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Abstract—We consider point-to-point communication with par-
tial noiseless feedback in which the number of feedback bits is
O(1) in the number of transmitted symbols. For ¢ > 2, we study
the general g-ary alphabet setting with both errors and erasures
and seek to characterize the zero-error capacity. As our main
result, we provide a tight characterization of zero-error capacity
which we prove via novel achievability and converse schemes
inspired by the study of causal/online adversarial channels
without feedback. Perhaps surprisingly, we show that O(1)-bits
of feedback are sufficient to achieve the zero-error capacity of
the error channel with full noiseless feedback when the fraction
of transmitted symbols in error is sufficiently small.

I. INTRODUCTION

One of the oldest questions in coding theory is, “What is
the impact of transmitter feedback on the fundamental limits
of reliable communication?" Shannon addressed this question
in his 1956 paper [1], in which he showed that feedback does
not increase channel capacity for a point-to-point memoryless
channel. In the same work, Shannon conversely showed that
feedback can increase the zero-error capacity when the channel
noise is modeled in a worst-case manner. Since Shannon’s
work, a large body of research has studied the zero-error
capacity problem for various channel models with feedback,
producing a number of capacity characterizations along with
constructive coding schemes which can achieve capacity with
remarkable simplicity [2]-[4].

A notable drawback of the above coding schemes are
their dependency on full noiseless feedback for which the
transmitter observes a noiseless and undelayed version of the
channel output after every transmitted symbol. Motivated by
the fact that feedback is a costly resource, recent work [5] has
initiated the study of the partial noiseless feedback setting in
which feedback is only sent after a fraction § € (0, 1] of all
transmitted symbols. Consider a channel model with a g-ary
input alphabet X = {0,1,...,¢ — 1} for some ¢ > 2, where
a fraction p € [0,1] of all transmitted symbols are received
in error. For binary alphabets (i.e., ¢ = 2), a result of [5]
is that the zero-error capacity is positive for all p € [0,1/3)
when § € (2/3,1].! More recently, [7] improved upon this
result and showed that for n transmitted bits, just O(logn)
bits of feedback is sufficient to achieve some positive rate for
all p € [0,1/3), while for p > 1/4 the zero-error capacity is
0 when the number of feedback bits is o(logn). Hence, when
o(log n) bits of feedback are available, the support of the zero-
error capacity coincides with the support when no feedback
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is available.”

In light of this negative result, one may wonder if o(logn)
bits of feedback are still useful from a capacity point-of-
view. The extent to which feedback is used in real-world
communication systems suggests that it may be too costly to
require that the number of feedback bits scale in n. Indeed,
feedback is often restricted to a few bits per transmission
block, e.g., in LTE/5G feedback-supported protocols such as
hybrid-ARQ, channel precoding for multi-antenna wireless,
and CSI usage [9]. In this work, we consider a more limited
form of partial noiseless feedback than [5]-[7] in which
the number of feedback bits is O(1) i.e., does nor grow
with the number of transmitted symbols n. We consider the
general g-ary setting under both symbol errors and symbol
erasures, and show that O(1)-bit feedback can increase the
zero-error capacity compared to the setting when no feedback
is available.

Our setting is roughly as follows. (See Section II for
detailed definitions). A sender (Alice) wishes to communicate
a message m from a message set M to a receiver (Bob)
by transmitting a sequence of symbols from a g-ary input
alphabet X = {0,1,...,q — 1}. For rate R = 1log, | M|
and B > 0 bits of partial noiseless feedback, an (n, Rn, B)-
code is a scheme that makes n transmissions in the forward
channel (i.e., from Alice to Bob) and at most B transmissions
comprising a total of B bits in the reverse channel (i.e.,
from Bob to Alice).3 Prior to communication, Alice and Bob
choose an (n, Rn, B)-code for communication, while during
communication, the forward channel induces pn symbol errors
and rn symbol erasures.* A rate R is said to be (zero-error)
achievable with O(1)-bit feedback if there exists a constant
B > 0 and for large enough n there exists an (n, Rn, B)-code
that allows Alice to communicate any message m € M to
Bob without decoding error. The zero-error capacity, denoted
Cy(p,r), is the supremum of rates achievable with O(1)-bit
feedback.

A. Results

In this work, we study the zero-error capacity Cy(p,r) for
the g-ary error/erasure channel with O(1)-bit feedback. As
our main result, we present a complete characterization of

ZFor binary alphabets without feedback, by the Gilbert-Varshamov bound,
some positive rate is achievable for any p € [0,1/4). Conversely, by the
Plotkin bound [8], no positive rate is achievable for p > 1/4.

3Setting B = (n — 1) logy(q + 1) corresponds to full noiseless feedback.
That is, this setting corresponds to a feedback set of size 2(n—1) log2(a+1) —
(g+1)""1, i.e., one g-ary symbol or erasure symbol of feedback per channel
use.

4We assume noiseless feedback such that no errors or erasures occur on
the reverse channel.
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Fig. 1: Zero-error capacity bounds of (a) binary
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Cy(p,r). Our proof of this result involves a novel coding
scheme which allows us to prove a lower bound on Cy(p,r)
and a converse analysis which allows us to prove a matching
upper bound on C,(p,r), both of which are inspired from
prior work [13]-[15] on causal channels without transmitter
feedback (see Section I-B for a detailed discussion). Due to
space limitations, we leave the proof of the lower bound for
the extended version. For ¢ > 2, denote the g-ary entropy
function as H, (), which is equal to H,(r) = zlog,(q—1) —
zlog, x — (1 —x)log,(1 — ) for z € [0, 1].

Theorem 1. Suppose that ¢ > 2, p € [0,1] and r € [0,1]. The
zero-error capacity of the q-ary symbol error/erasure channel
with O(1)-bit feedback is

min a(p) (1-Hy (5h) )| 20 +7 < 5
Cy(p,7) = ﬁE[O,p]{ ( >( '1( (p)))] -

0, otherwise
where a(p) =1 — 7(}7 p) — Lo

We remark that in our achlevablhty proof of Theorem 1,
our coding scheme uses a the number of feedback bits B that
varies with the coding rate. For fixed p € [0,1], r € [0,1]
and ¢ > 2, our coding scheme of rate R < Cy(p,r) uses
a number of feedback bits B which tends to infinity as the
rate-to-capacity gap eg = Cy(p,r) — R tends to 0.

To better understand the capacity expression in Theorem 1,
we focus on two special cases: when the channel can only
induce errors (i.e., p € [0,1] and » = 0) and when the channel
can only induce erasures (i.e., p = 0 and r € [0, 1]). These
special cases are plotted in Fig. 1 for binary alphabets. For
general alphabets ¢ > 2, the capacity expression in Theorem
1 can be 51mp11ﬁed When only erasures occur, Cy(0,r) is
equal to 1 — —Lor for r € [0, 4 1) and 0 for r € [ 27, 1].
When only errors occur, for p € [q ql 1] it is easy to verify

that C,(p,0) = 0, and for p € [0, 'Jz—q), Cy(p,0) is equal to
the Hamming bound 1 — H,(p) for small p and is otherwise
equal to the line tangent to 1 — H,(p) and which intersects
the point (p,0) where p = q2;1.

We compare the above result to the setting with full
(noiseless) feedback. The zero-error capacity of the g-ary
error/erasure channel with full feedback, denoted C;““(p7 ),
is the largest rate R for which there exists an (n, Rn, (n —
1)logy(g + 1))-code that allows Alice to communicate any

back is given by Berlekamp [2] and Zigangirov
[3]. The dashed plot shows the Hamming bound
1 — Ha(p).

0.8 1

message m € M to Bob without decoding error. By definition,
it is clear that C!"!!(p, r) is an upper bound of Cy(p,r). We
briefly summarize known characterizations of Cf“”( 7). In
the binary case, a complete characterization of C(flun( 0) for
all p € [0, 1] was provided by Berlekamp [2] and Zigangirov
[3]. For ¢ > 3, a result of Ahlswede, Deppe and Lebedev [4]
is the upper bound

full 1_Hq(p)7 pe [07
C’q (p,O) < {(1 72]3) logq(q— 1), pE [%a )

and CI"'(p,0) = 0 for p € [5,1] which is tight for all
p € [1/q,1].°> However, for ¢ > 3 and p € [0,1/q], a tight
characterization of Cf"!'(p,0) remains open. A corollary of
Theorem 1 is that that the upper bound (1) is tight for small
values of p.

) )

o=

Corollary 1.1 (Full Feedback). Suppose q > 2. The capacity
of the q-ary error channel with full feedback is

M (p,0) = Cy(p,0) =1 = Hy(p), p € (0,p"]

where p* € [0, qT_ql} is the unique value that satisfies equation
q+1

pr(1 —pr)at

version.

= (¢ — 1)q_%. Proof is in the extended

We reiterate that for ¢ > 2 and for p € (0, p*), the zero-error
capacity with full feedback Cflu“(p, 0) can be achieved with
some coding scheme that uses only O(1)-bit feedback. While
a scheme using O(1)-bit feedback cannot be used to achieve
C’;““(p, 0) for p € [p*, 1], the following corollary implies that
such a scheme can achieve rates close to Ci™!!(p,0) for all
p € [0,1] when the alphabet size ¢ is large.

Corollary 1.2 (Large Alphabets). Suppose that p € [0,1] and
r€[0,1]. If 2p+ 1 < 1 then

1
Cylp,r)y=1-2p—r—0 () as q — oo.
q
Otherwise, if 2p +r > 1 then Cy(p,r) = 0 for all ¢ > 2.
Proof is in the extended version.

We remark that for 2p + r < 1, both letters Cy(p,r) and
C’;““(p, r) tend to the same limit 1 — 2p — r as ¢ tends to

SWe remark that the coding scheme proposed in [4] to achieve Cf““(p 0)
for p € [1/q,1/2) uses full (noiseless) feedback. The authors of [4] refer to
their scheme as the ‘rubber method’.
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00, albeit at different rates. Cy(p, r) tends to the limit slightly

slower than C’;““ (pyr)=1-2p—r—0 <q I;g 7
Cy(p,r) tends to the limit 1—2p—r faster than the best known
lower bound on the zero-error capacity without feedback 1 —

2 — 1 — @(ﬁ) due to Tsfasman, Vliduts and Zink® [16].

B. Related Work

As discussed above, our study of channels with O(1)-bit
feedback is related to prior studies on channels with full
feedback [2]-[4] and partial feedback [5]-[7]. More generally,
our study is related to adversarial channels — a channel
modeling framework in which the channel noise is chosen by
a malicious adversary seeking to disrupt communication. Ad-
versarial channels may be modeled with or without feedback,
and include myopic channels [17]-[19], arbitrarily varying
channels (AVCs) [6], [20], and causal adversarial channels
[13]-[15], [21], [22]. We remark that the g-ary channel with
O(1)-bit feedback is an adversarial channel when studied
under a zero-error capacity setting.

Among the above adversarial channel models, causal adver-
sarial channels (without transmitter feedback) have a particu-
larly close connection to channels with O(1)-bit feedback. A
channel is said to be causal if the adversary’s choice to induce
an error/erasure in the sth transmitted symbol depends only on
previously transmitted symbols, i.e., symbols 1 through ¢ — 1.
One connection between the two models, which appears at first
glance to be coincidental, is that the bounded-error capacity of
the g-ary error/erasure causal channel [15] coincides exactly
with the zero-error capacity of the g-ary error/erasure channel
with O(1)-bit feedback (Theorem 1). The authenticity of this
connection becomes apparent in our proof of Theorem 1,
which uses insights and tools developed in the study causal ad-
versarial channels to prove both a lower bound (achievability)
and a tight upper bound (converse) of Cy(p, 7).

Our converse proof is based on the so called “babble-and-
push” adversarial attack of [13], [15] where it was proposed to
study upper bounds on the capacity of causal adversarial chan-
nels without transmitter feedback. In the converse analysis,
“babble-and-push” is an attack strategy used by an adversary
to confuse Bob about Alice’s transmitted codeword. A key step
in the converse analysis is to bound the number of codewords
within a specified Hamming distance using the Plotkin bound.
We propose a novel extension of the standard “babble-and-
push” framework to incorporate O(1)-bit feedback by using
ideas from Ramsey theory. Furthermore, our achievability
proof uses a novel coding scheme that resembles the capacity
achieving scheme of [14], [15]. Due to space limitations, we
leave the achievability proof for the extended paper.

. Conversely,

II. CHANNEL MODEL

A. Notation
For integer ¢ > 2, define Q = {0,1,...,¢g — 1}. For an
integer n > 0, the notation [n] denotes the set {1,2,...,n}.

6The lower bound of [16] follows from the study of algebraic geometry
codes and only holds for ¢ > 49 and when /g is an integer. For general g,
the best known lower bound on the zero-error capacity without feedback is
the Gilbert-Varshamov bound [10], [11].

For two sequences a, b € Q", the Hamming distance dy (a, b)
between a and b is usually defined as the number of positions
i € [n] in which a; # b;. We extend this definition of
Hamming distance to account for sequences containing the
erasure symbol ‘?” by defining the distance dy(a,b) between
the sequences a € Q™ and b € {QU {?}}" to be the number
of positions i € [n] in which b; #? and a; # b;.

B. Channel Model

For g > 2, the channel is characterized by an input alphabet
X =90%2/{0,1,...,q— 1}, an output alphabet Y = QU {7},
and a channel mapping adv : X" — )" that is chosen from a
set of mappings ADYV by an adversary who seeks to disrupt
communication between Alice and Bob. For each mapping
adv € ADV, the channel constraint requires that the number
of erasure symbols ‘?” and the number of symbol errors in the
channel output cannot exceed rn and pn, respectively. The
adversary chooses adv € ADYV using knowledge of Alice’s
message m, and adv not revealed to either Alice or Bob.

C. Codes with Feedback

For a rate R € (0,1], blocklength n > 1, and number
of feedback bits B > 0, an (n, Rn, B)-code (with feedback)
is a tuple ¥ = (Cx, b, fx, T, Z) that specifies the following
communication scheme. First, the code ¥ specifies how Bob
sends feedback to Alice. For an integer 7" > 0, Bob sends
feedback in 7' rounds, sending a symbol from the feedback
alphabet Z at each time in the set 7 = {¢1,...,¢r} where
1<t <ty <--- <tr <n. Fork € [T], the feedback
symbol sent at time ¢, is determined by the feedback function
fr: Y™ — Z and is denoted as zp = fi(y1,...,yt, ) Where
(Y1,---,yt,) € V' is Bob’s received sequence up to time .
Notice that B bits of feedback implies that T log, | Z| < B.

Second, W specifies how Alice communicates with Bob.
For k € [T + 1], Alice sends symbols in blocks of symbol
size ty — ty—1 (where we define tg = 0 and t741 = n)
using the encoding function Cj, : M x ZF-1 — Xte—te—1,
We denote Alice’s transmitted symbols over this block as
(Tt y415---52,) = Ck(m;21,. .., 2K—1). Finally, Alice de-
codes with the the decoding function ¢ : V" — M. We
assume that adversary knows the code ¥ used by Alice and
Bob and can use this knowledge to choose adv € ADV.

Let the symbol o denote a concatenation between two
sequences, i.e., aob = (a, b). We let f(y) denote the concate-
nation .fl (y17"'7yt1)of2(y17' o 7yt2)o"'ofT(y1a" '7ytT)
and we let C(m; 21, ..., zr) denote the concatenation C;(m)o
Co(m,z1) 0+ 0Cpy1(m;21,...,27). In the sequel, for any
message m € M and feedback sequence (z1,...,27) € ZT
we refer to C(m;z1,...,21) as the codeword corresponding
to m and (z1,...,27). Similarly, for k € [T + 1] we refer to
Cr(m;z1,...,25—1) as the k-th sub-codeword corresponding
tom and (z1,...,25—1).

D. Capacity

A rate R € (0,1] is (zero-error) achievable with O(1)-bit
feedback under an error fraction p and erasure fraction r if
there exists a constant B > 0 and for all n large enough
there exists an (n, Rn, B)-code ¥ = (Cg, ¢, fx, T, Z) such
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that ¢ (adv(C(m; 2z))) = m for all m € M and for all adv €
ADY where z = f(adv(C(m;z))). The zero-error capacity
Cy(p,r) is the supremum of rates achievable with O(1)-bit
feedback under an error fraction p and erasure fraction r.

III. PROOF OF THEOREM 1: UPPER BOUND

We first present a summary of our proof followed by a
detailed proof. In the sequel, we adopt the following setup.
Let ¢ > 2. Let p € [0, %] and r € [0, q%ql] be the fraction of
symbol errors and erasures, respectively, where 2p+1r < Uy
The proof can be easily extended to account for the comple-
ment of this set. For p € [0,p], let a(p) =1 — —(p D) —

77 Define Cy = mingeo,y[a(p) (1 - H, (m)ﬁ

A. Overview of Converse Proof

Roughly, the aim of our proof is to show that for any
egp > 0, rate R = Cy + e and any communication scheme
using O(1)-bit feedback, there exists an adversarial strategy
adv € ADV and a message m € M such that Bob incorrectly
decodes m when sent by Alice. To be more precise, we define
the notation of a confusable message pair.

For an (n, Rn, B)-code ¥ = (Ck, ¢, fx, T, Z), the pair of
(unique) messages mi, mo € M is said to be confusable if
there exists an adversarial channel mapping adv* € ADYV such
that the codewords corresponding to both messages m; and
mso are mapped to the same received sequence y* € V", i.e.,
y* = adv*(C(my; 27,...,25)) = adv*(C(mae;27,...,25))
for the feedback sequence (z7,...,z5) = f(y*). Thus, if
some pair (mj,msg) is confusable, for any decoder ¢ used
by Bob, the adversary can induce a decoding error for some
message m € {my, ma}. Hence, for any e > 0 sufficiently
small, R = Cy + €g, any integer constant B > 1 and for
any (n, Rn, B)-code ¥ = (Cy, ¢, fx, T, Z), we show that for
large enough n there exists a message pair (mj, mso) that is
confusable. To show the existence of this pair, we provide a
construction of adv* via the “babble-and-push” attack.

B. Summary of “Babble-and-Push” Attack

“Babble” Attack: Let m denote Alice’s transmitted mes-
sage which is drawn uniformly from M and known to the

adversary and let p = arg mingeo ) [(p) (1 —H, (%))]
For the first b = («(p) + er/2)n channel uses, the adversary
randomly injects pn symbol errors into Alice’s codeword.
More specifically, the adversary randomly chooses a subset
S C {1,...,b} of size pn, and subsequently chooses Bob’s
i received symbol y; uniformly from Q\ {z;} for all i € S
and sets y; = x; for all i € [b]\ S. Let @, = (21,...,xp) and
Yo = (y1,...,yp) denote Alice’s transmitted codeword and
Bob’s received sequence up to time b, respectively, following
the adversary’s “babble” attack. Furthermore, let T}, € [0, T]
denote the number of rounds of feedback that occur up to time
b and let z1, ..., 27, denote the feedback symbols sent during

these T, rounds where z7, is sent at time b.’

“Push” Setup: Following the “babble” attack, the adversary
first constructs a set of all messages m’ such that the first
b symbols of sub-codeword C(m/';zy,...,zr) are close
to yp. That is, the adversary constructs the set B, =
{m’ EM:dy (yb,C(b)(m’;zl, .. .,sz_l)) = jm} where

CNm/s 21,21, —1) 2 Ci(m')o...0Cr, (M5 21,..., 21 1)
denotes the first b symbols of the codeword C(m/; z1, . .., z1).
Next, for each sub-codeword index k € {T, + 1,...,T +

1} and each feedback sequence z,_ , that agrees with the
feedback sent in the first b channel uses, i.e., zfﬂ_l €
Zi {1} x ... x {zp,} x ZF¥"1=To the adversary
constructs a set of all message pairs (m/,m”) € B, such
that the k™ sub-codewords corresponding to m, zj , and
m’, zjc_l are close. Specifically, the adversary constructs
the set Dy = {(m',m") € Bib m' # m’,
di (Cr(m';2},_1),Cr(m”; z},_;)) < Ay} for some distance
parameter Ay > 0 and where we recall that Ci,(m/; z),_,) is
the k™ sub-codeword corresponding to m’ and z_,. Subse-
quently, the adversary constructs the set of all strongly confus-
able message pairs SCM,, = ﬂfi%bﬂ N ez,

By careful choice of Ay} we have that for any pair
(m’,m") € SCM,, and any feedback sequence z}. € Z/,
the codewords corresponding to m’, z/» and m”, z/. are close
such that dg (C®) (m'; 24), C®) (m”; 2)) < 2(p—p)n+rn—
nen £ A where C®)(m/; 2}.) denotes the last n — b symbols
of the codeword C(m/'; z/). In Corollary 3.1, we show the
existence of a received sequence y;, < Y® and a message
pair (m1,mz) € SCMy:. In turn, we show that there exists a
received sequence y; € Y"~? that a) has at most rn erasure
symbols and b) is close to the codeword suffix corresponding
to message m; fori = 1,2, i.e., g (C® (my; 25, . .. 27 ) Yp)

<(- p)n— ﬂ Where (ZT,,Z;) :f((y;;ry;))

“Push” Attack. Let x, = (Zp41,...,%y) and y, =
(Yp+1, - - -, Yn) denote Alice’s transmission and Bob’s received
sequence, respectively, during the “push” attack. The ad-
versary’s push attack is as follows. If either y, # yi or
m & {my,msy}, then the adversary takes no further action and
Yp = &p. Otherwise, if yy, = y; and m € {my, mo}, then the
adversary chooses adv to be the mapping which outputs y, =
y,, (call this mapping adv™). In summary, when Alice sends
the message m; for ¢ = 1,2, then with positive probability
over the “babble” attack, (y;,y;) = adv*(C(m; 27, ..., 27))
where (27,...,27) = f((y5, yp))-

Disy -

"In our analysis and W.L.0O.G., we consider a stronger communication
scheme than initially described in the channel model. We strengthen the
scheme by incrementing Bob’s feedback budget by an additional bit and
requiring Bob to send the extra bit of feedback immediately after channel
use b. Thus, for any (n, Rn, B + 1)-code used by Alice and Bob, we ensure
that the Tg‘ feedback symbol z, is sent immediately after the b channel
use (i.e., at the end of the “babble” attack). The purpose of this assumption
is to ensure that the adversary’s “push” attack does not begin in the middle
of a sub-codeword, thus simplifying our analysis of the “push” attack.

8Let By € (0, 1] be the ratio of the number of symbols in sub-codeword
Cj, and the number of remaining symbols n — b after the “babble” attack, and

2(p — p)Brn + rhpn — BT
(n —b)Bk,

€R
Bk > 165

set A =
Br < 1€6RT'
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C. Analysis of “Babble-and-Push” Attack

Let M, X3, and Y}, denote the random variables correspond-
ing to Alice’s message, Alice’s first b transmitted codeword
symbols, and Bob’s first b received symbols, respectively.
Assume that M is uniformly distributed in the message set
M = [an]. Let F = {Yb (S {’yb S yb : I’I(]\4|Y;3 = yb) >
7%E }} be the event that Bob still has uncertainty in message
M after observing Y5,

Lemma 1 ([15, Claim A.2]). P (F) > <.

Corollary 1.1. Conditioned on event F, the number of mes-
sages in Byb is at least q 4R.

Lemma 2 (Plotkin Bound [23]). A g-ary (n,k,0)-code ¥ =
(C, ¢) with minimum distance dyin, > (1 — 1/q)n must have
a bounded number of codewords such that |C| = ¢F <

qdmin

qdmin—(g—1)n"

Lemma 3. Conditioned on event F, the set of strongly
confusable messages SCM,, is non-empty for large enough
n.

Proof of Lemma 3. Recall that the set of all feedback se-
quences that Bob may send in the “push” phase which
are consistent with the feedback z;,..., 27, sent during the
“babble” phase is U, *}, ., 2/ . Let I denote the number
of sequences in this set, and in turn, let 2 2(®) . 2D
be any enumeration of sequences in this set. Note that for
i € [I], we have that () € 2}, for some sub-codeword
index k; € [T, + 1,7 + 1].

For each ¢ € [I], we construct a graph to study the
distance between a particular subset of all ki sub-codewords
corresponding to feedback sequence z(*). For i = 1,2,...,1,
consider a simple undirected graph G; = (V;,&;) with a
vertex set V; consisting of some subset of sub-codewords
{Cr,(m';2%) : m' € By, } (we provide a detailed construc-
tion of V; shortly). Two distinct sub-codewords &’ and =’ in
V; are connected by an edge if and only if dy (', ") < Ay, .

To describe the construction of V;, we first define a
maximum clique and a maximum independent set of G;. A
maximum clique IC; of graph G, corresponds to a largest subset
of sub-codewords in V; such that every 2 sub-codewords are
within Hamming distance Ay,. We let K; be some maximum
clique in case two or more such cliques may exists. A maxi-
mum independent set T, of graph G; corresponds to a largest
subset of sub-codewords in V; such that every 2 sub-codewords
are not within Hamming distance Ay,. Recall that Plotkin’s
bound (Lemma 2) provides an upper bound on the number of
(sub-) codewords that are not within Hamming distance Ay,
from each other. In particular, the size of a maximum inde-

pendent set is bounded such that |Z;| < 92+,

Ay, —(a-1)(n-b)Bx,
In turn, by substituting our above ch01ce of Ak , the bound

on |Z;| can be simplified to |Z;] < N £ max{%ggr,q}
where we note that [V is constant in 7.
We now construct the vertex sets Vq,Vs,...,Vr in a re-

cursive manner such that the sub-codewords in V; corre-
spond to the messages of sub-codewords in the maximum
clique IC;_1. As the base case (i = 1), we define V; =

{Cry(m/;2M) : m’ € By, }. For i = 2,3,...,1, the vertex
set V; = {Cr,(m’;2") : m’' € K;_1} where m’ € K;;
denotes the message m’ corresponding to the sub-codeword
Cr,_,(m';2071) € IC;_;. Thus, all messages corresponding
to sub-codewords in V; have sub-codewords in V;_; that are
pairwise close. By construction, we have that if two unique
messages m’ and m” have corresponding sub-codewords in
V;, then m’ and m” have corresponding sub-codewords in
V; forall i € {1,...,I} and, in turn, (m’,m”) € SCM,, .
Thus, to prove Lemma 3, it is sufficient to show that the vertex
set V; contains at least two sub-codewords. This is equivalent
to showing that maximum clique K;_; contains at least two
sub-codewords.

We show the above sufficient condition by lower bounding
the size of clique ;. We introduce the Ramsey number
R(|K|, |Z|) which is the smallest integer such that every simple
undirected graph of size R(|K|, |Z|) has a clique of size |K]|
or an independent set of size |Z|. Recall that the size of the
maximum independent set Z; is at most IN. Thus, for K > 1,
if the size of the vertex set V; is at least R (K, N + 1), then
the size of the maximum clique K; is at least K.

We now prove by induction that for large enough n, the size
of IC; is at least L;(¢"™) for i = 1,...,I — 1 where L;(q")
denotes the composition log, olog, o - - -olog,(¢") of i number
of logarithms. (Base Case) Suppose that event F occurs. Then
by Corollary 1.1, the size of V) is at least ¢ = It follows that
the size of Ky is at least Ly(¢") =n if R (n, N +1) < g a".
Indeed, for large enough n

(a)
R(n,N+1) <

(©)  en

2(n+N—1)H2($) < q 1

(<
where (a) follows from the bound that for any ||, |Z| > 1,

R (|K|, |Z|) is at most (mﬂ}q %) [241, (b) follows from the
bound (k) < gnfa2(k/n) for | < n/2, and (c) follows for large
| > n.
Base case done. (Induction) Let i € {2,...,I—2} and assume
that the size of K;_; is at least L;_1(¢"). Following the
construction of V;, the size of V; is equal to the size of /C;_;.
Similar to the argument made in the base case, we have that
Il > Li(g") if R(Li(¢"), N +1) < [Vi| £ [K;]. In-
deed, for large enough n, R (L;(¢"), N + 1) < (Li(qnj)\?'N_l)
< Li1(q™) < |Ki—1] £ |V;| where the bound L;_1(q") <
|IC;—1| follows from assumption. In conclusion, for large
enough n, |IC;| > L;(¢™) for all ¢ € [I —1]. Since the number
of feedback bits B + 1 is a constant in n, it follows that [
is a constant and, in turn, L;_1(¢"™) > 2 for large enough
n. Thus, for large enough n, C;_; contains at least two sub-
codewords. |

Let blocklength n be large enough such that Lemma 3 holds.
Let yi € V® be any received sequence such that Y}, = y;; with
positive probability and H (M |Y;, = y;;) > . To complete
the proof, we note the following corollary of Lemma 3.

Corollary 3.1. With positive probability over the “babble”
attack and choice of Alice’s message, Y, = y;, and there
exists messages my and ms such that (my,mg) € SCIVIy;
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