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Abstract—Consider the problem of estimating a random vari-
able X in Gaussian noise under L' fidelity criteria. It is well-
known that in the L' setting, the optimal Bayesian estimator
is given by the conditional median. The goal of this work is to
characterize the set of prior distributions on X for which the
conditional median corresponds to a linear estimator. This work
shows that neither discrete nor compactly supported distribu-
tions can induce a linear conditional median. Moreover, under
certain non-trivial restrictions on the set of allowed probability
distributions, the Gaussian is shown to be the only solution that
induces a linear conditional median.

I. INTRODUCTION

Consider the problem of estimating a scalar random variable
X from a noisy observation

Y=X+2 (1)

where Z is standard normal independent of X. In this work,
we are interested in studying the condition median estimator
of X given noisy observation Y, which is the optimal Bayesian
estimator under the L' error criterion.

To properly define the conditional median, recall that for
a random variable U the quantile function or the inverse
cumulative distribution function (cdf) is defined as

Fi'(p) =inf{z e R:p< Fy(x)}, pe (0,1), ()

where Fy; is the cdf of U. The conditional median is then
defined as

1
RN |
where Fx|y—, is the conditional cdf of X given Y = y.
In estimation theory, the conditional median is of interest
since it is the optimal estimation of X under the mean absolute
deviation error criterion (a.k.a. L' estimation error):

ElX —fMI. @

min

m(X|Y) € ar
(XY)earg o min o

The condition median maps the observation ¥ € R to the
support of X that is'

m(X|Y) : R — supp(X). ®)

"Let Px be the probability distribution of X. Then, we say x € supp(X)
if and only if Px(S) > 0 for every S containing x.
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This is an appealing property of the conditional median
since, in contrast, the conditional mean, which is the optimal
estimator under the L? error criterion and is defined as

E[X|Y = y] = / vdPxjy—y(@). y €R,  (6)

maps the observation Y to the interior of the convex hull of
supp(X).

A. The Problem Setup

In estimation theory, linear estimators play an important
role. In particular, it is important to understand under which
criteria the optimal Bayesian estimators are linear functions of
the observation Y. Despite considerable research into linear
estimators, to the best of our knowledge, the question of
identifying the set of prior distributions on X that ensure that
m(X|Y) is a linear function of Y has not been characterized.
In this work, we seek to close this gap.

Formally, we seek to answer the following question: Which
distributions on the input X ensure that there exists some
constant a such that for all y € R

m(X|Y =y) = ay? (N
B. Prior Work

Conditions for the optimality of linear estimators have
received considerable attention for squared error loss under
which the optimal estimator is given by the conditional mean
[1]. In particular, for the case when Py |x belongs to an
exponential family, it is well known that the conditional mean
is linear if and only if X is distributed according to a conjugate
prior [2], [3] in which case a = %fy;/) Moreover, for the
Gaussian and Poisson noise models, we even have stability
results that show, if the conditional expectation is close to a
linear function in the L? distance, then the distribution of X
needs to be close to a matching prior (Gaussian for Gaussian
noise and gamma for Poisson noise) in the Lévy distance [4],
[5].

For additive noise channels, i.e., Y = X + N where N
is not necessarily Gaussian, the authors of [6] characterized
necessary and sufficient conditions for the linearity of the
optimal Bayesian estimators for the case of L” Bayesian risks
(ie., E[|X — f(Y)|P]) with p taking only even values. More
specifically, the authors of [6] found the characteristic function
of X as a function of the characteristic function of N. These
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results, however, do not generalize to our case of p = 1, which,
as will be shown, is considerably more difficult.

The conditional median plays an important role in our
analysis, and for a detailed study of the properties of the
conditional median in the most abstract o-algebra setting, the
interested reader is referred to [7], [8]. For recent applications
of the conditional median, the interested reader is referred to
[9] and references therein.

C. Outline and Contribtuions
The paper outline and contributions are as follows:

1) In Section II, we make some preliminary observations

about the solution to (7) and show:

o Section II-A, Proposistion 1, shows that a Gaussian
distribution satisfies (7);

o Section II-B, Proposition 2 provides an equivalent con-
dition to (7) in terms of an integral equation;

¢ Section II-C shows that finding a solution to (7) is
equivalent to characterizing the null space of a certain
integral operator; and

o Section II-D seeks to point out some of the difficulties
with finding the uniqueness of the solution to (7).

2) In Section III, we present our main results and show:

« Section III-A, Proposition 4, shows that the distribution
that satisfies (7) needs to be fully supported;

o Section III-B, Theorem 5 shows that the only admissible
values of a lie in [0,1) and Proposition 6 provides a
characterization of a in terms of the pdf of X; and

e Section III-C, Theorem 7, shows that if we restrict our
attention to only two types of Gaussian mixtures (i.e.,
finite Gaussian mixtures and arbitrary Gaussian mixtures
with a fixed variance), then Gaussian is the only solution
to (7).

3) Section IV concludes the paper.

Some of the proofs a relegated to the extended version of the
paper [10].

Notation: The pdf of a zero mean Gaussian distribution
with variance o2 is denote by ¢,2. We also let ¢ = ¢; (i.e.,
the pdf of standard normal).

II. PRELIMINARY OBSERVATIONS

In this section, we begin by providing preliminary obser-
vations about the problem, derive a necessary and sufficient
condition for (7) to hold, and try to point out the reason why
solving the problem is a challenging task. Along the way, we
also derive some results that might be of independent interest.

A. Gaussian X is a Solution
We begin by showing that the set of distributions that
satisfies (7) is not empty.

Proposition 1. If 0 < a < 1, a Gaussian random variable
X ~ N(0,0%) satisfies (7) if 0% = 1%

a

Proof: Suppose that X ~ N (0, 0%); then the conditional
distribution X|Y" = y ~ N(37255y, 1725 ). Since Gaussian
X X

distributions are symmetric, the conditional median and con-
ditional mean coincide, and we have that

2
g
mXY =y) =EX|Y =y| = 155y ®
X

Solving for 03 concludes the proof. ]

In Proposition 1, for the case of a = 0, and for the rest of
the paper, we do not distinguish between point measures and
Gaussian measures with zero variance and treat them as the
same objects.

Remark 1. We conjecture that the Gaussian distribution the
zero mean and O'g( = ﬁ is the unique solution to (7).
The supporting arguments for this conjecture will be given
in Section III.

B. An Equivalent Condition

In this subsection, we derive a condition that is equivalent
to (7). Our starting place is the following condition akin to
the orthogonality principle [6], [11]: a function f minimizes
(4) if and only if

Efsign(X — f(Y))g(Y)] =0, )
for all g such that E[|g(Y)]] < oo.
Proposition 2. X satisfies (7) if and only if for all y € R
E[sign(X — ay)é(y — X)] = 0. (10)

Proof: We seek to show that for f(Y) = aY, the
condition in (9) is equivalent to (10). Note that (10) can be
equivalently re-written as: for all g such that E[|g(Y)|] < oo

0 = E[sign(X —aY)g(Y)] (11)
— E[E[sign(X — aY)[¥]g(V) (12)
=E[n(Y)g(Y)], (13)

where we have defined h(Y") = E[sign(X — aY")|Y]. The fact
that (13) is equivalent to

0 = h(y) for all y € R, (14)

is a standard fact (see, for example, [12, Lem. 10.1.1]). This
concludes the proof. ]
C. Operator Theory Perspective

Consider the following integral operator on the set of L!
functions:

LW = [ Kalpf@d a9
where the kernel K,(x,y) is given by
Ka(z,y) = sign(z — ay)p(y — ). (16)

If we restrict our attention only to random variables X having
pdfs, finding the set of solutions to (10) is equivalent to
characterizing the null space of T,[f] over the space L ; that
is

Naw{ﬂfzm/f<mﬂuﬂ@. a7
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Although we are only interested in L' functions (for f to be
a pdf), the operator 7;, can also be thought of as a bounded
linear operator from L?(R) to itself for any 1 < p < oo.

D. What are the Challenges?

We now discuss some of the challenges and why some
standard approaches no longer work.

1) Techniques for Showing Linearity of the Conditional
Expectation Are Not Applicable: 1t is well known that for
the conditional expectation

E[X]Y =y] = ay, Vy €R, (18)

if and only if @ € [0,1) and fx = ¢_o_. The authors of
this paper are aware of five district ways of showing this fact;
four of these methods, some of which are new, are provided
in the extended version of the paper [10]. However, none of
these techniques appear to be generalizable to the conditional
median setting.

2) Construction of a Solution Through Symmetry Arguments
Will Not Work: The proof of Proposition 1 relied on the fact
that if X is Gaussian, then X |Y = y is a symmetric distribu-
tion for all y 2 and, hence, the mean and the median coincide.
The next result, which might be of independent interest, shows
that this construction works only in the Gaussian case.

Theorem 3. If X is Gaussian, then X|Y = y is symmetric
Sor all y. Conversely, if X|Y =y is symmetric for all y € S
where S is a subset of R that has an accumulation, then X
is Gaussian.

III. MAIN RESULTS

In this section, we present our main results. We begin by
presenting some simple statements about the support of the
distribution that needs to satisfy (7).

A. On the Support of the Distribution
Proposition 4. Suppose that X satisfies (7). Then,
e ifa=0, then X =0 a.s.
o ifa # 0, then the supp(X)
and unbounded).

= R (i.e.,, X is fully supported

Proof: 1f the conditional median is a constant, then so is
the underlying random variable (see, for example, [7, Thm. 3]).
To show the second property recall that

m(X|Y): R — supp(X), (19)

However, since m(X|Y = y) = ay,y € R, the range is
clearly given by R. Therefore, supp(X) = R.
|
It is important to note that Proposition 4, for example,
completely eliminates discrete distributions as possible solu-
tions or distributions with compact support. Note, however,
it does not preclude the possibility of mixed distributions
(i.e., distributions that have both continuous and discrete
components).

>The random variable U is said to have symmetric distribution if there
. d d .
exists a constant ¢ such that U 4+ ¢ = —(U + ¢) where = denotes equality

in distribution.

B. On the Admissible Values of a

We next show that the admissible values of a that satisfy
(7) must be in [0,1).

Theorem 5.
minE[|X —aY|] = min E[|X —aY]]. (20)
a€R a€l0,1)
In other words, the admissible values of a lie in [0,1).
Proof: Let
fla) = B[ X —aY]]. @)
Then,
f'(a) = —Elsign(X — aY)Y] (22)
= E[sign(aY — X)Y] (23)
= E[sign((a — 1)X +aZ)(X + 2). (24

We will show that the function f(a) is non-decreasing for
a > 1 and non-increasing for a < 0. Thus, we will reduce
our search space to a € [0,1]. To aid our proof recall the
FKG inequality (see for example [13]): for two non-decreasing
functions f and g, we have that

E[f(X)g(X)] = E[f(X)]E[g(X)],

or equivalently, if f is non-decreasing and g is non-increasing,
then

(25)

E[f(X)g(X)] < E[f(X)]E[g(X)]. (26)
Now, assume that a > 1; then
f'(a) =E[sign((a — )X +aZ)(X + Z)]
= E[E[sign((a — 1) X + aZ)(X + Z)|Z]] 27)
> E[E[sign((a — 1)X + aZ)|Z]E[X + Z|Z]] (28)
= E[E[sign((a — 1) X + aZ)|Z]Z] (29)
= E[sign((a — 1)X 4+ aZ)Z] (30)
= E[E[sign((e — 1)X + aZ)Z| X]] 31
> E[E[sign((a — 1) X + a2)|X]E[Z] X]] (32)
=0, (33)

where (28) follows by using the fact that, given Z the functions
f(X) =sign((a—1)X +aZ) and g(X) = X + Z are non-
decreasing and applying the FKG inequality; (29) follows
by using the fact that X and Z are independent and the
assumption that E[X] = 0 which implies that E[X + Z|Z] =
Z + E[X] = Z; (32) follows by using the fact that given X
the functions f(Z) = sign((a —1)X 4+ aZ) and g(Z) = Z
are non-decreasing and applying the FKG inequality.
Now, assume that a < 0; then

f'(a) =E[sign((a — 1) X +aZ)(X + Z)]
=E[E[sign((e — 1)X +aZ)(X + 2)|Z]] (34)
< E[E[sign((a — 1)X + a2)|Z|E[X + Z|Z]] (35)
= E[E[sign((a — 1) X + aZ)|Z]Z] (36)
= E[sign((a — 1) X 4+ aZ)Z] 37
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= E[E[sign((a — 1) X + aZ)Z|X]] (38)
< E[E[sign((a — 1)X + aZ)| X]E[Z]X]] 39
=0, (40)

where in (35) we have used that, given Z, f(X) =
sign((a — 1) X + aZ) is non-increasing and g(X) = X + Z
are non-decreasing; and in (39) we have used that, given X,
f(Z) = sign((a — 1)X 4 aZ) is non-increasing and g(Z) =
Z are non-decreasing and applyed the FKG inequality.

Thus, we can assume that a € [0, 1]. To conclude the proof
note that by independence, we have that

f'(1) = E[sign(2)(X + Z2)] = E[|Z]] >0, (4D

which implies that we can eliminate the value of a =1. ®

Note the solution to (7) is a pair (a, fx). The next result
identifies the slope a as a function of fx. Thus, if we have a
candidate solution in terms of the pdf fx, we no longer need
to guess the value of a € (0,1) and can determine it exactly.

Proposition 6. Suppose that in addition to satisfying (7) X
has a pdf fx. Then, the following hold:

e fx(0) > 0; and
e the value of a is given by

1 [e%¢)
“= 2fx(0)5(0) [m |z|o(x) fx (z)dz.  (42)

Proof: If X has a pdf, then (10) can be written as: for
ally e R

0= [ siente—apoly — o)fx@ar. @
Taking the deriva:ve of both sides of (43) we arrive at
-3 Z sign(z — ay)oy — @) fx (x)de (44)
——a [ 28a — oty — ) fxla)da
4 [ sente - (e - oty - (e @)
= —a¢((1 — a)y) fx (ay)
+ [ signle — oo~ p)oly — ) xadr. @6
Setting yoo: 0 in (46), we arrive at
200(0)f5(0) = [ lelola)fx(ohar. @)

Now since the right-hand side of (47) is positive and a # 0
by Proposition 4, this implies that fx(0) > 0. Now solving
(47) for a concludes the proof. [ |
C. Solution for Gaussian Mixtures

Let P be the set of all probability measures on R. Now for
a fixed o > 0 define

P02 = {fX : fX(x) = E[(baz(x - U)]vU ~ PU € P} (48)

In words, P2 is the set of all Gaussian mixtures with a fixed
variance o2, The random variable U is known as the mixing
random variable. Note that we make no restrictions on the
distribution Py .

We also define the set of finite /V-Gaussian mixture where
both the variance and mean are allowed to vary: for a positive
integer N

N
P Z{fx fx (@) =) piter (@ — i),
=1

N
pi>0,> pi=1,0>0u € R}. 49)
i=1
The main result of this section is the following theorem.

Theorem 7. Fix some a € (0,1). For every finite positive
integer N, fx = ¢_a_ is the unique solution to (T) over the
set

P UPN.

1—a

(50)

Note that the set P_a_ U PN is a non-trivial subset of the
set of all pdfs. For example, the set PV for large enough N
can approximate any distribution in the Lévy distance to an
arbitrary degree.

Before showing the proof Theorem 7, we will provide
several auxiliary results. The first result shows how Gaussian

functions are mapped forward by the operator T}, .

Lemma 8. Let f(z) = exp(—(ﬁ;‘?z) and let b = 1+ 2.

Then,
Talf1(y) = ¥(y;a,0%, ), (51)
where
U(y;a,0%, p)
_2_w? 1 wigw)? (1 —ba)y + “)
=e 2 2024/-e 20 erfl ———— |. 52
b ( Vb 0y
Furthermore, if a = % (ie., 0% = 7). then
)2
L) = clamesn( -1 - 05 ) s

_ It
where c(a, p) = \/Eerf(\/%laa).

It is trivial to show that the operator 7, commutes with
finite mixtures. The next result shows that the operator 7,
also commutes with arbitrarily fixed variance mixtures.

Lemma 9. For a € (0,1) and 0 < 62 < oo with b=1+ 2.
Then, for fx € Py2

1
T, = E[¢(y;a,02,U)]. 54
Moreover, for b = % we have that
y— 2
Ta[fX](y) — \/E’ E e—(l—a)( 2U) erf U
271-% 23 lfa
(55)
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Proof: By Fubini’s theorem we have to show that
[ [1Ka(z,y)do2 (x — u)|dPy(u)dz < oo. Towards that end,
note that

[ [ 1Katw)ion e = wiar (uya
//¢ @) x—u)ddeU()

/¢1+0 27‘[’(1—{-0’2)’

where the exchange of integration order in (56) follows by
Tonelli’s theorem since all the arguments are non-negative.
The rest of the proof follows by using Lemma 8. ]

Lemma 10. Fix some a € (0,1) and for a finite
integer N suppose that {(p;,02)}N., are distinct with

(ui,o?) # (0 = 1%=),Vi. Then, the collection of functions
{v(y;

Proof: First, note that the assumption that (p;,07) #
(0, = 7%-) guarantees that w(y,aﬁj,uj) % 0 for all 7. Oth-
erwise, the collection would be linearly dependent.

Next, we will show that the tails of ¥(y;a,0?, ;) and
w(y;a,crjz,uj) diverge, and hence we cannot write one 1)
function as a linear combination of the other v functions. To
that end, note that for ¢ # j

(56)

y)dPy (1) < (57)

a, 01'27 Mz)}izl is linearly independent.

o o2
lim w(l% a,0; 7/1'1)
y—oo| Y(y; a, 0%, 1)
k. LA CE
207 [le=mm —erf( — i
e 5, € erf TP
— Lim — (58)
2 1 + L
Yy—>00 —LJQ (y+?j) (lfbja)y+;—§
e %7 1/%e % erf[ ———
J 2b_7’
_{oo 07 > 07 or (07 = o7 and p; — pi; > 0) (59)
= 2 _ 2 2 _ 2 :
0 of<ojor(o;=o0fand p; —p; <0)

This concludes the proof. [ |
We are now ready to present the proof of Theorem 7.
Proof of Theorem 7: We first focus on P~. Suppose that

fx € PN and T,[fx] = 0; then using Lemma 10

N
= Ta[fX](y) = Zciw(y;aw U?vﬂi)? (60)
i=1
where ¢; = Di —. We now consider two cases. First, if

2mo;
(pi,o?) # (0,12 a) Vi, then by the linear independence
of the v functions in Lemma 10 there exists no such fx.

Second, if there exists a j such that (y;,07) = (0, 1% ), then
¥(y;a,02, 1;) = 0 and (60) can be written as
N
0= Z ciw(y;a,af,ui). (61)
i=Liitj

By the linear independence, we have that ¢; = 0 for all ¢ # j.
Thus, the finite mixture representing fx must consist of a

single Gaussian distribution with mean and variance given by
(1j,073) = (0, %) and, therefore, fx (z) = ¢ = .

This shows that the only solution in PV is fx(z) = ¢ _a_.

T—

a[};] =0 can

be equivalently re-written as

0=E|exp <(1 —a) y QU)2>erf 2?a (62)
. /Cxp<—(1 - a)W)dy(u), 63)

where we have defined a measure v as
dv(u) = erf dPy (u). (64)

u
1 a
\/ 23 l1—a

Note that v is a finite and signed measure.

The right-hand side of (63) can now be interpreted as the
convolution of a Gaussian density function with the measure
v. Now taking the Fourier transform, we have that

w2

0 =-exp <2<1_11))) U(w), Vw

where 1 is the Fourier transform (a.k.a. characteristic function)
of the measure v; that is

r(w) = /ei‘““du(u).

From (65) we conclude that (w) = 0, and using the fact that
the Fourier transform is unique for a finite signed measure,
we have that for every measurable set £ C R

Oz/gdy(u):/gerf \/;?a

a

(65)

(66)

APy (u). (67)

The only probability measure for which this is true is Py = dg.
This concludes the proof.

IV. CONCLUSION

This work has focused on characterizing which prior dis-
tributions give an optimal estimator (with respect to L' loss)
that is linear, which is equivalent to answering the question
of when conditional medians are linear functions of the
observations. We have focused on a Gaussian noise model,
but the question can be considered more generally. It has
been conjectured that a Gaussian prior is the only one that
induces a linear conditional median, and this conjecture has
been proven to hold under non-trivial restrictions on the set of
allowed probability distributions. Also, along the way, several
new results have been shown that might be of independent
interest. For example, it has been shown that in Gaussian noise,
the posterior distribution is symmetric if and only if the prior
is Gaussian.
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