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Quickest Inference of Network Cascades
With Noisy Information
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Abstract— We study the problem of estimating the source
of a network cascade given a time series of noisy information
about the spread. Initially, there is a single vertex affected by
the cascade (the source) and the cascade spreads in discrete
time steps across the network. Although the cascade evolution
is hidden, one observes a noisy measurement of the evolution
at each time step. Given this information, we aim to reliably
estimate the cascade source as fast as possible. We investigate
Bayesian and minimax formulations of the source estimation
problem, and derive near-optimal estimators for simple cascade
dynamics and network topologies. In the Bayesian setting, sam-
ples are taken until the error of the Bayes-optimal estimator
falls below a threshold. For the minimax setting, we design a
novel multi-hypothesis sequential probability ratio test. These
optimal estimators require log log n/ log(k − 1) observations

for a k-regular tree network, and (log n)
1

ℓ+1 observations for
a `-dimensional lattice. We then discuss conjectures on source
estimation in general topologies. Finally, we provide simulations
which validate our theoretical results on trees and lattices, and
illustrate the effectiveness of our methods for estimating the
sources of cascades on Erdős-Rényi graphs.

Index Terms— Graph theory, inference algorithms, adaptive
algorithms, Bayesian methods, minimax techniques.

I. INTRODUCTION

NETWORK-BASED interactions lie at the core of many
dynamic systems, including social behavior, biological

processes and wireless communications. Unfortunately, the
decentralized nature of networks often make them suscepti-
ble to cascading failures in which behaviors or information
originating from a small subset of nodes diffuse rapidly
throughout the rest of the network. Examples include viral
spread in contact networks (see e.g., [3]), misinformation in
social networks [4], [5], [6], [7] and malware in cyber-physical
networks [8], [9], [10], [11]. In all of these scenarios, the
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rapid spread of the cascade can have devastating effects. It is
therefore of the utmost importance to track the cascade and
contain it as fast as possible.

A fundamental challenge in accomplishing this task is that
information about the cascade is usually noisy or uncertain
in real-time settings. To illustrate this point, suppose that a
virus is spreading over a contact network. When the number
of individuals is large, it may be infeasible to force everyone
to quarantine, hence diagnostic tests may be administered to
track and contain the spread. If there are not enough diagnostic
tests to test the entire population at a given point in time,
there is uncertainty in the status of individuals who are not
tested. Moreover, diagnostic tests are typically not perfectly
accurate, so even among the tested individuals there may be
false positives and negatives.

Nevertheless, by observing the results of many rounds of
testing over time, it is natural to expect that one can accurately
estimate the spread of the virus using the right testing and
information aggregation strategies. On the other hand, if one
waits too long to obtain reasonable estimates, the cascade will
spread to a large subset of the population, which is undesirable.
The goal of this work is to characterize inference algorithms
which achieve the optimal tradeoff between the estimation
error and the time until estimation. Moreover, we study how
the structure of the underlying network influences the design
and performance of such algorithms.

A. Summary of Contributions

For the most part, existing theoretical work on estimating
the source of a network cascade takes the perspective of a
reconstruction problem: given a large, known set of infected
nodes, the goal is to identify the source among them [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21]. In contrast,
we study source estimation from the novel perspective of
real-time inference: by monitoring real-time signals from each
node, we aim to find the source before the number of affected
nodes is large. The two paradigms of source estimation are
fundamentally different, and as such, require drastically dif-
ferent models and methods.

We mathematically formalize the task of real-time source
estimation as follows. Consider a statistical model of network
cascades with noisy observations where, at discrete timesteps,
each node produces a signal that is an independent sample
from a pre-change distribution Q0 if the node has not yet
been affected by the cascade, else the signal is an independent
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sample from a post-change distribution Q1. Initially, a single
unknown vertex (the source) is affected by the cascade, and the
cascade propagates to neighbors of affected vertices at each
timestep. Our objective is to design algorithms that estimate
the unknown source as fast as possible. We provide the first
solution to this problem, to the best of our knowledge, and
derive optimal source estimators from Bayesian and minimax
perspectives.

To develop a concrete characterization of optimal source
estimators, we focus on simple cascade dynamics and net-
works. The cascade dynamics we consider are deterministic:
at each timestep, the cascade spreads to all neighbors of
currently-affected nodes. We assume the network topology is
either a k-regular tree or a `-dimensional lattice; we do so
because such networks are simple to describe, they represent
a diverse family of topologies, and they enjoy convenient
symmetry properties which simplify our analysis considerably.
We further assume that there is a known set of n candidate

nodes which contains the unknown source. When n is large,
we show that at least log log n/ log(k − 1) timesteps of noisy
observations are required for reliable source estimation in
k-regular trees, while at least (log n)

1
`+1 timesteps are required

for `-dimensional lattices.
We then derive optimal estimation algorithms whose perfor-

mance matches the lower bounds described above. We show
that the optimal algorithm in the Bayesian formulation of the
source estimation problem is a simple procedure that continues
to observe noisy observations of the cascade propagation
until the Bayes-optimal estimator is sufficiently accurate.
In the minimax formulation, we phrase source estimation
as a n-ary hypothesis testing problem among the n candi-
date nodes and show that a natural test based on likelihood
ratios – called the multi-hypothesis sequential probability ratio
test (MSPRT) – is optimal. Interestingly, the design of the
MSPRT which matches the lower bounds can be viewed as a
multi-scale search procedure: it simultaneously identifies the
general area of the source while also performing a local, fine-
grained analysis to obtain more precise estimates.

Admittedly, our setting of deterministic cascade dynamics
on regular trees or lattices is simplistic compared to more
realistic cascade and network models [22], [23], [24], [25],
[25], [26], [27]. However, we find that our setting leads to
a mathematically rich problem and serves as an important
starting point for understanding the source estimation problem
for more complex propagation dynamics and networks. On a
more technical level, we present a mostly unified treatment
of optimal source estimation algorithms on regular trees and
lattices, with only minor differences between the two. This
suggests that our methods could be generalized to describe
optimal source estimators for arbitrary topologies, though this
requires significantly more effort so we leave it to future work.
We discuss in detail the potential extensions of our work to
arbitrary topologies, providing conjectures on the structure
and performance of optimal algorithms. Finally, we assess
the performance of the estimators we develop through sim-
ulations. In addition to validating our theory for tree and
lattice topologies, we show that our estimators perform well
on natural models of random networks (Erdős-Rényi graphs).

Strikingly, even when there is a moderate amount of noise in
vertex signals, our estimators can reliably locate the cascade
source in Erdős-Rényi graphs before 40 vertices are infected
for networks with up to 2000 vertices. This provides strong
evidence that our methods may be applicable quite broadly.

B. Related Work

Source estimation from a noiseless snapshot. Perhaps
the most well-known work on estimating the source of a
cascade is by Shah and Zaman [17], [18], [19]. In their
formulation of the problem, the cascade spreads randomly via
the Susceptible-Infected process, and a single snapshot of the
set of infected vertices is observed at a later point in time. They
derive an expression for the maximum likelihood estimate
of the source in trees and study properties of the estimator.
Many authors have expanded on these ideas and methods in
subsequent work, studying for instance the effect of multiple
observations, multiple sources, confidence sets for the source,
different network models, and different cascade models [12],
[13], [14], [15], [16], [20], [21]. We emphasize that while
this literature on source estimation is similar in spirit to the
problem we consider in this paper, it is fundamentally different
from modeling and algorithmic perspectives. For instance, the
literature cited above is of a static nature, where we have a
single (or a fixed number of) perfect-information snapshot(s)
of a large cascade. On the other hand, we consider dynamic

settings where we obtain noisy and incomplete measurements
of a small but growing cascade. Moreover, the methods
developed in the literature cited above (e.g., rumor centrality,
Jordan centrality) have no obvious counterpart in our setting,
since they are computed based on known infections. However,
in the model of noisy, real-time measurements considered in
this paper, it is impossible to know exactly which vertices are
infected.

Cascade inference from a noisy time series. A growing
body of literature uses the data model (II.1) to perform
inference of cascades, including detecting the presence of a
cascade [28], [29], [30], [31], [32], [33], [34], estimating the
source [1], [2] and controlling its spread [35], [36], [37]. The
closest work to ours in terms of methods and analysis is by
Zou, Veeravalli, Li and Towsley [28], who studied the follow-
ing quickest detection problem: a cascade spreads via unknown
dynamics, and the goal is to stop sampling once the cascade
affects a given number of vertices. Their test, which can be
viewed as an adaptation of the CUSUM procedure, is agnostic
to the spreading dynamics of the cascade and is optimal in
the regime where samples are taken much frequently than
the growth of the cascade. By contrast, we consider the
regime of large networks and where samples are taken at
a comparative rate to the growth of the cascade. Moreover,
our results reveal the effect of the network topology on the
performance of inference procedures, which is not the case
in [28].

Finally, we remark that compared to our prior conference
submissions on the source estimation problem [1], [2], the
current paper provides a unified and substantially more general
solution. In particular, [2] only provided a Bayesian solution
for lattices and [1] established results for the minimax setting
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under a somewhat unnatural, but mathematically simpler,
constraint on the stopping time and estimator.

C. Notation

Let R and Z denote the set of reals and integers, respec-
tively. For a graph G = (V, E), let V denote the set of vertices
and let E denote the set of edges. For u, v ∈ V , d(u, v)
represents the shortest path distance between u and v in G.
For v ∈ V and a non-negative integer s, Nv(s) is the s-hop
neighborhood of v; that is, Nv(s) := {u ∈ V : d(u, v) ≤ s}.

We utilize standard asymptotic notation throughout. In par-
ticular, for two functions g(n) and h(n), we say g(n) � h(n)
if there is c > 0 such that for n sufficiently large, g(n) ≤
ch(n). We say g(n) � h(n) (in words, g(n) and h(n) are
orderwise equivalent) if and only if there are c1, c2 > 0 such
that c1h(n) ≤ g(n) ≤ c2h(n) for n sufficiently large. We say
g(n) ∼ h(n) (in words, g(n) is equal to h(n) up to first-order
terms) if limn→∞ g(n)/h(n) = 1.

D. Organization

The rest of the paper is organized as follows. In Section II,
we formally define our model of cascade evolution with
noisy observations, as well as the Bayesian and minimax
optimality criteria. In Section III, we provide a description
and overview of our results on optimal estimation in regular
trees and lattices, as well as a discussion on how one might
extend our techniques to general topologies. In Section IV,
we provide numerical results on the performance of optimal
estimators from simulations on trees, lattices and Erdős-Rényi
graphs.The remaining sections are devoted to the proofs of
our main results. The proofs of main results on the Bayesian
setting are in Section V, and proofs for the main results in
the minimax setting are in Section VI. Sections VII and VIII
contain supporting results for the proofs in Sections V and VI.
We conclude in Section IX. Additional combinatorial results
concerning the topology of regular trees and lattices can be
found in Appendix A and B.

II. PROBLEM FORMULATION

We begin by describing the most general formulation of
the source estimation problem. Let G be a graph with vertex
set and edge set given by V and E, respectively. Initially,
a single vertex v∗ ∈ V is affected by the cascade; we call
this vertex the cascade source. From v∗, the cascade spreads
over time via the edges of the graph according to a known
random or deterministic discrete-time process. Examples of
cascade dynamics include variants of the susceptible-infected
(SI) process, the independent cascade model and the linear
threshold model (see [22] and references therein).

For any v ∈ V and any time index t ≥ 0, let xv(t) ∈ {0, 1}
denote the private state of v, where xv(t) = 1 if v is affected
by the cascade at time t, otherwise xv(t) = 0. The private
states are not observable, but the system instead monitors the
public signals {yu(t)}u∈V , defined as

yu(t) ∼
�

Q0 xu(t) = 0;

Q1 xu(t) = 1,
(II.1)

Fig. 1. Illustration of the data model at a given time t. The nodes in red
have been affected by the cascade, and the black nodes are unaffected, though
this information is hidden from the observer. The public signals of the red
nodes are sampled from Q1, while the public signals of the black nodes are
sampled from Q0.

where Q0 and Q1 are two mutually absolutely continuous
probability measures. We can think of yu(t) ∼ Q0 being
typical behavior and yu(t) ∼ Q1 as anomalous behavior
caused by the cascade. As a shorthand, we denote y(t) :=
{yu(t)}u∈V to be the collection of all public states at time t.
See Figure 1 for an illustration of this data model. We remark
that this data model has been studied in recent literature in
the context of cascade source estimation [1], [2], quickest
detection of cascades [28], [29], [30], [31], [32], [33], [34],
and control of cascades [35], [36], [37].

Remark II.1: The data model in (II.1) can capture a
variety of realistic scenarios. In the context of viral spread
for instance, a common symptom of sickness is a fever.
If the public signals correspond to the body temperature of
individuals in the population, one may expect that yv(t) will
be close to the typical body temperature of the individual
represented by vertex v if they do not carry the virus, else
yv(t) is expected to be significantly higher if the individual
does carry the virus.

Another practical example of (II.1) is diagnostic testing with

errors, which is used for malware detection in computer net-
works [38] and tracking the spread of infectious diseases [39].
Suppose that at a given point in time, each vertex is given
a diagnostic test with probability p, independently over all
vertices. If a test is taken, the output is either 0 (the vertex
is not affected) or 1 (the vertex is affected). With probability
�, the result of the test will be incorrect. To formulate this
in terms of (II.1), let the support of Q0 and Q1 be {0, 1,×},
where 0 indicates a test result of 0, 1 indicates a test result of 1,
and × indicates that a test was not taken. The distributions
Q0 := (q0(0), q0(1), q0(×)) and Q1 := (q1(0), q1(1), q1(×))
are given by





q0(0) = p(1 − �)

q0(1) = p�

q0(×) = 1 − p

and






q1(0) = p�

q1(1) = p(1 − �)

q1(×) = 1 − p.

Given the data model (II.1), the problem of estimating the
cascade source can be phrased as a sequential multi-hypothesis
testing problem: given the collection of hypotheses {Hv}v∈V

where Hv is the hypothesis that v is the source, our goal is to
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output a hypothesis with a small probability of error. At the
same time, it is also important that we come to a decision as
fast as possible in order to minimize the number of vertices
affected by the cascade. This reveals a fundamental tradeoff:
when more samples are taken, one can obtain more reliable
estimates of the source at the cost of allowing the cascade
to spread further. An optimal procedure will achieve the best
possible tradeoff between the estimation error and the number
of samples needed.

We shall proceed by formalizing these ideas. Observe that
any source estimator can be represented by the pair (T, bv),
where T is a stopping time indicating when to stop sampling
and bv := {bv(t)}t≥0 is a sequence of source estimators so that
bv(t) is the estimate of the source given the data at time t. The
final source estimate produced by (T, bv) is bv(T ). We shall
also assume that a candidate set U ⊂ V is known, so that the
unknown source is an element of U . We remark that the size of
U , denoted by |U |, measures in a sense the initial uncertainty
around the source location. As a matter of notation, we let Pv

be the probability measure corresponding to the hypothesis
Hv (v is the source). Similarly, Ev denotes the expectation
with respect to the measure Pv. If the location of the source is
given by a probability distribution π := {πv}v∈V (where πv

is the probability that the source is v), we denote Pπ and Eπ

to be the probability measure and expectation operator with
respect to π, respectively. Formally, we may write

Pπ(·) :=
X

v∈V

πvPv(·) and Eπ[·] :=
X

v∈V

πvEv[·]. (II.2)

We remark that often in this paper, we will consider the
operator Eπ(t)[·] where π(t) is the posterior distribution of
the source after observing the public signals y(0), . . . , y(t).
In such a case, Eπ(t)[·] would be a random variable, since it
is equal to the conditional expectation E[·|y(0), . . . , y(t)].

We next define the performance metrics used the evaluate
the effectiveness of a source estimator. For a source estimator
(T, bv), we shall study the expected number of samples, given
by Ev[T ] when v is the source. The estimation error is
the expected distance between bv(T ) and the source, given
by Ev[d(v, bv(T ))] when v is the source. Here, we recall
from Section I-C that d(·, ·) denotes the shortest-path distance
between two vertices in G.

We study two natural ways to capture the tradeoff between
estimation error and the expected number of samples.

A Bayesian perspective. Denote the source vertex by v∗, and
suppose that the prior distribution for the source is uniform
over the elements of the candidate set U ; we denote this
prior by π(U). We say that the optimal procedure solves the
following optimization problem:

inf
T,�v

Eπ(U) [d(v∗, bv(T )) + T ]

= inf
T,�v

1

|U |
X

v∈U

Ev [d(v, bv(T )) + T ], (II.3)

where we recall that Eπ(U) denotes the expectation operator
with respect to the measure π(U). In words, (II.3) is the sum
of the estimation error and the expected number of samples.
If only the first term in (II.3) was present, the optimal strategy

would be to set T = ∞, since more samples can only help
in bringing down the estimation error. On the other hand,
if only the second term in (II.3) was present, the optimal
strategy would be to set T = 0. The estimator that solves (II.3)
therefore achieves the best tradeoff between the two extremes.
We remark that it is standard in Bayesian formulations of
sequential testing problems to minimize the sum of the error
and expected number of samples [40], [41]. Furthermore,
we remark that one may consider other ways to quantify the
tradeoff between estimation error and time – for instance,
by replacing T with h(T ) for some increasing function h.
While we focus on the formulation (II.3) for simplicity and
ease of exposition, the methods we develop can also handle a
large class of functions h.

A minimax perspective. As an alternative to the Bayesian
approach, one can formalize the tradeoff between the estima-
tion error and expected number of samples via the following
optimization problem:

inf
T,�v

max
v∈U

Ev[T ] subject to max
v∈U

Ev[d(v, bv(T ))] ≤ α,

(II.4)

where maxv∈U Ev[d(v, bv(T ))] is the worst-case estimation

error, α is a specified bound on the worst-case estimation
error and maxv∈U Ev[T ] is the worst-case expected runtime of
the procedure. As in the Bayesian case, we may consider two
extremes. When α = ∞, the optimal choice is T = 0, whereas
when α = 0 the optimal choice is T = ∞.1 For intermediate
values of α, the optimal algorithm indeed achieves a tradeoff
between the estimation error and the worst-case expected
runtime.

III. RESULTS

The goal of our work is to characterize optimal estimators
based on the formulations in (II.3) and (II.4). We are par-
ticularly interested in how the structure and performance of
optimal estimators depend on the network topology. In order
to provide a tractable theoretical analysis, we focus on simple
networks and cascade dynamics. The cascade dynamics we
consider is outlined in the following assumption.

Assumption III.1 (Cascade Dynamics): Initially, a single
vertex v∗ (the source) is affected by the cascade. The cascade
then spreads deterministically in discrete time steps, so that
vertex v is affected by the cascade at time t if and only if
d(v, v∗) ≤ t.

We consider two classes of networks – regular trees and
lattices – which are defined formally below.

Definition III.2 (Infinite k-Regular Tree): Let vr be a
designed root vertex, and let Tk(1) be the tree with k leaves
attached to vr. Given Tk(m), we construct Tk(m + 1) by
attaching k − 1 leaves to each leaf in Tk(m). The infinite
k-regular tree Tk is the limiting graph obtained when m → ∞;
that is, (u, v) is an edge in Tk if and only if (u, v) is an edge
in Tk(m) for some positive integer m.

1More precisely, if there exists an estimator �v such that �v(t) → v∗ as
t → ∞, then the stopping time T = ∞ is optimal. If such an estimator does
not exist, there is no feasible solution to (II.4) when α = 0.
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Fig. 2. Illustration of cascade propagation and observations in 3-regular trees (a-c) and 2-dimensional lattices (d-f). In each image, the red nodes are those
affected by the cascade, and the black are unaffected, though this information is hidden from the observer. Notice that the public signals for the cascade
source v∗ are always sampled from Q1, whereas the public signals for another vertex v are initially sampled from Q0 and change to samples from Q1 once
the cascade spreads sufficiently far.

Definition III.3 (Infinite `-Dimensional Lattice): Label ele-
ments of the vertex set by Z

`. There is an edge between
vertices u, v in the infinite `-dimensional lattice if and only ifP`

i=1 |ui − vi| = 1.2

See Figure 2 for an illustration of the cascade dynamics
and the evolution of observed signals on regular trees and
lattices. We choose to study regular trees and lattices for
several reasons. For one, they have strong symmetry properties
(e.g., the local structure around all vertices are the same) which
makes it easier to explicitly determine the performance of
optimal algorithms. Second, we present a unified treatment
of source estimation on regular trees and lattices (except for
minor differences), even though the two families of graphs
have extremely different topologies; perhaps the most obvious
difference is that trees are acyclic while lattices contain many
cycles of varying lengths. This indicates that it may be possible
to generalize our methods to other topologies as well (see
Section III-C for further discussion on this point). We also
remark that it is a common assumption in the theoretical analy-
sis of cascade models and inference tasks that the underlying
graph has infinitely many vertices [1], [2], [12], [13], [14],
[18], [19], [42], [43], [44]. Moreover, the infinite graph setting
allows us to capture scenarios where the size of the cascade is
small compared to the total population without unnecessarily
complicating our mathematical analysis.

There are several network and cascade models that are
arguably more realistic than the ones we study in this paper;
see for instance [22], [23], [24], [25], [25], [26], [27].

2The 2-regular tree T2 is the same as the 1-dimensional lattice. Henceforth,
we shall identify T2 as the 1-dimensional lattice and always consider k-regular
trees with k ≥ 3. Indeed, from our analysis, it can be seen that the relevant
properties of T2 make the graph most naturally associated with the class of
lattices.

However, even for the simple networks and cascade dynamics
we consider, we expect that an exact characterization of
optimal source estimators is mathematically intractable. The
reason for this is that we may interpret the problem of source
estimation as a sequential multi-hypothesis testing problem,
where different hypotheses correspond to different potential
sources. In the two-hypothesis case, the optimal hypothesis
test is known to be the sequential probability ratio test

(SPRT), which is a relatively simple procedure that tracks
the cumulative log-likelihood ratio over time and stops when
it achieves a particular threshold [45]. When there are more
than two hypotheses, the optimal test has a complicated form
and is difficult to analyze [46]. To carry out a tractable
analysis, we therefore characterize optimal source estimators
in asymptotic regimes, where the number of possible source
vertices – in other words, the size of the candidate set – tends
to infinity. Formally, we consider a sequence of candidate sets
and study asymptotic properties of optimal estimators when
the size of the candidate set grows large. As we shall see,
the analysis of optimal estimators depends not only on the
size of the candidate set, but also its topology. For instance,
if two vertices in the candidate set are adjacent, there is a lot of
overlap in the set of potential infections caused by each vertex.
Hence it takes more effort and information to decide between
the two vertices. On the other extreme, if two vertices in the
candidate set are very far apart, it takes comparatively less
effort to distinguish between them. One can therefore imagine
that a worst-case candidate set is one where all vertices are as
close to each other as possible. This idea is formally captured
in the following assumption.

Assumption III.4: We assume the sequence of candidate sets
{Vn}n satisfies the following:

1) For all positive integers n, Vn ⊂ V and |Vn| = n;
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2) There is a designated vertex v0 ∈ V and a sequence of
integers {rn}n such that for all positive integers n,

Nv0(rn) ⊆ Vn ⊂ Nv0(rn + 1).

Above, we recall that Nv0(r) is the r-hop neighborhood of
v0. The second condition in Assumption III.4, which states that
Vn is approximately a neighborhood of some arbitrary vertex,
correctly captures the notion of a worst-case candidate set in
the sense that it maximizes the number of vertex pairs that are
close to each other. On a more technical note, by assuming
a specific topological structure for the candidate set, we have
enough detail to carry out a precise mathematical analysis of
optimal estimators.

The value of rn used in Assumption III.4 can be made
explicit. For the graphs of interest to us, we can employ
straightforward combinatorial arguments to show

rn ∼
�

log n
log(k−1) G is a k-regular tree, k ≥ 3;
(

`!
2` n
)1/`

G is a `-dimensional lattice, ` ≥ 1.

(III.1)

For details, see Corollaries A.2 and A.4 in Appendix A.
As a final remark on the candidate set, we emphasize that

Assumption III.4 is made only for the purposes of studying
the performance of optimal estimators; it need not be satisfied
to apply our estimators to more realistic, finite networks. See
the part of Section IV concerning cascade source estimation
on Erdős-Rényi random graphs for more details on this point.

A. Results on Bayesian Estimation

For a stopping time T , sequence of estimators bv and a
candidate set Vn, define the quantities

valB(T, bv) := Eπ(Vn)[d(v∗, bv(T )) + T ]

val
∗
B(Vn) := inf

T,�v
valB(T, bv).

Note in particular that val
∗
B(Vn) is the optimal value of (II.3)

when the candidate set is Vn. Our main result on the Bayesian
formulation is the following theorem.

Theorem III.5: When G is a k-regular tree with k ≥ 3,

val
∗
B(Vn) ∼ log log n

log(k − 1)
. (III.2)

On the other hand, when G is a `-dimensional lattice, there
exist constants a, b depending only on `, Q0, Q1 such that for
n sufficiently large,

a(log n)
1

`+1 ≤ val
∗
B(Vn) ≤ b(log n)

1
`+1 . (III.3)

In words, (III.2) pins down the exact first-order asymptotic
behavior of val

∗
B(Vn) when n is large in the case of regular

trees. For lattices, (III.3) captures the orderwise behavior of
val

∗
B(Vn) when n is large. While Theorem III.5 focuses on

how val
∗
B(Vn) scales with n, we remark that the (appropriately

defined) distance between Q0 and Q1 plays a role in the
performance of optimal estimators. In the case of k-regular
trees, it appears in the second-order expansion of val

∗
B(Vn).

For `-dimensional lattices, the distance between Q0 and

Q1 influences the constants a and b, with both blowing up
to infinity as the distance between Q0 and Q1 becomes small.

Proof Summary: For any vertex v ∈ V and integer s ≥ 0,
recall that Nv(s) is the set of vertices within distance s of
v. From the cascade dynamics defined in Assumption III.4,
Nv∗(s) is precisely the set of vertices which have public
signals distributed according to Q1, rather than Q0. The
number of total public signals distributed according to Q1 in
the first t timesteps is therefore given by

f(t) :=
tX

s=0

|Nv∗(s)|. (III.4)

Due to the symmetry of regular trees and lattices, |Nu(s)| =
|Nv(s)| for any u, v ∈ V and s ≥ 0. Hence f(t) does not
depend on v∗, which is why we do not include v∗ in the
notation. The interpretation of f(t) as the number of public
signals distributed according to Q1 implies that, in an abstract
sense, f(t) is a measure of the amount of information an
observer has about the spread of the cascade.3 On the other
hand, the initial uncertainty around the location of v∗ can be
measured by the entropy of π(Vn), which is log n. One may
then expect that when f(t) � log n, the information about the
cascade propagation is not enough to overcome the uncertainty
around the source location. It turns out that this intuition
does indeed hold: for any (T, bv), Eπ(Vn)[d(v∗, bv(T ))] is large
(order log n in regular trees and n1/` in `-dimensional lattices)
when f(T ) � log n. It follows that accurate source estimation
is only possible when f(T ) � log n or equivalently, when
T � f−1(log n). This leads to the lower bound val

∗
B(Vn) �

f−1(log n), which is log log n/ log(k−1) in k-regular trees up
to first order terms and is of order (log n)

1
`+1 in `-dimensional

lattices.
An upper bound on val

∗
B(Vn) is then derived by character-

izing the performance of a given source estimator. Consider
(Tth, bvB), given formally by

bvB(t) ∈ argmin
v∈Vn

Eπ(t)[d(v∗, v)] (III.5)

Tth := min
�
t ≥ 0 : Eπ(t)[d(v∗, bvB(t))] ≤ 1



. (III.6)

Above, the measure π(t) is the posterior distribution of the
source v∗ after observing the sequence of public signals
y(0), . . . ,y(t), hence Eπ(t)[d(v∗, v)] can be viewed as a
conditional expectation. The interpretations of Tth and bvB are
quite intuitive. In words, bvB(t) is a vertex which achieves
the minimum estimation error, conditioned on the observed
information until time t. The estimator bvB can therefore
be thought of as the Bayes-optimal source estimator, as it
minimizes the conditional estimation error.4 The stopping
time Tth will keep sampling until the conditional estimation
error of the optimal estimator falls below the threshold 1
(the subscript th references the fact that we stop once
the estimation error is below a threshold). In characterizing
the performance of the estimator (Tth, bvB), we show that

3We later make this more formal by showing that the Kullback-Liebler
(KL) divergence between the measures Pu and Pv pertaining to the variables
y(0), . . . , y(t) is proportional to f(t) for most pairs u, v ∈ V .

4We formalize this idea in Lemma V.1, where we show that if the stopping
time T is fixed, �vB achieves inf

�v
valB(T, �v).
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valB(Tth, bvB) ∼ log log n/ log(k − 1) in k-regular trees
and valB(Tth, bvB) � (log n)

1
`+1 in `-dimensional lattices.

Remarkably, these match the lower bounds previously estab-
lished for val

∗
B(Vn), leading to (III.2) and (III.3). More-

over, our analysis shows that the estimator (Tth, bvB) enjoys
near-optimal performance when n is large.

As a final remark, we note that our proof methods are quite
general and can also handle the case where T is replaced
with h(T ) in (II.3) for any h that increases slower than an
exponential function. Moreover, the same estimator (bvB, Tth)
also enjoys near-optimal performance in this case. For details,
see Remark V.4.

B. Results on Minimax Estimation

We begin by defining some notation. Let α > 0 be fixed, and
suppose Vn is the candidate set. Define the class of estimators

∆(Vn, α) :=

�
(T, bv) : max

v∈Vn

Ev[d(v, bv(T ))] ≤ α

�
.

In words, ∆(Vn, α) is the class of source estimators which
have a worst-case estimation error of at most α. In particular,
∆(Vn, α) is the set of feasible estimators in the minimax for-
mulation (II.4). The optimal value of the minimax formulation
is denoted by

val
∗
M (Vn, α) := inf

(T,�v)∈∆(Vn,α)
max
v∈Vn

Ev[T ].

The results we obtain for val
∗
M (Vn, α) are essentially the same

as in the Bayesian formulation. Specifically, we prove the
following theorem.

Theorem III.6: Let α be fixed. When G is a k-regular tree,

val
∗
M (Vn, α) ∼ log log n

log(k − 1)
. (III.7)

On the other hand, when G is a `-dimensional lattice, there
exist constants a0, b0 depending only on `, Q0, Q1 such that
for n sufficiently large,

a0(log n)
1

`+1 ≤ val
∗
M (Vn, α) ≤ b0(log n)

1
`+1 . (III.8)

As in Theorem III.5, (III.7) provides an exact first-order
characterization of val

∗
M (Vn, α) when n is large, and (III.8)

describes the orderwise behavior of val
∗
M (Vn, α). We remark

that the constants a0 and b0 used in (III.8) are potentially
distinct from the constants a, b used in the Bayesian ana-
logue (III.3). However, we make no attempt to optimize the
constants, instead focusing on the orderwise behavior as n
grows large. As in Theorem III.5, the (appropriately defined)
distance between Q0 and Q1 plays a role in the second order
terms of val

∗
M (Vn, α) in regular trees. In lattices, the constants

a0 and b0 blow up to infinity when the distance between Q0 and
Q1 is small.

Proof Summary: As in the Bayesian case, we focus on
establishing lower bounds for val

∗
M (Vn, α) and derive match-

ing upper bounds by studying the performance of a carefully
designed estimator which lies within the feasible set ∆(Vn, α).

To derive lower bounds for val
∗
M (Vn, α), we observe that

the Bayesian objective value – which measures average-case

behaviors of source estimators – is less strict than the minimax

objective, which measures worst-case behaviors of source
estimators. Hence the lower bound for val

∗
B(Vn) also holds

for val
∗
M (Vn, α), provided α is constant with respect to n.

Next, we establish an upper bound for val
∗
M (Vn, α) by

characterizing the performance of a specific stopping time and
estimator. Unfortunately, we cannot use (Tth, bvB) (used in
the Bayesian setting) for this task since it is unclear whether
it is an element of the class ∆(Vn, α). We therefore take a
different approach in designing an appropriate estimator within
∆(Vn, α) which matches the lower bounds for val

∗
M (Vn, α).

To this end, recall that the problem of source estimation can
be viewed as a sequential multi-hypothesis testing problem,
where each hypothesis corresponds to the possibility of a
particular vertex being the source. Motivated by the optimality
of SPRTs for the two-hypothesis setting, we consider a natural
extension to the multiple hypothesis setting known as the
multi-hypothesis sequential probability ratio test (MSPRT),
described below:

• For each pair of distinct u, v ∈ Vn, specify a threshold
τ(v, u), which is a positive real number.

• Let T (v) be the stopping time that halts as soon as

dPv

dPu
(y(0), . . . , y(t)) ≥ τ(v, u), ∀u ∈ Vn \ {v}.

Here, we recall that Pv is the probability measure condi-
tioned on v∗ = v.

• The final source estimator is argminv∈Vn
T (v); that is,

the vertex whose stopping time halts first.

For general multi-hypothesis testing problems, it is known
that MSPRTs enjoy near-optimal performance when the num-
ber of hypotheses is fixed and the bound on the estimation
error, α, is small [46], [47], [48], [49], [50], [51]. Although
our setting is different, since α is fixed and the number of
hypotheses are large, it is natural to expect that MSPRTs still
have good performance. Indeed, we provide a novel way to
design MSPRTs with worst-case expected runtime that match
the lower bounds for val

∗
M (Vn, α): for u, v ∈ Vn that are

“far”, we set τ(v, u) = τ1 and for u, v ∈ Vn that are
“close” we set τ(v, u) = τ2 where τ1, τ2 are pre-determined
parameters depending on the graph structure and n. This
design can be interpreted as a multi-scale search strategy:
an analysis of the likelihood ratios dPv/dPu for u, v far
apart determine the general location of the source, and an
analysis of the likelihood ratios dPv/dPu for u, v close give
us a more fine-grained estimate. We show that with the right
definition of “closeness” as well as an appropriate choice of
τ1, τ2, an MSPRT designed in this way achieves the upper
bounds for val

∗
M (Vn, α) described in Theorem III.6. A diagram

illustrating the key ideas of the MSPRT we have described can
be found in Figure 3.

C. Conjectures on Optimal Estimators in General Graphs

In this work, we primarily focus on regular trees and
lattices for a few key reasons. For one, they enjoy strong
symmetry properties. In particular, the local structure of all
vertex neighborhoods are isomorphic, leading to conceptually
simpler proofs and near-exact computations of val

∗
B(Vn) as
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Fig. 3. Schematic representation of the MSPRT we design to achieve near-optimal source estimation. Left: Plots of the likelihood ratios with respect to vertex
v, where we have enumerated Vn \ {v} as u1, . . . , un−1. We halt when dPv/dPui

crosses the threshold τ(v, ui) (shown in orange) for all 1 ≤ i ≤ n− 1.
This stopping time, labeled T (v), is shown in red. The source estimator is the vertex v which achieves the smallest value of T (v). Right: Design of the
thresholds τ(v, u), visualized here for the 2-dimensional lattice. For vertices u, v ∈ Vn that are far (blue region), we set τ(v, u) = τ1 and for vertices
u, v ∈ Vn that are close (green region), we set τ(v, u) = τ2.

well as val
∗
M (Vn, α). Second, regular trees and lattices have

drastically different topological structure, yet most of our
proofs work equally well for both topologies, with just minor
differences. This suggests that our methods can also be used
to describe optimal source estimators for general topologies.
Below, we discuss how Theorems III.5 and III.6 may change
for general topologies.

We start by defining relevant notation. Let G be a graph with
(countably) infinite vertices that is locally finite (i.e., all vertex
degrees are finite). As discussed earlier, we study infinite
graphs since it allows us to consider scenarios where the
cascade is small relative to the network size without compli-
cating our analysis. Define the vertex-dependent neighborhood
growth function

fv(t) :=
tX

s=0

|Nv(s)|.

We then have the following conjecture concerning optimal
source estimation in general topologies.

Conjecture III.7: Suppose that G is a graph with countably
infinite vertices that is locally finite. Let the sequence of
candidate sets {Vn}n≥1 satisfy Assumption III.4. Then

val
∗
B(Vn) � 1

n

X

v∈Vn

f−1
v (log n).

Additionally, for any α > 0 that is constant with respect to n,

val
∗
M (Vn, α) � max

v∈Vn

f−1
v (log n).

We expect that Conjecture III.7 can be proved by a straight-
forward generalization of our techniques. Following analo-
gous arguments as the proof summary for Theorem III.5,
if v∗ = v then fv(t) is the total number of public signals
distributed according to Q1 until timestep t. We therefore

expect that the uncertainty in the source location is too large
to reasonably estimate the source in the regime fv(t) �

log n (equivalently, t � f−1
v (log n)), since the entropy of

the prior π(Vn) is log n. Hence any algorithm must observe
for at least f−1

v (log n) timesteps to reliably estimate the
source. Averaging over v ∈ Vn leads to the lower bound
val

∗
B(Vn) � 1

n

P
v∈Vn

f−1
v (log n). On the other hand, the

minimax setting captures the worst-case expected number of
samples as opposed to the average-case number of samples,
hence val

∗
M (Vn, α) � maxv∈Vn

f−1
v (log n).

Establishing upper bounds for val
∗
B(Vn) and val

∗
M (Vn, α)

that are orderwise tight requires an analysis of specific source
estimators. Since our analysis of (Tth, bvB) is quite similar for
both regular trees and lattices (with only minor differences),
we expect that it should achieve optimal performance in
general as well. We also believe that a properly designed
MSPRT can achieve optimal performance in the minimax
setting as well; we provide further details on this point in
Section VI-B (see Remark VI.8).

IV. SIMULATIONS

In this section, we complement our theoretical results
through simulations which reveal the non-asymptotic perfor-
mance of our source estimators. Specifically, we study the
performance of two estimators: the Bayes estimator described
in (III.5) and (III.6), and the MSPRT used to prove the
achievability results in Theorem III.6. At a high level, our
simulations show that even in non-asymptotic regimes, our
estimators are able to locate the source while ensuring that
only a small number of individuals are infected, thus validating
our theoretical results on trees and lattices. We further apply
our estimators to cascades spreading on natural models of
random graphs (the Erdős-Rényi model), showing that our
estimators can be successfully applied to broader scenarios.
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a) Signal distributions.: We consider the case of noisy
and incomplete testing, described in Remark II.1; we briefly
recap the model here. Interpret the network cascade as an
infection, and assume that at every timestep, each individual
tests for infection with probability p. The test outputs the
correct result (i.e., positive or negative) with probability 1− �.
In our simulations, we let p = 0.5 and � ∈ {0.1, 0.2}. The
distributions Q0, Q1 derived from this scenario are formally
described in Remark II.1.

b) Lattices.: To make our simulations as close to our
theoretical setup as possible, our base graph G was taken
to be a 2-dimensional 100 x 100 lattice (10,000 vertices).
If the size of the candidate set is n, in accordance with
Assumption III.4, we chose the candidate set to be the n
closest vertices to the center of the lattice. We emphasize that
choosing the candidate set in this way captures the notion
of a worst-case candidate set (see the discussion surrounding
Assumption III.4), and we choose vertices close to the lattice
center only to avoid boundary effects (i.e., to ensure that the
cascade will evolve similarly from all potential source vertices,
given that G is finite). In our simulations, the cascade begins
at the lattice center and spreads via the deterministic dynamics
described in Assumption III.1, producing random observed
vertex-level signals according to (II.1). Although we could,
in principle, choose any source vertex in the candidate set,
we consistently choose the lattice center in order to reduce
the variance of the estimators’ performance across independent
simulations. For each choice of n (from 100 to 2000, collected
at regular intervals of 100) and �{0.1, 0.2}, we carried out
100 independent simulations of the cascade. We averaged over
the stopping time and the number of total infections until the
stopping time to generate the plots in Figure 4. The design
of the MSPRT weights for the minimax estimator follows
Figure 3; for the specific threshold values, see Theorem VI.7
in Section VI-B.

Figure 4 highlights important finite-size behaviors of the
Bayes and minimax estimators. Notice that each curve is
quite flat: the expected stopping time as well as the number
of infections changes little with respect to n. This weak
dependence extends to the asymptotic regime n → ∞ as
well; Theorems III.5 and III.6 show that the expected stopping
time scales as (log n)1/3. Moreover, the Bayes estimator has
strictly better performance than the minimax estimator in all
cases – notably, nearly 100 infections are prevented in the case
� = 0.2 for large n when comparing the Bayes and minimax
estimators.

c) Trees.: Our base graph G was taken to be a 3-regular
balanced tree with 16,383 vertices. If the size of the candidate
set is n, we choose the candidate set to be the n closest
vertices to the root of balanced tree G for similar reasons as
in the case of lattices. In our simulations, the cascade begins
at the root of G and spreads via the deterministic dynamics
described in Assumption III.1, producing random observed
vertex-level signals according to (II.1). For each choice of
n and �, we carried out 100 independent simulations of the
cascade and average over the stopping time as well as the
number of total infections to generate the plots in Figure 5.
For the minimax estimator, we use an MSPRT with constant

Fig. 4. Plots of the expected stopping time (a) and the expected number of
infections (b) as a function of n, the size of the candidate set. Pictured here
are the performances of the Bayes and minimax-optimal source estimators in
2-dimensional lattices.

weights, which is proved to be asymptotically optimal; see
Theorem VI.5 in Section VI-B for details.

Similar conclusions as in the case of lattices can be
drawn for trees based on Figure 5. Interestingly, although
the Bayes and minimax estimators take log log n samples in
light of Theorems III.5 and III.6, Figure 5 shows that the
Bayes-optimal estimator stops earlier in finite regimes; we
believe this is due to the provable optimality of the estimator
(see Lemma V.1). Furthermore, although we have proved that
the distance between Q0 and Q1 does not affect the first-order
asymptotics of the expected stopping time in both Bayes
and minimax settings, it appears to play a significant role in
finite regimes. Notably, the time it takes the minimax-optimal
estimator to stop is more than doubled when � = 0.2 compared
to � = 0.1 for many values of n.

d) Erdős-Rényi random graphs.: Recall that for a positive
integer n and q ∈ [0, 1], an Erdős-Rényi random graph G(n, q)
is generated as follows. Let the vertex set V be a set of n
labeled vertices, and for each pair of distinct vertices an edge is
added between them with probability q, independently across
all vertex pairs. Since our work is primarily concerned with
sparse graphs (i.e., vertex degrees are not too large), we chose
q = 5/n to ensure that the average degree of the graph is 5.
This choice of q ensures that the largest connected component
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Fig. 5. Plots of the expected stopping time (a) and the expected number of
infections (b) as a function of n, the size of the candidate set. Pictured here
are the performances of the Bayes and minimax-optimal source estimators in
3-regular trees.

of G(n, q) (also known as the giant component) is most of the
graph, while also keeping the average degree relatively small.
For a given realization of G(n, q), our candidate set was taken
to be the vertices in the giant component.5 Figure 6 shows the
performance of the Bayes and minimax estimators on Erdős-
Rényi graphs, both of which exhibit similar performance to
that noted for trees and lattices. For the minimax estimator,
since sparse Erdős-Rényi graphs are known to be locally tree-
like [52], we use the MSPRT with uniform weights (see
Section VI-B) which is optimal in regular trees. To summarize,
Figure 6 shows that the estimators we develop are robust and
apply to a broader class of graphs than the ones we analyze
theoretically.

To generate the numerical results in Figure 6, as before we
ran 100 independent simulations for each n and � considered.
For each simulation, an independent Erdős-Rényi graph was
generated. The data in Figure 6 were computed by averaging
the stopping times and number of infected vertices, condi-

tioned on the event that the cascade did not spread to all
vertices by the time the algorithm stopped. The reason for this

5It is known that with high probability, components other than the giant
component are of order log n [52, Chapter 11.9]. As a result, the infection will
never reach most of the graph even after a long time passes. Our assumption
that the candidate set is the vertex set of the giant component avoids such
simple edge cases.

Fig. 6. Plots of the expected stopping time (a) and the expected number of
infections (b) as a function of n, the size of the candidate set. Pictured here
are the performances of the Bayes and minimax-optimal source estimators in
the Erdős-Rényi graph G(n, 5/n).

is that if the cascade affects all vertices, there is effectively no
new information to be learned, and the stopping time would
be extremely large with high probability. In almost all cases,
however, at most one out of the 100 trials would fall into this
category. The only exception was the case of n = 100 and
� = 0.2 for the minimax estimator, which had 12 trials fall
into this category. We expect that this is because the cascade
spreads too quickly to detect it on a graph of this small
size. Finally, we remark that some of the curves in Figure 6
may appear noisier than the ones in Figures 5 and 4; this is
likely due to the randomness of the base graph in the Erdős-
Rényi case, compared to the deterministic nature of the other
topologies considered.

V. ANALYSIS OF THE BAYESIAN SETTING

A. Behavior of the Bayes-Optimal Estimator

We begin with a discussion of the estimator bvB =
{bvB(t)}t≥0, which is defined formally by

bvB(t) ∈ arg min
v∈Vn

Eπ(t)[d(v∗, v)],

where Vn is the candidate set under consideration. It is
straightforward to show that bvB is optimal, in the sense that
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it minimizes the error of the final source estimator for any
choice of stopping time. This is explained more formally in
the following result.

Lemma V.1: Let the candidate set be Vn. Fix any stopping
time T and let bu = {u(t)}t≥0 be any source estimator so that
u(t) is measurable with respect to y(0), . . . , y(t). Then

Eπ(Vn)[d(v∗, bvB(T ))] ≤ Eπ(Vn)[d(v∗, bu(T ))].

In particular,

inf
(T,�v)

valB(T, bv) = inf
T

valB(T, bvB).

Proof: For any given time index t ≥ 0, it follows from
the definition of bvB(t) that

Eπ(t)[d(v∗, bvB(t))] ≤ Eπ(t)[d(v∗, bu(t))]. (V.1)

We can then write

Eπ(Vn)[d(v∗, bvB(T ))]

(a)
= Eπ(Vn)

�
Eπ(T )[d(v∗, bvB(T ))]

�

= Eπ(Vn)

� ∞X

t=0

Eπ(t)[d(v∗, bvB(t))]1(T = t)

�

(b)

≤ Eπ(Vn)

� ∞X

t=0

Eπ(t)[d(v∗, bu(t))]1(T = t)

�

= Eπ(Vn)[d(v∗, bu(T ))].

Above, (a) is due to the tower rule and (b) is a consequence
of (V.1). Taking an infimum over all source estimators (T, bu)
on both sides yields the second statement of the lemma.

With the optimal estimator explicitly derived, we focus on
characterizing the estimation error of bvB , which will in turn
aid us in characterizing optimal stopping times. Indeed, the
proof of Theorem III.5 depends on the following two lemmas
which characterize the estimation error of bvB . Before stating
them, we review some basic properties of the neighborhood
growth function f(t) (defined in (III.4)). First, it can be shown
through straightforward combinatorial arguments that

f(t) ∼
�

k(k−1)
(k−2)2 (k − 1)t G is a k-reg tree, k ≥ 3;

2`

(`+1)! t
`+1 G is a `-dim lattice, ` ≥ 1.

(V.2)

A proof of (V.2) can be found in Appendix A – see in
particular Lemmas A.1 and A.3. Importantly, (V.2) can be used
to study the asymptotics of the inverse function F = f−1.
Indeed, it follows that

F (z) ∼





log z
log(k−1) G is a k-reg tree, k ≥ 3;
�

(`+1)!
2` z

� 1
`+1

G is a `-dim lattice, ` ≥ 1.
(V.3)

We are now ready to state our results on the estimation error.
The first establishes a lower bound for the estimation error
when t is not too large.

Lemma V.2: Suppose G is a k-regular tree with k ≥
3 and that the sequence of candidate sets {Vn}n≥1 satisfies

Assumption III.4. There are constants a1 = a1(k, Q0, Q1) and
b1 = b1(k) such that if we define the event

Etree :=

�
min

0≤t≤F (a1 log n)
Eπ(t)[d(v∗, bvB(t))] ≤ b1 log n

�
,

then limn→∞ maxv∈Vn
Pv(Etree) = 0.

Next suppose that G is a `-dimensional lattice and
{Vn}n≥1 satisfies Assumption III.4. There are constants a0

1 =
a0
1(Q0, Q1) and b01 = b01(`) such that if we define the event

Elattice :=

�
min

0≤t≤F (a0

1 log n)
Eπ(t)[d(v∗, bvB(t))] ≤ b01n

1/`

�
,

then limn→∞ maxv∈Vn
Pv(Elattice) = 0.

It can be shown through straightforward combinatorial
arguments (see Lemmas B.3 and B.5 in Appendix B) that the
initial estimation error satisfies

Eπ(0)[d(v∗, bvB(0))] �
�

log n G is a k-reg tree;

n1/` G is a `-dim lattice.
(V.4)

In light of (V.4), Lemma V.2 states that with high probability,
the estimation error does not significantly decrease for t �
F (log n). At a high level, this is because the information
from the public signals corresponding to the true spread of the
cascade is not enough to offset the uncertainty in the source
location. These ideas are formalized by computing the mean
and variance of Eπ(t)[d(v∗, bv(t))] and applying Chebyshev’s
inequality. We also remark that as a consequence of our proofs,
the constant a1 in Lemma V.2 depends on the average degree
for regular trees, while the constant a0

1 does not depend on
the average degree in lattices. For details, see Section VII-B.

The next result establishes an upper bound on the estimation
error once t is sufficiently large.

Lemma V.3: Suppose that G is a k-regular tree or a
`-dimensional lattice and that the sequence of candidate sets
{Vn}n≥1 satisfies Assumption III.4. There are constants a2 =
a2(Q0, Q1) and b2 = b2(Q0, Q1) such that if t ≥ F (a2 log n),

max
v∈Vn

Pv

(
Eπ(t)[d(v∗, bvB(t))] ≥ e−b2t

)
≤ e−b2t. (V.5)

The proof relies on large-deviations bounds which show that
πu(t)/πv∗(t) tends to 0 at an exponential rate for any u 6= v∗.
For details, see Section VII-C.

B. Putting Everything Together: Proof of Theorem III.5

Combined, Lemmas V.2 and V.3 show that the estimation
error exhibits a sharp transition: it is large for t � F (log n)
and it is exponentially decaying to zero for t � F (log n).
The optimality and performance of the estimator (Tth, bvB) is
essentially obtained from this observation.

Proof of Theorem III.5: Define the pair of constants a, A
so that (a, A) = (a1, b1 log n) if G is a k-regular tree and
(a, A) = (a0

1, b
0
1n

1/`) if G is a `-dimensional lattice (see
Lemma V.2 for definitions of these constants). For every t ≥ 0,
we also define the event

E :=

�
min

0≤t≤F (a log n)
Eπ(t)[d(v∗, bvB(t))] ≥ A

�
.
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For any stopping time T , we have, for any v ∈ Vn,

Ev

�
Eπ(T )[d(v∗, bvB(T ))] + T

�
(V.6)

= Ev

� ∞X

t=0

Eπ(t)[d(v∗, bvB(t))]1(T = t) + T

�

≥ Ev

⎡
⎣

F (a log n)X

t=0

Eπ(t)[d(v∗, bvB(t))]1({T = t} ∩ E)

⎤


+ Ev

�
T1(T > F (a log n))

�

(a)

≥ A

F (a log n)X

t=0

Pv({T = t} ∩ E)

+ F (a log n) · Pv(T > F (a log n))

≥ A · Pv({T ≤ F (a log n)} ∩ E)

+ F (a log n) · Pv({T > F (a log n)} ∩ E)

≥ min{A, F (a logn)} · Pv(E)

(b)
= F (a log n) · Pv(E). (V.7)

Above, (a) follows from the definition of E and by lower
bounding T by F (a log n) on the event {T > F (a log n)}, and
(b) uses F (a log n) ≤ A for n sufficiently large, which follows
from the asymptotic behavior of F (see (V.3)). An important
consequence of (V.7) is that the value associated with the pair
(T, bv) can be lower bounded as

valB(T, bvB) = Eπ(Vn)[d(v∗, bvB(T )) + T ]

(c)
= Eπ(Vn)

�
Eπ(T )[d(v∗, bvB(T ))] + T

�

(d)
=

1

n

X

v∈Vn

Ev

�
Eπ(T )[d(v∗, bvB(T ))] + T

�

(e)

≥ F (a log n)

�
1

n

X

v∈Vn

Pv(E)

�
. (V.8)

Above, (c) is due to the tower rule, (d) follows since π(Vn)
is a uniform distribution over elements of Vn, and (e) is a
consequence of (V.7). Moreover, since (V.8) holds for any

stopping time T , we have

val
∗
B(Vn) = inf

T,�v
valB(T, bv)

= inf
T

valB(T, bvB)

≥ F (a log n)

�
1

n

X

v∈Vn

Pv(E)

�
,

where the second equality follows from the optimality of the
estimator bvB , proved in Lemma V.1. Rearranging terms and
sending n → ∞, we arrive at

lim inf
n→∞

val
∗
B(Vn)

F (a log n)
≥ lim inf

n→∞

�
1

n

X

v∈Vn

Pv(E)

�

≥ lim inf
n→∞

min
v∈Vn

Pv(E) = 1, (V.9)

where the final equality above is a direct consequence of
Lemma V.2.

Next, to establish an asymptotic upper bound for the optimal
value, we consider the stopping time

Tth := min{t ≥ 0 : Eπ(t)[d(v∗, bvB(t))] ≤ 1},
which stops once the estimation error falls below a threshold.
We can then bound

valB(Tth, bvB)
(f)

≤ Eπ(Vn)[1 + Tth]

= 1 +
∞X

t=0

Pπ(Vn)(Tth > t)

≤ 1 + F (a2 log n) +

∞X

t=F (a2 log n)+1

Pπ(Vn)(Tth > t)

(g)

≤ 1 + F (a2 log n) +

∞X

t=F (a2 log n)+1

max
v∈Vn

Pv(Tth > t)

(h)

≤ 1 + F (a2 log n) +
∞X

t=F (a2 log n)+1

e−b2t

≤ 1 + F (a2 log n) +
1

b2
e−b2F (a2 log n).

Above, the inequality (f) is due to the definition of Tth, (g)
follows since Pπ(Vn)(·) := 1

n

P
v∈Vn

Pv(·) ≤ maxv∈Vn
Pv(·),

and (h) follows from noting that Tth > t implies that
Eπ(t)[d(v∗, bvB(t))] > 1 ≥ e−b2t and applying Lemma V.3
to bound the latter event. Dividing both sides of the final
inequality by F (a2 log n) and letting n → ∞ shows that

lim sup
n→∞

valB(Tth, bvB)

F (a2 log n)
≤ 1. (V.10)

The desired result follows from (V.9) and (V.10) by con-
sidering the asymptotic behavior of F in trees and lattices
(see (V.3)).

Remark V.4 (General Temporal Cost Functions): It is also
interesting to consider the case where the cost of the stopping
time in the Bayesian objective (II.3) is given by h(T ) instead
of T , where h is some increasing function. It turns out that a
slight modification of the proof of Theorem III.5 shows that
the estimator (Tth, bvB) is still asymptotically near-optimal as
long as h grows slower than any exponential function. Indeed,
if we follow the derivation of the bound in (V.7) and (V.8),
we obtain that

Eπ(Vn)[d(v∗, bvB(T ) + h(T )]

≥ min{A, h(F (a log n))}
�

1

n

X

v∈Vn

Pv(E)

�
,

where A, a, E are the same as in the proof of Theorem III.5.
Following (V.9), we obtain that

lim inf
n→∞

infT Eπ(Vn)[d(v∗, bvB(T )) + h(T )]

min{A, h(F (a log n))} ≥ 1.

In particular, if h increases slower than any exponential
function, it can be seen that, for the choices of A and F used
for regular trees and lattices, h(F (a log n)) is an asymptotic
lower bound on the performance of any estimator.

The proof of the upper bound on the performance of the
optimal estimator can be similarly derived. For the same
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estimator (bvB , Tth), we may follow the proof of Theorem III.5
to show that

inf
(�v,Tth)

Eπ(Vn)[d(bv(T ), v∗) + h(T )]

≤ Eπ(Vn)[1 + h(Tth)]

= 1 +

∞X

t=0

Pπ(Vn)(h(Tth) > t)

= 1 +
∞X

t=0

Pπ(Vn)(Tth > h−1(t) )

≤ 1 + h(F (a2 log n)) +

∞X

t=h(F (a2 log n))+1

e−b2h−1(t).

We can reach the same conclusion as in Theorem III.5; that
is, that

lim sup
n→∞

inf(�v,T ) Eπ(Vn)[d(bv(t), v∗) + h(T )]

h(F (a2 log n))
≤ 1,

provided
P

t≥0 e−b2h−1(t) < ∞. This is the case provided
h−1(t) increases faster than log t or equivalently, if h(t)
increases slower than any exponential function. Together, this
shows that

h(F (a1 log n)) � inf
(�v,T )

Eπ(Vn)[d(bv(t), v∗) + h(T )]

� h(F (a2 log n)),

provided h increases slower than any exponential function.

VI. ANALYSIS OF THE MINIMAX SETTING

In this section we prove Theorem III.6. To do so, we prove
lower and upper bounds for val

∗
M (Vn, α) in separate the-

orems. In Section VI-A, we prove Theorem VI.1, which
establishes a lower bound for val

∗
M (Vn, α). The upper bounds

for val
∗
M (Vn, α) are achieved by MSPRTs of a particular

design: this is proved in Theorem VI.5 (regular trees) and
in Theorem VI.7, which can be found in Section VI-B.
Remarkably, a simple design in which we set all the thresholds
in the MSPRT to be the same value achieves the lower bound
for regular trees. However, the same estimator adapted to
lattices fails to achieve the lower bound due to key differences
in the topology of lattices. To fix this issue, we consider a
novel MSPRT design we term K-level thresholds, where we
assign different thresholds to pairs of vertices u, v satisfying
d(u, v) ≤ K and those satisfying d(u, v) > K . The perfor-
mance of the resulting estimator does indeed achieve (up to a
constant factor) the lower bound for val

∗
M (Vn, α).

A. Lower Bounding the Optimal Value

Theorem VI.1 (Lower Bound Part of Theorem III.6): Sup-
pose that the sequence of candidate sets {Vn}n≥1 satisfies
Assumption III.4. If G is a k-regular tree,

lim inf
n→∞

val
∗
M (Vn, α)
log log n
log(k−1)

≥ 1. (VI.1)

On the other hand, if G is a `-dimensional lattice then there
is a constant a4 depending on `, Q0, Q1 such that

lim inf
n→∞

val
∗
M (Vn, α)

(log n)
1

`+1

≥ a4. (VI.2)

Proof: Let (T, bv) be an estimator in ∆(Vn, α). Given the
prior π(Vn), recall from Lemma V.1 that the estimator

bvB(t) ∈ argmin
v∈Vn

Eπ(t)[d(v∗, v)]

minimizes Eπ(Vn)[d(v∗, bv(T ))] over all estimators bv, for any

stopping time T .
For given constants a, A, define the events

E1 := {T ≤ F (a log n)}

E2 :=

�
min

0≤t≤F (a log n)
Eπ(t)[d(v∗, bvB(t))] ≥ A

�
.

We can then lower bound the worst-case estimation error as

max
v∈Vn

Ev[d(v, bv(T ))]

(a)

≥ Eπ(Vn)[d(v∗, bv(T )]

(b)

≥ Eπ(Vn) [d(v∗, bvB(T ))]

(c)

≥ Eπ(Vn)

�
Eπ(T )[d(v∗, bvB(T ))]1(E1 ∩ E2)

�

(d)

≥ A · Pπ(Vn)(E1 ∩ E2). (VI.3)

Above, (a) follows since Eπ(Vn) is an average over the
collection of operators {Ev}v∈Vn

and the maximum is greater
than the average; (b) is due to the optimality of bvB , proved
in Lemma V.1; inequality (c) is due to the tower rule and
inequality (d) follows since Eπ(T )[d(v∗, bvB(T ))] ≥ A on the
event E1 ∩ E2.

Noting that maxv∈Vn
Eπ(Vn)[d(v∗, bv(T ))] ≤ α for (T, bv) ∈

∆(Vn, α), (VI.3) implies

Pπ(Vn)(E1 ∩ E2) ≤
α

A
,

which in turn implies that

Pπ(Vn)(Ec
1) ≥ Pπ(Vn)(Ec

1 ∪ Ec
2) − Pπ(Vn)(Ec

2)

≥ 1 − α

A
− Pπ(Vn)(Ec

2). (VI.4)

By Lemma V.2, if we set (a, A) = (a1, b1 log n) if G is a
k-regular tree and (a, A) = (a0

1, b
0
1n

1/`) if G is a
`-dimensional lattice (see Lemma V.2 for definitions of these
constants) then the right hand side of (VI.4) tends to 1 as
n → ∞. We can then lower bound the worst-case expected
runtime as

max
v∈Vn

Ev[T ] ≥ Eπ(Vn)[T ] ≥ Eπ(Vn)[T1(Ec
1)]

≥ F (a log n)Pπ(Vn)(Ec
1). (VI.5)

Since (VI.5) holds for any element of ∆(Vn, α), we have

val
∗
M (Vn, α) ≥ F (a log n)Pπ(Vn)(Ec

1).

Dividing by F (a log n) and sending n → ∞, we arrive at

lim inf
n→∞

val
∗
M (Vn, α)

F (a log n)
≥ 1.
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The desired result follows from the asymptotic behavior of F
(see (V.3)).

B. Achieving the Lower Bound With MSPRTs

An important question is whether the lower bound in
Theorem VI.1 is achievable. To answer this question, we focus
on a class of sequential estimation procedures called multi-

hypothesis sequential probability ratio tests (MSPRTs). For
convenience, we define them formally below.

Given vertices u, v ∈ V , define the log-likelihood ratio

Zvu(t) := log
dPv

dPu
(y(0), . . . , y(t)).

In our model, the likelihood of observing the sequence of
public signals y(0), . . . ,y(t) under the measure Pv has the
form

tY

s=0

⎛

⎡
⎣
Y

w∈Nv(s)

dQ1(yw(s))

⎤

⎡
⎣
Y

w/∈Nv(s)

dQ0(yw(s))

⎤

⎞
 .

(VI.6)

Above, the product containing terms of the form dQ1(yw(s))
computes the likelihood of nodes that have been affected by
the cascade, and the product containing the terms of the form
dQ0(yw(s)) computes the likelihood of nodes that have not
yet been affected by the cascade. In light of (VI.6), Zvu(t)
can be written as

Zvu(t) =

tX

s=0

log






�
Q

w∈Nv(s)

dQ1(yw(s))

�

�
Q

w∈Nu(s)

dQ1(yw(s))

�×

�
Q

w/∈Nv(s)

dQ0(yw(s))

�

�
Q

w/∈Nu(s)

dQ0(yw(s))

�






=

tX

s=0

⎛


X

w∈Nv(s)\Nu(s)

log
dQ1

dQ0
(yw(s))

−
X

w∈Nu(s)\Nv(s)

log
dQ1

dQ0
(yw(s))

⎞
 .

In words, the log-likelihood ratio log dQ1/dQ0 measures
how likely it is that a certain public signal came from the
distribution Q1 as opposed to the distribution Q0. It follows
that summations of the form

P
w∈S log dQ1

dQ0
(yw(s)) measures

the net likelihood that the public signals in S are caused by
the cascade. Hence if it is more likely that the public signals
in Nv(s) \ Nu(s) are caused by the cascade rather than the
public signals in Nu(s)\Nv(s), the log-likelihood ratio Zvu(t)
positive; else it is negative.

We are now ready to define the MSPRT.

Definition VI.2 (Multi-Hypothesis Sequential Probability

Ratio Test): Fix a positive integer n and specify a threshold
function τ : Vn × Vn → (0,∞). Consider the stopping time

T (v) := min{t ≥ 0 : Zvu(t) ≥ log τ(v, u), ∀u 6= v}.

The corresponding MSPRT (T, bv) is defined via

T := min
v∈Vn

T (v) and bv(T ) := arg min
v∈Vn

T (v).

In words, the output of the MSPRT is the first vertex v
for which all log-likelihood ratios Zvu(t) pass the thresholds
log τ(v, u) for all u ∈ Vn \ {v}. If (T, bv) is a MSPRT with
threshold function τ , we have the following useful relation,
which is due to Tartakovsky [47, Theorem 3.1].

Lemma VI.3: For any distinct u, v ∈ Vn,

Pv(bv(T ) = u) ≤ 1

τ(u, v)

Since the proof is short, we provide it here for completeness.
Proof of Lemma VI.3:

Pv(bv(T ) = u) = Ev [1(bv(T ) = u)]

= Eu

h
1(bv(T ) = u)e−Zuv(T )

i

≤ e− log τ(u,v)
Eu [1(bv(T ) = u)]

≤ 1

τ(u, v)
.

Above, the equality in the second line follows from
e−Zuv(T ) = dPv

dPu
(y(0), . . . , y(T )). The inequality in the third

line follows since Zuv(T ) ≥ τ(u, v) on the event {bv(T ) = u}
by the definition of a MSPRT.

Using Lemma VI.3, we can bound the worst-case estimation
error of the MSPRT (T, bv) as

max
v∈Vn

Ev[d(v, bv(T ))] = max
v∈Vn

X

v∈Vn

d(u, v)Pv(bv(T ) = u)

≤ max
v∈Vn

X

v∈Vn

d(u, v)

τ(u, v)
.

To ensure that (T, bv) ∈ ∆(Vn, α), it suffices to check that

max
v∈Vn

X

u∈Vn

d(u, v)

τ(u, v)
≤ α. (VI.7)

Perhaps the simplest weight design which satisfies (VI.7) is a
uniform weights design, in which the τ(v, u)’s all take on the
same value.

Definition VI.4 (Uniform Weights Design): The MSPRT
(Tn,α, bvn,α) is designed with uniform weights if

τ(v, u) :=
n2

α
, ∀u, v ∈ Vn : u 6= v. (VI.8)

With the uniform weights design, we have

max
v∈Vn

X

u∈Vn

d(u, v)
α

n2
≤ max

v∈Vn

X

u∈Vn

α

n
= α.

Hence (Tn,α, bvn,α) ∈ ∆(Vn, α). Note that in the
first equality above, we have used the (loose) bound
maxu,v∈Vn

d(v, u) ≤ n.
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When G is a regular tree, the following result shows that
the performance of the MSPRT with uniform weights matches
the lower bound in Theorem VI.1.

Theorem VI.5: Let G be a k-regular tree with k ≥ 3 and fix
α > 0. If (Tn,α, bvn,α) is the MSPRT with uniform weights,

lim sup
n→∞

maxv∈Vn
Ev[Tn,α]

log log n
log(k−1)

≤ 1.

Combined with Theorem VI.1, Theorem III.6 for regular
trees follows as an immediate consequence.

Proof of Theorem III.6 for regular trees: We have the
series of inequalities

1
(a)

≤ lim inf
n→∞

val
∗
M (Vn, α)
log log n
log(k−1)

≤ lim sup
n→∞

val
∗
M (Vn, α)
log log n
log(k−1)

(b)

≤ lim sup
n→∞

maxv∈Vn
Ev[Tn,α]

log log n
log(k−1)

(c)

≤ 1.

Above, (a) is due to Theorem VI.1, (b) follows since
(Tn,α, bvn,α) ∈ ∆(Vn, α) and (c) is due to Theorem VI.5.
Since both the start and the end of the chain of inequalities
is 1, the inequalities are all equality. Hence the following limit
is well-defined:

lim
n→∞

val
∗
M (Vn, α)
log log n
log(k−1)

= 1,

which proves the desired result.
We provide a brief sketch of the proof of Theorem VI.5,

and defer the details to Section VIII-B. Suppose that v ∈ Vn

is the true source. When t is sufficiently large, we show that
it holds for all u ∈ Vn \ {v} that

Zvu(t) ∼ Ev[Zvu(t)] �
tX

s=0

|Nv(s) \ Nu(s)| � (k − 1)t.

This in particular implies that once t �
log log(n2/α)

log(k−1) , all

the log-likelihood ratios {Zvu(t)}u∈Vn\{u} will cross the
threshold log n2/α. Since log log(n2/α) ∼ log log n when n
is large, Theorem VI.5 follows. The key technical ingredient
of this proof is a large-deviations-type inequality for Zvu(t).

Unfortunately, the MSPRT with a uniform weights design
is not optimal in lattices. Suppose that the dimension of the
lattice is `. For u, v ∈ Vn which are far apart, we have
Zvu(t) � t`+1, but for u, v which are relatively close together,
Zvu(t) � t`. As the log-likelihood Zvu(t) grows at a slower
rate in this latter case, this ends up being the primary contribu-
tor to the behavior of the stopping time. As a result, we obtain
an upper bound for T ∗(Vn, α) of order (log n)1/`, whereas
the lower bound established in Theorem VI.1 is of order
(log n)1/(`+1). To close this gap, we shall consider a design
for the MSPRT weights which places different thresholds for
pairs of vertices that are close and pairs that are far.

Definition VI.6 (K-Level Weights): Let K be a non-negative
integer. The MSPRT (T K

n,α, bvK
n,α) is designed with K-level

weights if

τ(v, u) :=

�
2K|N (K)|

α 0 < d(u, v) ≤ K
2n2

α else.

It is straightforward to show that the K-level weights
satisfy (VI.7):

max
v∈Vn

X

u∈Vn

d(u, v)

τ(u, v)

= max
v∈Vn

⎛


X

u∈Vn∩Nv(K)

d(u, v)

τ(u, v)
+

X

u∈Vn\Nv(K)

d(u, v)

τ(u, v)

⎞



≤ max
v∈Vn

⎛


X

u∈Vn∩Nv(K)

α

2|N (K)| +
X

u∈Vn\Nv(K)

α

2n

⎞



≤ α,

where to derive the inequality on the second line, we used
d(u, v) ≤ K for u ∈ Nv(K) and d(u, v) ≤ n for
u ∈ Vn. Putting everything together, we have shown that
(T K

n,α, bvK
n,α) ∈ ∆(Vn, α).

At a high level, the MSPRT designed with K-level weights
can be thought of as a multi-scale source estimation algorithm.
When the Zvu(t)’s are large for many vertices u far from
v (specifically, d(u, v) > K), this indicates that v must be
relatively close to the source. Assuming K is not too large,
there are roughly n vertices far from v, which means that the
threshold for the log-likelihood ratios must be on the order of
log n in order to reliably narrow down the general location
of the source. Simultaneously, the Zvu(t)’s for u close to v
(specifically, d(u, v) ≤ K) provide fine-grained information
about the location of the source within the localized region
Nv(K). To compensate for the slower growth of Zvu(t) in
this case, we require that they pass the much smaller threshold
of log(2K|N (K)|/α), hence removing the bottleneck found
in the uniform weights design.

In the following result, we show that for the right value of
K , the MSPRT designed with K-level weights is orderwise

optimal in lattices.
Theorem VI.7: Let G be an `-dimensional lattice and set

K = (log n)1/`. Then there is a constant b4 depending only
on `, Q0, Q1 such that

lim sup
n→∞

maxv∈Vn
Ev[T K

n,α]

(log n)
1

`+1

≤ b4,

where a4 is the constant used in (VI.2).
Combined with Theorem VI.1, Theorem III.6 for lattices

immediately follows.
Proof of Theorem III.6 for lattices: Let G be the

`-dimensional lattice. We have the series of inequalities

a4

(a)

≤ lim inf
n→∞

val
∗
M (Vn, α)

(log n)
1

`+1

≤ lim sup
n→∞

val
∗
M (Vn, α)

(log n)
1

`+1
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(b)

≤ lim sup
n→∞

maxv∈Vn
Ev[T

K
n,α]

(log n)
1

`+1

(c)

≤ b4.

Above, (a) is due to Theorem VI.1, (b) follows since
(T K

n,α, bvK
n,α) ∈ ∆(Vn, α), and (c) is due to Theorem VI.7.

In particular, the chain of inequalities implies that for n
sufficiently large,

a4

2
(log n)

1
`+1 ≤ val

∗
M (Vn, α)

≤ max
v∈Vn

Ev[T K
n,α]

≤ 2b4(log n)
1

`+1 .

The theorem follows from setting a0 := a4/2 and b0 := 2 b4.

The proof of Theorem VI.7 follows similar reasoning as the
proof of Theorem VI.5. In the case that v is the true source of
the cascade, we separately consider the performance of Zvu(t)
for u ∈ Nv(K) and u ∈ Vn \Nv(K) and use large-deviations-
type results to characterize when the log-likelihood ratios cross
the thresholds specified by the K-level weights design. For full
details, see Section VIII-C.

Remark VI.8 (MSPRTs for General Topologies): The
K-level weights introduced in Definition VI.6 can be gen-
eralized to arbitrary topologies if we set

τ(v, u) :=

�
2K|Nv(K)|

α 0 < d(v, u) ≤ K;
2n2

α else.

Above, we write |Nv(K)| instead of |N (K)| since the size of
the K-hop neighborhood of a vertex v can depend strongly on
v in general topologies. Since the proof of Theorem VI.7 is
quite generic for the most part, we expect that a MSPRT with
K-level weights can achieve the lower bound for val

∗
M (Vn, α)

in general. The choice of K , however, will depend on the
topology of interest.

VII. ANALYSIS OF THE BAYESIAN ESTIMATION ERROR:
PROOF OF LEMMAS V.2 AND V.3

A. Preliminary Results: Properties of the Posterior

Distribution

Before proving Lemmas V.2 and V.3, we introduce some
simple supporting results. Recall that the posterior distribution
is given by π(t) = {πv(t)}v∈Vn

, where

πv(t) := Pπ(Vn) (v∗ = v | y(0), . . . , y(t)) .

From Bayes’ formula, it holds for any distinct u, v ∈ Vn that

πv(t)

πu(t)
=

πv(t − 1)

πu(t − 1)
· dPv(y(t))

dPu(y(t))
. (VII.1)

Recall that under Pv, yw(t) ∼ Q1 if w ∈ Nv(t), else
yw(t) ∼ Q0. Since the public signals y(0), . . . , y(t) are
independent conditioned on the source, the likelihood ratio

dPv(y(t))/dPu(y(t)) can be written as

dPv(y(t))

dPu(y(t))
=

Q
w∈Nv(t) dQ1(yw(t))

Q
w∈Nu(t) dQ1(yw(t))

×
Q

w/∈Nv(t) dQ0(yw(t))
Q

w/∈Nu(t) dQ0(yw(t))

=

Q
w∈Nv(t)\Nu(t)

dQ1

dQ0
(yw(t))

Q
w∈Nu(t)\Nv(t)

dQ1

dQ0
(yw(t))

(VII.2)

Combining (VII.1) and (VII.2), we have

πv(t)

πu(t)
=

Qt
s=0

Q
w∈Nv(s)\Nu(s)

dQ1

dQ0
(yw(s))

Qt
s=0

Q
w∈Nu(s)\Nv(s)

dQ1

dQ0
(yw(s))

(VII.3)

=

Qt
s=0

Q
w∈Nv(s)

dQ1

dQ0
(yw(s))

Qt
s=0

Q
w∈Nu(s)

dQ1

dQ0
(yw(s))

. (VII.4)

Equation (VII.3) follows directly from (VII.1) and (VII.2).
The difference between (VII.3) and (VII.4) is that we take a
product over w ∈ Nu(s) \ Nv(s) and w ∈ Nv(s) \ Nu(s) in
the former, and w ∈ Nu(s) and w ∈ Nv(s) in the latter. The
expressions are equivalent since the vertices in Nu(s)∩Nv(s)
are cancelled out. We display both equations, as each will be
useful in different contexts.

Equation (VII.4) implies that the posterior probabilities can
be written as

πv(t) =
1

Y (t)

tY

s=0

Y

w∈Nv(s)

dQ1

dQ0
(yw(s)),

where the normalizing constant, Y (t), is given by

Y (t) :=
X

v∈Vn

tY

s=0

Y

w∈Nv(s)

dQ1

dQ0
(yw(s)).

It will be convenient to use the notation πv(t) = Xv(t)/Y (t),
where Xv(t) is explicitly given by

Xv(t) :=
tY

s=0

Y

w∈Nv(s)

dQ1

dQ0
(yw(s)).

With this notation, Y (t) =
P

u∈Vn
Xu(t). The following

lemma establishes some basic properties of the collection
{Xu(t)}u∈Vn

.
Lemma VII.1: Denote

β := EA∼Q1

'
dQ1

dQ0
(A)

(
.

Then β > 1 and for any u, v ∈ Vn and t ≥ 0,

Ev[Xu(t)] = β
�t

s=0 |Nv(s)∩Nu(s)|.

Proof: We start by proving β > 1. We can write

EA∼Q1

'
dQ1

dQ0
(A)

(
= EB∼Q0

�)
dQ1

dQ0
(B)

*2
�

≥ EB∼Q0

'
dQ1

dQ0
(B)

(2
= 1.

Above, the first equality is due to a change of measure (a valid
operation since Q0, Q1 are mutually absolutely continuous),
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and the inequality is due to Jensen’s inequality. Above, the
inequality is strict since the equality case only occurs if
dQ1

dQ0
(B) is a constant (equivalently, Q0 = Q1).

Since {yw(s)}w∈V,0≤s≤t is a collection of independent
random variables conditioned on v∗ = v, we have

Ev[Xu(t)] = Ev

⎡
⎣

tY

s=0

Y

w∈Nu(s)

dQ1

dQ0
(yw(s))

⎤
 (VII.5)

=
tY

s=0

Y

w∈Nu(s)

Ev

'
dQ1

dQ0
(yw(s))

(
. (VII.6)

For each term in the product, we have

Ev

'
dQ1

dQ0
(yw(s))

(
=

�
β d(v, w) ≤ s

1 else,
(VII.7)

where we have used the fact that yw(s) ∼ Q1 in the first case,
and yw(s) ∼ Q0 in the second. The desired statement follows
from substituting (VII.7) into (VII.5).

The following lemma bounds the covariance between Xu(t)
and Xv(t). As a matter of notation, we recall that the
neighborhood growth function (defined in (III.4)) is given by
f(t) :=

Pt
s=0 |N (s)|.

Lemma VII.2: For any u, v, w ∈ Vn and t ≥ 0, there is a
constant λ = λ(Q0, Q1) such that Covv(Xu(t), Xw(t)) = 0 if
d(u, w) > 2t and Covv(Xu(t), Xw(t)) ≤ λf(t) if d(u, w) ≤
2t.

Proof: Since Xu(t) depends only on the signals in Nu(t),
it is clear that Xu(t) and Xw(t) are independent under Pv if
d(u, w) > 2t. Hence Covv(Xu(t), Xw(t)) = 0 in this case.
To handle the case where d(u, w) ≤ 2t, we first define

λ1 := E
A∼Q1

�)
dQ1

dQ0
(A)

*2
�

,

λ0 := E
B∼Q0

�)
dQ1

dQ0
(B)

*2
�

.

We have the following bound on the covariance due to the
Cauchy-Schwartz inequality.

Covv(Xu(t), Xw(t)) ≤ Ev[Xu(t)Xw(t)]

≤ Ev[Xu(t)2]1/2
Ev[Xw(t)2]1/2.

To bound Ev[Xu(t)2], we can write

Ev[Xu(t)2] =

tY

s=0

Y

a∈Nu(s)

Ev

�)
dQ1

dQ0
(ya(s))

*2
�

= λ
�t

s=0 |Nu(s)∩Nv(s)|
1 λ

�t
s=0 |Nu(s)\Nv(s)|

0

≤ (max{λ0, λ1})
�

t
s=0 |Nu(s)|

= (max{λ0, λ1})f(t).

Since the bound we have derived holds for any u ∈ Vn,
it follows that Covv(Xu(t), Xw(t)) ≤ (max{λ0, λ1})f(t),
which proves the desired claim with λ := max{λ0, λ1}.

The results we have established allow us to prove the
following concentration result for Y (t) when t is not too large.

Lemma VII.3: Recall the constants β = β(Q0, Q1) (defined
in Lemma VII.1) and λ = λ(Q0, Q1) (defined in VII.2).
Furthermore let F := f−1 be the inverse of the neighborhood
growth function. If

t ≤ F

)
log n

4 log(max{β, λ})

*
,

then for any � > 0,

max
v∈Vn

Pv(|Y (t)−n| ≥ �n) ≤ 4

�2
√

n
. (VII.8)

Proof: Let β = β(Q0, Q1) be the constant defined in
Lemma VII.1. We begin by computing the expectation of Y (t)
with respect to Pv.

Ev[Y (t)] =
X

u∈Vn

Ev[Xu(t)]

=
X

u∈Vn

β
�t

s=0 |Nv(s)∩Nu(s)|

=
X

u∈Nv(2t)

β
�t

s=0 |Nv(s)∩Nu(s)| + |Vn \ Nv(2t)|.

Since β > 1 and
Pt

s=0 |Nv(s) ∩Nu(s)| ≤ f(t), we have the
bounds

n ≤ Ev[Y (t)] ≤ n + |N (2t)|βf(t).

From Lemmas A.1 and A.3, we have the asymptotics

|N (2t)| �
�

(k − 1)2t G is a k-regular tree;

t` G is a `-dimensional lattice

f(t) �
�

(k − 1)t G is a k-regular tree;

t`+1 G is a `-dimensional lattice.

Hence we have, for t sufficiently large, the simpler upper
bound of n+β2f(t) for Ev[Y (t)]. Next, suppose that t satisfies
f(t) ≤ log n

4 log β so that β2f(t) ≤ √
n. Then

Pv (|Y (t)−n| ≥ �n) ≤ Pv

�
|Y (t) − Ev[Y (t)]| ≥ �

2
n
�

≤ 4 · Varv(Y (t))

�2n2
, (VII.9)

where the first inequality holds if � ≥ 2√
n

and the
second inequality is due to Chebyshev’s inequality. Using
Lemma VII.2, we can bound the variance of Y (t) as

Varv(Y (t)) =
X

u,w∈Vn

Covv(Xu(t), Xw(t))

≤
X

u∈Vn

|N (2t)|λf(t)

≤ 2nf(t)2λf(t)

≤ nλ2f(t),

where we have used |N (2t)| ≤ f(2t) ≤ 2 f(t)2 and λ =
λ(Q0, Q1) is defined in Lemma VII.2. Moreover, if f(t) ≤
log n
4 log λ , then λ2f(t) ≤ √

n and Varv(Y (t)) ≤ n3/2. The desired
result follows.
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Our final result establishes exponential lower tail bounds for
the ratio πv(t)/πu(t) using Chernoff bounds. Before stating
the result, we define some notation. Let

D(Q0, Q1) := EA∼Q1

'
log

dQ1

dQ0
(A)

(

+ EB∼Q0

'
log

dQ0

dQ1
(B)

(
(VII.10)

denote the symmetrized Kullblack-Liebler divergence, and
define the rate function

I(x) := sup
λ≥0

�
−λ(D(Q0, Q1)−x)

− log E

�)
dQ0

dQ1
(A)

*λ)
dQ1

dQ0
(B)

*λ
�+

, (VII.11)

where A ∼ Q1 and B ∼ Q0 are independent. Finally, for
u, v ∈ V , define the neighborhood difference function

fvu(t) :=

tX

s=0

|Nv(s) \ Nu(s)|.

Lemma VII.4: Let u, v ∈ V be any two vertices. If x > 0,
then I(x) > 0 and

Pv

)
πv(t)

πu(t)
≤ e(D(Q0,Q1)−x)fvu(t)

*
≤ e−I(x)fvu(t).

(VII.12)

Proof: Conditioned on A,B, define the function

g(λ) :=

)
dQ0

dQ1
(A)

dQ1

dQ0
(B)

*λ

.

Note that g(λ) is differentiable, and by the mean-value theo-
rem, we have for any λ1 ∈ [0, 1] that there exists η ∈ [0, λ1]
so that

|g(λ1) − 1|
λ1

= |g0(η)| = η

,,,,
dQ0

dQ1
(A)

dQ1

dQ0
(B)

,,,,
η−1

≤ 1 +

,,,,
dQ0

dQ1
(A)

dQ1

dQ0
(B)

,,,, . (VII.13)

In the final inequality, we have used η ≤ 1 as well as the
fact that aη−1 ≤ a if a ≥ 1 else aη−1 ≤ 1 if 0 ≤ a ≤ 1.
Furthermore, note that due to the independence of A and B,

EA∼Q1,B∼Q0

'
dQ0

dQ1
(A)

dQ1

dQ0
(B)

(

= EA∼Q1

'
dQ0

dQ1
(A)

(
EB∼Q0

'
dQ1

dQ0
(B)

(
= 1.

It then follows from the definition of the Lebesgue integral
that

E

',,,,
dQ0

dQ1
(A)

dQ1

dQ0
(B)

,,,,
(

< ∞. (VII.14)

In particular, the dominating function for |g(λ1) −
1|/λ1 in (VII.13) is integrable. Together, (VII.13) and (VII.14)
along with the Lebesgue Dominated Convergence Theorem
imply that E[g(λ)] is differentiable at λ = 0. Moreover, the

derivative of log E[g(λ)] at λ = 0 is equal to −D(Q0, Q1).
Next, if we define the function

h(λ) := −λ(D(Q0, Q1) − x) − log E[g(λ)],

then the results we have established thus far imply h0(0) =
x > 0. Since h(0) = 0, it follows that h(λ)/λ > 0 for
sufficiently small λ, and in particular h(λ) > 0. Since I(x) =
supλ≥0 h(λ), the claim I(x) > 0 follows.

We now show how one can use the rate function I(x) to
obtain the inequality (VII.12). Recall that under the measure
Pv, the variables {yw(s)}w∈V,0≤s≤t are independent, with

yw(s) ∼
�

Q1 w ∈ Nv(s)

Q0 else.

Using the representation (VII.3), the following distributional
identity holds under the measure Pv:

πv(t)

πu(t)

d
=

fvu(t)Y

i=1

Wi, (VII.15)

where the Wi’s are i.i.d. with distribution given by

Wi
d
=

dQ1

dQ0
(A)

)
dQ1

dQ0
(B)

*−1

, (VII.16)

for independent A ∼ Q1 and B ∼ Q0. A Chernoff-type bound
implies that

Pv

)
πv(t)

πu(t)
≤ e(D(Q0,Q1)−x)fvu(t)

*

= inf
λ≥0

Pv

�)
πv(t)

πu(t)

*−λ

≥ e−λ(D(Q0,Q1)−x)fvu(t)

�

≤ inf
λ≥0

exp

�
λ( eD(Q0, Q1)−x)fvu(t)

+ log E

�)
πv(t)

πu(t)

*−λ
��

= exp (−I(x)fvu(t)) ,

where the final expression follows from the distributional
representation for πv(t)/πu(t) in (VII.15) and (VII.16).

B. Lower Bounding the Estimation Error: Proof of

Lemma V.2

At a high level, the proof strategy is to first establish a
probabilistic lower bound for Eπ(t)[d(v∗, u)] where u ∈ Vn is
fixed. Through union bounds, this will lead to a probabilistic
lower bound for minu∈Vn

Eπ(t)[d(v∗, u)]. We remark that
the proof of Lemma V.2 makes use of some combinatorial
properties of trees and lattices, the proofs of which may be
found in Appendix B.

For a fixed vertex u ∈ Vn, we can write

Eπ(t)[d(v∗, u)] =
X

w∈Vn

d(w, u)πw(t)

=
1

Y (t)

X

w∈Vn

d(w, u)Xw(t).
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Lemma VII.3 has already established a concentration inequal-
ity for Y (t), so we will proceed by establishing a probabilistic
lower bound for

P
w∈Vn

d(u, w)Xw(t). For any v ∈ Vn,
we have

Ev

�
X

w∈Vn

d(u, w)Xw(t)

�
=
X

w∈Vn

d(u, w)Ev[Xw(t)]

≥
X

w∈Vn

d(u, w), (VII.17)

where the inequality is due to Ev[Xw(t)] ≥ 1, which was
proved in Lemma VII.1. We can also upper bound the variance
as

Varv

�
X

w∈Vn

d(u, w)Xw(t)

�

=
X

w1∈Vn

X

w2∈Vn

d(u, w1)d(u, w2)Covv (Xw1(t), Xw2(t))

(a)

≤ λf(t)
X

w1∈Vn

X

w2∈Vn:d(w1,w2)≤2t

d(u, w1)d(u, w2)

(b)

≤ λf(t)|N (2t)|
X

w1∈Vn

d(u, w1)(d(u, w1) + 2t)

= λf(t)|N (2t)|
�
X

w∈Vn

d(u, w)2 + 2t
X

w∈Vn

d(u, w)

�

(c)

≤ λf(t)|N (2t)|(1 + 2t)
X

w∈Vn

d(u, w)2, (VII.18)

where (a) follows from Lemma VII.2, (b) is due to the
inequality d(u, w2) ≤ d(u, w1) + d(w1, w2) ≤ d(u, w1) + 2t,
and (c) follows from bounding d(u, w) ≤ d(u, w)2.

Next, an application of inequality (VII.17) and Chebyshev’s
inequality yields

Pv

�
X

v∈Vn

d(u, w)Xw(t) ≤ 1

2

X

w∈Vn

d(u, w)

�

≤ 4λf(t)|N (2t)|(1 + 2t) ·
P

w∈Vn
d(u, w)2

(P
w∈Vn

d(u, w)
)2 ,

(VII.19)

where the right hand side uses the variance upper
bound (VII.18). To proceed, we bound the right hand side
of (VII.19) when G is a regular tree or a lattice. Although we
treat these cases separately for convenience, the methodology
is the same.

Case 1: G is a k-regular tree.

In this case, Lemma B.3 shows that

X

w∈Vn

d(u, w) ≥ n log n

k log(k − 1)

X

w∈Vn

d(u, w)2 ≤ 4n log2 n

log2(k − 1)
.

Substituting the above bounds into (VII.19) shows that

Pv

�
X

w∈Vn

d(u, w)Xw(t) ≤ n log n

2k log(k − 1)

�

≤ λf(t)|N (2t)|(1 + 2t)
16k2

n

≤ 50tλf(t)|N (2t)|k2

n
. (VII.20)

A naïve method for deriving a probabilistic bound for
minu∈Vn

P
w∈Vn

d(u, w)Xw(t) is to take a union bound over
the events pertaining to

P
w∈Vn

d(u, w)Xw(t) for all u ∈ Vn.
However, the probability bound in (VII.20) is not small enough
for a union bound to work, since |Vn| = n. Fortunately, as we
shall see, it suffices to take a union bound over a much smaller
set of vertices. To this end, define

m :=

.
rn + 1 − log n

6k log(k − 1)

/
.

Since rn ∼ log(n) / log(k−1) (see (III.1)), m ∼
(
1 − 1

6k

)
rn.

In addition, it holds for n sufficiently large that

|Nv0(m)| (d)
= 1 +

k

k − 2
((k − 1)m − 1)

(e)

≤ 1 +
k

k − 2
(k − 1)(1−

1
12k ) log n

log(k−1)

(f)

≤ 2kn1− 1
12k ,

where (d) follows from Lemma A.1, (e) holds since m ≤(
1 − 1

12k

)
log n

log(k−1) for n sufficiently large due to the asymptot-
ics of rn, and (f) follows from upper bounding the coefficient
on the first-order term in the second line. Combining (VII.20)
with a union bound over elements of Nv0(m) implies

Pv

�
min

u∈Nv0 (m)

X

w∈Vn

d(u, w)Xw(t) ≤ n log n

2k log(k − 1)

�

≤ 100tλf(t)|N (2t)|k3n− 1
12k . (VII.21)

Next, define the event

E :=

�
n

2
≤ Y (t) ≤ 3n

2

�
.

If the event E holds, we have the series of implications

min
u∈Nv0(m)

X

w∈Vn

d(u, w)πw(t) ≤ log n

3k log(k − 1)

⇒ min
u∈Nv0 (m)

1

3n/2

X

w∈Vn

d(u, w)Xw(t) ≤ log n

3k log(k − 1)

⇒ min
u∈Nv0 (m)

X

w∈Vn

d(u, w)Xw(t) ≤ n logn

2k log(k − 1)
.

Above, the first implication uses πw(t) = Xw(t)/Y (t) and
the fact that Y (t) ≤ 3n/2 on E . We then have, for t ≤
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F
�

log n
4 log max{β,λ}

�
,

Pv

�
min

u∈Nv0 (m)

X

w∈Vn

d(u, w)πw(t) ≤ log n

3k log(k − 1)

�

≤ Pv

�
min

u∈Nv0 (m)

X

w∈Vn

d(u, w)Xw(t) ≤ n log n

2k log(k − 1)

�

+ Pv(Ec)

≤ 100tλf(t)|N (2t)|k3n− 1
12k +

16√
n

. (VII.22)

The final inequality above follows from Lemma VII.3 as
well as the bound in (VII.21). If we additionally have t ≤
F
�

log n
24k log λ

�
, we have the bounds

t ≤ (1 + on(1))
log log n

log(k − 1)

λf(t) ≤ n
1

24k ,

|N (2t)| ≤ log2+on(1) n,

where on(1) → 0 as n → ∞. This shows in particular that the
final expression in (VII.22) can be bounded for n sufficiently
large by

16√
n

+
200k3(log log n)(log3 n)

log(k − 1)
n− 1

24k ≤ n− 1
30k .

To put everything together, the way we have defined m implies
that for every u ∈ Vn there is u0 ∈ Nv0(m) such that
d(u, u0) ≤ log n

6k log(k−1) . Moreover,
X

w∈Vn

d(u, w)πw(t)

≥
X

w∈Vn

(d(u0, w) − d(u, u0))πw(t)

≥
X

w∈Vn

d(u0, w)πw(t) − log n

6k log(k − 1)
.

We therefore have

min
u0∈Nv0 (m)

X

w∈Vn

d(u0, w)πw(t) >
log n

3k log(k − 1)

⇒ min
u∈Vn

X

w∈Vn

d(u, w)πw(t) >
log n

6k log(k − 1)
.

To summarize, we have shown that if we set

a1 := (max{4 logβ, 24k log λ})−1
,

then for t ≤ F (a1 log n),

Pv

�
min
u∈Vn

X

w∈Vn

d(u, w)πw(t) ≤ log n

6k log(k − 1)

�

≤ n− 1
30k .

Taking a union bound over 0 ≤ t ≤ F (a1 log n), and recalling
that Eπ(t)[d(v∗, u)] =

P
w∈Vn

d(u, w)πw(t), we arrive at

Pv

)
max

0≤t≤F (a1 log n)
Eπ(t)[d(v∗, bvB(t))] ≤ log n

6k log(k − 1)

*

≤ F (a1 log n)n− 1
30k .

Since F (a1 log n) ∼ log log n
log(k−1) , the right hand side tends to

0 uniformly over v ∈ Vn as n → ∞, and the result of
Lemma V.2 for trees follows. Case 2: G is a `-dimensional

lattice.

By Lemma B.5, there exist constants c3, c4 > 0 depending
only on ` such that

X

w∈Vn

d(u, w) ≥ c3n
1+ 1

`

X

w∈Vn

d(u, w)2 ≤ c4n
1+ 2

` .

Substituting the above bounds into (VII.19) shows that

Pv

�
X

w∈Vn

d(u, w)Xw(t) ≤ c3

2
n1+ 1

`

�

≤ 4λf(t)|N (2t)|(1 + 2t)
c4n

1+2/`

c2
3n

2+2/`

≤
)

12c4

c3

*
tλf(t)|N (2t)|

n
.

As in the case of regular trees, we need to take a union
bound over a small set of vertices. The following combinatorial
lemma guarantees the existence of such a set.

Lemma VII.5: For every n, there exists a set Sn whose size
can be bounded as a function of ` only, such that for every
u ∈ Vn, there exists u0 ∈ Sn such that d(u, u0) ≤ c3

6 n1/`.
Before proving the lemma, we shall show how we can

use it to prove Lemma V.2 for lattices. Mirroring the steps
of (VII.22) in the case of lattices, if t ≤ F

�
log n

4 log max{β,λ}

�

we arrive at the probability bound

Pv

�
min
u∈Sn

X

w∈Vn

d(u, w)πw(t) ≤ c3

3
n1/`

�

≤ 16√
n

+
12c4

c2
3

|Sn| ·
tλf(t)|N (2t)|

n
. (VII.23)

If we additionally have t ≤ F
�

log n
3 log λ

�
, we have the bounds

t ≤ O
�
(log n)

1
`+1

�

λf(t) ≤ n1/3

|N (2t)| ≤ O
�
(log n)

`
`+1

�
.

The big-O bounds follow from the asymptotic behavior of
F (see (V.3)) as well as the asymptotic behavior of |N (t)|
(see (A.8)). For n sufficiently large, we can therefore bound
the right hand side in (VII.23) by

16√
n

+ O((log n)n−2/3) ≤ 20√
n

, (VII.24)

where the final inequality holds for n sufficiently large. Putting
everything together, since for every u ∈ Vn we can find
u0 ∈ Sn such that d(u, u0) ≥ c3

6 n1/`, we have

min
u0∈Sn

X

w∈Vn

d(u0, w)πw(t) >
c3

3
n1/`

⇒ min
u∈Vn

X

w∈Vn

d(u, w)πw(t) >
c3

6
n1/`.
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Hence, if we set

a0
1 := (max{4 logβ, 4 log λ})−1

,

then (VII.23) and (VII.24) imply that for t ≤ F (a0
1 log n),

Pv

�
min
u∈Vn

X

w∈Vn

d(u, w)πw(t) ≤ c3

6
n1/`

�
≤ 20√

n
.

Taking a union bound over 0 ≤ t ≤ F (a0
1 log n) and recalling

the definition of Eπ(t)[d(v∗, u)], we arrive at

Pv

)
max

0≤t≤F (a0

1 log n)
Eπ(t)[d(v∗, bvB(t))] ≤ c3

6
n1/`

*

≤ 20F (a0
1 log n)√
n

.

Due to the asymptotic behavior of F (see (V.3)), the right hand
side tends to 0 uniformly over v ∈ Vn as n → ∞, and the
result of Lemma V.2 for lattices follows.

We now turn to the proof of Lemma VII.5.
Proof of Lemma VII.5: Let m be a positive integer.

We define an m-covering of Vn to be S ⊆ Vn such that for
any u ∈ Vn, there exists v ∈ S such that d(u, v) ≤ m. We also
define an m-packing of Vn to be S ⊆ Vn such that for any
u, v ∈ S, d(u, v) > m. We say a S is a maximal m-packing of
Vn if it has the maximum possible cardinality. A fundamental
result on coverings and packings is that a maximal m-packing
is also a valid covering [53, Lemma 5.12], so the proof focuses
on bounding the size of a maximal packing. Our proof is based
on [53, Lemma 5.13].

Set m := b c3

8 n1/`c and let S ⊂ Vn be a 2m-packing. This in
particular implies that {Nu(m)}u∈S is a collection of disjoint
sets satisfying

[

u∈S

Nu(m) ⊆
[

u∈Vn

Nu(m) ⊆ Nv0(rn + 1 + m).

This in turn implies
X

u∈S

|Nu(m)| = |S| · |N (m)| ≤ |N (rn + 1 + m)|.

(VII.25)

Since rn � n1/` (see (III.1)) and m � n1/`, we can find
constants C1, C2 > 0 depending only on ` such that

C1n
1/` ≤ m ≤ rn + 1 + m ≤ C2n

1/`.

Next, recall that |N (t)| ∼ c`t
`, where c` is a constant

depending only on ` (see (A.8)). Hence

|S| ≤ |N (rn + 1 + m)|
|N (m)| ∼ (rn + 1 + m)`

m`
≤
)

C2

C1

*`

.

Note that the right hand side is of constant order even as n →
∞. Moreover, the bound holds for all 2m-packings, including
maximal packings that are also coverings. This guarantees the
existence of a 2m-covering of size bounded by a constant
depending on ` even as n → ∞. We conclude by noting that
2m ≤ c3

4 n1/`.

C. Upper Bounding the Estimation Error: Proof of

Lemma V.3

For any vertex v ∈ Vn, we can write

Eπ(t)[d(v∗, bvB(t))]
(a)

≤ Eπ(t)[d(v∗, v)]

=
X

w∈Vn

d(w, v)πw(t)

(b)

≤
X

w∈Vn

d(w, v)
Xw(t)

Xv(t)
,

where (a) follows since Eπ(t)[d(v∗, bvB(t))] =
minu∈Vn

Eπ(t)[d(v∗, u)] and (b) follows since πw(t) =
Xw(t)/Y (t) and Y (t) ≥ Xv(t). For distinct vertices
w, v ∈ V , recall the notation fvw(t) :=

Pt
s=0 |Nv(s)\Nw(s)|

and further recall that D(Q0, Q1) is the symmetrized
Kullback-Liebler divergence between Q0 and Q1

(see (VII.10)). As a shorthand, denote θ := D(Q0, Q1)/2.
Next, define the event

Evw :=

�
Xv(t)

Xw(t)
≥ eθfvw(t)

�
.

By Lemma VII.4, Pv(Ec
vw) ≤ e−I(θ)fvw(t), where I(·) is the

large-deviations rate function defined in Lemma VII.4. On the
event Ev :=

S
w∈Vn\{v} Evw, we have the bound

Eπ(t)[d(v∗, bvB(t))] ≤
X

w∈Vn

d(w, v)
Xw(t)

Xv(t)

≤
X

w∈Vn

d(w, v)e−θfvw(t). (VII.26)

To bound the final summation in (VII.26), we split the
summation into two parts: w such that d(v, w) ≤ 2t and w
such that d(v, w) > 2t. To handle the first part, it is useful to
define the function

f1(t) :=

tX

s=0

|Na(s) \ Nb(s)|

where a, b are any two neighboring vertices (since the graph
is vertex-transitive, we obtain the same formula for any two
neighboring a, b). We may now bound the summation over w
such that d(v, w) ≤ 2t as

X

w∈Vn:d(w,v)≤2t

d(w, v)e−θfvw(t) ≤ 2t|N (2t)|e−θf1(t).

(VII.27)
To handle the summation over w such that d(v, w) > 2t, first
note that

fvw(t) =
tX

s=0

|Nv(s) \ Nw(s)| (c)
=

tX

s=0

|Nv(s)| = f(t),

(VII.28)
where the equality (c) follows since Nv(s) ∩ Nw(s) = ∅ for
0 ≤ s ≤ t because d(v, w) > 2t. Hence we can bound the
second part of the summation by

X

w∈Vn:d(w,v)>2t

d(w, v)e−θf(t) ≤
X

w∈Vn:d(w,v)>2t

ne−θf(t)

≤ n2e−θf(t), (VII.29)
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where we have used the coarse bound d(w, v) ≤ n above.
Putting everything together, the total bound on the estimation
error on the event Ev is

2t|N (2t)|e−θf1(t) + n2e−θf(t).

The remaining element of the proof is to bound Pv(Ec
v).

We can write

Pv(Ec
v)

(d)

≤
X

w∈Vn\{v}
Pv(Ec

vw)

(e)

≤
X

w∈Vn\{v}
e−I(θ)fvw(t)

(f)

≤
X

w∈Vn:d(w,v)≤2t

e−I(θ)f1(t)

+
X

w∈Vn:d(w,v)>2t

e−I(θ)f(t)

≤ |N (2t)|e−I(θ)f1(t) + ne−I(θ)f(t). (VII.30)

Above, (d) is due to a union bound, (e) follows from
Lemma VII.4, and (f) uses f1(t) ≤ fvw(t) as well as
fvw(t) = f(t) if d(v, w) > 2t (see (VII.28)). Putting
everything together, we have shown that for any v ∈ Vn,

Pv

�
Eπ(t)[d(v∗, bvB(t))] >

2t|N (2t)|e−θf1(t) + n2e−θf(t)
�

≤ |N (2t)|e−I(θ)f1(t) + ne−I(θ)f(t).

Note in particular that the probability bound above holds
uniformly over all v ∈ Vn. Focusing on the special cases of
regular trees and lattices, we will simplify the bound on the
estimation error as well as the probability bound.

Case 1: G is a k-regular tree. Lemma A.1 provides
the asymptotics of various combinatorial quantities related to
neighborhood sizes, summarized below:

|N (2t)| ∼ k

k − 2
(k − 1)2t

f1(t) ∼
(k − 1)t+1

k − 2

f(t) ∼ k

(k − 2)2
(k − 1)t+1

F (z) ∼ log z

log(k − 1)
.

The terms 2t|N (2t)|e−θf1(t) and |N (2t)|e−I(θ)f1(t) can there-
fore be bounded by e−O((k−1)t) for t sufficiently large. If t ≥
F
�

4 log n
θ

�
, then n2e−θf(t) ≤ e−

1
2 θf(t) = e−O((k−1)t), where

the hidden factors in the big O do not depend on n. Similarly,
if t ≥ F

�
2 log n
I(θ)

�
, then ne−I(θ)f(t) ≤ e−O((k−1)t), where

again, the hidden factors do not depend on n.
Putting everything together, we have shown that for t ≥

F
�

4 log n
min{θ,I(θ)}

�
,

Pv

�
Eπ(t)[d(v∗, bvB(t))] > e−O((k−1)t)

�
≤ e−O((k−1)t),

which implies the desired result for k-regular trees.

Case 2: G is a `-dimensional lattice. Lemma A.3 proves
the following asymptotic behavior of neighborhood sizes in
`-dimensional lattices:

|N (2t)| � t`, f(t) � t`+1, F (z) � z
1

`+1 .

Additionally, we can lower bound f1(t) as follows: if u, v are
adjacent, then

f1(t) =

tX

s=0

|Nv(s) \ Nu(s)| ≥ t + 1, (VII.31)

where the inequality above uses the fact that Nv(s)\Nu(s) 6=
∅ for all s ≥ 0. We can therefore bound the terms

2t|N (2t)|e−θf1(t) ≤ O
(
t`+1e−θt

)

|N (2t)|e−I(θ)f1(t) ≤ O
�
t`e−I(θ)t

�
.

Additionally, as in the previous case, if t ≥ F
�

4 log n
min{θ,I(θ)}

�

then n2e−θf(t) and ne−I(θ)f(t) are bounded by e−O(t`+1),
where the hidden factors in the big O do not depend on
n. Putting everything together, we have shown that for t ≥
F
�

4 log n
min{θ,I(θ)}

�
,

Pπ(Vn)

(
Eπ(t)[d(v∗, bvB(t))] > O

(
t`+1e−θt

))

≤ O
�
t`e−I(θ)t

�
, (VII.32)

which implies the desired result for n sufficiently large if we
set b2 = 0.5 · min{θ, I(θ)}.

VIII. PROOF OF THE MSPRT UPPER BOUNDS

A. Useful Preliminary Results

We start by stating and recalling some useful combinatorial
results concerning the sizes of neighborhoods in regular trees
and lattices. To begin, for vertices u, v recall that

fvu(t) :=

tX

s=0

|Nv(s) \ Nu(s)|.

Moreover, recall that the neighborhood growth function (orig-
inally defined in (III.4)) is

f(t) :=

tX

s=0

|N (s)|.

We also define, for any pair of adjacent vertices u, v, the
function

f1(t) :=

tX

s=0

|Nv(s) \ Nu(s)|.

We also define the inverse functions Fvu = f−1
vu , F =

f−1, F1 = f−1
1 . These inverse functions are well-defined since

fvu, f, f1 are strictly increasing functions. In k-regular trees,
we have the asymptotics

F1(z) ∼ log z

log(k − 1)
. (VIII.1)

For a proof, see Lemma A.1. In `-dimensional lattices, we have
the orderwise asymptotics

|N (t)| � t`, f(t) � t`+1, F (z) � z
1

`+1 . (VIII.2)
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For a more precise statement, see Lemma A.3. Next, we prove
a few simple, generic results regarding these functions. The
following result provides a simple but useful bounds for f1 that
hold in regular trees and lattices.

Lemma VIII.1: Suppose that G is an infinite regular tree or
lattice and u, v ∈ V are two distinct vertices. If t2 ≥ t1 ≥ 0,
fvu(t2) − fvu(t1) ≥ t2 − t1.

Proof: For any two distinct vertices u, v and any
non-negative integer s, |Nv(s) \ Nu(s)| ≥ 1. Hence

fvu(t2) − fvu(t1) =

t2X

s=t1+1

|Nv(s) \ Nu(s)| ≥ t2 − t1.

Next, we prove a simple linear upper bound for F1, since
its exact expression is challenging to compute in lattices.

Lemma VIII.2: Let G be an infinite regular tree or lattice.
Then F1(z) ≤ z.

Proof: Lemma VIII.1 implies the lower bound

f1(t) = f1(0) + f1(t) − f1(0) ≥ t + 1 ≥ t.

Setting z = f1(t), we have F1(z) = t which implies the
desired result.

The following lemma derives conditions under which Fvu =
F .

Lemma VIII.3: If z < f(d(u, v)/2) then F (z) = Fvu(z).
Proof: For s < d(u, v)/2, Nv(s) and Nu(s) are disjoint

so Nv(s) \ Nu(s) = Nv(s). Hence for t < d(u, v)/2,

fvu(t) =

tX

s=0

|Nv(s) \ Nu(s)| =

tX

s=0

|Nv(s)| = f(t).

It follows that Fvu(z) = F (z) if F (z) < d(u, v)/2. Equiva-
lently, z < f(d(u, v)/2) which proves the lemma.

Finally, at the core of the analysis is the following large-
deviations-type result. It essentially follows as a corollary from
the large-deviations result Lemma VII.4 which was used in the
analysis of the Bayesian setting.

Lemma VIII.4: Let u, v ∈ V be any two vertices. For any
x > 0,

Pv (Zvu(t) ≤ (D(Q0, Q1) − x)fvu(t)) ≤ e−I(x)fvu(t).

Above, D(Q0, Q1) is the symmetrized Kulback-Liebler diver-
gence between Q0 and Q1, and I(·) is the rate function defined
in (VII.11). Moreover, I(x) > 0 for x > 0.

Proof: Recall from the analysis of the Bayesian setting
that for any vertex v ∈ Vn,

πv(t) := P(v∗ = v | y(0), . . . , y(t)).

Hence, by Bayes’ rule,

πv(t)

πu(t)
=

dPv

dPu
(y(0), . . . , y(t)) = eZvu(t).

The desired result now follows from a direct application of
Lemma VII.4.

B. Performance of the MSPRT in Trees: Proof of

Theorem VI.5

Our first goal is to establish a probabilistic bound for Tn(v)
under the measure Pv. We can write

Pv(Tn(v) > t)

≤ Pv

(
∃u ∈ Vn \ {v} s.t. Zvu(t) < log n2/α

)

≤
X

u∈Vn\{v}
Pv

(
Zvu(t) < log n2/α

)
. (VIII.3)

Next, define θ := D(Q0, Q1)/2 and suppose that t is suffi-
ciently large so that

log
n2

α
≤ θf1(t). (VIII.4)

Letting I(·) be the large-deviations rate function in
Lemma VIII.4, we can upper bound the final summation
in (VIII.3) by

X

u∈Vn\{v}
Pv (Zvu(t) < θf1(t))

(a)

≤
X

u∈Vn\{v}
Pv (Zvu(t) < θfvu(t))

(b)

≤
X

u∈Vn\{v}
exp (−I(θ)fvu(t))

(c)

≤ exp (log n − I(θ)f1(t)) . (VIII.5)

Above, (a) is due to f1(t) ≤ fvu(t), (b) follows from
Lemma VIII.4 and (c) is again due to f1(t) ≤ fvu(t) and
the observation that the summation is over at most n terms.
We now define the quantities

C(Q0, Q1) := min{θ, I(θ)}

tn := F1

)
log n2/α

C(Q0, Q1)

*
.

In particular, if t ≥ tn then (VIII.4) holds and log n ≤
I(θ)f1(t). The expectation of Tn(v) can then be bounded as

Ev[Tn(v)] =

∞X

t=0

Pv(Tn(v) > t)

(d)

≤ tn +

∞X

t=tn

exp (log n − I(θ)f1(t))

(e)

≤ tn + exp (log n − I(θ)f1(tn))

∞X

s=0

e−I(θ)s

(f)

≤ tn +
1

1 − e−I(θ)
. (VIII.6)

Above, (d) is due to the upper bound (VIII.5) on the prob-
abilities in the summation which holds for t ≥ tn, (e) uses
f1(t) − f1(tn) ≥ t − tn which was proved in Lemma VIII.1
and (f) follows from noting I(d̃)f1(tn) ≥ log n and using
the geometric sum formula on the summation. Noting that

Authorized licensed use limited to: Princeton University. Downloaded on August 23,2023 at 17:44:02 UTC from IEEE Xplore.  Restrictions apply. 



SRIDHAR AND POOR: QUICKEST INFERENCE OF NETWORK CASCADES WITH NOISY INFORMATION 2517

Tn ≤ Tn(v), (VIII.6) implies

lim sup
n→∞

maxv∈Vn
Ev[Tn]

tn

≤ lim sup
n→∞

maxv∈Vn
Ev[Tn(v)]

tn
≤ 1.

From the asymptotic behavior of F1 (see (VIII.1)), it follows
that

tn ∼ log log n

log(k − 1)
,

which proves the desired result.

C. Performance of the MSPRT in Lattices: Proof of

Theorem VI.7

As in the proof of Theorem VI.5, we begin by bounding
Pv(Tn(v) > t). A union bound yields

Pv(Tn(v) > t)

≤
X

u∈Vn:
0<d(v,u)≤K

Pv

)
Zvu(t) < log

2K|N (K)|
α

*

+
X

u∈Vn:
d(v,u)>K

Pv

)
Zvu(t) < log

2n2

α

*
. (VIII.7)

To bound the summations above, we first recall a few
quantities. Define θ := eD(Q0, Q1)/2 and C(Q0, Q1) :=
min{θ, I(θ)}, where I(·) is the large-deviations rate function
used in Lemma VIII.4. Also define

tn,1 := F1

)
log 2K|N (K)|/α

C(Q0, Q1)

*

tn,2 := max
u∈Vn:d(u,v)>K

Fvu

)
log 2n2/α

C(Q0, Q1)

*
.

For t ≥ tn,1, we will make use of the following inequalities
to bound the first summation in (VIII.7):

log
2K|N (K)|

α
≤ θf1(t) and log |N (K)| ≤ I(θ)f1(t).

(VIII.8)

Using the first inequality in (VIII.8), we can bound the first
summation in (VIII.7) by

X

u∈Vn:
0<d(v,u)≤K

Pv (Zvu(t) ≤ θf1(t))

(a)

≤
X

u∈Vn:
0<d(v,u)≤K

Pv (Zvu(t) ≤ θfvu(t))

(b)

≤
X

u∈Vn:
0<d(v,u)≤K

e−I(θ)fvu(t)

(c)

≤ exp (log |N (K)| − I(θ)f1(t)) . (VIII.9)

Above, (a) and (c) are due to f1(t) ≤ fvu(t), and (b) follows
from Lemma VIII.4. Similarly, for t ≥ tn,2 we have, for all

u ∈ Vn satisfying d(u, v) > K ,

log
2n2

α
≤ θfvu(t) and log n ≤ I(θ)fvu(t).

(VIII.10)

Using the same reasoning as in (VIII.9), we have the following
bound on the second summation in (VIII.7) for t ≥ tn,2:

exp

)
log n − I(θ) min

u∈Vn:d(u,v)>K
fvu(t)

*
. (VIII.11)

Plugging in the bounds (VIII.9) and (VIII.11) into (VIII.7)
shows that, for t ≥ max{tn,1, tn,2} =: tn,

Pv(Tn(v) > t) ≤ exp (log |N (K)|−I(θ)f1(t))

+ exp

)
log n−I(θ) min

u∈Vn:d(v,u)>K
fvu(t)

*
.

(VIII.12)

Next, define the quantities

An := log |N (K)| − I(θ)f1(tn)

Bn := log n − I(θ) min
u∈Vn:d(u,v)>K

fvu(tn),

and notice that An, Bn ≤ 0 in light of the second inequalities
in (VIII.8) and (VIII.10). Using the relation Ev[Tn(v)] =P∞

t=0 Pv(Tn(v) > t) ≤ tn +
P∞

t=tn
Pv(Tn(v) > t), we have

Ev[Tn(v)]
(d)

≤ tn +
∞X

t=tn

elog |N (K)|−I(θ)f1(t)

+

∞X

t=tn

elog n−I(θ)minu∈Vn :d(u,v)>K fvu(t)

(e)

≤ tn +
(
eAn + eBn

) ∞X

s=0

e−I(θ)s

(f)

≤ tn +
1

1 − e−I(θ)
. (VIII.13)

Above, (d) is a consequence of (VIII.12), (e) is due to
the inequality fvu(t0) − fvu(t) ≥ t0 − t which was proved
in Lemma VIII.1, and (f) holds since An.Bn ≤ 0 and
by applying the geometric sum formula. Next, using the
inequality Tn ≤ Tn(v), (VIII.13) implies

lim sup
n→∞

maxv∈Vn
Ev[Tn]

tn

≤ lim sup
n→∞

maxv∈Vn
Ev[Tn(v)]

tn
≤ 1.

It remains to study the asymptotics of tn as n grows large.
From the asymptotic behavior of |N (t)| (VIII.2), we have
|N (K)| � K` = log n. Hence

tn,1 � F1

)
log log n

C(Q0, Q1)

*
= O(log log n), (VIII.14)

where the final big-O bound is due to the inequality F1(z) ≤
z, proved in Lemma VIII.2. Next, we establish the asymptotic
behavior of tn,2. We have, for n sufficiently large,

f

)
K

2

*
� (log n)1+

1
` ≥ log 2n2/α

C(Q0, Q1)
, (VIII.15)
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where the asymptotic behavior of f(K/2) follows
from (VIII.2) and the second inequality holds for n
sufficiently large. Equation VIII.15 satisfies the condition of
Lemma VIII.3, so we have

tn,2 = F

)
log 2n2/α

C(Q0, Q1)

*
� (log n)

1
`+1 . (VIII.16)

Above, the asymptotic behavior of F follows from (VIII.2).
Hence tn � (log n)

1
`+1 , which proves the theorem.

IX. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we considered the problem of quickest estima-
tion of a cascade source from noisy information. We studied
a Bayesian and minimax formulation of this problem and
derived optimal estimators in the regime of large networks
under simple cascade dynamics and network topologies. Fur-
thermore, our results exposed the interplay between the net-
work topology and the performance of optimal estimators.

There remain several avenues for future work. Although
we examined simple networks and cascade dynamics for
mathematical tractability, in important next step is to study
source estimation for more realistic networks and cascade
dynamics [22], [23], [24], [25], [25], [26], [27]. We remark
that in many cascade models, the cascade evolution is non-

deterministic, hence it will be difficult to compute the estima-
tors proposed in this paper. We expect that tractable relaxations
of the estimators we consider may be more amenable to the
analysis of more complex scenarios.

Another exciting future direction is sampling with incom-

plete information. In this work we assumed that all public
signals at a given point in time are observable, but when the
network is large this may be infeasible. A natural question
of interest is to characterize optimal source estimators given
that only a budget of B public signals can be observed at
any timestep. There are many possibilities for choosing the B
signals to observe: one may target potential super-spreaders
(i.e., high-degree vertices) or choose vertices adaptively.

APPENDIX A
BOUNDS ON THE SIZE OF NEIGHBORHOODS

We begin by defining and recalling some notation. Given a
graph G, a vertex v, and a non-negative integer t, we define

∂Nv(t) := {u ∈ V : d(u, v) = t}
Nv(t) := {u ∈ V : d(u, v) ≤ t}.

Since G is vertex-transitive, |∂Nv(t)| does not depend on v ∈
V ; for brevity of notation, we will therefore write |∂N (t)|.
The same holds for |Nv(t)|, which we will often write as
|N (t)|. Additionally recall the neighborhood growth function

f(t) :=

tX

s=0

|N (s)|

as well as

f1(t) :=

tX

s=0

|Nu(s) \ Nv(s)|,

where u, v are adjacent vertices. As explained earlier, due to
the vertex-transitivity of the underlying graph, the formula for
f1(t) is the same for any pair of adjacent vertices. We also
define F1 = f−1

1 .
The following result provides exact formulas for

|∂N (t)|, |N (t)| as well as asymptotic behavior for
f(t), f1(t), F (z) and F1(z) in regular trees.

Lemma A.1: Let G be a k-regular tree with k ≥ 3. Then

|∂N (t)| =

�
1 t = 0

k(k − 1)t−1 t ≥ 1;
(A.1)

|N (t)| = 1 +
k

k − 2

(
(k − 1)t − 1

)
; (A.2)

f1(t) ∼
(k − 1)t+1

k − 2
; (A.3)

f(t) ∼ k

(k − 2)2
(k − 1)t+1; (A.4)

F1(z) ∼ log n

log(k − 1)
(A.5)

F (z) ∼ log z

log(k − 1)
. (A.6)

Proof: Fix an arbitrary vertex v, and suppose we root G
at v so that |∂N (t)| is the number of children at height t from
the root. Since ∂Nv(0) = {v} and the root node v is the only
vertex with k children while all others have k − 1 children,
we have the formula |∂N (t)| = k(k − 1)t−1 for t ≥ 1.

Next, to compute |N (t)|, we use the formula for |∂N (t)|
and the geometric sum formula:

|N (t)| =
tX

s=0

|∂N (s)| = 1 + k
t−1X

s=0

(k − 1)s

= 1 +
k

k − 2

(
(k − 1)t − 1

)
.

The same techniques can be used to derive f(t):

f(t) =

tX

s=0

|N (s)|

=

tX

s=0

)
1 +

k

k − 2
((k − 1)s − 1)

*

= −2(t + 1)

k − 2
+

k

k − 2

tX

s=0

(k − 1)s

= −2(t + 1)

k − 2
+

k

(k − 2)2
(
(k − 1)t+1 − 1

)
.

To compute f1(t), we start by computing |Nv(s) \ Nu(s)|.
Let u1, . . . , uk be the neighbors of u in G and let S1, . . . , Sk

be a partition of the vertices exactly distance s from u, such
that the path connecting u and a vertex in Si must cross ui.
Simple counting arguments show that |Si| = (k − 1)s−1 for
each i, and that if we assume without loss of generality that
u1 = v,

|Nu(s) \ Nv(s)| = |S2 ∪ S3 ∪ . . . ∪ Sk| = (k − 1)s.
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Hence we have

f1(t) =

tX

s=0

(k − 1)s =
(k − 1)t+1 − 1

k − 2
.

The first-order behavior of F1 = f−1
1 is a direct consequence.

We now study F (z), the inverse function of f . Substituting
t = log z

log(k−1) in the formula for f(t), we have

f

)
log z

log(k − 1)

*
=

k

(k − 2)2

�
(k − 1)

log z

log(k−1)
+1 − 1

�

− 2

k − 2

)
log z

log(k − 1)
+ 1

*

=
k(k − 1)

(k − 2)2
z − k

(k − 2)2

− 2

k − 2

)
log z

log(k − 1)
+ 1

*

Since k(k−1)
(k−2)2 > 1, we have for z sufficiently large (in

particular, z is larger than some function of k alone) that
f
�

log z
log(k−1)

�
≥ z, which is equivalent to F (z) ≤ log z

log(k−1) .
On the other hand,

f

)
log z

log(k − 1)
− 3

*
=

k

(k − 1)2(k − 2)2
z − k

(k − 2)2

− 2

k − 2

)
log z

log(k − 1)
− 3

*

≤ k

(k − 1)2(k − 2)2
z

≤ k

(k − 1)2
z.

Since k < (k−1)2 for k ≥ 3, we have f
�

log z
log(k−1) − 3

�
≤ z,

which in turn implies that F (z) ≥ log z
log(k−1) − 3.

A useful corollary of (A.2) is a characterization of rn in
k-regular trees.

Corollary A.2: Let G be a k-regular tree and let {Vn}n≥1

be a sequence of candidate sets satisfying Assumption III.4.
Then

rn =

2
log
(

k−2
k (n − 1) + 1

)

log(k − 1)

3
∼ log n

log(k − 1)
.

The following lemma computes the asymptotic behavior for
|∂N (t)|, |N (t)|, f(t) and F (z) in lattices.

Lemma A.3: Let G be a `-dimensional lattice. Then

|∂N (t)| ∼ 2`

(` − 1)!
t`−1; (A.7)

|N (t)| ∼ 2`

`!
t`; (A.8)

f(t) ∼ 2`

(` + 1)!
t`+1; (A.9)

F (z) ∼
)

(` + 1)!

2`
z

* 1
`+1

. (A.10)

Proof: Recall that Z is the set of integers. For a vector
x ∈ Z, let kxk0 denote the number of nonzero entries of x and

let kxk1 denote the `1 norm of x. For every integer 1 ≤ k ≤ `
and an integer t ≥ 0, define the set

Sk(t) :=
�
x ∈ Z

d : kxk0 = k and kxk1 = t



.

Since the Sk(t)’s partition ∂N0(t), we have |∂N (t)| =P`
k=1 |Sk(t)|. We proceed by computing the size of |Sk(t)|

via combinatorial arguments. First, we choose the k nonzero
coordinates of a vector in Sk(t); this can be done in

(
`
k

)
ways.

Next, note that the number of positive integer solutions to
y1 + . . .+yk = t is exactly

(
t−1
k−1

)
if t ≥ k else it is 0; this can

be seen through standard counting arguments. Now, since the
number of vectors in Sk(t) for which the absolute value of
the entries are given by y1, . . . , yk (in that order) is 2k (since
each nonzero entry of x can be positive or negative), we may
put everything together to obtain

|Sk(t)| = 2k

)
`

k

*)
t − 1

k − 1

*
if t ≥ k, else 0.

When t is large, the first-order term of |Sk(t)| is
2k

(k−1)!

(
`
k

)
tk−1. It follows that

|∂N (t)| ∼ |S`(t)| ∼
2`

(` − 1)!
t`−1. (A.11)

Next, we use (A.11) to obtain the first-order behavior of
|N (t)|. To this end, we first note that for any p ≥ 0,
approximating a summation by an integral gives

1

p + 1

�
kp+1
1 − (k0 − 1)p+1

�
=

Z k1

k0−1

spds ≤
k1X

k=k0

kp

≤
Z k1+1

k0

spds =
1

p + 1

�
(k1 + 1)p+1 − kp+1

0

�
.

In particular, when k1 is much larger than k0,

k1X

k=k0

kp ∼ 1

p + 1
kp+1
1 .

The first-order term of |N (t)| is therefore

|N (t)| =

tX

s=0

|∂N (t)| ∼
tX

s=`

2`

(` − 1)!
s`−1 ∼ 2`

`!
t`.

Through analogous arguments, f(t) ∼ 2`

(`+1)! t
`+1. The first

order behavior of F is an immediate consequence.
A useful corollary of (A.8) is a characterization of rn in

`-dimensional lattices.
Corollary A.4: Let G be a `-dimensional lattice {Vn}n≥1

be a sequence of candidate sets satisfying Assumption III.4.
Then

rn ∼
)

`!

2`
n

*1/`

.

APPENDIX B
SUMMATIONS OF GEODESICS

The goal of this section is to bound summations of the
form

P
w∈Vn

d(w, v) and
P

w∈Vn
d(w, v)2, which are useful

in studying the Bayesian formulation of the quickest source
estimation problem.
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A. Regular Trees

We begin by proving a few intermediate results. The
following lemma will provide a useful lower bound forP

w∈Vn
d(w, v).

Lemma B.1: Let G be a regular tree, let v0 ∈ V and let r
be a positive integer. Then for all v ∈ Nv0(r),

X

w∈Nv0(r)

d(w, v) ≥
X

w∈Nv0(r)

d(w, v0).

To prove the lemma, we will make use a notion of centrality
in trees. Let Gr be the finite k-regular tree restricted to
the vertex set Nv0(r). For a given vertex v of Gr, label
the neighbors of v by v1, . . . , vk. Let Si(v) be the set of
vertices in Nv0(r) such that the path connecting w and v
includes vi. Notice that if we root Gr at v, the sets {Si(v)}k

i=1

correspond to subtrees of the rooted tree and we have the
partition

Nv0(r) \ {v} =
k[

i=1

Si(v). (B.1)

We say that v is a centroid of Gr if

max
1≤i≤k

|Si(v)| ≤ |Nv0(r)|
2

. (B.2)

A consequence of (B.2) is that if v is not a centroid
and |S1(v)| = max1≤i≤k |Si(v)|, we must have |S1(v)| ≥
|Nv0(r)|/2 + 1. Since

Pk
i=1 |Si(v)| = |Nv0(r)| − 1, it fol-

lows that
Pk

i=2 |Si(v)| ≤ |Nv0(r)|/2 − 2 which in turn
implies

|S1(v)| ≥
kX

i=2

|Si(v)| + 3. (B.3)

In general, a tree may have at most two centroids, in which
case the centroids are neighbors [54, Lemma 2.1]. This leads
us to the following result.

Proposition B.2: The unique centroid of Gr is v0.
Proof: We first show that v0 is indeed a centroid of Gr.

Notice that if we root Gr at v0, the rooted tree is balanced
and in particular, |Si(v0)| = (|Nv0(r)| − 1)/k for all i ∈
{1, . . . , k}. Since k ≥ 2, (B.2) is satisfied.

Next, suppose by contradiction that v0 is not the unique
centroid. Without loss of generality, assume that v1

0 is also
a centroid. However, since Gr rooted at v0 is balanced,
all neighbors of v0 are isomorphic6 so all vertices in the
collection {vi

0}k
i=1 must also be centroids. But since k ≥ 2,

this implies that there are at least 3 centroids, which is a
contradiction.

We are now ready to prove Lemma B.1.

6More precisely, for each pair of neighbors of v0, we can find a graph
homomorphism mapping one neighbor to the other.

Proof of Lemma B.1: Without loss of generality, we shall
assume that |S1(v)| = max1≤i≤k |Si(v)|. We can then write

X

w∈N (v0,r)

d(w, v)

(a)
=

X

w∈S1(v)

d(w, v) +

kX

i=2

X

w∈Si(v)

d(w, v)

(b)
=

X

w∈S1(v)

(d(w, v1) + 1) +
kX

i=2

X

w∈Si(v)

(d(w, v1) − 1)

=

kX

i=1

X

w∈Si(v)

d(w, v1) + |S1(v)| −
kX

i=2

|Si(v)|

(c)
=

X

w∈N (v0,r)

d(w, v1) − 1 + |S1(v)| −
kX

i=2

|Si(v)|, (B.4)

where (a) and (c) are due to (B.1), and (b) follows since v1, v
are neighbors and v1 is closer to S1(v) than v, and v is closer
to Si(v) than v1 for 1 ≤ i ≤ k. If v is not a centroid, we can
apply (B.3) to (B.4) to obtain

X

w∈N (v0,r)

d(w, v) ≥
X

w∈N (v0,r)

d(w, v1) + 2.

In light of Proposition B.2, this shows that if v 6= v0,
X

w∈N (v0,r)

d(w, v) > min
u∈Nv0 (r)

X

w∈Nv0(r)

d(w, u).

The only remaining vertex, v0, must therefore be the mini-
mizer.

The main result for regular trees follows readily from the
intermediate results we have established.

Lemma B.3: Let G be a k-regular tree and let v ∈ Vn. Then
for n sufficiently large,

X

w∈Vn

d(w, v) ≥ n logn

k log(k − 1)
(B.5)

and
X

w∈Vn

d(w, v)2 ≤ 4n log2 n

log2(k − 1)
. (B.6)

Proof: Noting that Nv0(rn) ⊆ Vn, we have
X

w∈Vn

d(w, v0) ≥ rn|∂N (rn)|

(a)
= rnk(k − 1)rn−1

(b)

≥ rnk

(k − 2)2

)
k − 2

k
(n − 1) + 1

*

(c)

≥ n log n

k log(k − 1)
.

Above, (a) is due to (A.1), (b) uses the formula for rn in
Corollary A.2 and (c) holds for n sufficiently large, as it lower
bounds the first-order term in the previous expression. Equa-
tion (B.5) now follows from an application of Lemma B.1.
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Next, , we upper bound the squared sum of the distances.
Since Vn ⊂ Nv0(rn+1), the diameter of Vn is at most 2rn+2.
It follows that, for n sufficiently large,

X

w∈Vn

d(w, v)2 ≤ n(2rn + 2)2 ∼ 4n log2 n

log2(k − 1)
,

where we have used the asymptotic behavior of rn derived in
Corollary A.2.

B. Lattices

We first prove an intermediate results. The following lemma
is an analogue of Lemma B.1 for the case of lattices.

Lemma B.4: Let G be a `-dimensional lattice, let v0 ∈ V
and let r be a positive integer. Then for all v ∈ V ,

X

w∈Nv0(r)

d(w, v) ≥
X

w∈Nv0(r)

d(w, v0). (B.7)

Proof: Assume that vertices are labelled by their coordi-
nates in R

d. It follows that for u, v ∈ V , d(u, v) = ku− vk1.
We can then write, for any v ∈ V ,

X

w∈Nv0(r)

d(w, v) =
X

w∈Nv0(r)

kw − vk1

=

dX

i=1

X

w∈Nv0 (r)

|vi − wi|.

The value of vi that minimizes
P

w∈Nv0 (r) |vi − wi| is the
median of the collection {wi}w∈Nv0(r), which is (v0)i (the ith
component of the vector v0) due to the symmetry of the set
Nv0(r). As this argument holds for each i, (B.7) follows.

The following result contains the desired bounds forP
w∈Vn

d(w, v) and
P

w∈Vn
d(w, v)2.

Lemma B.5: Let G be a `-dimensional lattice. There exist
constants c3, c4 > 0 depending only on d such that for all
v ∈ Vn,

X

w∈Vn

d(w, v) ≥ c3n
1+ 1

` ; (B.8)

X

w∈Vn

d(w, v)2 ≤ c4n
1+ 2

` . (B.9)

Proof:
X

w∈Vn

d(w, v0) ≥
X

w∈Nv0 (rn)

d(w, v0)

=

rnX

k=1

k|∂N (k)|

(a)∼ 2`

(` − 1)!

rnX

k=1

k`

∼ `2`

(` + 1)!
r`+1
n

(b)∼ `2`

(` + 1)!

)
`!

2`
n

*1+ 1
`

.

Above, (a) follows from the formula for |∂N (k)| in (A.7) and
(b) is due to the asymptotics of rn given in Corollary A.4.
Equation (B.8) follows.

Next, we upper bound the sum of the squared distances.
Noting that the diameter of Vn is at most 2(rn + 1), we have

X

w∈Vn

d(w, v)2 ≤ 4(rn + 1)2n ∼ 4

)
`!

2`

* 2
`

n1+ 2
` ,

where the asymptotics of the final expression are obtained
from the asymptotics of rn found in Corollary A.4. Equa-
tion (B.9) follows.
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