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AbstractÐWe consider point-to-point communication with par-
tial noiseless feedback in which the number of feedback bits is
O(1) in the number of transmitted symbols. For q ≥ 2, we study
the general q-ary alphabet setting with both errors and erasures
and seek to characterize the zero-error capacity. As our main
result, we provide a tight characterization of zero-error capacity
which we prove via novel achievability and converse schemes
inspired by the study of causal/online adversarial channels
without feedback. Perhaps surprisingly, we show that O(1)-bits
of feedback are sufficient to achieve the zero-error capacity of
the error channel with full noiseless feedback when the fraction
of transmitted symbols in error is sufficiently small.

I. INTRODUCTION

One of the oldest questions in coding theory is, ªWhat is

the impact of transmitter feedback on the fundamental limits

of reliable communication?" Shannon addressed this question

in his 1956 paper [1], in which he showed that feedback does

not increase channel capacity for a point-to-point memoryless

channel. In the same work, Shannon conversely showed that

feedback can increase the zero-error capacity when the channel

noise is modeled in a worst-case manner. Since Shannon’s

work, a large body of research has studied the zero-error

capacity problem for various channel models with feedback,

producing a number of capacity characterizations along with

constructive coding schemes which can achieve capacity with

remarkable simplicity [2]±[4].

A notable drawback of the above coding schemes are

their dependency on full noiseless feedback for which the

transmitter observes a noiseless and undelayed version of the

channel output after every transmitted symbol. Motivated by

the fact that feedback is a costly resource, recent work [5] has

initiated the study of the partial noiseless feedback setting in

which feedback is only sent after a fraction δ ∈ (0, 1] of all

transmitted symbols. Consider a channel model with a q-ary

input alphabet X = {0, 1, . . . , q − 1} for some q ≥ 2, where

a fraction p ∈ [0, 1] of all transmitted symbols are received

in error. For binary alphabets (i.e., q = 2), a result of [5]

is that the zero-error capacity is positive for all p ∈ [0, 1/3)
when δ ∈ (2/3, 1].1 More recently, [7] improved upon this

result and showed that for n transmitted bits, just O(log n)
bits of feedback is sufficient to achieve some positive rate for

all p ∈ [0, 1/3), while for p > 1/4 the zero-error capacity is

0 when the number of feedback bits is o(log n). Hence, when

o(log n) bits of feedback are available, the support of the zero-

error capacity coincides with the support when no feedback

This work is supported in part by the U.S National Science Foundation
under Grants CCF-1908308, CNS-2212565, CNS-2225577, ITE-2226447 and
EEC-1941529 and in part by the Office of Naval Research.

1This result was extended in [6] to the q-ary setting for q ≥ 3.

is available.2

In light of this negative result, one may wonder if o(log n)
bits of feedback are still useful from a capacity point-of-

view. The extent to which feedback is used in real-world

communication systems suggests that it may be too costly to

require that the number of feedback bits scale in n. Indeed,

feedback is often restricted to a few bits per transmission

block, e.g., in LTE/5G feedback-supported protocols such as

hybrid-ARQ, channel precoding for multi-antenna wireless,

and CSI usage [9]. In this work, we consider a more limited

form of partial noiseless feedback than [5]±[7] in which

the number of feedback bits is O(1) i.e., does not grow

with the number of transmitted symbols n. We consider the

general q-ary setting under both symbol errors and symbol

erasures, and show that O(1)-bit feedback can increase the

zero-error capacity compared to the setting when no feedback

is available.

Our setting is roughly as follows. (See Section II for

detailed definitions). A sender (Alice) wishes to communicate

a message m from a message set M to a receiver (Bob)

by transmitting a sequence of symbols from a q-ary input

alphabet X = {0, 1, . . . , q − 1}. For rate R = 1
n logq |M|

and B ≥ 0 bits of partial noiseless feedback, an (n,Rn,B)-
code is a scheme that makes n transmissions in the forward

channel (i.e., from Alice to Bob) and at most B transmissions

comprising a total of B bits in the reverse channel (i.e.,

from Bob to Alice).3 Prior to communication, Alice and Bob

choose an (n,Rn,B)-code for communication, while during

communication, the forward channel induces pn symbol errors

and rn symbol erasures.4 A rate R is said to be (zero-error)

achievable with O(1)-bit feedback if there exists a constant

B ≥ 0 and for large enough n there exists an (n,Rn,B)-code

that allows Alice to communicate any message m ∈ M to

Bob without decoding error. The zero-error capacity, denoted

Cq(p, r), is the supremum of rates achievable with O(1)-bit

feedback.

A. Results

In this work, we study the zero-error capacity Cq(p, r) for

the q-ary error/erasure channel with O(1)-bit feedback. As

our main result, we present a complete characterization of

2For binary alphabets without feedback, by the Gilbert-Varshamov bound,
some positive rate is achievable for any p ∈ [0, 1/4). Conversely, by the
Plotkin bound [8], no positive rate is achievable for p ≥ 1/4.

3Setting B = (n− 1) log2(q + 1) corresponds to full noiseless feedback.

That is, this setting corresponds to a feedback set of size 2(n−1) log2(q+1) =
(q+1)n−1, i.e., one q-ary symbol or erasure symbol of feedback per channel
use.

4We assume noiseless feedback such that no errors or erasures occur on
the reverse channel.
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Fig. 1: Zero-error capacity bounds of (a) binary

error channels and (b) binary erasure channels.

Red plots show the capacity C2(p, r) of bi-

nary channels with O(1)-bit feedback (Thm.

1). The capacity of the channel without feed-

back has best known lower bounds and upper

bounds given by the GV bound [10], [11] and

MRRW bound [12], respectively. The capacity

Cfull
2 (p, 0) of the error channel with full feed-

back is given by Berlekamp [2] and Zigangirov

[3]. The dashed plot shows the Hamming bound

1−H2(p).

Cq(p, r). Our proof of this result involves a novel coding

scheme which allows us to prove a lower bound on Cq(p, r)
and a converse analysis which allows us to prove a matching

upper bound on Cq(p, r), both of which are inspired from

prior work [13]±[15] on causal channels without transmitter

feedback (see Section I-B for a detailed discussion). Due to

space limitations, we leave the proof of the lower bound for

the extended version. For q ≥ 2, denote the q-ary entropy

function as Hq(x), which is equal to Hq(x) = x logq(q−1)−
x logq x− (1− x) logq(1− x) for x ∈ [0, 1].

Theorem 1. Suppose that q ≥ 2, p ∈ [0, 1] and r ∈ [0, 1]. The

zero-error capacity of the q-ary symbol error/erasure channel

with O(1)-bit feedback is

Cq(p, r) =







min
p̄∈[0,p]

[

α(p̄)
(

1−Hq

(

p̄
α(p̄)

))]

, 2p+ r < q−1
q

0, otherwise

where α(p̄) = 1− 2q
q−1 (p− p̄)− q

q−1r.

We remark that in our achievability proof of Theorem 1,

our coding scheme uses a the number of feedback bits B that

varies with the coding rate. For fixed p ∈ [0, 1], r ∈ [0, 1]
and q ≥ 2, our coding scheme of rate R < Cq(p, r) uses

a number of feedback bits B which tends to infinity as the

rate-to-capacity gap ϵR = Cq(p, r)−R tends to 0.

To better understand the capacity expression in Theorem 1,

we focus on two special cases: when the channel can only

induce errors (i.e., p ∈ [0, 1] and r = 0) and when the channel

can only induce erasures (i.e., p = 0 and r ∈ [0, 1]). These

special cases are plotted in Fig. 1 for binary alphabets. For

general alphabets q ≥ 2, the capacity expression in Theorem

1 can be simplified. When only erasures occur, Cq(0, r) is

equal to 1 − q
q−1r for r ∈ [0, q−1

q ) and 0 for r ∈ [ q
q−1 , 1].

When only errors occur, for p ∈ [ q−1
2q , 1] it is easy to verify

that Cq(p, 0) = 0, and for p ∈ [0, q−1
2q ), Cq(p, 0) is equal to

the Hamming bound 1 −Hq(p) for small p and is otherwise

equal to the line tangent to 1 − Hq(p) and which intersects

the point (p, 0) where p = q−1
2q .

We compare the above result to the setting with full

(noiseless) feedback. The zero-error capacity of the q-ary

error/erasure channel with full feedback, denoted Cfull
q (p, r),

is the largest rate R for which there exists an (n,Rn, (n −
1) log2(q + 1))-code that allows Alice to communicate any

message m ∈ M to Bob without decoding error. By definition,

it is clear that Cfull
q (p, r) is an upper bound of Cq(p, r). We

briefly summarize known characterizations of Cfull
q (p, r). In

the binary case, a complete characterization of Cfull
2 (p, 0) for

all p ∈ [0, 1] was provided by Berlekamp [2] and Zigangirov

[3]. For q ≥ 3, a result of Ahlswede, Deppe and Lebedev [4]

is the upper bound

Cfull
q (p, 0) ≤

{

1−Hq(p), p ∈ [0, 1
q )

(1− 2p) logq(q − 1), p ∈ [ 1q ,
1
2 )

(1)

and Cfull
q (p, 0) = 0 for p ∈ [ 12 , 1] which is tight for all

p ∈ [1/q, 1].5 However, for q ≥ 3 and p ∈ [0, 1/q], a tight

characterization of Cfull
q (p, 0) remains open. A corollary of

Theorem 1 is that that the upper bound (1) is tight for small

values of p.

Corollary 1.1 (Full Feedback). Suppose q ≥ 2. The capacity

of the q-ary error channel with full feedback is

Cfull
q (p, 0) = Cq(p, 0) = 1−Hq(p), p ∈ (0, p∗]

where p∗ ∈ [0, q−1
2q ] is the unique value that satisfies equation

p∗(1 − p∗)
q+1

q−1 = (q − 1)q−
2q

q−1 . Proof is in the extended

version.

We reiterate that for q ≥ 2 and for p ∈ (0, p∗), the zero-error

capacity with full feedback Cfull
q (p, 0) can be achieved with

some coding scheme that uses only O(1)-bit feedback. While

a scheme using O(1)-bit feedback cannot be used to achieve

Cfull
q (p, 0) for p ∈ [p∗, 1], the following corollary implies that

such a scheme can achieve rates close to Cfull
q (p, 0) for all

p ∈ [0, 1] when the alphabet size q is large.

Corollary 1.2 (Large Alphabets). Suppose that p ∈ [0, 1] and

r ∈ [0, 1]. If 2p+ r < 1 then

Cq(p, r) = 1− 2p− r −Θ

(

1

q

)

as q → ∞.

Otherwise, if 2p + r ≥ 1 then Cq(p, r) = 0 for all q ≥ 2.

Proof is in the extended version.

We remark that for 2p + r < 1, both letters Cq(p, r) and

Cfull
q (p, r) tend to the same limit 1 − 2p − r as q tends to

5We remark that the coding scheme proposed in [4] to achieve Cfull
q (p, 0)

for p ∈ [1/q, 1/2) uses full (noiseless) feedback. The authors of [4] refer to
their scheme as the ‘rubber method’.
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∞, albeit at different rates. Cq(p, r) tends to the limit slightly

slower than Cfull
q (p, r) = 1−2p−r−Θ

(

1
q log q

)

. Conversely,

Cq(p, r) tends to the limit 1−2p−r faster than the best known

lower bound on the zero-error capacity without feedback 1−
2p− r −Θ( 1√

q ) due to Tsfasman, Vlăduts and Zink6 [16].

B. Related Work

As discussed above, our study of channels with O(1)-bit

feedback is related to prior studies on channels with full

feedback [2]±[4] and partial feedback [5]±[7]. More generally,

our study is related to adversarial channels ± a channel

modeling framework in which the channel noise is chosen by

a malicious adversary seeking to disrupt communication. Ad-

versarial channels may be modeled with or without feedback,

and include myopic channels [17]±[19], arbitrarily varying

channels (AVCs) [6], [20], and causal adversarial channels

[13]±[15], [21], [22]. We remark that the q-ary channel with

O(1)-bit feedback is an adversarial channel when studied

under a zero-error capacity setting.

Among the above adversarial channel models, causal adver-

sarial channels (without transmitter feedback) have a particu-

larly close connection to channels with O(1)-bit feedback. A

channel is said to be causal if the adversary’s choice to induce

an error/erasure in the ith transmitted symbol depends only on

previously transmitted symbols, i.e., symbols 1 through i− 1.

One connection between the two models, which appears at first

glance to be coincidental, is that the bounded-error capacity of

the q-ary error/erasure causal channel [15] coincides exactly

with the zero-error capacity of the q-ary error/erasure channel

with O(1)-bit feedback (Theorem 1). The authenticity of this

connection becomes apparent in our proof of Theorem 1,

which uses insights and tools developed in the study causal ad-

versarial channels to prove both a lower bound (achievability)

and a tight upper bound (converse) of Cq(p, r).
Our converse proof is based on the so called ªbabble-and-

pushº adversarial attack of [13], [15] where it was proposed to

study upper bounds on the capacity of causal adversarial chan-

nels without transmitter feedback. In the converse analysis,

ªbabble-and-pushº is an attack strategy used by an adversary

to confuse Bob about Alice’s transmitted codeword. A key step

in the converse analysis is to bound the number of codewords

within a specified Hamming distance using the Plotkin bound.

We propose a novel extension of the standard ªbabble-and-

pushº framework to incorporate O(1)-bit feedback by using

ideas from Ramsey theory. Furthermore, our achievability

proof uses a novel coding scheme that resembles the capacity

achieving scheme of [14], [15]. Due to space limitations, we

leave the achievability proof for the extended paper.

II. CHANNEL MODEL

A. Notation

For integer q ≥ 2, define Q = {0, 1, . . . , q − 1}. For an

integer n ≥ 0, the notation [n] denotes the set {1, 2, . . . , n}.

6The lower bound of [16] follows from the study of algebraic geometry
codes and only holds for q ≥ 49 and when

√
q is an integer. For general q,

the best known lower bound on the zero-error capacity without feedback is
the Gilbert-Varshamov bound [10], [11].

For two sequences a, b ∈ Qn, the Hamming distance dH(a, b)
between a and b is usually defined as the number of positions

i ∈ [n] in which ai ̸= bi. We extend this definition of

Hamming distance to account for sequences containing the

erasure symbol ‘?’ by defining the distance dH(a, b) between

the sequences a ∈ Qn and b ∈ {Q∪ {?}}n to be the number

of positions i ∈ [n] in which bi ̸=? and ai ̸= bi.

B. Channel Model

For q ≥ 2, the channel is characterized by an input alphabet

X = Q ≜ {0, 1, . . . , q− 1}, an output alphabet Y = Q∪{?},

and a channel mapping adv : Xn → Yn that is chosen from a

set of mappings ADV by an adversary who seeks to disrupt

communication between Alice and Bob. For each mapping

adv ∈ ADV , the channel constraint requires that the number

of erasure symbols ‘?’ and the number of symbol errors in the

channel output cannot exceed rn and pn, respectively. The

adversary chooses adv ∈ ADV using knowledge of Alice’s

message m, and adv not revealed to either Alice or Bob.

C. Codes with Feedback

For a rate R ∈ (0, 1], blocklength n ≥ 1, and number

of feedback bits B ≥ 0, an (n,Rn,B)-code (with feedback)

is a tuple Ψ = (Ck, ϕ, fk, T ,Z) that specifies the following

communication scheme. First, the code Ψ specifies how Bob

sends feedback to Alice. For an integer T ≥ 0, Bob sends

feedback in T rounds, sending a symbol from the feedback

alphabet Z at each time in the set T = {t1, . . . , tT } where

1 ≤ t1 < t2 < · · · < tT < n. For k ∈ [T ], the feedback

symbol sent at time tk is determined by the feedback function

fk : Ytk → Z and is denoted as zk = fk(y1, . . . , ytk) where

(y1, . . . , ytk) ∈ Ytk is Bob’s received sequence up to time tk.

Notice that B bits of feedback implies that T log2 |Z| ≤ B.

Second, Ψ specifies how Alice communicates with Bob.

For k ∈ [T + 1], Alice sends symbols in blocks of symbol

size tk − tk−1 (where we define t0 = 0 and tT+1 = n)

using the encoding function Ck : M × Zk−1 → X tk−tk−1 .

We denote Alice’s transmitted symbols over this block as

(xtk−1+1, . . . , xtk) = Ck(m; z1, . . . , zk−1). Finally, Alice de-

codes with the the decoding function ϕ : Yn → M. We

assume that adversary knows the code Ψ used by Alice and

Bob and can use this knowledge to choose adv ∈ ADV .

Let the symbol ◦ denote a concatenation between two

sequences, i.e., a◦b = (a, b). We let f(y) denote the concate-

nation f1 (y1, . . . , yt1)◦ f2(y1, . . . , yt2)◦ · · · ◦ fT (y1, . . . , ytT )
and we let C(m; z1, . . . , zT ) denote the concatenation C1(m)◦
C2(m, z1) ◦ · · · ◦ CT+1(m; z1, . . . , zT ). In the sequel, for any

message m ∈ M and feedback sequence (z1, . . . , zT ) ∈ ZT

we refer to C(m; z1, . . . , zT ) as the codeword corresponding

to m and (z1, . . . , zT ). Similarly, for k ∈ [T + 1] we refer to

Ck(m; z1, . . . , zk−1) as the k-th sub-codeword corresponding

to m and (z1, . . . , zk−1).

D. Capacity

A rate R ∈ (0, 1] is (zero-error) achievable with O(1)-bit

feedback under an error fraction p and erasure fraction r if

there exists a constant B ≥ 0 and for all n large enough

there exists an (n,Rn,B)-code Ψ = (Ck, ϕ, fk, T ,Z) such
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that ϕ (adv(C(m; z))) = m for all m ∈ M and for all adv ∈
ADV where z = f(adv(C(m; z))). The zero-error capacity

Cq(p, r) is the supremum of rates achievable with O(1)-bit

feedback under an error fraction p and erasure fraction r.

III. PROOF OF THEOREM 1: UPPER BOUND

We first present a summary of our proof followed by a

detailed proof. In the sequel, we adopt the following setup.

Let q ≥ 2. Let p ∈ [0, q−1
2q ] and r ∈ [0, q−1

q ] be the fraction of

symbol errors and erasures, respectively, where 2p+r ≤ q−1
q .

The proof can be easily extended to account for the comple-

ment of this set. For p̄ ∈ [0, p], let α(p̄) = 1− 2q
q−1 (p− p̄)−

q
q−1r. Define C0 = minp̄∈[0,p][α(p̄)

(

1−Hq

(

p̄
α(p̄)

))

].

A. Overview of Converse Proof

Roughly, the aim of our proof is to show that for any

ϵR > 0, rate R = C0 + ϵR and any communication scheme

using O(1)-bit feedback, there exists an adversarial strategy

adv ∈ ADV and a message m ∈ M such that Bob incorrectly

decodes m when sent by Alice. To be more precise, we define

the notation of a confusable message pair.

For an (n,Rn,B)-code Ψ = (Ck, ϕ, fk, T ,Z), the pair of

(unique) messages m1,m2 ∈ M is said to be confusable if

there exists an adversarial channel mapping adv
∗ ∈ ADV such

that the codewords corresponding to both messages m1 and

m2 are mapped to the same received sequence y∗ ∈ Yn, i.e.,

y∗ = adv
∗(C(m1; z

∗
1 , . . . , z

∗
T )) = adv

∗(C(m2; z
∗
1 , . . . , z

∗
T ))

for the feedback sequence (z∗1 , . . . , z
∗
T ) = f(y∗). Thus, if

some pair (m1,m2) is confusable, for any decoder ϕ used

by Bob, the adversary can induce a decoding error for some

message m ∈ {m1,m2}. Hence, for any ϵR > 0 sufficiently

small, R = C0 + ϵR, any integer constant B ≥ 1 and for

any (n,Rn,B)-code Ψ = (Ck, ϕ, fk, T ,Z), we show that for

large enough n there exists a message pair (m1,m2) that is

confusable. To show the existence of this pair, we provide a

construction of adv∗ via the ªbabble-and-pushº attack.

B. Summary of ªBabble-and-Pushº Attack

ªBabbleº Attack: Let m denote Alice’s transmitted mes-

sage which is drawn uniformly from M and known to the

adversary and let p̄ = argminp̄∈[0,p][α(p̄)
(

1−Hq

(

p̄
α(p̄)

))

].

For the first b = (α(p̄) + ϵR/2)n channel uses, the adversary

randomly injects p̄n symbol errors into Alice’s codeword.

More specifically, the adversary randomly chooses a subset

S ⊂ {1, . . . , b} of size p̄n, and subsequently chooses Bob’s

ith received symbol yi uniformly from Q \ {xi} for all i ∈ S
and sets yi = xi for all i ∈ [b] \S . Let xb = (x1, . . . , xb) and

yb = (y1, . . . , yb) denote Alice’s transmitted codeword and

Bob’s received sequence up to time b, respectively, following

the adversary’s ªbabbleº attack. Furthermore, let Tb ∈ [0, T ]
denote the number of rounds of feedback that occur up to time

b and let z1, . . . , zTb
denote the feedback symbols sent during

these Tb rounds where zTb
is sent at time b.7

ªPushº Setup: Following the ªbabbleº attack, the adversary

first constructs a set of all messages m′ such that the first

b symbols of sub-codeword C(m′; z1, . . . , zT ) are close

to yb. That is, the adversary constructs the set Byb
=

{

m′ ∈ M : dH
(

yb, C
(b)(m′; z1, . . . , zTb−1)

)

= p̄n
}

where

C(b)(m′; z1, . . ., zTb−1) ≜ C1(m
′)◦ . . .◦CTb

(m′; z1, . . ., zTb−1)
denotes the first b symbols of the codeword C(m′; z1, . . . , zT ).

Next, for each sub-codeword index k ∈ {Tb + 1, . . . , T +
1} and each feedback sequence z′

k−1 that agrees with the

feedback sent in the first b channel uses, i.e., z′
k−1 ∈

Z ′
k−1 ≜ {z1} × . . . × {zTb

} × Zk−1−Tb , the adversary

constructs a set of all message pairs (m′,m′′) ∈ B2
yb

such

that the kth sub-codewords corresponding to m, z′
k−1 and

m′, z′
k−1 are close. Specifically, the adversary constructs

the set Dk,z′

k−1
= {(m′,m′′) ∈ B2

yb
: m′ ̸= m′′,

dH
(

Ck(m
′; z′

k−1), Ck(m
′′; z′

k−1)
)

≤ ∆k} for some distance

parameter ∆k > 0 and where we recall that Ck(m
′; z′

k−1) is

the kth sub-codeword corresponding to m′ and z′
k−1. Subse-

quently, the adversary constructs the set of all strongly confus-

able message pairs SCMyb
=

⋂T+1
k=Tb+1

⋂

z
′

k−1
∈Z′

k−1

Dk,z′

k−1
.

By careful choice of ∆k,8 we have that for any pair

(m′,m′′) ∈ SCMyb
and any feedback sequence z′

T ∈ Z ′
T ,

the codewords corresponding to m′, z′
T and m′′, z′

T are close

such that dH
(

C(p)(m′; z′
T ), C

(p)(m′′; z′
T )

)

< 2(p−p̄)n+rn−
nϵR
16 ≜ ∆ where C(p)(m′; z′

T ) denotes the last n− b symbols

of the codeword C(m′; z′
T ). In Corollary 3.1, we show the

existence of a received sequence y∗
b ∈ Yb and a message

pair (m1,m2) ∈ SCMy
∗

b
. In turn, we show that there exists a

received sequence y∗
p ∈ Yn−b that a) has at most rn erasure

symbols and b) is close to the codeword suffix corresponding

to message mi for i = 1, 2, i.e., dH(C(p)(mi; z
∗
1 , . . . , z

∗
Tb
),y∗

p)
≤ (p− p̄)n− nϵR

16 where (z∗1 , . . . , z
∗
T ) = f((y∗

b,y
∗
p)).

ªPushº Attack: Let xp = (xb+1, . . . , xn) and yp =
(yb+1, . . . , yn) denote Alice’s transmission and Bob’s received

sequence, respectively, during the ªpushº attack. The ad-

versary’s push attack is as follows. If either yb ̸= y∗
b or

m ̸∈ {m1,m2}, then the adversary takes no further action and

yp = xp. Otherwise, if yb = y∗
b and m ∈ {m1,m2}, then the

adversary chooses adv to be the mapping which outputs yp =
y∗
p (call this mapping adv

∗). In summary, when Alice sends

the message mi for i = 1, 2, then with positive probability

over the ªbabbleº attack, (y∗
b,y

∗
p) = adv

∗(C(m; z∗1 , . . . , z
∗
T ))

where (z∗1 , . . . , z
∗
T ) = f((y∗

b,y
∗
p)).

7In our analysis and W.L.O.G., we consider a stronger communication
scheme than initially described in the channel model. We strengthen the
scheme by incrementing Bob’s feedback budget by an additional bit and
requiring Bob to send the extra bit of feedback immediately after channel
use b. Thus, for any (n,Rn,B+1)-code used by Alice and Bob, we ensure
that the T th

b feedback symbol zTb
is sent immediately after the bth channel

use (i.e., at the end of the ªbabbleº attack). The purpose of this assumption
is to ensure that the adversary’s ªpushº attack does not begin in the middle
of a sub-codeword, thus simplifying our analysis of the ªpushº attack.

8Let βk ∈ (0, 1] be the ratio of the number of symbols in sub-codeword
Ck and the number of remaining symbols n−b after the ªbabbleº attack, and

set ∆k =

{

2(p− p̄)βkn+ rβkn− ϵRβkn

8
, βk ≥ ϵR

16T

(n− b)βk, βk < ϵR
16T

.
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C. Analysis of ªBabble-and-Pushº Attack

Let M , Xb and Yb denote the random variables correspond-

ing to Alice’s message, Alice’s first b transmitted codeword

symbols, and Bob’s first b received symbols, respectively.

Assume that M is uniformly distributed in the message set

M = [qRn]. Let F = {Yb ∈ {yb ∈ Yb : H(M |Yb = yb) ≥
nϵR
4 }} be the event that Bob still has uncertainty in message

M after observing Yb.

Lemma 1 ([15, Claim A.2]). P (F) > ϵR
4 .

Corollary 1.1. Conditioned on event F , the number of mes-

sages in Byb
is at least q

nϵR
4 .

Lemma 2 (Plotkin Bound [23]). A q-ary (n, k, 0)-code Ψ =
(C, ϕ) with minimum distance dmin > (1 − 1/q)n must have

a bounded number of codewords such that |C| ≜ qk ≤
qdmin

qdmin−(q−1)n .

Lemma 3. Conditioned on event F , the set of strongly

confusable messages SCMyb
is non-empty for large enough

n.

Proof of Lemma 3. Recall that the set of all feedback se-

quences that Bob may send in the ªpushº phase which

are consistent with the feedback z1, . . . , zTb
sent during the

ªbabbleº phase is ∪T+1
k=Tb+1Z

′
k−1. Let I denote the number

of sequences in this set, and in turn, let z(1), z(2), . . . , z(I)

be any enumeration of sequences in this set. Note that for

i ∈ [I], we have that z(i) ∈ Z ′
ki−1 for some sub-codeword

index ki ∈ [Tb + 1, T + 1].
For each i ∈ [I], we construct a graph to study the

distance between a particular subset of all kth
i sub-codewords

corresponding to feedback sequence z(i). For i = 1, 2, . . . , I ,

consider a simple undirected graph Gi = (Vi, Ei) with a

vertex set Vi consisting of some subset of sub-codewords

{Cki
(m′; z(i)) : m′ ∈ Byb

} (we provide a detailed construc-

tion of Vi shortly). Two distinct sub-codewords x′ and x′′ in

Vi are connected by an edge if and only if dH(x′,x′′) ≤ ∆ki
.

To describe the construction of Vi, we first define a

maximum clique and a maximum independent set of Gi. A

maximum clique Ki of graph Gi corresponds to a largest subset

of sub-codewords in Vi such that every 2 sub-codewords are

within Hamming distance ∆ki
. We let Ki be some maximum

clique in case two or more such cliques may exists. A maxi-

mum independent set Ii of graph Gi corresponds to a largest

subset of sub-codewords in Vi such that every 2 sub-codewords

are not within Hamming distance ∆ki
. Recall that Plotkin’s

bound (Lemma 2) provides an upper bound on the number of

(sub-) codewords that are not within Hamming distance ∆ki

from each other. In particular, the size of a maximum inde-

pendent set is bounded such that |Ii| ≤
q∆ki

q∆ki
−(q−1)(n−b)βki

.

In turn, by substituting our above choice of ∆ki
, the bound

on |Ii| can be simplified to |Ii| ≤ N ≜ max{ 8(p−p̄)+8r
3ϵR

, q}
where we note that N is constant in n.

We now construct the vertex sets V1,V2, . . . ,VI in a re-

cursive manner such that the sub-codewords in Vi corre-

spond to the messages of sub-codewords in the maximum

clique Ki−1. As the base case (i = 1), we define V1 =

{Ck1
(m′; z(1)) : m′ ∈ Byb

}. For i = 2, 3, . . . , I , the vertex

set Vi = {Cki
(m′; z(i)) : m′ ∈ Ki−1} where m′ ∈ Ki−1

denotes the message m′ corresponding to the sub-codeword

Cki−1
(m′; z(i−1)) ∈ Ki−1. Thus, all messages corresponding

to sub-codewords in Vi have sub-codewords in Vi−1 that are

pairwise close. By construction, we have that if two unique

messages m′ and m′′ have corresponding sub-codewords in

VI , then m′ and m′′ have corresponding sub-codewords in

Vi for all i ∈ {1, . . . , I} and, in turn, (m′,m′′) ∈ SCMyb
.

Thus, to prove Lemma 3, it is sufficient to show that the vertex

set VI contains at least two sub-codewords. This is equivalent

to showing that maximum clique KI−1 contains at least two

sub-codewords.

We show the above sufficient condition by lower bounding

the size of clique Ki. We introduce the Ramsey number

R(|K|, |I|) which is the smallest integer such that every simple

undirected graph of size R(|K|, |I|) has a clique of size |K|
or an independent set of size |I|. Recall that the size of the

maximum independent set Ii is at most N . Thus, for K ≥ 1,

if the size of the vertex set Vi is at least R (K,N + 1), then

the size of the maximum clique Ki is at least K.

We now prove by induction that for large enough n, the size

of Ki is at least Li(q
n) for i = 1, . . . , I − 1 where Li(q

n)
denotes the composition logq ◦ logq ◦ · · ·◦logq(q

n) of i number

of logarithms. (Base Case) Suppose that event F occurs. Then

by Corollary 1.1, the size of V1 is at least q
nϵR
4 . It follows that

the size of K1 is at least L1(q
n) = n if R (n,N + 1) ≤ q

nϵR
4 .

Indeed, for large enough n

R (n,N + 1)
(a)

≤
(

n+N−1
N

)

(b)

≤ 2(n+N−1)H2( N
n+N−1 )

(c)

≤ q
nϵR
4

where (a) follows from the bound that for any |K|, |I| ≥ 1,

R (|K|, |I|) is at most
(|I|+|K|−2

|I|−1

)

[24], (b) follows from the

bound
(

n
k

)

≤ 2nH2(k/n) for k ≤ n/2, and (c) follows for large

enough n from the fact that N constant in n. Thus, |K1| ≥ n.

Base case done. (Induction) Let i ∈ {2, . . . , I−2} and assume

that the size of Ki−1 is at least Li−1(q
n). Following the

construction of Vi, the size of Vi is equal to the size of Ki−1.

Similar to the argument made in the base case, we have that

|Ki| ≥ Li(q
n) if R (Li(q

n), N + 1) ≤ |Vi| ≜ |Ki−1|. In-

deed, for large enough n, R (Li(q
n), N + 1) ≤

(

Li(q
n)+N−1
N

)

≤ Li−1(q
n) ≤ |Ki−1| ≜ |Vi| where the bound Li−1(q

n) ≤
|Ki−1| follows from assumption. In conclusion, for large

enough n, |Ki| ≥ Li(q
n) for all i ∈ [I−1]. Since the number

of feedback bits B + 1 is a constant in n, it follows that I
is a constant and, in turn, LI−1(q

n) ≥ 2 for large enough

n. Thus, for large enough n, KI−1 contains at least two sub-

codewords. ■

Let blocklength n be large enough such that Lemma 3 holds.

Let y∗
b ∈ Yb be any received sequence such that Yb = y∗

b with

positive probability and H(M |Yb = y∗
b) ≥

nϵR
n . To complete

the proof, we note the following corollary of Lemma 3.

Corollary 3.1. With positive probability over the ªbabbleº

attack and choice of Alice’s message, Yb = y∗
b and there

exists messages m1 and m2 such that (m1,m2) ∈ SCMy
∗

b
.
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