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Abstract—Consider the problem of estimating a random vari-
able X in Gaussian noise under L

1 fidelity criteria. It is well-
known that in the L

1 setting, the optimal Bayesian estimator
is given by the conditional median. The goal of this work is to
characterize the set of prior distributions on X for which the
conditional median corresponds to a linear estimator. This work
shows that neither discrete nor compactly supported distribu-
tions can induce a linear conditional median. Moreover, under
certain non-trivial restrictions on the set of allowed probability
distributions, the Gaussian is shown to be the only solution that
induces a linear conditional median.

I. INTRODUCTION

Consider the problem of estimating a scalar random variable

X from a noisy observation

Y = X + Z (1)

where Z is standard normal independent of X . In this work,

we are interested in studying the condition median estimator

of X given noisy observation Y , which is the optimal Bayesian

estimator under the L1 error criterion.

To properly define the conditional median, recall that for

a random variable U the quantile function or the inverse

cumulative distribution function (cdf) is defined as

F−1
U (p) = inf{x ∈ R : p ≤ FU (x)}, p ∈ (0, 1), (2)

where FU is the cdf of U . The conditional median is then

defined as

m(X|Y = y) = F−1
X|Y=y

(

1

2

)

, y ∈ R, (3)

where FX|Y=y is the conditional cdf of X given Y = y.

In estimation theory, the conditional median is of interest

since it is the optimal estimation of X under the mean absolute

deviation error criterion (a.k.a. L1 estimation error):

m(X|Y ) ∈ arg min
f :E[|f(Y )|]<∞

E[|X − f(Y )|]. (4)

The condition median maps the observation Y ∈ R to the

support of X; that is1

m(X|Y ) : R → supp(X). (5)

1Let PX be the probability distribution of X . Then, we say x ∈ supp(X)
if and only if PX(S) > 0 for every S containing x.

This is an appealing property of the conditional median

since, in contrast, the conditional mean, which is the optimal

estimator under the L2 error criterion and is defined as

E[X|Y = y] =

∫

x dPX|Y=y(x), y ∈ R, (6)

maps the observation Y to the interior of the convex hull of

supp(X).

A. The Problem Setup

In estimation theory, linear estimators play an important

role. In particular, it is important to understand under which

criteria the optimal Bayesian estimators are linear functions of

the observation Y . Despite considerable research into linear

estimators, to the best of our knowledge, the question of

identifying the set of prior distributions on X that ensure that

m(X|Y ) is a linear function of Y has not been characterized.

In this work, we seek to close this gap.

Formally, we seek to answer the following question: Which

distributions on the input X ensure that there exists some

constant a such that for all y ∈ R

m(X|Y = y) = ay? (7)

B. Prior Work

Conditions for the optimality of linear estimators have

received considerable attention for squared error loss under

which the optimal estimator is given by the conditional mean

[1]. In particular, for the case when PY |X belongs to an

exponential family, it is well known that the conditional mean

is linear if and only if X is distributed according to a conjugate

prior [2], [3] in which case a = Cov(X,Y )
Var(Y ) . Moreover, for the

Gaussian and Poisson noise models, we even have stability

results that show, if the conditional expectation is close to a

linear function in the L2 distance, then the distribution of X

needs to be close to a matching prior (Gaussian for Gaussian

noise and gamma for Poisson noise) in the Lévy distance [4],

[5].

For additive noise channels, i.e., Y = X + N where N

is not necessarily Gaussian, the authors of [6] characterized

necessary and sufficient conditions for the linearity of the

optimal Bayesian estimators for the case of Lp Bayesian risks

(i.e., E[|X − f(Y )|p]) with p taking only even values. More

specifically, the authors of [6] found the characteristic function

of X as a function of the characteristic function of N . These
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results, however, do not generalize to our case of p = 1, which,

as will be shown, is considerably more difficult.

The conditional median plays an important role in our

analysis, and for a detailed study of the properties of the

conditional median in the most abstract σ-algebra setting, the

interested reader is referred to [7], [8]. For recent applications

of the conditional median, the interested reader is referred to

[9] and references therein.

C. Outline and Contribtuions

The paper outline and contributions are as follows:

1) In Section II, we make some preliminary observations

about the solution to (7) and show:

• Section II-A, Proposistion 1, shows that a Gaussian

distribution satisfies (7);

• Section II-B, Proposition 2 provides an equivalent con-

dition to (7) in terms of an integral equation;

• Section II-C shows that finding a solution to (7) is

equivalent to characterizing the null space of a certain

integral operator; and

• Section II-D seeks to point out some of the difficulties

with finding the uniqueness of the solution to (7).

2) In Section III, we present our main results and show:

• Section III-A, Proposition 4, shows that the distribution

that satisfies (7) needs to be fully supported;

• Section III-B, Theorem 5 shows that the only admissible

values of a lie in [0, 1) and Proposition 6 provides a

characterization of a in terms of the pdf of X; and

• Section III-C, Theorem 7, shows that if we restrict our

attention to only two types of Gaussian mixtures (i.e.,

finite Gaussian mixtures and arbitrary Gaussian mixtures

with a fixed variance), then Gaussian is the only solution

to (7).

3) Section IV concludes the paper.

Some of the proofs a relegated to the extended version of the

paper [10].

Notation: The pdf of a zero mean Gaussian distribution

with variance σ2 is denote by φσ2 . We also let φ = φ1 (i.e.,

the pdf of standard normal).

II. PRELIMINARY OBSERVATIONS

In this section, we begin by providing preliminary obser-

vations about the problem, derive a necessary and sufficient

condition for (7) to hold, and try to point out the reason why

solving the problem is a challenging task. Along the way, we

also derive some results that might be of independent interest.

A. Gaussian X is a Solution

We begin by showing that the set of distributions that

satisfies (7) is not empty.

Proposition 1. If 0 ≤ a < 1, a Gaussian random variable

X ∼ N (0, σ2
X) satisfies (7) if σ2

X = a
1−a

.

Proof: Suppose that X ∼ N (0, σ2
X); then the conditional

distribution X|Y = y ∼ N (
σ2
X

1+σ2
X

y,
σ2
X

1+σ2
X

). Since Gaussian

distributions are symmetric, the conditional median and con-

ditional mean coincide, and we have that

m(X|Y = y) = E[X|Y = y] =
σ2
X

1 + σ2
X

y. (8)

Solving for σ2
X concludes the proof.

In Proposition 1, for the case of a = 0, and for the rest of

the paper, we do not distinguish between point measures and

Gaussian measures with zero variance and treat them as the

same objects.

Remark 1. We conjecture that the Gaussian distribution the

zero mean and σ2
X = a

1−a
is the unique solution to (7).

The supporting arguments for this conjecture will be given

in Section III.

B. An Equivalent Condition

In this subsection, we derive a condition that is equivalent

to (7). Our starting place is the following condition akin to

the orthogonality principle [6], [11]: a function f minimizes

(4) if and only if

E[sign(X − f(Y ))g(Y )] = 0, (9)

for all g such that E[|g(Y )|] <∞.

Proposition 2. X satisfies (7) if and only if for all y ∈ R

E[sign(X − ay)φ(y −X)] = 0. (10)

Proof: We seek to show that for f(Y ) = aY , the

condition in (9) is equivalent to (10). Note that (10) can be

equivalently re-written as: for all g such that E[|g(Y )|] <∞
0 = E[sign(X − aY )g(Y )] (11)

= E[E[sign(X − aY )|Y ]g(Y )] (12)

= E[h(Y )g(Y )], (13)

where we have defined h(Y ) = E[sign(X − aY )|Y ]. The fact

that (13) is equivalent to

0 = h(y) for all y ∈ R, (14)

is a standard fact (see, for example, [12, Lem. 10.1.1]). This

concludes the proof.

C. Operator Theory Perspective

Consider the following integral operator on the set of L1

functions:

Ta[f ](y) =

∫ ∞

−∞
Ka(x, y)f(x)dx (15)

where the kernel Ka(x, y) is given by

Ka(x, y) = sign(x− ay)φ(y − x). (16)

If we restrict our attention only to random variables X having

pdfs, finding the set of solutions to (10) is equivalent to

characterizing the null space of Ta[f ] over the space L1
+; that

is

N (Ta) =

{

f : f ≥ 0,

∫

f <∞, Ta[f ] = 0

}

. (17)
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Although we are only interested in L1 functions (for f to be

a pdf), the operator Ta can also be thought of as a bounded

linear operator from Lp(R) to itself for any 1 ≤ p ≤ ∞.

D. What are the Challenges?

We now discuss some of the challenges and why some

standard approaches no longer work.

1) Techniques for Showing Linearity of the Conditional

Expectation Are Not Applicable: It is well known that for

the conditional expectation

E[X|Y = y] = ay, ∀y ∈ R, (18)

if and only if a ∈ [0, 1) and fX = φ a
1−a

. The authors of

this paper are aware of five district ways of showing this fact;

four of these methods, some of which are new, are provided

in the extended version of the paper [10]. However, none of

these techniques appear to be generalizable to the conditional

median setting.

2) Construction of a Solution Through Symmetry Arguments

Will Not Work: The proof of Proposition 1 relied on the fact

that if X is Gaussian, then X|Y = y is a symmetric distribu-

tion for all y 2 and, hence, the mean and the median coincide.

The next result, which might be of independent interest, shows

that this construction works only in the Gaussian case.

Theorem 3. If X is Gaussian, then X|Y = y is symmetric

for all y. Conversely, if X|Y = y is symmetric for all y ∈ S

where S is a subset of R that has an accumulation, then X

is Gaussian.

III. MAIN RESULTS

In this section, we present our main results. We begin by

presenting some simple statements about the support of the

distribution that needs to satisfy (7).

A. On the Support of the Distribution

Proposition 4. Suppose that X satisfies (7). Then,

• if a = 0, then X = 0 a.s.

• if a 6= 0, then the supp(X) = R (i.e., X is fully supported

and unbounded).

Proof: If the conditional median is a constant, then so is

the underlying random variable (see, for example, [7, Thm. 3]).

To show the second property recall that

m(X|Y ) : R → supp(X), (19)

However, since m(X|Y = y) = ay, y ∈ R, the range is

clearly given by R. Therefore, supp(X) = R.

It is important to note that Proposition 4, for example,

completely eliminates discrete distributions as possible solu-

tions or distributions with compact support. Note, however,

it does not preclude the possibility of mixed distributions

(i.e., distributions that have both continuous and discrete

components).

2The random variable U is said to have symmetric distribution if there

exists a constant c such that U + c
d
= −(U + c) where

d
= denotes equality

in distribution.

B. On the Admissible Values of a

We next show that the admissible values of a that satisfy

(7) must be in [0, 1).

Theorem 5.

min
a∈R

E[|X − aY |] = min
a∈[0,1)

E[|X − aY |]. (20)

In other words, the admissible values of a lie in [0, 1).

Proof: Let

f(a) = E[|X − aY |]. (21)

Then,

f ′(a) = −E[sign(X − aY )Y ] (22)

= E[sign(aY −X)Y ] (23)

= E[sign((a− 1)X + aZ)(X + Z)]. (24)

We will show that the function f(a) is non-decreasing for

a ≥ 1 and non-increasing for a < 0. Thus, we will reduce

our search space to a ∈ [0, 1]. To aid our proof recall the

FKG inequality (see for example [13]): for two non-decreasing

functions f and g, we have that

E[f(X)g(X)] ≥ E[f(X)]E[g(X)], (25)

or equivalently, if f is non-decreasing and g is non-increasing,

then

E[f(X)g(X)] ≤ E[f(X)]E[g(X)]. (26)

Now, assume that a ≥ 1; then

f ′(a) = E[sign((a− 1)X + aZ)(X + Z)]

= E[E[sign((a− 1)X + aZ)(X + Z)|Z]] (27)

≥ E[E[sign((a− 1)X + aZ)|Z]E[X + Z|Z]] (28)

= E[E[sign((a− 1)X + aZ)|Z]Z] (29)

= E[sign((a− 1)X + aZ)Z] (30)

= E[E[sign((a− 1)X + aZ)Z|X]] (31)

≥ E[E[sign((a− 1)X + aZ)|X]E[Z|X]] (32)

= 0, (33)

where (28) follows by using the fact that, given Z the functions

f(X) = sign((a− 1)X + aZ) and g(X) = X + Z are non-

decreasing and applying the FKG inequality; (29) follows

by using the fact that X and Z are independent and the

assumption that E[X] = 0 which implies that E[X + Z|Z] =
Z + E[X] = Z; (32) follows by using the fact that given X

the functions f(Z) = sign((a− 1)X + aZ) and g(Z) = Z

are non-decreasing and applying the FKG inequality.

Now, assume that a ≤ 0; then

f ′(a) = E[sign((a− 1)X + aZ)(X + Z)]

= E[E[sign((a− 1)X + aZ)(X + Z)|Z]] (34)

≤ E[E[sign((a− 1)X + aZ)|Z]E[X + Z|Z]] (35)

= E[E[sign((a− 1)X + aZ)|Z]Z] (36)

= E[sign((a− 1)X + aZ)Z] (37)
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= E[E[sign((a− 1)X + aZ)Z|X]] (38)

≤ E[E[sign((a− 1)X + aZ)|X]E[Z|X]] (39)

= 0, (40)

where in (35) we have used that, given Z, f(X) =
sign((a− 1)X + aZ) is non-increasing and g(X) = X + Z

are non-decreasing; and in (39) we have used that, given X ,

f(Z) = sign((a− 1)X + aZ) is non-increasing and g(Z) =
Z are non-decreasing and applyed the FKG inequality.

Thus, we can assume that a ∈ [0, 1]. To conclude the proof

note that by independence, we have that

f ′(1) = E[sign(Z)(X + Z)] = E[|Z|] > 0, (41)

which implies that we can eliminate the value of a = 1.

Note the solution to (7) is a pair (a, fX). The next result

identifies the slope a as a function of fX . Thus, if we have a

candidate solution in terms of the pdf fX , we no longer need

to guess the value of a ∈ (0, 1) and can determine it exactly.

Proposition 6. Suppose that in addition to satisfying (7) X

has a pdf fX . Then, the following hold:

• fX(0) > 0; and

• the value of a is given by

a =
1

2fX(0)φ(0)

∫ ∞

−∞
|x|φ(x)fX(x)dx. (42)

Proof: If X has a pdf, then (10) can be written as: for

all y ∈ R

0 =

∫ ∞

−∞
sign(x− ay)φ(y − x)fX(x)dx. (43)

Taking the derivative of both sides of (43) we arrive at

0 =
d

dy

∫ ∞

−∞
sign(x− ay)φ(y − x)fX(x)dx (44)

= −a
∫ ∞

−∞
2δ(x− ay)φ(y − x)fX(x)dx

+

∫ ∞

−∞
sign(x− ay)(x− y)φ(y − x)fX(x)dx (45)

= −aφ((1− a)y)fX(ay)

+

∫ ∞

−∞
sign(x− ay)(x− y)φ(y − x)fX(x)dx. (46)

Setting y = 0 in (46), we arrive at

2aφ(0)fX(0) =

∫ ∞

−∞
|x|φ(x)fX(x)dx. (47)

Now since the right-hand side of (47) is positive and a 6= 0
by Proposition 4, this implies that fX(0) > 0. Now solving

(47) for a concludes the proof.

C. Solution for Gaussian Mixtures

Let P be the set of all probability measures on R. Now for

a fixed σ > 0 define

Pσ2 = {fX : fX(x) = E[φσ2(x− U)], U ∼ PU ∈ P} (48)

In words, Pσ2 is the set of all Gaussian mixtures with a fixed

variance σ2. The random variable U is known as the mixing

random variable. Note that we make no restrictions on the

distribution PU .

We also define the set of finite N -Gaussian mixture where

both the variance and mean are allowed to vary: for a positive

integer N

PN =

{

fX : fX(x) =

N
∑

i=1

piφσ2
i
(x− µi),

pi ≥ 0,

N
∑

i=1

pi = 1, σi > 0, µi ∈ R

}

. (49)

The main result of this section is the following theorem.

Theorem 7. Fix some a ∈ (0, 1). For every finite positive

integer N , fX = φ a
1−a

is the unique solution to (7) over the

set

P a
1−a

∪ PN . (50)

Note that the set P a
1−a

∪ PN is a non-trivial subset of the

set of all pdfs. For example, the set PN for large enough N

can approximate any distribution in the Lévy distance to an

arbitrary degree.

Before showing the proof Theorem 7, we will provide

several auxiliary results. The first result shows how Gaussian

functions are mapped forward by the operator Ta.

Lemma 8. Let f(x) = exp
(

− (x−µ)2

2σ2

)

and let b = 1 + 1
σ2 .

Then,

Ta[f ](y) = ψ(y; a, σ2, µ), (51)

where

ψ(y; a, σ2, µ)

= e−
y2

2 − µ2

2σ2

√

1

b
e

(y+
µ

σ2 )2

2b erf

(

(1− ba)y + µ
σ2√

2b

)

. (52)

Furthermore, if a = 1
b

(i.e., σ2 = a
1−a

), then

Ta[f ](y) = c(a, µ) exp

(

−(1− a)
(y − µ)2

2

)

, (53)

where c(a, µ) =
√
aerf

(

µ√
2a a

1−a

)

.

It is trivial to show that the operator Ta commutes with

finite mixtures. The next result shows that the operator Ta
also commutes with arbitrarily fixed variance mixtures.

Lemma 9. For a ∈ (0, 1) and 0 ≤ σ2 ≤ ∞ with b = 1+ 1
σ2 .

Then, for fX ∈ Pσ2

Ta[fX ](y) =
1√
2πσ2

E
[

ψ(y; a, σ2, U)
]

. (54)

Moreover, for b = 1
a

we have that

Ta[fX ](y) =

√
a

√

2π a
1−a

E



e−(1−a)
(y−U)2

2 erf





U
√

2 1
a

a
1−a







.

(55)
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Proof: By Fubini’s theorem we have to show that
∫ ∫

|Ka(x, y)φσ2(x− u)|dPU (u)dx < ∞. Towards that end,

note that
∫ ∫

|Ka(x, y)φσ2(x− u)|dPU (u)dx

=

∫ ∫

φ(y − x)φσ2(x− u)dxdPU (u) (56)

=

∫

φ1+σ2(u− y)dPU (u) ≤
1

√

2π(1 + σ2)
, (57)

where the exchange of integration order in (56) follows by

Tonelli’s theorem since all the arguments are non-negative.

The rest of the proof follows by using Lemma 8.

Lemma 10. Fix some a ∈ (0, 1) and for a finite

integer N suppose that {(µi, σ
2
i )}Ni=1 are distinct with

(µi, σ
2
i ) 6= (0, a

1−a
), ∀i. Then, the collection of functions

{

ψ(y; a, σ2
i , µi)

}N

i=1
is linearly independent.

Proof: First, note that the assumption that (µi, σ
2
i ) 6=

(0, a
1−a

) guarantees that ψ(y; a, σ2
j , µj) 6≡ 0 for all i. Oth-

erwise, the collection would be linearly dependent.

Next, we will show that the tails of ψ(y; a, σ2
i , µi) and

ψ(y; a, σ2
j , µj) diverge, and hence we cannot write one ψ

function as a linear combination of the other ψ functions. To

that end, note that for i 6= j

lim
y→∞

∣

∣

∣

∣

∣

ψ(y; a, σ2
i , µi)

ψ(y; a, σ2
j , µj)

∣

∣

∣

∣

∣

= lim
y→∞

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

e
− µ2

i

2σ2
i

√

1
bi
e

(y+
µi
σ2
i

)2

2bi erf

(

(1−bia)y+
µi

σ2
i√

2bi

)

e
−

µ2
j

2σ2
j

√

1
bj
e

(y+
µj

σ2
j

)2

2bj erf

(

(1−bja)y+
µj

σ2
j√

2bj

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(58)

=

{ ∞ σ2
i > σ2

j or (σ2
i = σ2

j and µi − µj > 0)
0 σ2

i < σ2
j or (σ2

i = σ2
j and µi − µj < 0)

. (59)

This concludes the proof.

We are now ready to present the proof of Theorem 7.

Proof of Theorem 7: We first focus on PN . Suppose that

fX ∈ PN and Ta[fX ] = 0; then using Lemma 10

0 = Ta[fX ](y) =

N
∑

i=1

ciψ(y; a, σ
2
i , µi), (60)

where ci = pi√
2πσ2

i

. We now consider two cases. First, if

(µi, σ
2
i ) 6= (0, a

1−a
), ∀i, then by the linear independence

of the ψ functions in Lemma 10 there exists no such fX .

Second, if there exists a j such that (µj , σ
2
j ) = (0, a

1−a
), then

ψ(y; a, σ2
i , µi) ≡ 0 and (60) can be written as

0 =
N
∑

i=1:i 6=j

ciψ(y; a, σ
2
i , µi). (61)

By the linear independence, we have that ci = 0 for all i 6= j.

Thus, the finite mixture representing fX must consist of a

single Gaussian distribution with mean and variance given by

(µj , σ
2
j ) = (0, a

1−a
) and, therefore, fX(x) = φ a

1−a
.

This shows that the only solution in PN is fX(x) = φ a
1−a

.

We now move on to showing uniqueness over P a
1−a

.

Let fX ∈ P a
1−a

; then by using Lemma 9, Ta[fX ] = 0 can

be equivalently re-written as

0 = E



exp

(

−(1− a)
(y − U)2

2

)

erf





U
√

2 1
a

a
1−a







 (62)

=

∫

exp

(

−(1− a)
(y − u)2

2

)

dν(u), (63)

where we have defined a measure ν as

dν(u) = erf





u
√

2 1
a

a
1−a



dPU (u). (64)

Note that ν is a finite and signed measure.

The right-hand side of (63) can now be interpreted as the

convolution of a Gaussian density function with the measure

ν. Now taking the Fourier transform, we have that

0 = exp

(

− ω2

2
(

1− 1
b

)

)

ν̂(ω), ∀ω (65)

where ν̂ is the Fourier transform (a.k.a. characteristic function)

of the measure ν; that is

ν̂(ω) =

∫

eiωudν(u). (66)

From (65) we conclude that ν̂(ω) = 0, and using the fact that

the Fourier transform is unique for a finite signed measure,

we have that for every measurable set E ⊂ R

0 =

∫

E
dν(u) =

∫

E
erf





u
√

2 1
a

a
1−a



dPU (u). (67)

The only probability measure for which this is true is PU = δ0.

This concludes the proof.

IV. CONCLUSION

This work has focused on characterizing which prior dis-

tributions give an optimal estimator (with respect to L1 loss)

that is linear, which is equivalent to answering the question

of when conditional medians are linear functions of the

observations. We have focused on a Gaussian noise model,

but the question can be considered more generally. It has

been conjectured that a Gaussian prior is the only one that

induces a linear conditional median, and this conjecture has

been proven to hold under non-trivial restrictions on the set of

allowed probability distributions. Also, along the way, several

new results have been shown that might be of independent

interest. For example, it has been shown that in Gaussian noise,

the posterior distribution is symmetric if and only if the prior

is Gaussian.
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