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Abstract— We study the problem of estimating the source
of a network cascade given a time series of noisy information
about the spread. Initially, there is a single vertex affected by
the cascade (the source) and the cascade spreads in discrete
time steps across the network. Although the cascade evolution
is hidden, one observes a noisy measurement of the evolution
at each time step. Given this information, we aim to reliably
estimate the cascade source as fast as possible. We investigate
Bayesian and minimax formulations of the source estimation
problem, and derive near-optimal estimators for simple cascade
dynamics and network topologies. In the Bayesian setting, sam-
ples are taken until the error of the Bayes-optimal estimator
falls below a threshold. For the minimax setting, we design a
novel multi-hypothesis sequential probability ratio test. These
optimal estimators require log logn/ log(k:l— 1) observations

for a k-regular tree network, and (logn)?+1 observations for
a (-dimensional lattice. We then discuss conjectures on source
estimation in general topologies. Finally, we provide simulations
which validate our theoretical results on trees and lattices, and
illustrate the effectiveness of our methods for estimating the
sources of cascades on Erdés-Rényi graphs.

Index Terms— Graph theory, inference algorithms, adaptive
algorithms, Bayesian methods, minimax techniques.

I. INTRODUCTION

ETWORK-BASED interactions lie at the core of many

dynamic systems, including social behavior, biological
processes and wireless communications. Unfortunately, the
decentralized nature of networks often make them suscepti-
ble to cascading failures in which behaviors or information
originating from a small subset of nodes diffuse rapidly
throughout the rest of the network. Examples include viral
spread in contact networks (see e.g., [3]), misinformation in
social networks [4], [5], [6], [7] and malware in cyber-physical
networks [8], [9], [10], [11]. In all of these scenarios, the
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rapid spread of the cascade can have devastating effects. It is
therefore of the utmost importance to track the cascade and
contain it as fast as possible.

A fundamental challenge in accomplishing this task is that
information about the cascade is usually noisy or uncertain
in real-time settings. To illustrate this point, suppose that a
virus is spreading over a contact network. When the number
of individuals is large, it may be infeasible to force everyone
to quarantine, hence diagnostic tests may be administered to
track and contain the spread. If there are not enough diagnostic
tests to test the entire population at a given point in time,
there is uncertainty in the status of individuals who are not
tested. Moreover, diagnostic tests are typically not perfectly
accurate, so even among the tested individuals there may be
false positives and negatives.

Nevertheless, by observing the results of many rounds of
testing over time, it is natural to expect that one can accurately
estimate the spread of the virus using the right testing and
information aggregation strategies. On the other hand, if one
waits too long to obtain reasonable estimates, the cascade will
spread to a large subset of the population, which is undesirable.
The goal of this work is to characterize inference algorithms
which achieve the optimal tradeoff between the estimation
error and the time until estimation. Moreover, we study how
the structure of the underlying network influences the design
and performance of such algorithms.

A. Summary of Contributions

For the most part, existing theoretical work on estimating
the source of a network cascade takes the perspective of a
reconstruction problem: given a large, known set of infected
nodes, the goal is to identify the source among them [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21]. In contrast,
we study source estimation from the novel perspective of
real-time inference: by monitoring real-time signals from each
node, we aim to find the source before the number of affected
nodes is large. The two paradigms of source estimation are
fundamentally different, and as such, require drastically dif-
ferent models and methods.

We mathematically formalize the task of real-time source
estimation as follows. Consider a statistical model of network
cascades with noisy observations where, at discrete timesteps,
each node produces a signal that is an independent sample
from a pre-change distribution @)y if the node has not yet
been affected by the cascade, else the signal is an independent
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sample from a post-change distribution ;. Initially, a single
unknown vertex (the source) is affected by the cascade, and the
cascade propagates to neighbors of affected vertices at each
timestep. Our objective is to design algorithms that estimate
the unknown source as fast as possible. We provide the first
solution to this problem, to the best of our knowledge, and
derive optimal source estimators from Bayesian and minimax
perspectives.

To develop a concrete characterization of optimal source
estimators, we focus on simple cascade dynamics and net-
works. The cascade dynamics we consider are deterministic:
at each timestep, the cascade spreads to all neighbors of
currently-affected nodes. We assume the network topology is
either a k-regular tree or a ¢-dimensional lattice; we do so
because such networks are simple to describe, they represent
a diverse family of topologies, and they enjoy convenient
symmetry properties which simplify our analysis considerably.
We further assume that there is a known set of n candidate
nodes which contains the unknown source. When n is large,
we show that at least loglogn/log(k — 1) timesteps of noisy
observations are required for reliable source estimation in
k-regular trees, while at least (log n)ﬁll timesteps are required
for ¢-dimensional lattices.

We then derive optimal estimation algorithms whose perfor-
mance matches the lower bounds described above. We show
that the optimal algorithm in the Bayesian formulation of the
source estimation problem is a simple procedure that continues
to observe noisy observations of the cascade propagation
until the Bayes-optimal estimator is sufficiently accurate.
In the minimax formulation, we phrase source estimation
as a n-ary hypothesis testing problem among the n candi-
date nodes and show that a natural test based on likelihood
ratios — called the multi-hypothesis sequential probability ratio
test (MSPRT) — is optimal. Interestingly, the design of the
MSPRT which matches the lower bounds can be viewed as a
multi-scale search procedure: it simultaneously identifies the
general area of the source while also performing a local, fine-
grained analysis to obtain more precise estimates.

Admittedly, our setting of deterministic cascade dynamics
on regular trees or lattices is simplistic compared to more
realistic cascade and network models [22], [23], [24], [25],
[25], [26], [27]. However, we find that our setting leads to
a mathematically rich problem and serves as an important
starting point for understanding the source estimation problem
for more complex propagation dynamics and networks. On a
more technical level, we present a mostly unified treatment
of optimal source estimation algorithms on regular trees and
lattices, with only minor differences between the two. This
suggests that our methods could be generalized to describe
optimal source estimators for arbitrary topologies, though this
requires significantly more effort so we leave it to future work.
We discuss in detail the potential extensions of our work to
arbitrary topologies, providing conjectures on the structure
and performance of optimal algorithms. Finally, we assess
the performance of the estimators we develop through sim-
ulations. In addition to validating our theory for tree and
lattice topologies, we show that our estimators perform well
on natural models of random networks (Erdds-Rényi graphs).
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Strikingly, even when there is a moderate amount of noise in
vertex signals, our estimators can reliably locate the cascade
source in Erd6s-Rényi graphs before 40 vertices are infected
for networks with up to 2000 vertices. This provides strong
evidence that our methods may be applicable quite broadly.

B. Related Work

Source estimation from a noiseless snapshot. Perhaps
the most well-known work on estimating the source of a
cascade is by Shah and Zaman [17], [18], [19]. In their
formulation of the problem, the cascade spreads randomly via
the Susceptible-Infected process, and a single snapshot of the
set of infected vertices is observed at a later point in time. They
derive an expression for the maximum likelihood estimate
of the source in trees and study properties of the estimator.
Many authors have expanded on these ideas and methods in
subsequent work, studying for instance the effect of multiple
observations, multiple sources, confidence sets for the source,
different network models, and different cascade models [12],
[13], [14], [15], [16], [20], [21]. We emphasize that while
this literature on source estimation is similar in spirit to the
problem we consider in this paper, it is fundamentally different
from modeling and algorithmic perspectives. For instance, the
literature cited above is of a static nature, where we have a
single (or a fixed number of) perfect-information snapshot(s)
of a large cascade. On the other hand, we consider dynamic
settings where we obtain noisy and incomplete measurements
of a small but growing cascade. Moreover, the methods
developed in the literature cited above (e.g., rumor centrality,
Jordan centrality) have no obvious counterpart in our setting,
since they are computed based on known infections. However,
in the model of noisy, real-time measurements considered in
this paper, it is impossible to know exactly which vertices are
infected.

Cascade inference from a noisy time series. A growing
body of literature uses the data model (I.1) to perform
inference of cascades, including detecting the presence of a
cascade [28], [29], [30], [31], [32], [33], [34], estimating the
source [1], [2] and controlling its spread [35], [36], [37]. The
closest work to ours in terms of methods and analysis is by
Zou, Veeravalli, Li and Towsley [28], who studied the follow-
ing quickest detection problem: a cascade spreads via unknown
dynamics, and the goal is to stop sampling once the cascade
affects a given number of vertices. Their test, which can be
viewed as an adaptation of the CUSUM procedure, is agnostic
to the spreading dynamics of the cascade and is optimal in
the regime where samples are taken much frequently than
the growth of the cascade. By contrast, we consider the
regime of large networks and where samples are taken at
a comparative rate to the growth of the cascade. Moreover,
our results reveal the effect of the network topology on the
performance of inference procedures, which is not the case
in [28].

Finally, we remark that compared to our prior conference
submissions on the source estimation problem [1], [2], the
current paper provides a unified and substantially more general
solution. In particular, [2] only provided a Bayesian solution
for lattices and [1] established results for the minimax setting
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under a somewhat unnatural, but mathematically simpler,
constraint on the stopping time and estimator.

C. Notation

Let R and Z denote the set of reals and integers, respec-
tively. For a graph G = (V| E), let V denote the set of vertices
and let £ denote the set of edges. For u,v € V, d(u,v)
represents the shortest path distance between u and v in G.
For v € V and a non-negative integer s, N\, (s) is the s-hop
neighborhood of v; that is, N, (s) := {u € V : d(u,v) < s}.

We utilize standard asymptotic notation throughout. In par-
ticular, for two functions g(n) and h(n), we say g(n) < h(n)
if there is ¢ > 0 such that for n sufficiently large, g(n) <
ch(n). We say g(n) =< h(n) (in words, g(n) and h(n) are
orderwise equivalent) if and only if there are c1,ce > 0 such
that c;h(n) < g(n) < cah(n) for n sufficiently large. We say
g(n) ~ h(n) (in words, g(n) is equal to ~A(n) up to first-order
terms) if lim,, . g(n)/h(n) = 1.

D. Organization

The rest of the paper is organized as follows. In Section II,
we formally define our model of cascade evolution with
noisy observations, as well as the Bayesian and minimax
optimality criteria. In Section III, we provide a description
and overview of our results on optimal estimation in regular
trees and lattices, as well as a discussion on how one might
extend our techniques to general topologies. In Section IV,
we provide numerical results on the performance of optimal
estimators from simulations on trees, lattices and Erdds-Rényi
graphs.The remaining sections are devoted to the proofs of
our main results. The proofs of main results on the Bayesian
setting are in Section V, and proofs for the main results in
the minimax setting are in Section VI. Sections VII and VIII
contain supporting results for the proofs in Sections V and VI.
We conclude in Section IX. Additional combinatorial results
concerning the topology of regular trees and lattices can be
found in Appendix A and B.

II. PROBLEM FORMULATION

We begin by describing the most general formulation of
the source estimation problem. Let G be a graph with vertex
set and edge set given by V and FE, respectively. Initially,
a single vertex v* € V is affected by the cascade; we call
this vertex the cascade source. From v*, the cascade spreads
over time via the edges of the graph according to a known
random or deterministic discrete-time process. Examples of
cascade dynamics include variants of the susceptible-infected
(SI) process, the independent cascade model and the linear
threshold model (see [22] and references therein).

For any v € V and any time index ¢ > 0, let z,,(t) € {0,1}
denote the private state of v, where x,(t) = 1 if v is affected
by the cascade at time ¢, otherwise x,(t) = 0. The private
states are not observable, but the system instead monitors the
public signals {y,(t) }uev, defined as

Yu(t) ~ {QO zu(l) = 0; (IL1)

Ql xu(t) = ]-7
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Yu(t) ~ 01 yu(t) ~ Qo

Fig. 1. TIllustration of the data model at a given time ¢. The nodes in red
have been affected by the cascade, and the black nodes are unaffected, though
this information is hidden from the observer. The public signals of the red
nodes are sampled from (1, while the public signals of the black nodes are
sampled from Q.

where @Qy and )1 are two mutually absolutely continuous
probability measures. We can think of y,(t) ~ Qo being
typical behavior and y,(t) ~ (@ as anomalous behavior
caused by the cascade. As a shorthand, we denote y(t) :=
{yu(t) }uev to be the collection of all public states at time t.
See Figure 1 for an illustration of this data model. We remark
that this data model has been studied in recent literature in
the context of cascade source estimation [1], [2], quickest
detection of cascades [28], [29], [30], [31], [32], [33], [34],
and control of cascades [35], [36], [37].

Remark I1.1: The data model in (II.1) can capture a
variety of realistic scenarios. In the context of viral spread
for instance, a common symptom of sickness is a fever.
If the public signals correspond to the body temperature of
individuals in the population, one may expect that v, (¢) will
be close to the typical body temperature of the individual
represented by vertex v if they do not carry the virus, else
yu(t) is expected to be significantly higher if the individual
does carry the virus.

Another practical example of (I.1) is diagnostic testing with
errors, which is used for malware detection in computer net-
works [38] and tracking the spread of infectious diseases [39].
Suppose that at a given point in time, each vertex is given
a diagnostic test with probability p, independently over all
vertices. If a test is taken, the output is either O (the vertex
is not affected) or 1 (the vertex is affected). With probability
€, the result of the test will be incorrect. To formulate this
in terms of (IL.1), let the support of Qo and @, be {0, 1, x},
where 0 indicates a test result of 0, 1 indicates a test result of 1,
and X indicates that a test was not taken. The distributions
Qo = (¢0(0),q0(1),qo(x)) and Q1 := (q1(0), (1), (%))
are given by

q0(0) = p(1 —¢) q1(0) = pe
qo(1) = pe and ¢1(1) =p(1 —e)
qo(x)=1-p a(x)=1-p.

Given the data model (I.1), the problem of estimating the
cascade source can be phrased as a sequential multi-hypothesis
testing problem: given the collection of hypotheses { H, },cv
where H, is the hypothesis that v is the source, our goal is to
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output a hypothesis with a small probability of error. At the
same time, it is also important that we come to a decision as
fast as possible in order to minimize the number of vertices
affected by the cascade. This reveals a fundamental tradeoff:
when more samples are taken, one can obtain more reliable
estimates of the source at the cost of allowing the cascade
to spread further. An optimal procedure will achieve the best
possible tradeoff between the estimation error and the number
of samples needed.

We shall proceed by formalizing these ideas. Observe that
any source estimator can be represented by the pair (T, V),
where 7' is a stopping time indicating when to stop sampling
and Vv := {0(t) }+>0 is a sequence of source estimators so that
v(t) is the estimate of the source given the data at time ¢. The
final source estimate produced by (7,V) is v(7). We shall
also assume that a candidate set U C V is known, so that the
unknown source is an element of U. We remark that the size of
U, denoted by |U|, measures in a sense the initial uncertainty
around the source location. As a matter of notation, we let P,
be the probability measure corresponding to the hypothesis
H, (v is the source). Similarly, E, denotes the expectation
with respect to the measure PP,,. If the location of the source is
given by a probability distribution 7 := {7, },ev (Where 7,
is the probability that the source is v), we denote P, and E,
to be the probability measure and expectation operator with
respect to m, respectively. Formally, we may write

Pr() =Y mlPy() Exl] =Y mE,[]. (IL2)

veV veV

and

We remark that often in this paper, we will consider the
operator E . «)[-] where 7(t) is the posterior distribution of
the source after observing the public signals y(0),...,y(t).
In such a case, E,; [-] would be a random variable, since it
is equal to the conditional expectation E[-|y(0), ..., y(t)].

We next define the performance metrics used the evaluate
the effectiveness of a source estimator. For a source estimator
(T, V), we shall study the expected number of samples, given
by E,[T] when v is the source. The estimation error is
the expected distance between ¥(7') and the source, given
by E,[d(v,9(T))] when v is the source. Here, we recall
from Section I-C that d(-, -) denotes the shortest-path distance
between two vertices in G.

We study two natural ways to capture the tradeoff between
estimation error and the expected number of samples.

A Bayesian perspective. Denote the source vertex by v*, and
suppose that the prior distribution for the source is uniform
over the elements of the candidate set U; we denote this
prior by 7(U). We say that the optimal procedure solves the
following optimization problem:

inf B, [d(v", 3(T)) + ]

— inf = > By [d(v,5(T) +T],  (L3)

Ty |U| velU

where we recall that E. ) denotes the expectation operator
with respect to the measure 7(U). In words, (I1.3) is the sum
of the estimation error and the expected number of samples.
If only the first term in (II.3) was present, the optimal strategy
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would be to set 7" = oo, since more samples can only help
in bringing down the estimation error. On the other hand,
if only the second term in (I.3) was present, the optimal
strategy would be to set 7" = 0. The estimator that solves (I.3)
therefore achieves the best tradeoff between the two extremes.
We remark that it is standard in Bayesian formulations of
sequential testing problems to minimize the sum of the error
and expected number of samples [40], [41]. Furthermore,
we remark that one may consider other ways to quantify the
tradeoff between estimation error and time — for instance,
by replacing T with h(T) for some increasing function h.
While we focus on the formulation (II.3) for simplicity and
ease of exposition, the methods we develop can also handle a
large class of functions h.

A minimax perspective. As an alternative to the Bayesian
approach, one can formalize the tradeoff between the estima-
tion error and expected number of samples via the following
optimization problem:

inf maxE, [T
T,v veU

subject to maxE,[d(v,v(T))] < «,
velU
(I1.4)

where max,cy E,[d(v,v(T))] is the worst-case estimation
error, o is a specified bound on the worst-case estimation
error and max,cy B, [T] is the worst-case expected runtime of
the procedure. As in the Bayesian case, we may consider two
extremes. When a = oo, the optimal choice is 7" = 0, whereas
when o = 0 the optimal choice is T = oc.! For intermediate
values of «, the optimal algorithm indeed achieves a tradeoff
between the estimation error and the worst-case expected
runtime.

III. RESULTS

The goal of our work is to characterize optimal estimators
based on the formulations in (I.3) and (II.4). We are par-
ticularly interested in how the structure and performance of
optimal estimators depend on the network topology. In order
to provide a tractable theoretical analysis, we focus on simple
networks and cascade dynamics. The cascade dynamics we
consider is outlined in the following assumption.

Assumption II1.1 (Cascade Dynamics): Initially, a single
vertex v* (the source) is affected by the cascade. The cascade
then spreads deterministically in discrete time steps, so that
vertex v is affected by the cascade at time ¢ if and only if
d(v,v*) <t.

We consider two classes of networks — regular trees and
lattices — which are defined formally below.

Definition II1.2 (Infinite k-Regular Tree): Let v, be a
designed root vertex, and let 7 (1) be the tree with k leaves
attached to v,. Given 7j(m), we construct 7(m + 1) by
attaching & — 1 leaves to each leaf in 7;(m). The infinite
k-regular tree 7}, is the limiting graph obtained when m — oo;
that is, (u,v) is an edge in 7y, if and only if (u,v) is an edge
in 7;,(m) for some positive integer m.

"More precisely, if there exists an estimator ¥ such that ¥(t) — v* as
t — oo, then the stopping time 7" = oo is optimal. If such an estimator does
not exist, there is no feasible solution to (I1.4) when o« = 0.
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1%
V* N '>\ V*
A
yor(0) ~ Q1 yv(0) ~ Qo Yor(1) ~ 01 yu(1) ~ Qo W@~ 01 y(2)~ 01
(@t=0 b)yt=1 ©t=2
% \4 \4
v* V* V*
v (0) ~01 »,(0) ~Qo yor(1) ~ 01 yu(1) ~ Qo Vo (2) ~ 01 y»(2)~Qo
dt=0 e t=1 Ht=2

Fig. 2.

Ilustration of cascade propagation and observations in 3-regular trees (a-c) and 2-dimensional lattices (d-f). In each image, the red nodes are those

affected by the cascade, and the black are unaffected, though this information is hidden from the observer. Notice that the public signals for the cascade
source v* are always sampled from @1, whereas the public signals for another vertex v are initially sampled from Qo and change to samples from Q1 once

the cascade spreads sufficiently far.

Definition II1.3 (Infinite {-Dimensional Lattice): Label ele-
ments of the vertex set by Z‘. There is an edge between
vertices u, v in the infinite /-dimensional lattice if and only if
Yooy i — i =12

See Figure 2 for an illustration of the cascade dynamics
and the evolution of observed signals on regular trees and
lattices. We choose to study regular trees and lattices for
several reasons. For one, they have strong symmetry properties
(e.g., the local structure around all vertices are the same) which
makes it easier to explicitly determine the performance of
optimal algorithms. Second, we present a unified treatment
of source estimation on regular trees and lattices (except for
minor differences), even though the two families of graphs
have extremely different topologies; perhaps the most obvious
difference is that trees are acyclic while lattices contain many
cycles of varying lengths. This indicates that it may be possible
to generalize our methods to other topologies as well (see
Section III-C for further discussion on this point). We also
remark that it is a common assumption in the theoretical analy-
sis of cascade models and inference tasks that the underlying
graph has infinitely many vertices [1], [2], [12], [13], [14],
[18], [19], [42], [43], [44]. Moreover, the infinite graph setting
allows us to capture scenarios where the size of the cascade is
small compared to the total population without unnecessarily
complicating our mathematical analysis.

There are several network and cascade models that are
arguably more realistic than the ones we study in this paper;
see for instance [22], [23], [24], [25], [25], [26], [27].

2The 2-regular tree 72 is the same as the 1-dimensional lattice. Henceforth,
we shall identify 75 as the 1-dimensional lattice and always consider k-regular
trees with £ > 3. Indeed, from our analysis, it can be seen that the relevant
properties of 72 make the graph most naturally associated with the class of
lattices.

However, even for the simple networks and cascade dynamics
we consider, we expect that an exact characterization of
optimal source estimators is mathematically intractable. The
reason for this is that we may interpret the problem of source
estimation as a sequential multi-hypothesis testing problem,
where different hypotheses correspond to different potential
sources. In the two-hypothesis case, the optimal hypothesis
test is known to be the sequential probability ratio test
(SPRT), which is a relatively simple procedure that tracks
the cumulative log-likelihood ratio over time and stops when
it achieves a particular threshold [45]. When there are more
than two hypotheses, the optimal test has a complicated form
and is difficult to analyze [46]. To carry out a tractable
analysis, we therefore characterize optimal source estimators
in asymptotic regimes, where the number of possible source
vertices — in other words, the size of the candidate set — tends
to infinity. Formally, we consider a sequence of candidate sets
and study asymptotic properties of optimal estimators when
the size of the candidate set grows large. As we shall see,
the analysis of optimal estimators depends not only on the
size of the candidate set, but also its topology. For instance,
if two vertices in the candidate set are adjacent, there is a lot of
overlap in the set of potential infections caused by each vertex.
Hence it takes more effort and information to decide between
the two vertices. On the other extreme, if two vertices in the
candidate set are very far apart, it takes comparatively less
effort to distinguish between them. One can therefore imagine
that a worst-case candidate set is one where all vertices are as
close to each other as possible. This idea is formally captured
in the following assumption.

Assumption I11.4: We assume the sequence of candidate sets
{Vy}n satisfies the following:

1) For all positive integers n, V,, C V and |V,,| = n;
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2) There is a designated vertex vg € V and a sequence of
integers {r,, },, such that for all positive integers n,

Nvo(rn) g Vn C Nvo(rn + 1)

Above, we recall that N, (r) is the r-hop neighborhood of
vg. The second condition in Assumption III.4, which states that
V,, is approximately a neighborhood of some arbitrary vertex,
correctly captures the notion of a worst-case candidate set in
the sense that it maximizes the number of vertex pairs that are
close to each other. On a more technical note, by assuming
a specific topological structure for the candidate set, we have
enough detail to carry out a precise mathematical analysis of
optimal estimators.

The value of r, used in Assumption III.4 can be made
explicit. For the graphs of interest to us, we can employ
straightforward combinatorial arguments to show

logn

. log(k,_p[ G is a k-regular tree, k > 3;
n
(&n) " G is a (-dimensional lattice, £ > 1.
(IL.1)

For details, see Corollaries A.2 and A.4 in Appendix A.

As a final remark on the candidate set, we emphasize that
Assumption III.4 is made only for the purposes of studying
the performance of optimal estimators; it need not be satisfied
to apply our estimators to more realistic, finite networks. See
the part of Section IV concerning cascade source estimation
on Erdés-Rényi random graphs for more details on this point.

A. Results on Bayesian Estimation

For a stopping time 7', sequence of estimators v and a
candidate set V,,, define the quantities

vaIB(T, V) = Ew(Vn) [d(’U*, @\(T)) + T]
valp (V) == iTnfvaIB(T, v).
Note in particular that val(V},) is the optimal value of (I1.3)
when the candidate set is V;,. Our main result on the Bayesian
formulation is the following theorem.
Theorem II1.5: When G is a k-regular tree with k£ > 3,

loglogn
log(k —1)°
On the other hand, when G is a /-dimensional lattice, there

exist constants a, b depending only on ¢, QQy, )1 such that for
n sufficiently large,

valy (Vi) (111.2)

a(logn) ™7 < valy(V,,) < b(logn) 7. (I11.3)

In words, (III.2) pins down the exact first-order asymptotic
behavior of val;(V,,) when n is large in the case of regular
trees. For lattices, (III.3) captures the orderwise behavior of
valp(V,,) when n is large. While Theorem IIL.5 focuses on
how val (V) scales with n, we remark that the (appropriately
defined) distance between @)y and )1 plays a role in the
performance of optimal estimators. In the case of k-regular
trees, it appears in the second-order expansion of valp;(V},).
For {-dimensional lattices, the distance between )y and
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@1 influences the constants ¢ and b, with both blowing up
to infinity as the distance between )¢ and (01 becomes small.

Proof Summary: For any vertex v € V' and integer s > 0,
recall that NV, (s) is the set of vertices within distance s of
v. From the cascade dynamics defined in Assumption II1.4,
Ny« (s) is precisely the set of vertices which have public
signals distributed according to @, rather than Q. The
number of fotal public signals distributed according to ()1 in
the first ¢ timesteps is therefore given by

t
F£) = [Ny (s)]- (I11.4)
s=0

Due to the symmetry of regular trees and lattices, [Ny (s)| =
|Ny(s)| for any u,v € V and s > 0. Hence f(t) does not
depend on v*, which is why we do not include v* in the
notation. The interpretation of f(t) as the number of public
signals distributed according to (01 implies that, in an abstract
sense, f(t) is a measure of the amount of information an
observer has about the spread of the cascade.* On the other
hand, the initial uncertainty around the location of v* can be
measured by the entropy of 7(V},), which is logn. One may
then expect that when f(¢) < logn, the information about the
cascade propagation is not enough to overcome the uncertainty
around the source location. It turns out that this intuition
does indeed hold: for any (7',v), E (v, )[d(v*,0(T))] is large
(order log n in regular trees and n'/* in /-dimensional lattices)
when f(T') < logn. It follows that accurate source estimation
is only possible when f(7') = logn or equivalently, when
T 2 f~'(logn). This leads to the lower bound valy(V;,) >
f~t(logn), which is loglog n/ log(k—1) in k-regular trees up
to first order terms and is of order (log n)Wll in /-dimensional
lattices.

An upper bound on val(V},) is then derived by character-
izing the performance of a given source estimator. Consider
(Tyn, V), given formally by

Up(t) € argminE 4 [d(v*,v)] (I11.5)
vEV,
Ty :=min {t > 0: E;)[d(v*,0(t))] <1}.  (1IL6)

Above, the measure 7(t) is the posterior distribution of the
source v* after observing the sequence of public signals
y(0),...,y(t), hence E,)[d(v*,v)] can be viewed as a
conditional expectation. The interpretations of T}, and Vg are
quite intuitive. In words, Up(t) is a vertex which achieves
the minimum estimation error, conditioned on the observed
information until time ¢. The estimator Vg can therefore
be thought of as the Bayes-optimal source estimator, as it
minimizes the conditional estimation error.* The stopping
time T}, will keep sampling until the conditional estimation
error of the optimal estimator falls below the threshold 1
(the subscript th references the fact that we stop once
the estimation error is below a threshold). In characterizing
the performance of the estimator (7y,,Vp), we show that

3We later make this more formal by showing that the Kullback-Liebler
(KL) divergence between the measures P, and IP,, pertaining to the variables
y(0),...,y(t) is proportional to f(t) for most pairs u,v € V.

4We formalize this idea in Lemma V.1, where we show that if the stopping
time 7 is fixed, Vg achieves infg valg (T, V).
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valg(Tin,vp) ~ loglogn/log(k — 1) in k-regular trees
and valg(Ti, Vp) = (1ogn)1~+1 in /-dimensional lattices.
Remarkably, these match the lower bounds previously estab-
lished for valjz(V,), leading to (II1.2) and (I11.3). More-
over, our analysis shows that the estimator (T}, Vp) enjoys
near-optimal performance when n is large.

As a final remark, we note that our proof methods are quite
general and can also handle the case where 1" is replaced
with A(T) in (IL3) for any h that increases slower than an
exponential function. Moreover, the same estimator (Vg, T1)
also enjoys near-optimal performance in this case. For details,
see Remark V.4.

B. Results on Minimax Estimation

We begin by defining some notation. Let o > 0 be fixed, and
suppose V,, is the candidate set. Define the class of estimators

AWy o= {(1.9) s w0, 5] < o |

vEV,

In words, A(V,,,a) is the class of source estimators which
have a worst-case estimation error of at most «.. In particular,
A(V,,, ) is the set of feasible estimators in the minimax for-
mulation (II.4). The optimal value of the minimax formulation
is denoted by

inf max E,[T].

valy,(V,, o) :=
3 (V@) (T\9)EA(Vi, ) VEVin

The results we obtain for valy, (V,,, «) are essentially the same
as in the Bayesian formulation. Specifically, we prove the
following theorem.

Theorem II1.6: Let « be fixed. When G is a k-regular tree,

loglogn
log(k —1)°
On the other hand, when G is a /-dimensional lattice, there

exist constants a’, b’ depending only on £, Qg, @1 such that
for n sufficiently large,

valy (Vi, a) ~ (1IL.7)

a’(logn) 77 < vali, (Vi ) < b (logn) 7. (11.8)

As in Theorem II1.5, (III.7) provides an exact first-order
characterization of valy;(V},,«) when n is large, and (IIL.8)
describes the orderwise behavior of valy;(V,,, «). We remark
that the constants a’ and o’ used in (III.8) are potentially
distinct from the constants a,b used in the Bayesian ana-
logue (II1.3). However, we make no attempt to optimize the
constants, instead focusing on the orderwise behavior as n
grows large. As in Theorem IIL.5, the (appropriately defined)
distance between Qo and 1 plays a role in the second order
terms of valy,(V},, @) in regular trees. In lattices, the constants
a’ and b’ blow up to infinity when the distance between )y and
@1 is small.

Proof Summary: As in the Bayesian case, we focus on
establishing lower bounds for valy;(V},, «) and derive match-
ing upper bounds by studying the performance of a carefully
designed estimator which lies within the feasible set A(V},, ).

To derive lower bounds for valy,(V;,, ), we observe that
the Bayesian objective value — which measures average-case
behaviors of source estimators — is less strict than the minimax
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objective, which measures worst-case behaviors of source
estimators. Hence the lower bound for valj;(V},) also holds
for valy;(V,,, ), provided « is constant with respect to n.

Next, we establish an upper bound for valy,(V,,,«) by
characterizing the performance of a specific stopping time and
estimator. Unfortunately, we cannot use (7i,,Vp) (used in
the Bayesian setting) for this task since it is unclear whether
it is an element of the class A(V,,,«). We therefore take a
different approach in designing an appropriate estimator within
A(V,,, &) which matches the lower bounds for valy;(V,,, a).

To this end, recall that the problem of source estimation can
be viewed as a sequential multi-hypothesis testing problem,
where each hypothesis corresponds to the possibility of a
particular vertex being the source. Motivated by the optimality
of SPRTs for the two-hypothesis setting, we consider a natural
extension to the multiple hypothesis setting known as the
multi-hypothesis sequential probability ratio test (MSPRT),
described below:

o For each pair of distinct u,v € V,,, specify a threshold
7(v, u), which is a positive real number.
o Let T'(v) be the stopping time that halts as soon as

P,
W), ..

Here, we recall that P, is the probability measure condi-
tioned on v* = v.

o The final source estimator is argmin, .y, 7'(v); that is,
the vertex whose stopping time halts first.

() =2 7(v,u),  Vu eV \{v}.

For general multi-hypothesis testing problems, it is known
that MSPRTSs enjoy near-optimal performance when the num-
ber of hypotheses is fixed and the bound on the estimation
error, «, is small [46], [47], [48], [49], [50], [51]. Although
our setting is different, since « is fixed and the number of
hypotheses are large, it is natural to expect that MSPRTs still
have good performance. Indeed, we provide a novel way to
design MSPRTs with worst-case expected runtime that match
the lower bounds for valy,(V,,,«): for u,v € V,, that are
“far”, we set 7(v,u) = 7 and for w,v € V, that are
“close” we set 7(v,u) = 7o where 71, 7 are pre-determined
parameters depending on the graph structure and n. This
design can be interpreted as a multi-scale search strategy:
an analysis of the likelihood ratios dP,/dP, for u,v far
apart determine the general location of the source, and an
analysis of the likelihood ratios dP,/dP,, for u,v close give
us a more fine-grained estimate. We show that with the right
definition of “closeness” as well as an appropriate choice of
71,72, an MSPRT designed in this way achieves the upper
bounds for valy, (V;,, &) described in Theorem II1.6. A diagram
illustrating the key ideas of the MSPRT we have described can
be found in Figure 3.

C. Conjectures on Optimal Estimators in General Graphs

In this work, we primarily focus on regular trees and
lattices for a few key reasons. For one, they enjoy strong
symmetry properties. In particular, the local structure of all
vertex neighborhoods are isomorphic, leading to conceptually
simpler proofs and near-exact computations of valy(V;,) as
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. (v, u2)
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t
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dP,,
dPy,,_,
t
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{t(v,u) =71 |—

Fig. 3. Schematic representation of the MSPRT we design to achieve near-optimal source estimation. Left: Plots of the likelihood ratios with respect to vertex

v, where we have enumerated Vj, \ {v} as uq,..

., Up—1. We halt when dP,, /dP,,; crosses the threshold 7(v, u;) (shown in orange) for all 1 <4 <n —1.

This stopping time, labeled T'(v), is shown in red. The source estimator is the vertex v which achieves the smallest value of T'(v). Right: Design of the
thresholds 7 (v, u), visualized here for the 2-dimensional lattice. For vertices w,v € Vj, that are far (blue region), we set 7(v,u) = 71 and for vertices

u,v € Vp, that are close (green region), we set 7(v,u) = Ta.

well as valy;(V,, «). Second, regular trees and lattices have
drastically different topological structure, yet most of our
proofs work equally well for both topologies, with just minor
differences. This suggests that our methods can also be used
to describe optimal source estimators for general topologies.
Below, we discuss how Theorems III.5 and III.6 may change
for general topologies.

We start by defining relevant notation. Let G be a graph with
(countably) infinite vertices that is locally finite (i.e., all vertex
degrees are finite). As discussed earlier, we study infinite
graphs since it allows us to consider scenarios where the
cascade is small relative to the network size without compli-
cating our analysis. Define the vertex-dependent neighborhood
growth function

£t == 3" N (s)].
s=0

We then have the following conjecture concerning optimal
source estimation in general topologies.

Conjecture II1.7: Suppose that G is a graph with countably
infinite vertices that is locally finite. Let the sequence of
candidate sets {V},},>1 satisfy Assumption III.4. Then

* 1 _
ValB(‘/ﬂ/) = E Z fU l(logn)
vEV,

Additionally, for any o > 0 that is constant with respect to n,
-1
valy (Va, @) = max f, " (log n).

We expect that Conjecture III.7 can be proved by a straight-
forward generalization of our techniques. Following analo-
gous arguments as the proof summary for Theorem III.5,
if v* = v then f,(t) is the total number of public signals
distributed according to ()1 until timestep t. We therefore

expect that the uncertainty in the source location is too large
to reasonably estimate the source in the regime f,(t) <
logn (equivalently, t < £, !(logn)), since the entropy of
the prior 7(V},) is logn. Hence any algorithm must observe
for at least f, !(logn) timesteps to reliably estimate the
source. Averaging over v € V,, leads to the lower bound
valp(Vn) 2 2 vev, fo '(logn). On the other hand, the
minimax setting captures the worst-case expected number of
samples as opposed to the average-case number of samples,
hence val}; (V,,, a) = max,cy, f, (logn).

Establishing upper bounds for valy(V,,) and valy, (V,, @)
that are orderwise tight requires an analysis of specific source
estimators. Since our analysis of (T}, V) is quite similar for
both regular trees and lattices (with only minor differences),
we expect that it should achieve optimal performance in
general as well. We also believe that a properly designed
MSPRT can achieve optimal performance in the minimax
setting as well; we provide further details on this point in
Section VI-B (see Remark VI.8).

IV. SIMULATIONS

In this section, we complement our theoretical results
through simulations which reveal the non-asymptotic perfor-
mance of our source estimators. Specifically, we study the
performance of two estimators: the Bayes estimator described
in (IIL.5) and (II.6), and the MSPRT used to prove the
achievability results in Theorem II.6. At a high level, our
simulations show that even in non-asymptotic regimes, our
estimators are able to locate the source while ensuring that
only a small number of individuals are infected, thus validating
our theoretical results on trees and lattices. We further apply
our estimators to cascades spreading on natural models of
random graphs (the Erd&s-Rényi model), showing that our
estimators can be successfully applied to broader scenarios.
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a) Signal distributions.: We consider the case of noisy
and incomplete testing, described in Remark II.1; we briefly
recap the model here. Interpret the network cascade as an
infection, and assume that at every timestep, each individual
tests for infection with probability p. The test outputs the
correct result (i.e., positive or negative) with probability 1 —e.
In our simulations, we let p = 0.5 and € € {0.1,0.2}. The
distributions g, )1 derived from this scenario are formally
described in Remark II.1.

b) Lattices.: To make our simulations as close to our
theoretical setup as possible, our base graph G was taken
to be a 2-dimensional 100 x 100 lattice (10,000 vertices).
If the size of the candidate set is n, in accordance with
Assumption II.4, we chose the candidate set to be the n
closest vertices to the center of the lattice. We emphasize that
choosing the candidate set in this way captures the notion
of a worst-case candidate set (see the discussion surrounding
Assumption II1.4), and we choose vertices close to the lattice
center only to avoid boundary effects (i.e., to ensure that the
cascade will evolve similarly from all potential source vertices,
given that GG is finite). In our simulations, the cascade begins
at the lattice center and spreads via the deterministic dynamics
described in Assumption III.1, producing random observed
vertex-level signals according to (II.1). Although we could,
in principle, choose any source vertex in the candidate set,
we consistently choose the lattice center in order to reduce
the variance of the estimators’ performance across independent
simulations. For each choice of n (from 100 to 2000, collected
at regular intervals of 100) and €{0.1,0.2}, we carried out
100 independent simulations of the cascade. We averaged over
the stopping time and the number of total infections until the
stopping time to generate the plots in Figure 4. The design
of the MSPRT weights for the minimax estimator follows
Figure 3; for the specific threshold values, see Theorem VI.7
in Section VI-B.

Figure 4 highlights important finite-size behaviors of the
Bayes and minimax estimators. Notice that each curve is
quite flat: the expected stopping time as well as the number
of infections changes little with respect to n. This weak
dependence extends to the asymptotic regime n — o0 as
well; Theorems II1.5 and III.6 show that the expected stopping
time scales as (logn)'/3. Moreover, the Bayes estimator has
strictly better performance than the minimax estimator in all
cases — notably, nearly 100 infections are prevented in the case
e = 0.2 for large n when comparing the Bayes and minimax
estimators.

¢) Trees.: Our base graph G' was taken to be a 3-regular
balanced tree with 16,383 vertices. If the size of the candidate
set is n, we choose the candidate set to be the n closest
vertices to the root of balanced tree GG for similar reasons as
in the case of lattices. In our simulations, the cascade begins
at the root of G and spreads via the deterministic dynamics
described in Assumption III.1, producing random observed
vertex-level signals according to (II.1). For each choice of
n and €, we carried out 100 independent simulations of the
cascade and average over the stopping time as well as the
number of total infections to generate the plots in Figure 5.
For the minimax estimator, we use an MSPRT with constant
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Fig. 4. Plots of the expected stopping time (a) and the expected number of
infections (b) as a function of n, the size of the candidate set. Pictured here
are the performances of the Bayes and minimax-optimal source estimators in
2-dimensional lattices.

weights, which is proved to be asymptotically optimal; see
Theorem VL5 in Section VI-B for details.

Similar conclusions as in the case of lattices can be
drawn for trees based on Figure 5. Interestingly, although
the Bayes and minimax estimators take loglogn samples in
light of Theorems III.5 and III.6, Figure 5 shows that the
Bayes-optimal estimator stops earlier in finite regimes; we
believe this is due to the provable optimality of the estimator
(see Lemma V.1). Furthermore, although we have proved that
the distance between ()¢ and ()1 does not affect the first-order
asymptotics of the expected stopping time in both Bayes
and minimax settings, it appears to play a significant role in
finite regimes. Notably, the time it takes the minimax-optimal
estimator to stop is more than doubled when € = 0.2 compared
to € = 0.1 for many values of n.

d) Erdds-Rényi random graphs.: Recall that for a positive
integer n and ¢ € [0, 1], an Erdés-Rényi random graph G(n, q)
is generated as follows. Let the vertex set V' be a set of n
labeled vertices, and for each pair of distinct vertices an edge is
added between them with probability ¢, independently across
all vertex pairs. Since our work is primarily concerned with
sparse graphs (i.e., vertex degrees are not too large), we chose
g = 5/n to ensure that the average degree of the graph is 5.
This choice of ¢ ensures that the largest connected component
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Fig. 5. Plots of the expected stopping time (a) and the expected number of
infections (b) as a function of n, the size of the candidate set. Pictured here
are the performances of the Bayes and minimax-optimal source estimators in
3-regular trees.

of G(n, q) (also known as the giant component) is most of the
graph, while also keeping the average degree relatively small.
For a given realization of G(n, ¢), our candidate set was taken
to be the vertices in the giant component.’ Figure 6 shows the
performance of the Bayes and minimax estimators on Erd6s-
Rényi graphs, both of which exhibit similar performance to
that noted for trees and lattices. For the minimax estimator,
since sparse Erd6s-Rényi graphs are known to be locally tree-
like [52], we use the MSPRT with uniform weights (see
Section VI-B) which is optimal in regular trees. To summarize,
Figure 6 shows that the estimators we develop are robust and
apply to a broader class of graphs than the ones we analyze
theoretically.

To generate the numerical results in Figure 6, as before we
ran 100 independent simulations for each n and e considered.
For each simulation, an independent Erd6s-Rényi graph was
generated. The data in Figure 6 were computed by averaging
the stopping times and number of infected vertices, condi-
tioned on the event that the cascade did not spread to all
vertices by the time the algorithm stopped. The reason for this

STt is known that with high probability, components other than the giant
component are of order log n [52, Chapter 11.9]. As a result, the infection will
never reach most of the graph even after a long time passes. Our assumption
that the candidate set is the vertex set of the giant component avoids such
simple edge cases.
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Fig. 6. Plots of the expected stopping time (a) and the expected number of
infections (b) as a function of n, the size of the candidate set. Pictured here
are the performances of the Bayes and minimax-optimal source estimators in
the Erd6s-Rényi graph G(n,5/n).

is that if the cascade affects all vertices, there is effectively no
new information to be learned, and the stopping time would
be extremely large with high probability. In almost all cases,
however, at most one out of the 100 trials would fall into this
category. The only exception was the case of n = 100 and
€ = 0.2 for the minimax estimator, which had 12 trials fall
into this category. We expect that this is because the cascade
spreads too quickly to detect it on a graph of this small
size. Finally, we remark that some of the curves in Figure 6
may appear noisier than the ones in Figures 5 and 4; this is
likely due to the randomness of the base graph in the Erdds-
Rényi case, compared to the deterministic nature of the other
topologies considered.

V. ANALYSIS OF THE BAYESIAN SETTING
A. Behavior of the Bayes-Optimal Estimator
We begin with a discussion of the estimator v =
{vB(t)}+>0, which is defined formally by

vp(t) € argmin E ) [d(v*,v)],
vEVy

where V,, is the candidate set under consideration. It is
straightforward to show that Vg is optimal, in the sense that
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it minimizes the error of the final source estimator for any
choice of stopping time. This is explained more formally in
the following result.

Lemma V.1: Let the candidate set be V,,. Fix any stopping
time 7" and let u = {u(t)};+>0 be any source estimator so that
u(t) is measurable with respect to y(0),...,y(t). Then

Erv)[d(v™, 05(T))] < Ex(v,)[d(v", u(T))].
In particular,

inf valg(T,Vv) =infvalg(T,Vp).
(T,%) T

Proof: For any given time index ¢t > 0, it follows from
the definition of vp(¢) that

Eﬂ‘(t) [d(’U*, Up (t))] < Eﬂ‘(t) [d(’U*, a(t))] :
We can then write
Er v, [d(v™, vB(T))]
@ Er(vi) [Er(rld(v*, 08(T))]]

=Erv) [Z Erpld(v”, vp(0)UT =)
t=0

(V.1)

C B [Z B [d(o", B(6)L(T = 1)
t=0

= By, [d(v", u(T))].

Above, (a) is due to the tower rule and (b) is a consequence
of (V.1). Taking an infimum over all source estimators (7', )
on both sides yields the second statement of the lemma. [
With the optimal estimator explicitly derived, we focus on
characterizing the estimation error of Vg, which will in turn
aid us in characterizing optimal stopping times. Indeed, the
proof of Theorem III.5 depends on the following two lemmas
which characterize the estimation error of V. Before stating
them, we review some basic properties of the neighborhood
growth function f(t) (defined in (IIL.4)). First, it can be shown
through straightforward combinatorial arguments that

1)t G is a k-reg tree, k > 3;
. . . (V.2)
G is a /-dim lattice, ¢ > 1.

k(k—1) (k —
k—2)?
f(t) ~ {( 2! )t€+1
Z+1)!
A proof of (V.2) can be found in Appendix A — see in
particular Lemmas A.1 and A.3. Importantly, (V.2) can be used
to study the asymptotics of the inverse function F = f~1.

Indeed, it follows that

_logz

log(k—1)
F(Z) ~ Ll

(4522) ™ G is a t-dim latice, ¢ > 1,

G is a k-reg tree, k > 3;
(V.3)

We are now ready to state our results on the estimation error.
The first establishes a lower bound for the estimation error
when ¢ is not too large.

Lemma V.2: Suppose G is a k-regular tree with & >
3 and that the sequence of candidate sets {V},},>1 satisfies
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Assumption I11.4. There are constants a; = a;(k, Qo, Q1) and
b1 = b1 (k) such that if we define the event
then lim,, o max,ev, Py(Eirec) = 0.

Next suppose that G is a /-dimensional lattice and
{Va}n>1 satisfies Assumption II1.4. There are constants aj =
ai(Qo, Q1) and by = b} (¢) such that if we define the event

Elattice = in  Epyldw*,s(t)] < bin'/t,

e = { i B4 (0] <
then limy, oo maxyey, Py (Elattice) = 0.
It can be shown through straightforward combinatorial

arguments (see Lemmas B.3 and B.5 in Appendix B) that the
initial estimation error satisfies

logn G is a k-reg tree;

Ex(old(v”, 05(0))] = {nl/f G is a ¢-dim lattice. V4

In light of (V.4), Lemma V.2 states that with high probability,
the estimation error does not significantly decrease for ¢ <
F(logn). At a high level, this is because the information
from the public signals corresponding to the true spread of the
cascade is not enough to offset the uncertainty in the source
location. These ideas are formalized by computing the mean
and variance of E ) [d(v*,v(t))] and applying Chebyshev’s
inequality. We also remark that as a consequence of our proofs,
the constant a; in Lemma V.2 depends on the average degree
for regular trees, while the constant a} does not depend on
the average degree in lattices. For details, see Section VII-B.

The next result establishes an upper bound on the estimation
error once t is sufficiently large.

Lemma V.3: Suppose that G is a k-regular tree or a
{-dimensional lattice and that the sequence of candidate sets
{Va}n>1 satisfies Assumption II1.4. There are constants ay =
ag(Qo, Ql) and by = bQ(QQ, Ql) such that if ¢ > F(CLQ 10g ’I’L),

max P, (Eq)[d(v*,0p(t)] > e ) <e . (V.5)

veEV,
The proof relies on large-deviations bounds which show that
7y (t) /Ty~ (t) tends to 0 at an exponential rate for any u # v*.
For details, see Section VII-C.

B. Putting Everything Together: Proof of Theorem II.5

Combined, Lemmas V.2 and V.3 show that the estimation
error exhibits a sharp transition: it is large for ¢t < F'(logn)
and it is exponentially decaying to zero for ¢ > F'(logn).
The optimality and performance of the estimator (T35, Vp) is
essentially obtained from this observation.

Proof of Theorem IIL5: Define the pair of constants a, A
so that (a,A) = (a1,b1logn) if G is a k-regular tree and
(a,A) = (a},bin'/?) if G is a (-dimensional lattice (see
Lemma V.2 for definitions of these constants). For every ¢ > 0,
we also define the event

min

= ) > .
€ {O<t<F(alogn) Eno[d(", 06(D)] 2 A}
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For any stopping time 7', we have, for any v € V,,,

Ey [Ex(r)ld(v*,0p(T))] + T (V.6)

-, lz Er o [d(v*, 05(0)) 1T =)+ T
t=0
F(alogn)
2B, | Y Eeld", 51T =1} N &)

t=0

+]E'U

T1(T > F(alog n))]

(a) F(alogn)
> A Z

+ F(a logn) -P,(T > F(alogn))
> 4-B,({T < Falogn)} N€)

+ F(alogn) -P,({T > F(alogn)} N¢&)
> min{A, F(alogn)} - P,(E)

© F(alogn) -P,(E).

L{T =t n¢)

V.7)

Above, (a) follows from the definition of £ and by lower
bounding T" by F'(alogn) on the event {T > F'(alogn)}, and
(b) uses F(alogn) < A for n sufficiently large, which follows
from the asymptotic behavior of F' (see (V.3)). An important
consequence of (V.7) is that the value associated with the pair
(T, V) can be lower bounded as

= EW(VH)[CZ(U*,@\B (T)) + T]

(c) 5 o~
= Erv,) [Exer[d(v*, 05(T))] + T

D2 S By [Enn d(e", T5(T))] + 7]

veEV,
Lyre)

(e)
> F(alogn)
'UEV’L

Above, (c¢) is due to the tower rule, (d) follows since 7(V},)
is a uniform distribution over elements of V,,, and (e) is a
consequence of (V.7). Moreover, since (V.8) holds for any
stopping time 7', we have

valy (V)

VE]|B(T7 VB)

(V.8)

= infvalg(T,v
1TnAvaB( V)

V.

= infvaIB(T, GB)

> F(alogn) (

where the second equality follows from the optimality of the
estimator v, proved in Lemma V.1. Rearranging terms and

sending n — oo, we arrive at
>1 f ! P, (&
minf {7 2 P©)
veV,

> liminf min P,(£) = 1,

n—oo veV,

> o).

veEVy,

lim inf 22 (Vn)
n—oo F(alogn)

(V.9)

where the final equality above is a direct consequence of
Lemma V.2.
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Next, to establish an asymptotic upper bound for the optimal
value, we consider the stopping time

Tth = min{t 2 0: Ew(t) [d(v*,?}B (t))] § ].},

which stops once the estimation error falls below a threshold.
We can then bound

)
vaIB(Tth,,vB) < E (Vi )[1+Tfh]

=1+ ZPW(V,L)(TM >t)
t=0
o0
<1+ F(azlogn) + Z P,y (Ten > 1)
t=F(azlogn)+1
) o0
(azlogn) + Z

v
t=F (a2 logn)+1

—~

g

<1+F max Py (Tyn, > t)

n

o0

>

t=F(azlogn)+1

1
S 1+ F(CLQ 10g n) + b_e—b2F((l2 logn).
2

(h)
< 14 F(azlogn) + e b2t

Above, the inequality (f) is due to the definition of T3y, (g)
follows since Py, y(-) :== = >y Pu(-) < maxyev, Py(-),
and (h) follows from noting that 73, > ¢ implies that
Er[d(v*,0p(t)] > 1 > e " and applying Lemma V.3
to bound the latter event. Dividing both sides of the final
inequality by F'(aslogn) and letting n — oo shows that

vaIB (Tth; GB)
F(azlogn)

The desired result follows from (V.9) and (V.10) by con-
sidering the asymptotic behavior of F' in trees and lattices
(see (V.3)). O

Remark V.4 (General Temporal Cost Functions): It is also
interesting to consider the case where the cost of the stopping
time in the Bayesian objective (I1.3) is given by h(T") instead
of T, where h is some increasing function. It turns out that a
slight modification of the proof of Theorem III.5 shows that
the estimator (73, Vp) is still asymptotically near-optimal as
long as h grows slower than any exponential function. Indeed,
if we follow the derivation of the bound in (V.7) and (V.8),
we obtain that

Er(vld(v*, 0p(T) + h(T)]

> min{A4, h(F(alogn))} <

lim sup

n—oo

<1. (V.10)

1
Ly ne),
veEV,
where A, a,E are the same as in the proof of Theorem IIL.5.
Following (V.9), we obtain that

. oinfr By [d(0”, v (T)) 4+ A(T))]

lim inf - > 1.

n—00 min{ A, h(F(alogn))}
In particular, if h increases slower than any exponential
function, it can be seen that, for the choices of A and F' used
for regular trees and lattices, h(F(alogn)) is an asymptotic
lower bound on the performance of any estimator.

The proof of the upper bound on the performance of the

optimal estimator can be similarly derived. For the same
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estimator (V, T%, ), we may follow the proof of Theorem II1.5
to show that

S By [dO(T), %) + 1(T)]
Vylih

< Er [l + h(Ti)]

=14+ Pry(h(Tin) > t)
t=0

=1+ ZPW(W)(Tth > h_l(t) )

t=0
e8]

<1+ h(F(azlogn)) + >
t=h(F(azlogn))+1

_ —1
e boh (t)

We can reach the same conclusion as in Theorem III.5; that

is, that

inf (g 1) Er(v,)[d(0(2),v") + h(T)] <1
h(F(azlogn)) -

lim sup

n—oo

provided .- e 02 (1) < oo, This is the case provided

h~1(t) increases faster than logt or equivalently, if h(t)
increases slower than any exponential function. Together, this
shows that

A(F(arlogn) $ inf Exq[d(0(0), %) + (T
< h(F(azlogn)),

provided h increases slower than any exponential function.

VI. ANALYSIS OF THE MINIMAX SETTING

In this section we prove Theorem III.6. To do so, we prove
lower and upper bounds for valy;(V;,,«) in separate the-
orems. In Section VI-A, we prove Theorem VI.1, which
establishes a lower bound for valy;(V},, «). The upper bounds
for valy,;(V,, ) are achieved by MSPRTs of a particular
design: this is proved in Theorem VL5 (regular trees) and
in Theorem VI.7, which can be found in Section VI-B.
Remarkably, a simple design in which we set all the thresholds
in the MSPRT to be the same value achieves the lower bound
for regular trees. However, the same estimator adapted to
lattices fails to achieve the lower bound due to key differences
in the topology of lattices. To fix this issue, we consider a
novel MSPRT design we term K -level thresholds, where we
assign different thresholds to pairs of vertices u, v satisfying
d(u,v) < K and those satisfying d(u,v) > K. The perfor-
mance of the resulting estimator does indeed achieve (up to a
constant factor) the lower bound for valy, (V,,, a).

A. Lower Bounding the Optimal Value

Theorem VI.I (Lower Bound Part of Theorem II.6): Sup-
pose that the sequence of candidate sets {V},},>1 satisfies
Assumption IIL.4. If G is a k-regular tree,

valy (Vi @)
B >, (VL1)
log(k—1)

lim inf
n—oo
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On the other hand, if GG is a /-dimensional lattice then there
is a constant a4 depending on ¢, QQp, Q1 such that

lim inf 7\/3'7\1 (Ve ,104)
"o (logn) =T
Proof: Let (T, V) be an estimator in A(V},, ). Given the
prior 7(V},), recall from Lemma V.1 that the estimator

> aq. (V1.2)

vp(t) € argmin ., [d(v*,v)]
veV,

minimizes E v, [d(v*,9(T))] over all estimators v, for any
stopping time 7.
For given constants a, A, define the events

& :={T < F(alogn)}
Enold(v*, 95(1))] > A} |

We can then lower bound the worst-case estimation error as

n

min

52 = {
0<t<F(alogn)

(a) -
> Erqv,yld(v*, o(T)]

® .

> Erv,) [d(v", vB(T))]

© .

> Ex(v,) [En(rld(v”, 0p(T))]1(E1 N &2)]

(@

> A-Pry,)(E1NE).
Above, (a) follows since E,y,) is an average over the
collection of operators {EE, } ,¢y;,, and the maximum is greater
than the average; (b) is due to the optimality of vV, proved
in Lemma V.1; inequality (c) is due to the tower rule and
inequality (d) follows since E,py[d(v*,vB(T"))] > A on the
event £1 N Es.

Noting that max,ecv,, Ex (v, )[d(v*,0(T))] < a for (T,v) €

A(V,, a), (VL3) implies

(VL3)

@
Prv)(E1N&) < T
which in turn implies that

Pre(v) (61) 2 Pr(v,) (€7 U E3) = Py, (€5)

o &
> 1= %~ Bay (€5).

By Lemma V.2, if we set (a,A) = (a1,b1logn) if G is a
k-regular tree and (a,A) = (aj,bin'/?) if G is a
/-dimensional lattice (see Lemma V.2 for definitions of these
constants) then the right hand side of (VI.4) tends to 1 as
n — oo. We can then lower bound the worst-case expected
runtime as

max By [T] > Ery,)[T] 2 Ex(v,,) [T1(E7)]

(V1L4)

> F(alogn)Pr v, (E7). (VLS)
Since (VL5) holds for any element of A(V,,, «), we have
valy; (Vio, @) > F(alogn)Prv,)(E5).
Dividing by F'(alogn) and sending n — oo, we arrive at

lim inf 7\/3']\4 (Vn, @)

> 1.
n—oo F(alogn) —
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The desired result follows from the asymptotic behavior of F'
(see (V.3)). O

B. Achieving the Lower Bound With MSPRTs

An important question is whether the lower bound in
Theorem VI.1 is achievable. To answer this question, we focus
on a class of sequential estimation procedures called multi-
hypothesis sequential probability ratio tests (MSPRTs). For
convenience, we define them formally below.

Given vertices u,v € V, define the log-likelihood ratio

dP,
] 0),...
08 5 ((0),

Zvu(t) = ay(t))'

In our model, the likelihood of observing the sequence of
public signals y(0),...,y(¢t) under the measure P, has the

form

t

I1 [T d@iu(s) T dQo(yu(s)
s=0 wEN,(s) wEN, (s)

(VL6)

Above, the product containing terms of the form dQ1(y.(s))
computes the likelihood of nodes that have been affected by
the cascade, and the product containing the terms of the form
dQo(yw(s)) computes the likelihood of nodes that have not
yet been affected by the cascade. In light of (VL6), Z,,(t)
can be written as

; < Il dQl(yw(S))>
Zpu(t) = Z log (UENU(S) X

[[  dQi(yu(s )))

weN (s

)
< dQo(yw(s )))
wEN, (s)

dQO yw( ))
w¢/\f (s)
t
dQ
— Z log dQl (yw( ))
s=0 \weN,(s)\Nu(s)
dQ
_ Z log dQl (yw(s))
WEN (NN (s) 0

In words, the log-likelihood ratio log d@),/d@Qo measures
how likely it is that a certain public signal came from the
distribution ()1 as opposed to the distribution Q)g. It follows
that summations of the form ) _clog %(yw(s)) measures
the net likelihood that the public signals in S are caused by
the cascade. Hence if it is more likely that the public signals
in Ny (s) \ Ny(s) are caused by the cascade rather than the
public signals in NV, (s)\N, (s), the log-likelihood ratio Z,, (t)
positive; else it is negative.

We are now ready to define the MSPRT.

2507

Definition VI.2 (Multi-Hypothesis Sequential Probability
Ratio Test): Fix a positive integer n and specify a threshold
function 7 : V,, x V,, — (0, c0). Consider the stopping time

T(v) :=min{t > 0 : Z,,(t) > log (v, u), Yu # v}.
The corresponding MSPRT (7', V) is defined via

T := min T'(v)

o(T) := inT(v).
min (T) := argminT'(v)

vEVy

and

In words, the output of the MSPRT is the first vertex v
for which all log-likelihood ratios Z,.,(t) pass the thresholds
log 7(v,u) for all u € V,, \ {v}. If (T, V) is a MSPRT with
threshold function 7, we have the following useful relation,
which is due to Tartakovsky [47, Theorem 3.1].

Lemma VI.3: For any distinct u,v € V,,,

1

7(u,v)

P,(3(T) = u) <

Since the proof is short, we provide it here for completeness.
Proof of Lemma VI.3:
By (0(T) = u) = E, [1(0(T) = u)]
=E, [1(3(1) = we 7D

< e TR, [10(T) = u)]
1

< .

~ 7(u,v)
Above, the equality in the second line follows from
e~ Zun(T) = %(y(O), ...,y(T)). The inequality in the third

line follows since Z,,,(T") > 7(u,v) on the event {v(T") = u}
by the definition of a MSPRT.

Using Lemma V1.3, we can bound the worst-case estimation
error of the MSPRT (7', V) as

E,[d(v,v(T))] =
sy Bl L) = e 2

To ensure that (7, V) € A(V,,, «), it suffices to check that
dw) _

max
veV,
" ueV,

o) (VL7)

Perhaps the simplest weight design which satisfies (VI.7) is a
uniform weights design, in which the 7(v,u)’s all take on the
same value.
Definition VI.4 (Uniform Weights Design): The MSPRT
(Th.00s Vi) is designed with uniform weights if
2

n
T(v,u) == = Yu,v € Vi, : u # v.

With the uniform weights design, we have

(VLS8)

max
veV,
ueVy

d(u, v)g < max —=a.
n? T wev, n
u€Vn

Hence (T5,0,Vna) € A(Vp,a). Note that in the
first equality above, we have used the (loose) bound
maxy, vev, d(v,u) <n.
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When G is a regular tree, the following result shows that
the performance of the MSPRT with uniform weights matches
the lower bound in Theorem VI.1.

Theorem VL5: Let G be a k-regular tree with £ > 3 and fix
a>0.1If (T),a,Vn,a) is the MSPRT with uniform weights,

maxyev, Ey [Tn,a]

loglogn
log(k—1)

lim sup <1.

n—oo

Combined with Theorem VI.1, Theorem III.6 for regular
trees follows as an immediate consequence.
Proof of Theorem IIL.6 for regular trees: We
series of inequalities

have the

(a) valy, (Vy,

1 < liminf 71M( n )
n— 00 oglogn
log(k—1)

) valy (Vi @)

S lim sup W
nmee Tog(k—1)

ON maXyev, Ev[Tn a]
< lim Sup loglogn ’
n—ee log(k—1)

(c)
< 1.

Above, (a) is due to Theorem VI.1, (b) follows since
(Th.a,Vna) € A(Vy,a) and (¢) is due to Theorem VLS.
Since both the start and the end of the chain of inequalities
is 1, the inequalities are all equality. Hence the following limit
is well-defined:

valy, (Vy, @)

lim ; =1,
n— 00 oglogn
log(k—1)
which proves the desired result. O

We provide a brief sketch of the proof of Theorem VL5,
and defer the details to Section VIII-B. Suppose that v € V,
is the true source. When ¢ is sufficiently large, we show that
it holds for all uw € V,, \ {v} that

Zou(t) ~ Eo[Zuu(t)] = Z Wo(s) \ Nu(s)] = (k= 1)".
s=0

This in particular implies that once t 2 %, all
the log-likelihood ratios {Zyu(t)}uev,\{u} Will cross the
threshold log n?/a. Since loglog(n?/a) ~ loglogn when n
is large, Theorem VL5 follows. The key technical ingredient
of this proof is a large-deviations-type inequality for Z,,(t).

Unfortunately, the MSPRT with a uniform weights design
is not optimal in lattices. Suppose that the dimension of the
lattice is ¢. For w,v € V,, which are far apart, we have
Zp(t) < t'F1, but for u, v which are relatively close together,
Zpu(t) < t'. As the log-likelihood Z,,(t) grows at a slower
rate in this latter case, this ends up being the primary contribu-
tor to the behavior of the stopping time. As a result, we obtain
an upper bound for T*(V,,,a) of order (logn)/¢, whereas
the lower bound established in Theorem VI.1 is of order
(logn)*/+1) To close this gap, we shall consider a design
for the MSPRT weights which places different thresholds for
pairs of vertices that are close and pairs that are far.
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Definition VI.6 (K -Level Weights): Let K be a non-negative
integer. The MSPRT (7%, vE ) is designed with K-level

n,a Yn,«a
weights if
ZEINUDL ) < d(u,v) < K
T(v,u) =4 52 else
«

It is straightforward to show that the K-level weights
satisfy (VL.7):

d(u,v)
max
veVn ueV, T(u’ U)
d d
_ mz‘l/x Z Eu,v% i Z (U, U)
veVy UEVnQM)(K) T, v uEVn\M)(K) T(u7v)
o o
< max Z SN T Z 2n
Ve \ wevimmn e PV SR 20
<«

— )

where to derive the inequality on the second line, we used
d(u,v) < K for u € N,(K) and d(u,v) < n for
u € V,. Putting everything together, we have shown that
(Tfaﬁfia) € A(Vy, ).

At a high level, the MSPRT designed with K-level weights
can be thought of as a multi-scale source estimation algorithm.
When the Z,,(t)’s are large for many vertices w far from
v (specifically, d(u,v) > K), this indicates that v must be
relatively close to the source. Assuming K is not too large,
there are roughly n vertices far from v, which means that the
threshold for the log-likelihood ratios must be on the order of
logn in order to reliably narrow down the general location
of the source. Simultaneously, the Z,,(t)’s for u close to v
(specifically, d(u,v) < K) provide fine-grained information
about the location of the source within the localized region
N, (K). To compensate for the slower growth of Z,,(¢) in
this case, we require that they pass the much smaller threshold
of log(2K|N(K)|/«), hence removing the bottleneck found
in the uniform weights design.

In the following result, we show that for the right value of
K, the MSPRT designed with K-level weights is orderwise
optimal in lattices.

Theorem VI.7: Let G be an {-dimensional lattice and set
K = (logn)'/*. Then there is a constant by depending only
on £, (Qy, Q1 such that

maxycv, Ey [va ol

lim sup

n—oo

1 S b47
(logn)
where a4 is the constant used in (VI.2).
Combined with Theorem VI.1, Theorem III.6 for lattices
immediately follows.
Proof of Theorem IIL6 for lattices: Let G be
{-dimensional lattice. We have the series of inequalities
(a) valy (Va, )

as < liminf
n—oo

the

(log n) 7
15 (V,

< lim sup Y2 (Vn: @)

n—oo

(logn) 7
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© - maxeey, By [T
< limsup —
n—oo (logn) 7T
(¢)
< by.
Above, (a) is due to Theorem VI.1, (b) follows since
(TX., VK ,) € AV, ), and (¢) is due to Theorem VI.7.

In particular, the chain of inequalities implies that for n
sufficiently large,

0,2 (logn)T <valy (Vy, @)
é f}%%}f Ev [Tn,a]

< 2b4(logn) =)

The theorem follows from setting a’ := a4/2 and b’ := 2 by.
]
The proof of Theorem VI.7 follows similar reasoning as the
proof of Theorem VIL.5. In the case that v is the true source of
the cascade, we separately consider the performance of Z,,,(t)
for u € Ny (K) and u € V,, \ N, (K) and use large-deviations-
type results to characterize when the log-likelihood ratios cross
the thresholds specified by the K-level weights design. For full
details, see Section VIII-C.
Remark VI8 (MSPRTs for General Topologies): The
K-level weights introduced in Definition VI.6 can be gen-
eralized to arbitrary topologies if we set

2K [N, (K)|
T(v,u) == {an «

87

0 <d(v,u) < K;
else.

Above, we write [N, (K)| instead of [N (K)] since the size of
the K'-hop neighborhood of a vertex v can depend strongly on
v in general topologies. Since the proof of Theorem VI.7 is
quite generic for the most part, we expect that a MSPRT with
K -level weights can achieve the lower bound for val};(V,,, @)
in general. The choice of K, however, will depend on the
topology of interest.

VII. ANALYSIS OF THE BAYESIAN ESTIMATION ERROR:
PROOF OF LEMMAS V.2 AND V.3

A. Preliminary Results: Properties of the Posterior
Distribution

Before proving Lemmas V.2 and V.3, we introduce some
simple supporting results. Recall that the posterior distribution
is given by 7(t) = {m,(t) },ev, , Where

mo(t) := Prev,) (0" =0 [9(0),...,y(t)).
From Bayes’ formula, it holds for any distinct u, v € V,, that
n) _mt=D B0 g
Ty (t) Ty (t - 1) dP, (y(t))

Recall that under P,, y,(t) ~ Q1 if w € N,(¢), else
yuw(t) ~ Qo. Since the public signals y(0),...,y(t) are
independent conditioned on the source, the likelihood ratio
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dP,(y(t))/dP,(y(t)) can be written as
dP, (y(1)) _ Tlwen:, ) 4Q1(yu(t))
dPu(y(1))  Tluwen 4@1(u(?))
" [Luwgn, (1) 4Qo(yw (1))
ng/\/u(t) dQo(yw (1))
_hewovan @) o,

d
Hwen. oy w. o Tgi(yw (1))
Combining (VIL.1) and (VIL.2), we have

t aQ

mo(t) o Huens 9\ W) s W (5)) (VIL3)
7 dQ1 '

ﬂ—u(t) Hs:O HwENu(S)\M;(S) %(yw s

t dQy
s= ) s) dQo Yuw!S
_ oo Twen o ags () (VIL4)

Hi:o Hwe,/\[u(s) %(yw(s))

Equation (VIL.3) follows directly from (VIL.1) and (VIL.2).
The difference between (VIL.3) and (VIL.4) is that we take a
product over w € N, (s) \ N, (s) and w € N, (s) \ Ny(s) in
the former, and w € N, (s) and w € N, (s) in the latter. The
expressions are equivalent since the vertices in AV, (s) NN, (s)
are cancelled out. We display both equations, as each will be
useful in different contexts.

Equation (VIL.4) implies that the posterior probabilities can
be written as

s=0weN, (5

where the normalizing constant, Y (¢), is given by

ST T 2

vEV, s=0weN, (s)

It will be convenient to use the notation 7, (t) = X, (t)/Y (¢),
where X, (t) is explicitly given by

-1 Il o wal)

s=0weN, (q)

With this notation, Y(t) = >, v, Xu(t). The following
lemma establishes some basic properties of the collection

{Xu(t) buev,-
Lemma VII.1: Denote
dQ1

=FEa — .
§i=Bacay | Gorl )
Then § > 1 and for any u,v € V,, and ¢ > 0,
B, [X, (5] = 40 WOl
Proof: We start by proving 5 > 1. We can write
d@y dQ
Ea~ — =Eg~.
weer |2 (W) = Boa l(on( )

> Esa, |or 6 >} 1

Above, the first equality is due to a change of measure (a valid
operation since (Qy, ()1 are mutually absolutely continuous),
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and the inequality is due to Jensen’s inequality. Above, the
inequality is strict since the equality case only occurs if
38; (B) is a constant (equivalently, Q¢ = Q1).

Since {yw ()} wevo<s<t is a collection of independent

random variables conditioned on v* = v, we have

E,[X. (1)) = H H dQl (s)) (VIL5)
s=0weN, (5
= H Il & [jgl w(s ))} . (VILE)
s=0weN, (s)
For each term in the product, we have
dQ, 8 dw,w) < s
E, LlQo (yw(s))] = {1 else. (VIL.7)

where we have used the fact that y,,(s) ~ Q1 in the first case,
and y,,(s) ~ Qo in the second. The desired statement follows
from substituting (VIL.7) into (VILS). O

The following lemma bounds the covariance between X, ()
and X,(t). As a matter of notation, we recall that the
neighborhood growth function (defined in (II1.4)) is given by
F(t) = 2, IN(9).

Lemma VII.2: For any u,v,w € V,, and t > 0, there is a
constant A = A(Qo, Q1) such that Cov, (X, (t), X\ (1)) = 0 if
d(u,w) > 2t and Cov, (X, (1), Xu(t)) < MO if d(u,w) <
2t.

Proof: Since X,,(t) depends only on the signals in Ny, (¢),
it is clear that X, (¢) and X,,(¢) are independent under P, if
d(u,w) > 2t. Hence Cov,(X,(t), X (t)) = 0 in this case.
To handle the case where d(u,w) < 2t, we first define

vm (@) |

e |(fe) ]

We have the following bound on the covariance due to the
Cauchy-Schwartz inequality.

Covy (Xu(t), Xuw(t)) < Ey [ Xo(t) Xow (1))
(t)?], we can write

< Eo[Xu ()2 2E, [ X ()72
aQ: 2]
E, a(8))
9]:[)(16/\];[”(9) [<dQ )

_ )\ZZ:O ‘ML(S)QM)(S)‘AEZ=0 |N1,(‘?)\M;(9)‘
- M 0

To bound E,[X,,

< (max{Ag, M })E.ﬁ:o INu(s)]

= (max{Ao, A ).

Since the bound we have derived holds for any v € V,,,
it follows that Cov, (X, (t), Xu(t)) < (max{g, A1 })f®),
which proves the desired claim with A := max{Xo, \1}. [

The results we have established allow us to prove the
following concentration result for Y (¢) when ¢ is not too large.
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Lemma VII.3: Recall the constants 5 = 3(Qo, Q1) (defined
in Lemma VIL1) and A = A(Qo,®1) (defined in VIL2).
Furthermore let F := f~! be the inverse of the neighborhood
growth function. If

logn
r=F <4log<max{@ A}>> ’

then for any ¢ > 0,

né:%/XPvﬂY( )—n| > en) < (VIL8)

62\/_

Proof: Let § = [(Qo,Q1) be the constant defined in
Lemma VII.1. We begin by computing the expectation of Y (%)
with respect to P,,.

> EX

ueVy,
= 3 BT MENNLG)

ueVy,
— Z ﬂE§=o Vo (ONNu()] 111\ NG (2L))].
ueN, (2t)

E,[Y (8)] =

Since 8 > 1 and ZZ:O Ny(s)N

bounds

Nu(s)] < f(t), we have the

n <E,[Y ()] <n+ |N(2t)g®.

From Lemmas A.l and A.3, we have the asymptotics

V(21| = {if -

£(t) = {iir: 1)

Hence we have, for ¢ sufficiently large, the simpler upper
bound of n+ 32/ for E,[Y (t)]. Next, suppose that ¢ satisfies

f(t) < 7255 so that 32/ < /n. Then

G is a k-regular tree;

G is a /-dimensional lattice

G is a k-regular tree;

G is a /-dimensional lattice.

Pu (1Y (t)=n] = en) <P, (Y (1) = B[V (1)) = 5n)
< 4 - Var, (Y (t))

- , (VIL9)

€Zn?

where the first inequality holds if ¢ > ln and the
second inequality is due to Chebyshev’s inequality. Using
Lemma VII.2, we can bound the variance of Y (¢) as

= > Covy(Xy(t), Xu(t))

u,wEVn

< 3 WEow©
u€Vy

< 2nf(t)’ M ®

< n)\Qf(t)’

Var, (Y

where we have used [NV(2t)] < f(2t) < 2 f(t)? and A
A(Qo, Q1) is defined in Lemma VIL2. Moreover, if f(¢)
;‘ffg"k, then A\2/() < \/n and Var, (Y (t)) < n®/2. The desire
result follows.

a A

|
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Our final result establishes exponential lower tail bounds for
the ratio m,(t)/m,(t) using Chernoff bounds. Before stating
the result, we define some notation. Let

oA
QO

Eso. |1
+ BQO[Ong

denote the symmetrized Kullblack-Liebler divergence, and
define the rate function

D(Qo, Q1) := Ea~g, [108;

(B)} (VIL10)

A>0

dQo )A (d@ )k
—logE A —(B
g l(d@l( ) (o)
where A ~ Q1 and B ~ Qo are independent. Finally, for
u,v € V, define the neighborhood difference function

ZIN (s)]-

Lemma VIL4: Let u,v € V be any two vertices. If = > 0,
then I(z) > 0 and

(1)
P (25 <
Proof: Conditioned on A, 13, define the function
d d
o= (GG <B>)

dQ. " " dQo

Note that g(\) is differentiable, and by the mean-value theo-
rem, we have for any A\; € [0,1] that there exists 77 € [0, \]
so that

I(z) := sup {—)\(D(Qm Q1)—x)

}, (VIL11)

fou(t)

e(D(Qle)—x)fw(t)) < e 1@ fuu(®),

(VIL12)

o) =1 o [dQo dQu T
D= = )l = | G ) 5 )
dQo , ,,dQ1
<1+ ‘—dQl (A5 (B)‘ . (VIL13)

In the final inequality, we have used 7 < 1 as well as the
fact that " ! < agifa > lelse ¢! <1if0<a < 1.
Furthermore, note that due to the independence of A and B,

E s 500 [ng <A)@<B>]

dq
dQ dQ1
=Ea~ Ep~ =1.
It then follows from the definition of the Lebesgue integral
that a0 a0
E||=22(A)-2 (B H < 0. VIL14
| s) an
In particular, the dominating function for |g(A\1) —

1/A1 in (VIL.13) is integrable. Together, (VIL.13) and (VII.14)
along with the Lebesgue Dominated Convergence Theorem
imply that E[g())] is differentiable at A = 0. Moreover, the

2511

derivative of logE[g(\)] at A = 0 is equal to —
Next, if we define the function

h(A) := =A(D(Qo, Q1) — )

then the results we have established thus far imply »'(0) =
x > 0. Since h(0) = 0, it follows that h(\)/A > 0 for
sufficiently small A, and in particular h(\) > 0. Since I(z) =
Supyso h(A), the claim I(z) > 0 follows.

We now show how one can use the rate function I(z) to
obtain the inequality (VII.12). Recall that under the measure
Py, the variables {y.,(s) }wev,0<s<+ are independent, with

Ql w e ./\/;,(5)
Yu(s) ~ {Qo else.

Using the representation (VII.3), the following distributional
identity holds under the measure P,:

D(QO7 Ql)

—logE[g(M)],

(1) 4 foul(t)
= Wi, (VIL.15)
7Tu t i
where the W;’s are i.i.d. with distribution given by
d dQ: d@Q >_1
W, =—A) | —(B , (VIL.16)
Lo (G

for independent A ~ Q1 and B ~ Q. A Chernoff-type bound
implies that

e(D(Qo,Ql)r)fw(t))

7o (%) -
= inf P, > ¢~ MD(Qo,Q1)—) fou(t)
A>0 7y (1)

D(Qo, Q1)

A

=]

=

o

o]
o]

/N

>

—~

+ logE

(=5)])
I(x) fou(t)),

where the final expression follows from the distributional
representation for m,(t)/m,(t) in (VIL15) and (VIL.16).  [J

= exp (—

B. Lower Bounding the Estimation Error: Proof of
Lemma V.2

At a high level, the proof strategy is to first establish a
probabilistic lower bound for E ) [d(v*, u)] where u € V;, is
fixed. Through union bounds, this will lead to a probabilistic
lower bound for minyev, Ex)[d(v*,u)]. We remark that
the proof of Lemma V.2 makes use of some combinatorial
properties of trees and lattices, the proofs of which may be
found in Appendix B.

For a fixed vertex u € V,,, we can write

Zdwuww
wEVn
Zdwu

wEV,L

Bzt [d(
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Lemma VII.3 has already established a concentration inequal-
ity for Y'(t), so we will proceed by establishing a probabilistic
lower bound for ) d(u,w) Xy (t). For any v € V,,

weVy,
we have
Z d(u,w)Xw(t)] = Z d(u, w)Eqy [ X (t)]
weVy, weV,
> Z d(u,w (VIL17)
weVy,

where the inequality is due to E,[X,(¢)] > 1, which was
proved in Lemma VII.1. We can also upper bound the variance
as

)d(ua wQ)COVU (le (t)7 Xw2 (t))
w1 €V w2 €V

LSS 3

w1 €V wa € Vi id(wr,w2) <2t

d(u, wy)d(u, ws)

ENOWE) S d,wn)(d(w, wr) +20)

w1 €V
= MO|N(21))] <Z d(u,w)® +2t »  d( duw)
weV, weV,

O 201+ 20) 3 d(u,w)’

weVp

(VIL.18)

where (a) follows from Lemma VIL2, (b) is due to the
inequality d(u,ws) < d(u,w1) + d(wy,ws2) < d(u,wr) + 2t,
and (c) follows from bounding d(u,w) < d(u,w)?.

Next, an application of inequality (VII.17) and Chebyshev’s

inequality yields

" (Z d(u, w) Xy, (t)

veEVy,

S% Z d(u,w))

weVp
ZweVn d(u, ’(1))2

ey, d(u,w)”’

(VIL.19)

< ANOIN(©28)|(1 + 2t) -

where the right hand side wuses the variance upper
bound (VII.18). To proceed, we bound the right hand side
of (VIL.19) when G is a regular tree or a lattice. Although we
treat these cases separately for convenience, the methodology
is the same.

Case 1: (G is a k-regular tree.

In this case, Lemma B.3 shows that

nlogn
du,w) > ————
wg klog(k —1)
4nlog?
Z d(u, w)? < W'
=l log”(k — 1)

Authorized licensed use limited to: Princeton University.
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Substituting the above bounds into (VII.19) shows that

Z d(u, w) X nlogn
=il - 2I<: log(k — 1)
16k>

< MOIN(@28)|(1 + 2t)—

- 50t A (O |N(2t) |k
— n .

(VIL.20)

A naive method for deriving a probabilistic bound for
mingev,, Y, cy, d(u, w)X,(t) is to take a union bound over
the events pertaining to 3 i d(u,w)X,(t) for all u € V.
However, the probability bound in (VII.20) is not small enough
for a union bound to work, since |V},| = n. Fortunately, as we
shall see, it suffices to take a union bound over a much smaller
set of vertices. To this end, define
logn
il

= | L
" P” T SR log(k =

Since r,, ~ log(n) /log(k—1) (see (IL1)), m ~ (1 — g) 7.
In addition, it holds for n sufficiently large that

(d) k m
Noo(m)] = 14— (k= 1)™ — 1)
(e) k 1 gn
<1 — (k-1 (1__k)lug(k T
sl k-D
D
< 2kn 12k |

where (d) follows from Lemma A.1, (e) holds since m <
(1- %) loé?ifl) for n sufficiently large due to the asymptot-
ics of 7, and (f) follows from upper bounding the coefficient
on the first-order term in the second line. Combining (VIL.20)

with a union bound over elements of A, (m) implies

nlogn
Z d(u, w)X 1)>

= = 2hlog(k — 1)
< 100tA D |\ (21) | kPn~ 2%

min
(uENUO (m
(VIL21)

Next, define the event

5::{ggY(t)g37”}.

If the event £ holds, we have the series of implications

logn
d [
ueJI\nfulonm) g u W)t () < 3/<: log(k — 1)
logn
= d( <
et 3n/2 Z W)X (t) < 3klog(k — 1)
. nlogn
= d( —_—
) 2 ) Xul®) < 550 0T

weVy,

Above, the first implication uses 7, (t) = X,,(¢)/Y (t) and
the fact that Y (¢) < 3n/2 on £ We then have, for ¢ <
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logn
F (4 log max{3,\} ) ’

logn
d - @ @@
<ueﬁ%fl (m) D dluww)mu(t) < = Shlog(k — ))
weV,
nlogn
<P d( i S
v <ueﬁfim w;” W) Xu(t) S S = ))
+ P, (€9
16

< 100tA DN (28) |kPn % + NG (VIL22)
The final inequality above follows from Lemma VIL3 as
well as the bound in (VIL.21). If we additionally have ¢ <
F (241;?%), we have the bounds

loglogn

t<(1+ On(l))m

1

A (@® < nE
N (20)] < log >V
where 0,,(1) — 0 as n — oco. This shows in particular that the
final expression in (VII.22) can be bounded for n sufficiently
large by
3 3
16 200k*(loglog n)(log n)n*ﬁ < %
vn log(k — 1) -
To put everything together, the way we have defined m implies
that for every u € V,, there is v/ € N, (m) such that

d(u,u’) < ﬁ(g—l)' Moreover,
> d(u, w)m, (1)
weVy,
> Y (d,w) = d(u, w))my (t)
weVn
logn
> d t)— ———.
2, Al wym() Gklog(k — 1)
weVy,
We therefore have
logn
i d(u/ w(t _—
u’EI/\I/l'ion(m)weV (u ,U))ﬂ' ( ) 3k log(k' — ].)
logn
= min d(u, W)y (t) > —————
ueVa 6klog(k — 1)

To summarize, we have shown that if we set
a1 := (max{4log 3,24k log \}) "
then for ¢t < F'(aq logn),

logn
d(u, w)my, (t) < WM)

1

<n 3k
Taking a union bound over 0 < ¢ < F'(a; logn), and recalling
that E)[d(v*,u)] = >, cy. d(u, w)my(t), we arrive at

~ logn
v Ep[d(v*, 0p(t)] < ——————
(Ogtfg‘n(%}l(log n) (t)[ (U UB( ))] 6k log(k' — 1))
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Since F(ailogn) ~ lfgg(llfff), the right hand side tends to

0 uniformly over v € V,, as n — oo, and the result of
Lemma V.2 for trees follows. Case 2: GG is a /-dimensional
lattice.

By Lemma B.5, there exist constants c3, c4 > 0 depending
only on £ such that

Substituting the above bounds into (VII.19) shows that

C, 1
g < > d(u,w)X, (1) < ;nw)
weVy,
C4n1+2/1€

2n2 T2/t

- (1264) tA |./\/(2t)|.

n

< ANOIN©2H)](1 + 2t)

C3
As in the case of regular trees, we need to take a union
bound over a small set of vertices. The following combinatorial
lemma guarantees the existence of such a set.

Lemma VILS: For every n, there exists a set 5,, whose size
can be bounded as a function of ¢ only, such that for every
u € V,, there exists v’ € S,, such that d(u, u’) < 2n!/*.

Before proving the lemma, we shall show how we can
use it to prove Lemma V.2 for lattices. Mirroring the steps
of (VIL.22) in the case of lattices, if t < F (Mogz;%
we arrive at the probability bound

(VIL.23)

If we additionally have ¢t < F' ( o5

) we have the bounds
t<O ((1ogn)“+1)
Af® < nl/3

INV(2t)] < O ((log n)T) .

The big-O bounds follow from the asymptotic behavior of
F (see (V.3)) as well as the asymptotic behavior of |\ (¢)]
(see (A.8)). For n sufficiently large, we can therefore bound
the right hand side in (VIL.23) by

16 20

— + O((logn)n <

vn o
where the final inequality holds for n sufficiently large. Putting
everything together, since for every u € V,, we can find

u' € S, such that d(u,u') > 2n'/¢, we have

—2/3) < (VIL24)

3 1/¢
unélgn d(u', w)my, (t) > S 3 2
weEVy
= min d(u, )y, (t) > —=nt/t
u€Vy, v 6
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Hence, if we set
al := (max{4log 3,4log A\}) ",

then (VIL.23) and (VIL.24) imply that for ¢ < F'(a) logn),

. 3 1/¢
< = < —.
Py (52161 d(u, wim(t) < g ) SN

weVy,

Taking a union bound over 0 < ¢ < F'(af logn) and recalling
the definition of E ) [d(v*,u)], we arrive at

max

* C3 1/¢
P E d ] < =
v (OgtSF(a’l log n) ~ld(v”, 95(0))] < 6" )

- 20F (a} logn)
= 7\/5 .
Due to the asymptotic behavior of F' (see (V.3)), the right hand
side tends to O uniformly over v € V,, as n — oo, and the
result of Lemma V.2 for lattices follows.
We now turn to the proof of Lemma VILS5.
Proof of Lemma VIL5: Let m be a positive integer.
We define an m-covering of V,, to be S C V,, such that for
any u € V,,, there exists v € S such that d(u, v) < m. We also
define an m-packing of V,, to be S C V,, such that for any
u,v € S, d(u,v) > m. We say a S is a maximal m-packing of
V,, if it has the maximum possible cardinality. A fundamental
result on coverings and packings is that a maximal m-packing
is also a valid covering [53, Lemma 5.12], so the proof focuses
on bounding the size of a maximal packing. Our proof is based
n [53, Lemma 5.13].
Setm := L%nl/zj and let S C V;, be a 2m-packing. This in
particular implies that {N\,,(m)},ecs is a collection of disjoint
sets satisfying

LJ-/\[u(m)g U Nu(m) C Nyy(r +1+m).
ues u€Vy,

This in turn implies
YN (m) = IS] - [N (m)| < [N (ra + 1 +m)].

uesS
(VIL25)

Since r, = nt/t (see (III.1)) and m = nt/t, we can find
constants C, Cy > 0 depending only on ¢ such that

Clnl/e <m<r,+14+m< C’gnl/i

Next, recall that |[N(¢)| ~ cot’, where ¢, is a constant
depending only on ¢ (see (A.8)). Hence

N (rn +1+m)* <Cg) .

mé Cl

N (rp +1+m)|
N (m))|

Note that the right hand side is of constant order even as n —
00. Moreover, the bound holds for all 2m-packings, including
maximal packings that are also coverings. This guarantees the
existence of a 2m-covering of size bounded by a constant
depending on ¢ even as n — oco. We conclude by noting that
2m < %nl/ £ O

15| <

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

C. Upper Bounding the Estimation Error: Proof of
Lemma V.3

For any vertex v € V,,, we can write

Er o [d(v", 95())] © Eney[d(v*, v)]

= Z d(w, v) Ty (t)

weVy,
() wl(t
< Z d(w,v) t)
weEV, ( )
where  (a) follows since E,[d(v*,vp(1))] =

mingev, Er)[d(v*,u)] and (b) follows since m,(t) =
Xw()/Y(t) and Y(t) > X,(t). For distinct vertices
w,v € V, recall the notation fo, (t) := Y\_ [N (5) \Nw(s)]
and further recall that D(Qo,Q1) is the symmetrized
Kullback-Liebler divergence between @y and @1
(see (VIL.10)). As a shorthand, denote 6 := D(Qo,Q1)/2.
Next, define the event

Xo(t) 0 fou(t)
= > low(®) L
%“{&wj

By Lemma VIL4, P,(E¢,) < e 1O fou® where I(-) is the
large-deviations rate function defined in Lemma VIL.4. On the
event &, := Uwev \{v} Evw, We have the bound

< ¥ dw oy

weVy, )
< Z d(w,v)e

weVy,

To bound the final summation in (VIL.26), we split the

summation into two parts: w such that d(v,w) < 2t and w

such that d(v,w) > 2t. To handle the first part, it is useful to

define the function

IETr(t) [d(’l}* ) UB

—0fow () (VIL26)

-yt

where a, b are any two neighboring vertices (since the graph
is vertex-transitive, we obtain the same formula for any two
neighboring a, b). We may now bound the summation over w
such that d(v,w) < 2t as

>

weVp:d(w,v)<2t

)\ No(s)|

—01(1)

d(w, v)e 0o ® < 2| N(2t)]e

(VIL27)
To handle the summation over w such that d(v,w) > 2t, first

note that
t
Fowlt) = S ING(s)\ @Zw 1 (@),
=0 (VIL.28)

where the equality (c) follows since N, (s) NNy, (s) = 0 for
0 < s < t because d(v,w) > 2t. Hence we can bound the
second part of the summation by

Z ne= 07

Z d(w,v)e_‘gf(t) <
weVy:d(w,v)>2t weVy:d(w,v)>2t
9f(t)

< nZe (VIL.29)
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where we have used the coarse bound d(w,v) < n above.
Putting everything together, the total bound on the estimation
error on the event &, is

2t|N(2t)]e =011 4 n2e =070,

The remaining element of the proof is to bound P,(&f).
We can write

weVy\{v}

(e)

< X

weVp\{v}

()

< )

WEVp:d(w,v)<2t
DY

wEVy:d(w,v)>2t
< IN(@28)|e TONE) 4 pe=TOF®),

(@
P, (&) < Py (Ew)

eiI(e)fvw(t)

1O (1)
e 1O)f (1)

(VIL30)

Above, (d) is due to a union bound, (e) follows from
Lemma VIL4, and (f) uses fi(t) < fow(t) as well as
fow(®) = f(t) if d(v,w) > 2t (see (VIL28)). Putting
everything together, we have shown that for any v € V,,,

Py (Ero ld(v",5(6))) >
2N (2t)[e =011 4 nQe*“’f(t))
< IN(@2t) e TONE) 4 pe=TOF®),

Note in particular that the probability bound above holds
uniformly over all v € V,,. Focusing on the special cases of
regular trees and lattices, we will simplify the bound on the
estimation error as well as the probability bound.

Case 1: G is a k-regular tree. Lemma A.l provides
the asymptotics of various combinatorial quantities related to
neighborhood sizes, summarized below:

(@) ~ s (k1)

(k —1)t+t
k—2

C _k2)2 (k — 1)t+!
log z

(2) ~ log(k —1)°

The terms 2t| N (2t)|e~?/1 (") and |N(2t)|e~ (@) /1) can there-
fore be bounded by e~ C((*=1)") for ¢ sufficiently large. If ¢ >

F 41"% , then n2e=0f(®) < ¢=30f() — =O((k=1)") \where

the hidden factors in the big O do not depend on n. Similarly,

if ¢ > F (2280 ), then ne 1070 < =01, where

again, the hidden factors do not depend on n.
Putting everything together, we have shown that for ¢ >

4logn
F (min{e,l(e)} ’

Py (Ew(t) [d(v*,vp(t))] > e_o((k’_l)t)) < e~ O=1))

fi(t) ~
f(t) ~

which implies the desired result for k-regular trees.
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Case 2: (G is a /-dimensional lattice. Lemma A.3 proves
the following asymptotic behavior of neighborhood sizes in
{-dimensional lattices:

IV (2t)] =t

Additionally, we can lower bound f7(t) as follows: if u, v are
adjacent, then

Ft) =< 1, F(z) < 2747,

t
A =S N\ M) 2 t+1,  (VIL3D)
s=0

where the inequality above uses the fact that NV, (s) \ N, (s) #
() for all s > 0. We can therefore bound the terms

2N (2t)|e 1B < O (t1e7)
|N(2t)|e—l(9)f1(t) <0 (tée—l(e)t) .

.. . . . 4logn
Additionally, as in the previous case, if ¢ > F (7min{0’1(0)})

then n2e=%7® and ne~1Of® are bounded by e~ O,
where the hidden factors in the big O do not depend on
n. Putting everything together, we have shown that for ¢ >

( 4logn
min{6,1(0)} )
Pr(v,) (Ex(nld(v*,05(t))] > O (t*e™"))
<0 (téefl(e)t) :

which implies the desired result for n sufficiently large if we
set be = 0.5 - min{6, I(0)}.

(VIL32)

VIII. PROOF OF THE MSPRT UPPER BOUNDS
A. Useful Preliminary Results

We start by stating and recalling some useful combinatorial
results concerning the sizes of neighborhoods in regular trees
and lattices. To begin, for vertices u, v recall that

Fou®) =D IN(s) \ Wa(s)].
s=0

Moreover, recall that the neighborhood growth function (orig-
inally defined in (II1.4)) is

F) =D IN(s)l.
s=0

We also define, for any pair of adjacent vertices wu,v, the
function

Fit) =D ING(8) \ Na(s)].

We also define the inverse functions F,, = f.L,F =
LR = f] !. These inverse functions are well-defined since
fou, [, f1 are strictly increasing functions. In k-regular trees,
we have the asymptotics

log =z
log(k —1)°

For a proof, see Lemma A.1. In /-dimensional lattices, we have
the orderwise asymptotics

NI = ' ) =,

Fi(z) (VIIL1)

F(2) < z77.  (VIL2)
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For a more precise statement, see Lemma A.3. Next, we prove
a few simple, generic results regarding these functions. The
following result provides a simple but useful bounds for f; that
hold in regular trees and lattices.

Lemma VIIL.1: Suppose that G is an infinite regular tree or
lattice and u,v € V are two distinct vertices. If to > t; > 0,
fuu(tQ) - fvu(tl) 2 t2 - tl'

Proof: For any two distinct vertices u,v and any
non-negative integer s, |N,(s) \ Ny(s)| > 1. Hence

to

Y W) \Nu(s)] = ta — .

s=t1+1

fuu(tQ) - fuu(tl) =

|
Next, we prove a simple linear upper bound for F}, since
its exact expression is challenging to compute in lattices.
Lemma VIII.2: Let G be an infinite regular tree or lattice.
Then Fi(z) < z
Proof: Lemma VIII.1 implies the lower bound

fi(t) = f1(0) + fa(t) —

Setting z = f1(t), we have Fy(z) = t which implies the
desired result. O]
The following lemma derives conditions under which F,,,, =

F.
Lemma VIIL.3: 1If z < f(d(u,v)/2) then F'(z) = Fyy(2).
) are dlSJOlIlt
v

f10)>t+1>¢t.

Proof: For s < d(u,v)/2, N,(s) and N, (s
$0 Ny(s) \ Nu(s) = N, (s). Hence for ¢t < d(u,v)/2,

ZW

It follows that F,(z) = F(z) if F(z) < d(u,v)/2. Equiva-
lently, z < f(d(u,v)/2) which proves the lemma. O

Finally, at the core of the analysis is the following large-
deviations-type result. It essentially follows as a corollary from
the large-deviations result Lemma VII.4 which was used in the
analysis of the Bayesian setting.

Lemma VIII.4: Let u,v € V be any two vertices. For any
x>0,

t

=D () = f(D)

s=0

fou(t)

Pv (Zvu(t) < (D(QO; Ql) - x)fvu(t)) < e—I(x)fvu(t).
Above, D(Qo, Q1) is the symmetrized Kulback-Liebler diver-
gence between () and )1, and I(+) is the rate function defined
in (VIL.11). Moreover, I(x) > 0 for z > 0.
Proof: Recall from the analysis of the Bayesian setting
that for any vertex v € V,,,
m(t) =P = v | y(0),...,y(t)).

Hence, by Bayes’ rule,

m(t)  dP, z
= 0 ey t = ’uu(t) .
= O ) =
The desired result now follows from a direct application of
Lemma VIL4. O
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B. Performance of the MSPRT in Trees: Proof of
Theorem VI.5

Our first goal is to establish a probabilistic bound for T}, (v)
under the measure P,,. We can write

Py (T, (v) > t)
<P, (Ju € Vi \ {v} sit. Zyy(t) < logn?/a)
< > Py (Zou(t) <logn®/a).  (VIIL3)
uweVyp\{v}

Next, define 6 := D(Qo,Q1)/2 and suppose that ¢ is suffi-
ciently large so that

2

log = < 0 (1). (VIIL4)
e

Letting I(-) be the Ilarge-deviations rate function in

Lemma VIIL.4, we can upper bound the final summation

in (VIIL3) by

Z IPU (Zvu(t) < Hfl (t))
ueVn\{v}

2 P (Zult) < 00t)

ueVy \{v}
(b)
< Z exXp (_I(e)fvu(t))
uweVyp\{v}
(©)
< exp (logn — I(0)f1(t)). (VIIL5)
Above, (a) is due to fi(t) fou(t), (b) follows from

Lemma VIIL4 and (c) is again due to fi(t) < f,u(t) and
the observation that the summation is over at most n terms.
We now define the quantities

C(Qo, Q1) := min{0, I(0)}

_ M)
fni= 4 <C(Q0,Q1> :

In particular, if ¢ > ¢, then (VIIL.4) holds and logn <
1(0) f1(t). The expectation of T;,(v) can then be bounded as

Eo[T0(0)] = Y Py(Th(v) > t)
t=0

D143 expllogn — 10)/:(1)

t=ty
)fl (tn)) Z 6_1(9)3
s=0

(VIIL6)

(e)
< t, +exp(logn —I(0

(2) 1
< tp+ T 10

Above, (d) is due to the upper bound (VIIL5) on the prob-
abilities in the summation which holds for ¢ > ¢,, (e) uses
fi(t) — fi(tn) > t — t,, which was proved in Lemma VIII.1
and (f) follows from noting I(d)f1(t,) > logn and using
the geometric sum formula on the summation. Noting that
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T, < Ty (v), (VIIL6) implies

. maxy,ev, Ey[Th)

lim sup ———+——"

n—oo tn

M50 B2, (0)
n—oo tn

<1.

From the asymptotic behavior of F} (see (VIIIL.1)), it follows

that
loglogn

n log(k — 1)’

which proves the desired result.

C. Performance of the MSPRT in Lattices: Proof of
Theorem VI.7

As in the proof of Theorem VL5, we begin by bounding
P, (T, (v) > t). A union bound yields

Py(Th(v) > 1)

DS

uEVy:
0<d(v,u)<K

2 2
+ > P, (Zw(t)<1ogi>. (VIIL7)
«
u€Vy:
d(v,u)>K

P, (Zw(t) < log w>

To bound the summationg above, we first recall a few
quantities. Define 6 := D(Qp,Q1)/2 and C(Qo, Q1) =
min{#, I(0)}, where I(-) is the large-deviations rate function
used in Lemma VIIL.4. Also define

o log 2K|N(K)|/«
= b (g )

; log 2n?/a >

n,2 «— Fvu
2T evad(u)> K <C(Q0,Q1)

For t > t, 1, we will make use of the following inequalities
to bound the first summation in (VIIL.7):

log M < 0f(t) and log |N(K)| < 1(0) f1 (1),

(VIIL)

Using the first inequality in (VIIL.8), we can bound the first
summation in (VIIL.7) by

Z IPU (Zvu(t) < Gfl (t))
uEVy:
0<d(v,u)<K

—
S|
=

S

uEVy,:
0<d(v,u)<K

Py (Zyu(t) < 0fou(t))

¢ v

u€Vy:
0<d(v,u)<K

Y exp (log IN(K)| — I(0) (1) -

Above, (a) and (c) are due to f1(t) < fuu(t), and (b) follows
from Lemma VIIL4. Similarly, for ¢ > ¢,, » we have, for all

e~ TO)Fou(t)

(VIILY)
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u €V, satisfying d(u,v) > K,

2 2
log =— < 0f,u(t) and  logn < 1(6)fuu(t):

(VIIL10)

Using the same reasoning as in (VIIL.9), we have the following
bound on the second summation in (VIIL7) for ¢ > ¢, o:

min

logn — I L))
xp ( ogn (0) uEVnzd(u,v)>Kf (t))

Plugging in the bounds (VIII.9) and (VIII.11) into (VIIL.7)
shows that, for ¢ > max{t, 1,tn 2} =: tn,

Py(Tn(v) > t) < exp (log |N(K)[-1(0) f1(t))
+ exp (1og n—1I(0) fw(t)) )

(VIIL11)

min
UEV,:d(v,u)>K
(VIIL.12)
Next, define the quantities
Ap = log IN(K)| = 1(0) f1(tn)
B” = 1Ogn - 1(9) min fvu(tn)7

wEVyd(u,v)>K

and notice that A,,, B,, < 0 in light of the second inequalities
in (VIIL8) and (VIIL10). Using the relation E,[T,(v)] =
Yoo Pu(Tn(v) > ) <tn + 322, Py(To(v) > t), we have
(d) >
Eo[T, (v)] < tn + Z elog IN(K)[=1(6) f1(t)

t=tn,

)
4 E elog n—I(0) min,cv, :d(u,v)>K fou(t)

t=t,
(e) s
< t, + ((EA" —I—eB") 2671(9)5
s=0
(2) t L VIIL.13

Above, (d) is a consequence of (VIIL12), (e) is due to
the inequality [, (t') — fuu(t) > ¢ — ¢ which was proved
in Lemma VIILI, and (f) holds since A4,.B, < 0 and
by applying the geometric sum formula. Next, using the
inequality 7T, < T, (v), (VIIL.13) implies

maxy,ev, Ey[Th]

lim sup
n—oo tn

maXyev,, EU [Tn (U)]

< limsup
n—oo tn

<1.

It remains to study the asymptotics of ¢,, as n grows large.
From the asymptotic behavior of |N(¢)| (VIIL2), we have
IV(K)| < K* = logn. Hence
loglogn )
th1 =< Fy | =—=——— | = O(loglogn), (VIIL.14)
1,1 1 (C(Qoan) ( g g )
where the final big-O bound is due to the inequality Fi(z) <
z, proved in Lemma VIIIL.2. Next, we establish the asymptotic
behavior of ¢,, . We have, for n sufficiently large,

f <5> = (logn)i*} > Jog2n* /o

VIIIL. 15
2 Qo VD)

Authorized licensed use limited to: Princeton University. Downloaded on August 23,2023 at 17:44:02 UTC from IEEE Xplore. Restrictions apply.



2518

where the asymptotic behavior of f(K/2) follows
from (VIIL.2) and the second inequality holds for n
sufficiently large. Equation VIII.15 satisfies the condition of
Lemma VIIIL.3, so we have

log 2n?/a > 1

tho=F <7 = (logn)&r.

Qo) =™
Above, the asymptotlic behavior of F' follows from (VIIL.2).
Hence t¢,, < (logn)77, which proves the theorem.

(VIIL16)

IX. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we considered the problem of quickest estima-
tion of a cascade source from noisy information. We studied
a Bayesian and minimax formulation of this problem and
derived optimal estimators in the regime of large networks
under simple cascade dynamics and network topologies. Fur-
thermore, our results exposed the interplay between the net-
work topology and the performance of optimal estimators.

There remain several avenues for future work. Although
we examined simple networks and cascade dynamics for
mathematical tractability, in important next step is to study
source estimation for more realistic networks and cascade
dynamics [22], [23], [24], [25], [25], [26], [27]. We remark
that in many cascade models, the cascade evolution is non-
deterministic, hence it will be difficult to compute the estima-
tors proposed in this paper. We expect that tractable relaxations
of the estimators we consider may be more amenable to the
analysis of more complex scenarios.

Another exciting future direction is sampling with incom-
plete information. In this work we assumed that all public
signals at a given point in time are observable, but when the
network is large this may be infeasible. A natural question
of interest is to characterize optimal source estimators given
that only a budget of B public signals can be observed at
any timestep. There are many possibilities for choosing the B
signals to observe: one may target potential super-spreaders
(i.e., high-degree vertices) or choose vertices adaptively.

APPENDIX A
BOUNDS ON THE S1ZE OF NEIGHBORHOODS

We begin by defining and recalling some notation. Given a
graph G, a vertex v, and a non-negative integer ¢, we define

ONL(t) :={u eV :duv) =t}
No(t) :={u eV :d(u,v) <t}

Since @G is vertex-transitive, |ON, (t)| does not depend on v €
V', for brevity of notation, we will therefore write |ON(t)].
The same holds for |N,(t)|, which we will often write as
|V (t)|. Additionally recall the neighborhood growth function

as well as

o+

1) =D INu(s) \ N (s)],

s=0
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where u, v are adjacent vertices. As explained earlier, due to
the vertex-transitivity of the underlying graph, the formula for
f1(t) is the same for any pair of adjacent vertices. We also
define Fy = f; '

The following result provides exact
|ON(t)],IN(t)] as well as asymptotic
f(), f1(t), F(z) and Fi(z) in regular trees.

Lemma A.1: Let G be a k-regular tree with k£ > 3. Then

for
for

formulas
behavior

ON(1)] = {;(k e ot (A1)
V()| =1+ % (k=1)"=1); (A.2)
fu(t) ~ % (A.3)
() ~ ﬁ(h -1 (A4)
Fi(z) ~ bgl&% (A.5)
(2) ~ loglg%l). (A.6)

Proof: Fix an arbitrary vertex v, and suppose we root G
at v so that [ON(t)] is the number of children at height ¢ from
the root. Since AN, (0) = {v} and the root node v is the only
vertex with k& children while all others have k — 1 children,
we have the formula |[ON(t)| = k(k — 1)*~! for ¢ > 1.

Next, to compute [N (t)], we use the formula for |ON (¢)]
and the geometric sum formula:

N0 =3 oM () = 1+ k3 (k- 1)°
s=0 5=0
:1+%((k—1)t—1).

The same techniques can be used to derive f(t):

_ ;O(H%((k—us_m)

t

:—2(t+1)+iz:(k—1)s

k-2 k-2Z
k t+1
__2§jj21)+(k_2)2 (k=1 —1).

To compute f1(t), we start by computing |N,(s) \ No(s)].
Let uq,...,u, be the neighbors of u in G and let Sy, ..., Sk
be a partition of the vertices exactly distance s from w, such
that the path connecting u and a vertex in .S; must cross u;.
Simple counting arguments show that |S;| = (k — 1)*~! for
each ¢, and that if we assume without loss of generality that
Uy =,

N (s) \ Ny ()] = |Sa U S5 U...USK = (k —1)°.
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Hence we have
t

ht) =) (k=1)" =

s=0

(k—1)Ht -1
k—2 '

The first-order behavior of Fy = f; !is a direct consequence.
We now study F'(z), the inverse function of f. Substituting

t= b;{% in the formula for f(t), we have
log 2 k logz g
= k — 1)Toe(k—1) _ 1)
I <1og<k = 1)) Gz (=D
2 log z
— 1
k2 <log(k:—1) N )
~ k(k— 1)2 - k
T 22 -2y
2 log =z
— 1
k—2 (log(k'—l) * )
Since % > 1, we have for z sufficiently large (in
particular, z is larger than some function of k alone) that
f (logl‘()lffl)) > z, which is equivalent to F(z) < 10;()1551)'
On the other hand,
f log =z A k L k
log(k — 1) (k= 1)2(k—-2)27  (k—2)2
2 logz 3
k—2 \log(k —1)
kB
ICREECERE
< 7k z
T (k-1)?

Since k < (k—1)? for k > 3, wehavef(logl‘(’%l) —3) <z

which in turn implies that F'(z) > logl?%l) —3. O

A useful corollary of (A.2) is a characterization of r, in
k-regular trees.

Corollary A.2: Let G be a k-regular tree and let {V,, },>1
be a sequence of candidate sets satisfying Assumption II1.4.
Then

T =

log(k — 1) - log(k —1)°

The following lemma computes the asymptotic behavior for
[ON(0)|, IN(t)], f(t) and F(2) in lattices.

Lemma A.3: Let G be a /-dimensional lattice. Then

log (E2(n — 1)+1)J logn

2Z
JON(t)] ~ mt“, (A7)
2¢ ,
N~ 5t (A.8)
QZ {+1, A9
ft) ~ mt ; (A9)
F(z) ~ ((é ;1)!Z> - . (A.10)

Proof: Recall that Z is the set of integers. For a vector
x € Z, let ||z||op denote the number of nonzero entries of = and

2519

let ||z||x denote the ¢; norm of . For every integer 1 < k </
and an integer t > 0, define the set

Si(t) == {z € 2% |0 = k and [y =t}

Since the Sk (t)’s partition ONy(t), we have |[ON(t)| =
22:1 |Sk(t)]. We proceed by computing the size of |Si(¢)]
via combinatorial arguments. First, we choose the £ nonzero
coordinates of a vector in S, (); this can be done in (i) ways.
Next, note that the number of positive integer solutions to
yi+...+y, =tisexactly (;_}) if t > k else it is 0; this can
be seen through standard counting arguments. Now, since the
number of vectors in Sy (%) for which the absolute value of
the entries are given by y1, ..., (in that order) is 2* (since
each nonzero entry of = can be positive or negative), we may
put everything together to obtain

O\ [(t—1
|Sk(t)] :2k(k) (k— ) if t >k, else 0.

When ¢ is large, the first-order term of |[Sk(¢)| is

(k,Q_k) ( )tk LIt follows that

2¢ -1
(¢ —1)!
Next, we use (A.11) to obtain the first-order behavior of
IN(t)|. To this end, we first note that for any p > 0,
approximating a summation by an integral gives

[ON(B)] ~ |Se(t)] ~ (A.1D)

- (kf ~ (ko — 1)PF ) :/ sPds < S kP
p+1 ko—1 Pl
k1+1 1 . 1
< spds:—<k: F 1P kP )
<[ — (17 i

In particular, when k; is much larger than kg,

Z kP ~ —k"“
p+1

The first-order term of |N (t)] is therefore

t t

= |oN ()

s=0 s={

Through analogous arguments, f(t) ~ @ +1) 1. The first
order behavior of F' is an immediate consequence. O]
A useful corollary of (A.8) is a characterization of r,, in
{-dimensional lattices.
Corollary A.4: Let G be a (-dimensional lattice {V;,},>1
be a sequence of candidate sets satisfying Assumption I11.4.

Then
o\

APPENDIX B
SUMMATIONS OF GEODESICS

The goal of this section is to bound summations of the
form Y7y d(w,v) and Y oy d(w,v)?, which are useful
in studying the Bayesian formulation of the quickest source
estimation problem.
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A. Regular Trees

We begin by proving a few intermediate results. The
following lemma will provide a useful lower bound for
> wev, dw,v).

Lemma B.1: Let G be a regular tree, let vy € V and let r
be a positive integer. Then for all v € Ny, (r),

Z d(w,v) > Z d(w, vg).

wEN (1) wEN (1)

To prove the lemma, we will make use a notion of centrality
in trees. Let GG, be the finite k-regular tree restricted to
the vertex set N, (r). For a given vertex v of G,, label
the neighbors of v by v!,... ,v*. Let S;(v) be the set of
vertices in N, (r) such that the path connecting w and v
includes v'. Notice that if we root G, at v, the sets {S;(v)}5_,
correspond to subtrees of the rooted tree and we have the
partition

k
Ny (1) \ {v} = U Si(v). (B.1)
i=1
We say that v is a centroid of G, if
Wy (r)]
()| <
max [Si(v)] < = (B.2)

A consequence of (B.2) is that if v is not a centroid
and |S1(v)] = maxi<;<k |S;(v)], we must have |S1(v)| >
INoo (1)]/2 + 1. Since ¢ [Si(v)] = [Ny (r)] — 1, it fol-
lows that 3%, [Si(v)] < [Ny (r)|/2 — 2 which in turn
implies

k
[S1(v)] =D [8i(v)] + 3. (B.3)
=2

In general, a tree may have at most two centroids, in which
case the centroids are neighbors [54, Lemma 2.1]. This leads
us to the following result.

Proposition B.2: The unique centroid of G, is vy.

Proof: We first show that vg is indeed a centroid of G,.
Notice that if we root G,. at v, the rooted tree is balanced
and in particular, |S;(vo)] = (|Ny(r)] — 1)/k for all i €
{1,...,k}. Since k > 2, (B.2) is satisfied.

Next, suppose by contradiction that vy is not the unique
centroid. Without loss of generality, assume that v} is also
a centroid. However, since G, rooted at vy is balanced,
all neighbors of wy are isomorphic® so all vertices in the
collection {v}}¥ , must also be centroids. But since k > 2,
this implies that there are at least 3 centroids, which is a
contradiction. O

We are now ready to prove Lemma B.1.

%More precisely, for each pair of neighbors of vp, we can find a graph
homomorphism mapping one neighbor to the other.
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Proof of Lemma B.1: Without loss of generality, we shall
assume that |S;(v)| = maxi<i<k |Si(v)]. We can then write

Z d(w,v)
weN (vo,r)
k
@ Z d(w,v) + Z Z d(w, v)
weS; (v) 1=2 weS;(v)
k
2N @we)+D+Y Y (dwet) - 1)
weS1(v) =2 weS;(v)
k k
=3 > dw, o) +[Si(w)| = ISi(v)]
=1 weS;(v) =2
(c) &
= Z d(w,v') =14 [S1(v)| — Z |Si(v)], (B.4)
weN (vo,r) i=2

where (a) and (c) are due to (B.1), and () follows since v!, v
are neighbors and vl is closer to S; (v) than v, and v is closer
to S;(v) than v! for 1 <4 < k. If v is not a centroid, we can
apply (B.3) to (B.4) to obtain

>

D
wEN (vo,7)

weN (vo,r)

d(w,v) > d(w,v') + 2.

In light of Proposition B.2, this shows that if v # vy,

Z Z d(w,u).

weN (vo,r) wEN, (1)

d(w,v) > min
uENy (1)

The only remaining vertex, vg, must therefore be the mini-
mizer. |
The main result for regular trees follows readily from the
intermediate results we have established.
Lemma B.3: Let G be a k-regular tree and let v € V,,. Then
for n sufficiently large,

nlogn
E d(w,v) > (B.5)
ol klog(k — 1)
and
4dnlog”n
§ d(w,v)? B.6
(w, ) _1og2(k 1) (B.6)

Proof: Noting that Ny, (r,) C V,,, we have

Z d(w,vg) > 1y |ON (ry)]
weVy,

@ ek — 1)L

nlogn
klog(k —1)°

a2

—
Ve

—

c

>

~

Above, (a) is due to (A.1), (b) uses the formula for 7, in
Corollary A.2 and (c) holds for n sufficiently large, as it lower
bounds the first-order term in the previous expression. Equa-
tion (B.5) now follows from an application of Lemma B.1.
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Next, , we upper bound the squared sum of the distances.
Since V,, C Ny, (rn,+1), the diameter of V,, is at most 27, +2.
It follows that, for n sufficiently large,

4nlog?
Z d(w,v)? < n(2r, +2)* ~ #gn,
weVy, IOg (k - 1)
where we have used the asymptotic behavior of r,, derived in
Corollary A.2. O
B. Lattices

We first prove an intermediate results. The following lemma
is an analogue of Lemma B.1 for the case of lattices.

Lemma B.4: Let G be a (-dimensional lattice, let vg € V'
and let r be a positive integer. Then for all v € V,

Z d(w,v) > Z d(w, vg).

wEN, (1) wEN, (1)

B.7)

Proof: Assume that vertices are labelled by their coordi-
nates in R%. It follows that for u,v € V, d(u,v) = ||u — v||;.
We can then write, for any v € V,

Z d(w,v) = Z

wEN, (1) wEN, (1)

:zd: Z |v; — w;].

=1 weNy,(r)

l[w =1

The value of v; that minimizes ZweM,O(r) |v; — w;| is the
median of the collection {w; }.yen,, (r)» Which is (vo); (the ith
component of the vector vy) due to the symmetry of the set
Ny (7). As this argument holds for each 4, (B.7) follows. [J

The following result contains the desired bounds for
>wey, d(w,v) and Y o\, d(w,v)?.

Lemma B.5: Let G be a (-dimensional lattice. There exist
constants c3,cy > 0 depending only on d such that for all
v eV,

> d(w,v) > esn' (B.8)
weVy,
Z d(w,v)* < can'ti, (B.9)
wevV,
Proof:
S dww)z Y dww)
weV, wWENy (1)
= >~ How (k)|
k=1
@ 20 N
~Y k
(-1 ;
2 e

€+ 1)

® £2° o 1+
cr\2f")

Above, (a) follows from the formula for |OA (k)| in (A.7) and
(b) is due to the asymptotics of r,, given in Corollary A.4.
Equation (B.8) follows.

2521

Next, we upper bound the sum of the squared distances.
Noting that the diameter of V,, is at most 2(r,, + 1), we have

INT .,
Z d(w,v)? < 4(rp +1)°n ~ 4 (i) nl+#

2¢
weVy,

where the asymptotics of the final expression are obtained
from the asymptotics of r, found in Corollary A.4. Equa-
tion (B.9) follows. O
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