to
Yay--OYs

Zero, which through (197) will lead to the desired conclusion.

To do this we use the Taylor expression for the multivariate

moment generating function given by [25, Ch. 6]

.

Ele* XY = y—l—l-z Z (Y581, 85)ts, -t
Jj= 1565(])

(198)

where p(y;si,...,s5) = E[X, ... X,|Y = y] and S(j) =

{1,...,n} is set of all vectors of integers with j components
and all entries between 1 and n. Now we have that

k
aiE[etTPﬂY

8y‘31 . ay‘?k - y] t=0
_Z Z (Y S1s .oy 8i)tsy - ts| =0
im1sesyy s, - ay‘?k t=0
(199)
This concludes the proof.
APPENDIX G

PROOF OF PROPOSITION 12

The proof of (105) follows by applying Hatsell and Nolte
identity in (17) to the expressions in Proposition 10 together

case observe that

D log (P[X € A[Y =y])
=JyVylog (P[X € AJY =y])
= LK (EX]Y =y, X € 4

o, (S =
PX €AY = y]

(200)

“EX|Y =y]) oD

~E[X|Y = y]> Ky (202)

Kx' Cov(X, X14(X)|Y =y)
PX € A]Y =]
Kx'Cov(X, 14(X)|Y = y)ET[X14(X)|Y =y]
P2[X € AY =]

~ Ky Var(X|Y = y) ) Ky (203)
= Ky! (IE[XXT|Y =y, X € A
~EX[Y =y, X € AEXT|Y =y, X € A]
— Ky'Var(X|Y = y)) (204)
=Ky' (Var(X|Y =y, X € A) — Var(X|Y = y)) Ky,
(205)

where (200) follows by using the identity Di fx) =
Jx Vi f(x); (201) follows by using (99); (202) follows by
using the property that JyK'f(x) = Jf(x)Ky =
Jx f(x)KlQl; (203) follows by using identity in (15) with
U = X1 4(X) and the quotient rule for differentiation; (204)
follows by rewriting the first covariance term as

Cov(X, XI14(X)|Y =y) _
PX € A[Y = y]

EXXTY =y, X € A

~EX|Y =y|EXT|Y =y, X € A], (206)
and the second covariance term as
Cov(X, 14(X)[Y = y)ET[X14(X)[Y =]
P2[X € AlY =]
=EX|[Y =y, Xc AEXT|Y =y, X € A
~EX|Y =y|EX"Y =y, X € A]; and  (207)

and (205) follows from the definition of conditional variance.
This concludes the proof.
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