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ABSTRACT

In social networks, a node’s position is, in and of itself, a form
of social capital. Better-positioned members not only benefit from
(faster) access to diverse information, but innately have more poten-
tial influence on information spread. Structural biases often arise
from network formation, and can lead to significant disparities in
information access based on position. Further, processes such as
link recommendation can exacerbate this inequality by relying on
network structure to augment connectivity.

In this paper, we argue that one can understand and quantify this
social capital through the lens of information flow in the network. In
contrast to prior work, we consider the setting where all nodes may
be sources of distinct information, and a node’s (dis)advantage takes
into account its ability to access all information available on the
network, not just that from a single source. We introduce three new
measures of advantage (broadcast, influence, and control), which are
quantified in terms of position in the network using access signatures
- vectors that represent a node’s ability to share information with
each other node in the network. We then consider the problem of
improving equity by making interventions to increase the access
of the least-advantaged nodes. Since all nodes are already sources
of information in our model, we argue that edge augmentation is
most appropriate for mitigating bias in the network structure, and
frame a budgeted intervention problem for maximizing broadcast
(minimum pairwise access) over the network.

Finally, we propose heuristic strategies for selecting edge aug-
mentations and empirically evaluate their performance on a corpus
of real-world social networks. We demonstrate that a small number
of interventions can not only significantly increase the broadcast
measure of access for the least-advantaged nodes (over 5 times
more than random), but also simultaneously improve the minimum
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influence. Additional analysis shows that edge augmentations tar-
geted at improving minimum pairwise access can also dramatically
shrink the gap in advantage between nodes (over 82%) and reduce
disparities between their access signatures.
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1 INTRODUCTION

One of the promises of a highly-connected world is an impartial
spread of opinions driven by free and unbiased sources of informa-
tion, leading to an equitable exposure of opinion to the wide public.
On the contrary, the social network platforms currently governing
news diffusion, while offering many seemingly-desired features like
search, personalization, and recommendation, are reinforcing the
centralization of information spread and the creation of so-called
echo chambers and filter bubbles [5]. A person’s position within
these networks often determines their access to information and op-
portunities such as jobs, education, and health information [13, 24]
and can confer advantage via influence on others [36]. Network
position can therefore be viewed as a form of social capital [12, 15]
- a function of social structure that produces advantage [23].

The dynamics of how social networks are formed (including
organic growth and recommendations) can lead to skews in net-
work position based on demographics, gender, or other attributes.
Experiments show that introducing even slight demographic bias to
network formation processes can exacerbate differences in network
structure between groups [64]. This becomes even more problem-
atic when seen in light of boyd, Levy, and Marwick’s argument [10]
that position in the network is itself a feature that can lead to
discrimination separately from individual demographic attributes,
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and modern social networks might be vehicles for a more direct
propagation of (dis)advantage. Social networks’ topology can cause
better-positioned users to benefit more from the privileges of their
position, leading to even better connections. On the other hand,
less well-connected individuals — because of demographics, class,
wealth, or other factors that drive network position — will find it
much harder to improve their network status. As a result, the gap
in power between the most and least advantaged users can lead to
a cascading cycle where those with more capital have better oppor-
tunities for additional improvement, creating increased inequality.

In order to mitigate the differential accumulation of social cap-
ital, one could consider intervening in the network to change the
spread of information. However, in order to do this in an automated
fashion, we need ways to measure social capital based on network
position. Fish et al. [31] first introduced the notion of information
access as a resource and used it to propose a formal description
for an individual’s access to information. Beilinson et al. [7] sub-
sequently defined an access signature to encode the "view" from
a node of its access to information sent from other nodes in the
network. We build on these approaches to model structural access
advantage and formulate appropriate metrics for its evaluation. We
design intervention strategies that use these metrics to achieve our
main goal of ensuring equitable information access.

Our setup differs from prior work in a significant way. In influ-
ence maximization, a single piece of information is being spread in
the network, and one can improve access for disadvantaged nodes
by augmenting the set of initial sources. In contrast, we consider a
setting such as those which occur on LinkedIn, where each node is
the source of a unique piece of information, and access to all pieces
is equally important. Given this key difference, we argue that in-
stead of trying to select additional seeds for some or all of the pieces
to improve dispersal, the natural intervention is adding edges to the
network, representing the idea of purposefully strengthening weak
ties [36] to mitigate bias in the structure and increase connectivity.

In this work, we have three primary contributions:

(1) Using a normative framework and drawing on prior work,
we formulate three measures — broadcast, influence, and control —
to model structural advantage with respect to access.

(2) We focus on intervening in the network using budgeted
edge augmentation to improve the structural position of least-
advantaged nodes, reduce the advantage gap, and ensure that nodes
have similar “views” of the network (as measured via their access
signature). At the core of our approach is the idea that to miti-
gate inequality, we should maximize the minimum access of the
least-advantaged node — which in turn reduces to maximizing the
minimum access between all pairs of nodes in the network.

(3) We introduce heuristic algorithms for selecting edge augmen-
tations and empirically evaluate them on a corpus of social network
data. We further show experimentally that while this process di-
rectly maximizes the broadcast measure of access advantage, it also
simultaneously improves influence and control disparities among
nodes, as well as making node access signatures more uniform.

2 RELATED WORK AND PRELIMINARIES

Motivated by the design of viral marketing strategies, Domingos
and Richardson [28] introduced an algorithmic problem for social
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networks in which one wished to convince an initial subset of indi-
viduals to adopt a new product or innovation in order to maximize
the cascade of further adoptions. This model can be generalized
to many types of information spread beyond adoption and was
formalized as the discrete optimization problem of influence max-
imization by Kempe et al. [44], leading to an extensive literature
on the subject (see the survey [51]), including many applications
in public health awareness [71, 76-78].

Structural Advantage. Information propagation in networks has
been studied for decades in social and computing sciences [13, 24],
and network position is known to dramatically impact a node’s
access to other network members [36]. It has been repeatedly ar-
gued that one’s position in a network is itself a form of wealth
or social capital [12, 15, 23, 37], enabling better and faster access
to circulating information and important individuals. This trans-
lates into better access to opportunities (such as jobs) and enables
well-positioned people to be more effective brokers, make better
decisions, and innovate more efficiently [12]. Further, in public
health scenarios, people rarely act on mass-media information un-
less it is also transmitted through personal ties [43, 60], leading to
well-connected nodes having improved outcomes in crises.

Bias in Network Structure. The network itself can act as a trans-
mitter for bias when the structural advantages described above
interact with network formation mechanisms that encourage ho-
mophily and clustering of demographic groups. Schelling demon-
strated how local neighborhood-based decisions could lead to seg-
regation [62], and recent work has explored how bias in localized
decisions about new connections can result in networks that have
significant skew [42, 48]. Sociologists have extensively studied the
role of social status in shaping network structure, showing in small-
scale experiments that it significantly influences whether individu-
als end up in central vs. peripheral network positions [18, 52].More
recently, studies in network science have extended these ideas
to large-scale networks by developing computational methods for
characterizing the structural influence of social status at scale [4, 49].
For example, Clauset et al. quantify the ways in which institutional
reputation (and the auxiliary features of demographics and pro-
ductivity) shapes the structure of faculty hiring networks among
academic departments [21, 75] and subsequently the differential
spread of ideas [56].

Algorithmic Fairness in Information Propagation. In the setting
of information access, natural questions of fairness arise in the
problem of ensuring similar allocation among demographic groups,
which are often represented as disjoint subsets of nodes. Inspired by
the literature on social position initiated by Granovetter’s strength
of weak ties [36] and framed in the context of online social networks
by boyd, Levy, and Marwick [10], there has been a rash of recent
work on computational questions around fairness in access on
social networks [1, 6, 29-31, 38, 39, 45, 53, 57, 63, 69, 74]. The key
underlying idea is that information access is a resource, and Fish et
al. [31] argued that access based on network position is a form of
privilege, which they used to define a notion of individual fairness.

Much of the work on defining and applying fairness has been
undertaken in the influence maximization framework. One impor-
tant thrust has been improving equity among demographic groups



within a network, typically defined based on protected classes (e.g.,
race, gender) [1, 39, 57, 63, 69]. They develop metrics and algorithms
to ensure that roughly equal amounts of information reach each
demographic group while optimizing influence maximization. In all
cases, a single piece of information is being spread in the network.
Intervention takes the form of augmenting the seed set in most
work, though [39, 66] consider adding edges instead of seeds. In
other recent work on edge augmentation to maximize the influence
of a given group [6, 26], advantage is inherently defined to be access
to (a small) seed set.

Several other recent papers in the space consider variants of the
basic access problem. Becker et al. [5] consider u sources of diverse
information in a network and maximize the expected number of
nodes receiving at least v types of information. In our setting y = n
(we consider each user as a potential source of information), and
our objective function is different. Specifically, Becker et al. [5] are
not focused on fairness, but rather maximizing the number of users
with diverse information. In contrast, we want to improve the access
of the most disadvantaged node. Ramachandran et al.[58] consider
another related but distinct problem, using a diffusion model of
mobility dynamics and try to achieve equity in group-level access
in the facility location problem.

Graph Neural Networks (GNN). There has been recent work on
analyzing the information access problem in theoretical GNNs [2,
3, 35, 68], and in solving it using link recommendation [3, 8, 41, 68].
Several of these papers suggest using random-walk spectral metrics
to characterize information flow [3, 35, 72].

2.1 Preliminaries

As in the discrete optimization setting of [44], we use a stochastic
information flow model describing how information might trans-
mit from one node to another along the edges of G (for example,
Independent Cascade, Linear Threshold, or an infection flow model
from epidemiology [44]). These models all work by assuming that
at time zero, an initial seed set of nodes that possess the informa-
tion to be spread. For each node v; as the seed set, there is then a
(potentially hard to compute) probability p;; — which we call access
proximity — that node v; € V possesses v;’s information once the
spread process has terminated. Similarly, their access distance can be
defined as 1 p;;. Inversely, pj; is called the reach of v; with respect
to vj. We restrict our attention to the undirected setting (where
social network links require mutual consent and typically create a
giant connected component — Facebook’s has 99.9% of users [70]),
pij = pji and we use access proximity and reach interchangeably.

Independent Cascade Model. In this work, we utilize the standard
probabilistic model of influence propagation, Independent Cascade
(IC) [44] with a uniform transmission probability «. In this model, a
node exists in one of three states: ready to receive, ready to transmit,
or dormant. Initially (at time zero), all nodes are ready to receive
information, while the seed nodes also possess the information and
are ready to transmit. At each time step, a node that is ready to
transmit sends its information along each incident edge indepen-
dently with probability a. All such transmissions are imagined to
happen simultaneously, after which the transmitting node goes
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dormant. Computing the access proximities for Independent Cas-
cade is #P-hard [20], so we use standard Monte Carlo simulations
to estimate them when needed.

Access signatures. Since we view a piece of information as being
uniquely identified by its originator, describing the access of a node
requires a vector of n — 1 probabilities, which is standardized to
length n to facilitate easy indexing and comparison across nodes,
and p;; := 1. These vectors are called information access signatures,
and were introduced by Beilinson et al. [7], who argued that nodes
that have similar “status” based on network position receive similar
information. The signature encodes the “view” from a node of
its access to information sent from the other nodes in G; people
who are likely to receive information from the same part(s) of the
network will have similar signatures.

Definition 1 (Access Signature [7]). The access signature ag V-
R" of a node v; € V in graph G on n nodes is:

Ss(i) = (pi1, <o Dijs ...Pin)

3 STRUCTURAL ADVANTAGE

How does network position impact access and influence? In so-
cial networks, structural advantage can manifest in many ways.
Inspired by prior work, we formalize three distinct notions of ad-
vantage arising from network position and propose measures for
quantifying each.

3.1 Access-based Definitions

We begin by defining analogues of graph-theoretic proximity, di-
ameter, and betweenness centrality, highlighting when the access-
based variants diverge from their traditional counterparts.

Access Proximity. In graph theory, the proximity of nodes v; and
vj is the number of edges in a shortest v;0;-path. To adapt this to
an information flow setting, we let the access proximity be

dist™ (v;,v}) = pij,
the probability that v; receives v;’s information after the comple-
tion of Independent Cascade. We observe that these measures can
diverge in even simple networks. Consider two nodes connected
by an edge; they have distance 1 and access proximity «. If instead,

these nodes were connected by t disjoint paths of length 2 they

would have distance 2, but access proximity 1 — (1 — &)’
P> log(1-a)

log(1-a?) "
the first scenario, in the information access setting they are closer
in the second.

. Assume

While the nodes are graph-theoretically closer in

Access Diameter. For large networks, we often rely on summary
statistics as indicators of network structure. One such metric is
the diameter, defined to be the maximum distance between any
two nodes (equivalently, the length of a longest shortest path). The
analogous notion in the information access setting is then then
the smallest access proximity between two nodes (equivalently, the
lowest probability of pairwise information transmission). We call
this the access diameter:

—_ .
diam"g = min_p;;.
0;,0;€V
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Access Centrality. Finally, since we are interested in assessing
influence or control with respect to information flow, we consider
the betweenness centrality, which measures how often a node ap-
pears on the shortest paths between others. Specifically, if we let
0k be the number of shortest vu-paths, and o (i) the number
of shortest vui-paths passing through vertex v;, we can define the
betweenness centrality of v; as

Z Ojk (1)

g
vjFURFU;EV Jjk

g(v;) =

One can think of this as measuring the brokerage ability of a
node in a world where information flows along the shortest paths.
To adapt to the Independent Cascade model, we want to measure
the fraction of other nodes’ pairwise access that depends on v;. In
other words, the access centrality v; is

cent” (v;) = ij(l)’
v;#0j 7ok €V ij

where pjk(i) =pjk— p;k can be computed using the access prox-
imity p” in G’ = G \ v;. We note this is computationally expensive,
as you must re-estimate access proximity in G \ v for each vertex v.
To see where these two notions diverge, consider nodes a, b con-
nected with a path of length two through node c. The betweenness
and access centrality of ¢ are both 1. Now augment this graph by
adding t disjoint ab-paths of length 3; the betweenness centrality of
c remains 1, but the access centrality tends to 0 as t increases, as the
fraction of information passing through ¢ becomes insignificant.

3.2 Measures of Advantage

We now formalize three different notions of structural advantage,
arising from various perspectives on fairness and information flow.

3.2.1 Broadcast Advantage: From a fairness point of view, Fish et
al.[31] argued that the performance of a source should be measured
by how effectively it reaches least-advantaged nodes. In this vein,
we propose our first advantage function, broadcast, to measure how
difficult it is for a node to disseminate its information to all others
in the network.

Definition 2 (Broadcast Advantage). The broadcast advantage of
a node is the worst-case probability that its information is received
- equivalently, the minimum entry in its access signature:
broadcast(v;) = min p;;.
pijes(i)

In some sense, this represents how “loud” the node is — a larger
broadcast means a better probability that everyone else in the net-
work will receive your information. Consider the case of recruiters
using a network like LinkedIn, wanting to spread information about
a job opportunity. In order to ensure a diverse candidate pool and
broad reach, the employer wants a high probability the ad will
reach all suitable nodes in the network. Since well-connected users
receive many such ads, the measure of recruiting effectiveness
will depend on how well they can disseminate the information to
the least-advantaged members of the network. Better-positioned
recruiters will have higher broadcast.

Further, social media is often used in public health epidemiologic
monitoring and surveillance for early detection of disease outbreaks.
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Staff responsible for dispelling misinformation and identifying high-
risk or affected groups need access not only to the majority of
people, but especially to those who are poorly-connected (and thus
at risk of being neglected in treatment [33, 61]), motivating us to
improve their broadcast.

From another perspective, the broadcast is a lower bound on
the probability that v; will get information from v;, regardless of
which v; is selected! Increasing broadcast(v;) necessarily improves
information flow to/from the parts of the network that are currently
least accessible from v;, increasing the novelty and diversity of
its information. Novel information often represents a resource or
opportunity due to local scarcity, and users with access to it enjoy
social and economic advantages, including more success in wages,
promotion, job placement, and creativity [12, 36].

3.2.2  Influence Advantage: Network prominence has been studied
as a type of advantage [11, 46]. A central or well-connected node
is more likely to have high visibility, which Jackson’s friendship
paradox argues can lead to over-representation and increased in-
fluence [37]. This type of advantage does not require the ability to
reach all nodes in the network, just many of them.

Being able to disseminate information to a large set of other
members enables a user to build their social reputation, express
and diffuse their opinion, and discover novel content and informa-
tion [26], which can be viewed as media power or celebrity capital.
This may also lead to opportunities for revenue from advertise-
ment [17]. Consider the example of collaborations in a scientific
community. If someone can reach more people to share her re-
search, she gets more recognition, and feedback which enables
improvement, collaboration opportunities, and directions or ideas
for future work [25, 65]. We propose influence advantage as a mea-
sure of this form of structural advantage, drawing on influence
maximization [44] in choosing a quantification.

Definition 3 (Influence Advantage). The influence advantage of
a node is the average probability that its information is received —
equivalently, the mean of the entries in its access signature:

1 1
influence(v;) = - Z pij =~ Z dist™ (v;, vj)

pijes(i) v; eV

3.2.3 Control Advantage: Burt [12] introduced the idea of broker-
age advantage. Individuals in networks with many “structural holes”
may derive information and control benefits from the lack of exter-
nal connectivity among people they can reach. Burt introduced this
form of social capital as an information benefit or vision advantage
that improves performance by providing early access to diverse and
novel perspectives, ideas, and information. Hence, a person’s reach
is a form of power as it enables her to broker favors and consolidate
strength by being uniquely positioned to coordinate the actions of
others. We call this type of structural advantage control.

While Burt proposed several ways to measure structural holes, in-
cluding bridge count [16], and network constraint/redundancy [12],
in more recent work Jackson [37] used betweenness centrality [32]
to measure brokerage advantage. This generic measure of impor-
tance in a network captures a node’s ability to act as an intermediary
to coordinate others, where nodes rely on it in order to reach other
users along shortest paths. Higher centrality corresponds to more



control over information flow in the network. In turn, we use access
centrality to measure the control advantage.

Definition 4 (Control Advantage). The control advantage of a node
is given by its access centrality:
. Pk (i)
control(v;) = cent” (v;) = LR
v;#0j Uk €V p]k

We observe that control can be rewritten as a nested sum over
nodes, revealing a useful finer-grained notion of advantage. For
example, suppose the node v; has one neighbor v}, which is a leaf,
and another neighbor which is a member of a large clique. Clearly,
v; has a large degree of control over v}, as it is an intermediary to
all access to the clique, yet control(v;) might remain small, as v;
plays little role in access between clique nodes. We use control§.
to denote the brokerage v; has over information reaching node v},
where

Control{ = Z pl]_(C)
v; eV pij
Our measure can then be written as control(v;) = }3; controlj..

When trying to mitigate inequity in access, we would like to see
the control values decrease for better-positioned nodes. Addition-
ally, we argue that in an ideal network, no node has a monopoly
over others’ access to information, and we would like to prevent
situations where controlj. is close to 1 for any pair (i, j).

4 EDGE INTERVENTION & WELFARE

In contrast to the standard framework of influence maximization,
we argue that when considering information flow in a network, it
is important to have access to information from all individuals, not
just a seed set. Further, given this shift in objective, adjustments
to the model of intervention are warranted, and we propose edge
augmentation as the natural candidate. We support our argument
from three perspectives: variety, structure, and voice.

Variety. Since ideas travel a variety of paths from many sources [34,
54, 73], access to more diverse information and a greater number
of individuals is important [36] and can provide a vision advantage
that translates into social capital [12]. Key functionalities of social
networks like LinkedIn rely on the fact that important information
is frequently being disseminated from a multitude of constantly-
changing sources. Traditional influence maximization is insufficient
for assessing access and proposing equity-improving interventions
in this setting, as we no longer know the seed set, nor can we afford
to try and augment sources for each new announcement.

Structure. Granovetter introduced the idea of network manip-
ulation to achieve specific goals [36]. Since network position is a
critical form of social capital in information access, and positional
disparities arise from biases in the network structure, we argue
that interventions which change the underlying connectivity of
the network are necessary. The natural candidate is to increase
access through edge augmentation. This approach is further sup-
ported when one thinks of these edges as representing the addition
of weak ties to the transmission network, as research shows that
information can traverse greater social distance and reach more
people when diffused along weak ties instead of strong ones [36].
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Voice. While it is easy to focus on improving access for poorly-
positioned nodes, it is also important to consider the effect of in-
terventions on already-advantaged users. Specifically, node inter-
ventions increase the reach (and thus influence) of selected indi-
viduals [37], essentially amplifying their information within the
network. To give voice to all participants, we argue that edge aug-
mentation improves fairness by increasing the reach of all nodes.

Now that we have argued for using edge augmentation to inter-
vene in the network, we turn to the question of which structural
measure of advantage to optimize. We use a normative framework
to select one of broadcast, influence, and control, and draw on the
Rawlsian Maximin argument [59] in proposing that we should maxi-
mize the advantage of the least advantaged node(s). Rawlsian princi-
ple has been used in other algorithmic fairness methods [19, 31, 40].

To choose a notion of advantage, we begin by observing that
optimizing influence encourages the formation of edges to well-
positioned nodes. Therefore, nodes with better connections become
more attractive to connect to [37], leading to a rich-get-richer phe-
nomenon and potentially increasing the advantage gap instead of
equalizing access [14]. These peripheral-central connections also
increase the control of central nodes over others, especially the
disadvantaged. On the other hand, using broadcast as the objective
prioritizes connectivity for the most disadvantaged nodes. As John
Stuarts Mills noted, "it is hardly possible to overrate the value . .
. of placing human beings in contact with persons dissimilar to
themselves and with modes of thought and action unlike those
with which are familiar . . . Such communication has always been
and is peculiarly in the present age, one of the primary sources
of progress" [55]. Optimizing for control, on the other hand, pri-
oritizes the brokerage ability of nodes over their access to diverse
information, which could lead to polarization and centralized in-
formation distribution. We argue that increasing broadcast, which
tends to also reduce the control of other nodes, is preferable since
depending on powerful information-brokers reduces one’s chance
of unbiased access to diverse opinions.

Several other normative reasons underlie our preference for
broadcast to measure structural advantage, when one considers
outcomes in a network containing several (mostly-disjoint) minor-
ity groups. First, while these groups may have common interests,
they will not individually have enough influence to accomplish
them. Connecting disadvantaged nodes directly (instead of through
a central node) will enable them to support one another and access
important information, while countering the ever-increasing power
of the majority. In support of this argument, we note that Kogan
et al. show that geographically vulnerable (disadvantaged) users
propagate more information during disasters, and are more likely to
propagate tweets from other geographically vulnerable users [47].
A final argument arises from work on mitigating polarization in
social networks by increasing the similarity of users’ exposure to
a broad diversity of news and ideas. Since minimizing diameter
can speed up communication [27] and increase the uniformity of
exposure times, we argue that optimizing broadcast is the natural
analogue in the information access setting.

To formalize a discrete optimization problem, we must now trans-
form our advantage measure into an objective function. Following
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the Rawlsian Maximin Principle that one should maximize the wel-
fare of the worst-off person [59], we seek to maximize broadcast
for the least-advantaged nodes, and formalize this as the welfare.

Definition 5. The welfare of a graph G = (V,E) is
#(G) = min broadcast(v;) = min_dist™(v;, v;)
v;eV V;,0j eV
Our central problem is to find a budgeted intervention optimizing
welfare.

MAXWELFARE-AUGMENTATION

Input: A graph G = (V,E) and an integer k € N.
Problem:
is maximized, where H := (V,E U E*).

5 HEURISTICS

In this section, we introduce several heuristics for MAXWELFARE-
AUGMENTATION which greedily select new edges using advantage-
based criteria. We employ two basic strategies — connecting dis-
advantaged nodes to a central one, and adding a chord between
two peripheral nodes. We will compare these with a baseline (rand)
which chooses both ends of each new edge uniformly at random.
It is also natural to try a greedy approach baseline, by adding the
edge that maximizes the objective function in each iteration. The
idea has been used in different settings [26, 31]. This greedy ap-
proach in each round, for each non-existing edge computes the
broadcast and picks the edge that maximize the broadcast. Since
the greedy baseline is computationally very expensive, we consider
a naive variation of the greedy baseline (greedy-bc) which, instead
of proceeding in rounds, in the first round picks the top k edges
that maximize the broadcast.

We begin by defining the center of the network to be the node
with maximum broadcast. In our algorithms, we select this node in
the un-augmented network and fix it for the duration of the edge
selection process. As we iteratively make interventions, it is possible
that a new central node emerges (one with higher broadcast than
the selected center). While we could update at every step, this incurs
a high computational cost. In order to evaluate the likelihood and
impact of a shifting center, we re-ran the experiments on the three
smallest networks and recorded how often the maximum broadcast
increased, along with the L; norm of the access signature difference
between initial and new centers. The initial center node remained
central more than 99% of the time, and the signature difference
was less than 0.01 in the other 1% of cases. Based on this and the
significant computational cost, we choose to fix a center node based
on the initial network.

Before proceeding to the heuristics, we need two additional
observations. First, computing the access proximities is known to
be #P—hard [20]; as such, whenever our strategies use p; j, we rely
on simulation to estimate the access proximities using Reverse
Influence Sampling (RIS) [9, 67]. Second, greedy heuristics may
select a pair of vertices to connect which already have an edge in the
graph. When this happens, we select an alternative augmentation in
one of two ways: (1) if the heuristic was trying to connect a node u
to the center, we instead connect u to the node with second-highest
broadcast, continuing down the broadcast order as needed until
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we find a non-neighbor of u; (2) if the heuristic was adding a chord
or random edge, we “randomly replace an endpoint.” We can now
define our strategies for reducing the access diameter of a network.

Broadcast-based Strategies. To reduce the access diameter of the
network we must affect at least one node with minimum broadcast.
If v;,0; is a pair of nodes so that p;; is minimum, we call them
diameter-defining. Our first heuristic bc-chord finds a diameter-
defining pair and adds the edge between them. A natural alternative
strategy is to connect one or both of the pair to the center; we do
this in bc-both and bc-one, respectively. Note that bc-both adds
pairs of edges, and runs for only % steps; we constrain k to even
values in experiments to ensure fair comparisons.

Influence-based Strategies. Another reasonable approach to im-
proving access in the network is to equalize influence. Similar to
broadcast, we connect the node with minimum influence to the
center, and call this heuristic inf1.

Diameter-based Strategies. Finally, we consider a measure that
can be computed without simulation, the diameter of the under-
lying network. While the shortest-path distances and access prox-
imities may diverge, they are not independent, and creating short
paths between nodes will improve their pairwise access. Similar to
bc-chord, diam-chord adds an edge between a pair of nodes with
maximum d(u, v);

6 EXPERIMENTS

We implemented the heuristics from Section 5 in C++ and compiled
with gcc 8.1.0; all experiments were run on identical hardware
equipped with 40 CPUs (Intel Xeon Gold 6230 @ 2.10GHz) and
190 GB of memory, running CentOS Linux release 7.9.2009. To
evaluate the effectiveness of our intervention strategies, we used
a corpus of real-world networks sourced from the SNAP [50] and
ICON [22] repositories, as described in Table 1. We treated all data
as undirected, and used the largest connected component for each.

As briefly mentioned in Section 5, we use Reverse Influence
Sampling (RIS) [9] to estimate access proximities; we generate
R = 10,000 instances per simulation. To evaluate the accuracy, we
ran each estimation 10 times and measured the fluctuations in access
proximities. In all cases, pairwise accesses varied by less than 0.03
(3% of the range), and the average difference was at most 0.004 (0.4%
of the range). The heuristics bc-chord, bc-both, bc-one, and inf1l
use RIS, requiring O(Rm + Rnk) time and O(n? + Rn) space. The
greedy-bc heuristic, adds O(m) to the complexity for estimating
the access proximities for each missing edge, and drops O(k) since
it is done in one round; which makes it run in O(Rn?) time and
O(n? + Rn) space. Since even this variation of greedy-bc is still
computationally expensive, we only run it on the three smaller
datasets.

In each experiment, we used even values of k from 0 to 200,
aiming for a practical intervention size relative to the network
(less than a tenth of a percent of |E|). In the Independent Cascade
model, the spread of information depends on the input parameter
a (the probability of transmission along an edge in a time step).
For each network in our corpus, we computed the distribution of
access proximities for varied @ and selected four (network-specific)
values: one each to represent poorly-spreading and well-spreading
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Figure 1: Results for Email-Arenas with @ = {0.2,0.3,0.4, 0.5} (top to bottom). We plot improvement in minimum broadcast and
influence (left); the violin plots show the distribution of pairwise access proximities (middle) and L; signature distances (right).

scenarios, and two in the critical region of moderate spread (for 6.1 Summary of Experimental Results
lower values of «, it is not possible to significantly increase the The primary objective of this work is to intervene in a network
broadcast within the limited budget of interventions). to improve access for the most disadvantaged nodes and reduce

disparities in advantage by making access signatures more similar.
To assess whether our strategies achieve these goals, we employ
several methods for evaluating the outcome of interventions. First,
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we directly measure the improvement in the minimum values of
broadcast and influence realized in the network. Next, we shift our
attention to the access signatures, where we evaluate whether our
interventions have increased the similarity among nodes’ views
of the network using Manhattan distance. Finally, we consider
whether our approaches improve disparity by reducing the advan-
tage gap between the most- and least-privileged nodes.

Table 1: Summary of Datasets

Name Nodes  Edges Max Deg. Diam.
Email-EU 803 24729 338 5
Email-Arenas 1133 5451 71 8
Irvine 1294 19026 231 7
Facebook 4039 88234 1045 8
ca-GrQc 4158 13428 81 17
ca-HepTh 8638 24827 65 18

In Figure 1, we present a comprehensive view of all three evalua-
tions for a single network across its four transmission probabilities.
From the first column, we observe that the heuristics bc-chord,
bc-both and infl are most effective at improving broadcast and
influence, with the latter two performing almost identically. Further,
bc-chord surpasses the other approaches as information spreads
more easily. These results are qualitatively replicated by the other
networks in our corpus (see Appendix A). Given this, we restrict
our attention to the bc-chord and inf1l approaches in subsequent
figures, with inf1 favored over bc-both to increase the diversity
among our strategies. Further, we note that the behavior with re-
spect to @ remained consistent across all networks, and is well-
represented by considering only the low-moderate-spread and well-
spreading values of « (2nd and 4th columns). Due to space con-
straints, plots for the entire corpus (Figures 2, 3 — 7), only show these
two transmission probabilities. In the second column of Figure 1,
we use violin plots to show the distribution of access proximities
for all pairs before (init) and after (greedy-bc, inf1, bc-chord)
intervention. We observe that while greedy-bc augmentation has
little effect, both heuristics significantly reduce the maximum pair-
wise access proximity, with bc-chord again out-performing infl
as « increases. While the distributions for other networks vary
in initial shape, the pattern of improvement was consistent (see
Section 6.3). Finally, the third column of Figure 1 illustrates our
success in increasing the uniformity among each node’s view of the
network as measured by reducing the maximum distance between
access signatures. Results for other networks are summarized in
Section 6.3.

To round out our evaluation, we also computed how our inter-
ventions affected the advantage gaps for broadcast, influence, and
control, as discussed in Section 6.4. For the network featured in
Figure 1, these results are in the second row of Tables 2 and 3.
One surprising result was that while the absolute broadcast gap
increased, the relative one decreased. We believe this is caused by
interventions increasing access by a larger additive amount for cen-
tral nodes than peripheral ones. Over the entire corpus, bc-chord
shrank the broadcast / influence gaps by over 85% / 82%, respec-
tively.

Overall, we observe that our interventions are most effective
when the network is better-connected — whether because « is
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higher, or the underlying graph is denser (e.g. in EU and Fb). Ad-
ditionally, our analysis showed that bc-both and infl perform
almost identically (Figures 2 and 3), suggesting that the nodes with
minimum broadcast and influence may have similar access signa-
tures. To further investigate this phenomenon, we measured the
signature difference between the nodes selected by each of these
heuristics at each intervention step and found them to be consis-
tently in the bottom 10% of all pairs, with the average falling in
the bottom 1%. This leads us to hypothesize that the set of least-
advantaged nodes with respect to broadcast and influence are al-
most identical.

6.2 Improving Minimum Broadcast / Influence

The broadcast and influence measures quantify a node’s structural
advantage as a function of its signature. Here we evaluate whether
edge interventions can improve these measures for the most disad-
vantaged nodes in the network. Figures 2 and 3 plot the trajectory
of the minimum broadcast and influence as the number of interven-
tions k increases with low-moderate- and well-spreading o for each
network in the corpus. We observe that infl and bc-both consis-
tently show the most improvement for both advantage measures.
Further, rand and greedy-bc both have similarly poor performance.
Most social networks contain multiple distance minority groups
(consider the friendship network in a high school). Since greedy-bc
does not update the access proximities, it may get stuck using all
its intervention on one disadvantaged group, while ignoring the
rest.

6.3 Making Nodes & Signatures Closer

One goal of intervention is to increase access for nodes that have the
lowest probability of receiving some types of information. In Fig-
ures 4 and 5 (and the second column of Figure 1 for Email-Arenas),
we plot the distribution of pairwise access proximities before and
after intervention; we again consider two transmission probabil-
ities (low-moderate-spread and well-spreading) for each of the 6
networks in the corpus. We observe that while the median value
does not move significantly, the lower tail of the distribution gets
much shorter and thinner. The amount of improvement increases
with @, and is more pronounced in the denser networks (EU, Irvine,
and Fb). In some cases, with only 200 interventions, we are able
to increase the minimum pairwise access proximity by 0.7, more
doubling the probability of information transmission!

Another of our objectives is increasing similarity among access
signatures so that all nodes have a similar “view” of the network.
We use the Manhattan distance (L; metric) to measure the distance
between two signatures!. Figures 6 and 7 (and the third column of
Figure 1 for Email-Arenas), show violin plots of the distribution
of these distances. The maximum signature difference was consis-
tently reduced (at least 43% for well-spreading «), and while the
median was relatively stable, the tail of the distributions shifted
noticeably downward.

6.4 Measuring the Gap

The final central premise of this work is that improving equity
requires reducing access disparities between nodes. To evaluate

lusing Euclidean distance (L) results in similar trends and no qualitative differences
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Table 2: Absolute/Relative Advantage Gaps

Heuristic
K
(Network, a) Gap init rand infl bc-chord
be | 0.21/2.49 0.21/2.48 0.14/0.21 0.08/0.10
(Email-EU, 0.3) = / : ! !
infl | 0.67/2.40 0.68/2.40 0.17/0.20 0.09/0.10
. be | 0.13/5.30 0.13/5.95 0.24/0.68 0.24/0.61
(Email-Arenas, 0.4) -
infl | 0.71/5.62 0.72/5.64 0.35/0.66 0.33/0.60
(trvine, 0.4 be | 0.06/4.83 0.08 /5.21 0.23 /0.56 0.17 /0.29
Tvme, U infl | 0.85/13.8 0.86 /14.4 0.33 /0.54 0.21/0.29
be | 0.14/5.97 0.20 /2.63 0.26 /0.97 0.25/0.79
(Facebook, 0.3) -
infl | 0.79 /4.55 0.68 /2.61 0.47 /1.01 0.42 /0.80
be | 0.07 /116 0.07/7.63 0.25/0.93 0.25/0.76
(ca-GrQc, 0.6) -
infl | 0.76/12.4 0.78/12.4 0.41/0.90 0.36/0.74
be | 0.09/9.56 0.10/8.33 0.25/1.32 0.25/1.03
(ca-HepTh, 0.6) infl | 0.75/9.11 0.75/8.14 0.48/1.27 0.43/1.01

this, we measure the advantage gap for broadcast and influence, as
well as the maximum amount of control achieved in the network
(which can be viewed as a gap, since there are always nodes on the
periphery with control value essentially zero).

Broadcast/Influence Gaps. We begin by calculating both the abso-
lute (max — min) and relative (%—inmin) advantage gaps for broad-
cast and influence on networks in the corpus; Table 2 shows these
when « is well-spreading. As mentioned in Section 6.1, the absolute
broadcast gap often increases with intervention, while the influ-
ence gap is typically reduced. However, the relative advantage gap
behaves quite differently, consistently decreasing significantly with
bc-chord, yet increasing in most cases for inf1l. This supports our
argument that inf1l may contribute to a rich-get-richer phenome-
non by increasing advantage for central nodes, and is an important
distinction between the two heuristics.

Reducing Control. Finally, we consider how our interventions
affect control. In Table 3, we report the maximum values of not only
the primary control measure of cent® but also the finer-grained pair-
wise control (control{). Here, we must restrict our analysis to the
three smallest networks in our corpus due to the exceptionally high
cost of computing control for all nodes (which requires removing
each node from the network and re-estimating access proximities);
we use the same well-spreading « values as in our gap analysis.
The results are encouraging, as they show that intervention can
increase the independence of nodes in the network when accessing
information and prevent better-positioned nodes from having a
monopoly over others. It is noteworthy that bc-chord not only
uniformly achieves more than 53% reduction in pairwise control,
it never increases the control (whereas infl can cause a 10-fold
jump).

Table 3: Maximum Control Values

Heuristic
init rand infl bc-chord
cent* 0.009 0.007 0.014 0.002
Controll? 1.000 1.000 0.107 0.056
cent” 0.008 0.006 0.112 0.008
Controlf 1.000 1.000 0.476 0.464
cent* 0.008 0.007 0.050 0.006
controll? 1.000 1.000 0.573 0.217

(Network, «) Measure

(Email-EU, 0.3)

(Email-Arenas, 0.4)

(Irvine, 0.4)
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7 CONCLUSION

In this work, we propose a novel method for quantifying social capi-
tal through the lens of information flow in a network when all nodes
have unique, equally-important information to disseminate. We
introduce three new measures of structural advantage quantified in
terms of network position, argue for intervening through edge aug-
mentation to reduce bias in network structure, and formalize the
budgeted intervention problem of MAXWELFARE-AUGMENTATION
for mitigating structural inequity in information access. Finally,
we propose heuristic strategies that improve access for the least-
advantaged nodes, reduce advantage disparities, and increase the
similarity in access signatures. We perform a case study on a corpus
of social networks and demonstrate that our bc-chord heuristic im-
proves the minimum broadcast and influence, dramatically shrinks
advantage gaps, and reduces variance among access signatures.
Although, chord-heuristics connections may not be practical de-
pending on the setting and kinds of entities in the network. It is
worth mentioning these links may cause unintended social conse-
quences.

Our work is inherently limited by our use of a uniform transmis-
sion probability in the Independent Cascade model, and by ignoring
the time at which information is received (as we know that early
access plays an important role in social capital). Although, our
measures and strategies are independent of the IC model, and can
be applied to any probabilistic models of information flow, and
may improve many existing diameter-based approaches. Further,
the quantification of control is computationally infeasible for large
networks, limiting our empirical evaluation.

We leave open many directions for future work, including the
adaptation of these ideas to directed networks where access and
reach may differ (p;; # pj;), and optimizing for one may lead to
trade-offs for the other (note that most heuristics can be modified
to work in the directed setting). It would also be interesting to
adapt this problem to the group fairness setting by defining and
optimizing advantage measures on groups. Finally, we note that
our assumption is not true for misinformation, and information
overflow.

REFERENCES

[1] Junaid Ali, Mahmoudreza Babaei, Abhijnan Chakraborty, Baharan Mirzasoleiman,
Krishna P. Gummadi, and Adish Singla. 2019. On the Fairness of Time-Critical
Influence Maximization in Social Networks.



FAccT 23, June 12-15, 2023, Chicago, IL, USA

[9

=

[10

[11]

[12

[13]

[14

[15]

[21]

[22]
[23]
[24]
[25]

[26]

[27]

[28]

[29]

[30]

Uri Alon and Eran Yahav. 2021. On the Bottleneck of Graph Neural Networks and
its Practical Implications. In International Conference on Learning Representations.
https://openreview.net/forum?id=i800PhOCVH2

Adrian Arnaiz-Rodriguez, Ahmed Begga, Francisco Escolano, and Nuria
Oliver. 2022. DiffWire: Inductive Graph Rewiring via the Lovasz Bound.
arXiv:2206.07369 [cs.LG]

Brian Ball and M.E.J. Newman. 2013. Friendship networks and social status.
Network Science 1, 1 (2013).

Ruben Becker, Federico Coro, Gianlorenzo D’Angelo, and Hugo Gilbert. 2020.
Balancing Spreads of Influence in a Social Network. Proceedings of the AAAI
Conference on Artificial Intelligence 34, 01 (Apr. 2020), 3-10.

Ruben Becker, Gianlorenzo D’Angelo, Sajjad Ghobadi, and Hugo Gilbert. 2021.
Fairness in Influence Maximization through Randomization. Proceedings of the
AAAI Conference on Artificial Intelligence 17 (May 2021), 14684-14692.

Hannah C. Beilinson, Nasanbayar Ulzii-Orshikh, Ashkan Bashardoust, Sorelle A.
Friedler, Carlos E. Scheidegger, and Suresh Venkatasubramanian. 2020. Clustering
via Information Access in a Network. arXiv abs/2010.12611 (2020).

Wendong Bi, Lun Du, Qiang Fu, Yanlin Wang, Shi Han, and Dongmei Zhang.
2022. Make Heterophily Graphs Better Fit GNN: A Graph Rewiring Approach.
arXiv:2209.08264 [cs.LG]

Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. 2014.
Maximizing Social Influence in Nearly Optimal Time. In Proceedings of the 2014
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 946-957.

Danah Boyd, Karen Levy, and Alice Marwick. 2014. The networked nature of
algorithmic discrimination. Data and Discrimination: Collected Essays. Open
Technology Institute (2014).

Daniel J. Brass. 1992. Power in Organizations: A Social Network Perspective.
Research in Politics and Society 4 (1992), 295-323. Issue 1.

Ronald S. Burt. 2004. Structural Holes and Good Ideas. Amer. J. Sociology 110, 2
(2004), 349-399.

Ronald S. Burt. 1987. Social Contagion and Innovation: Cohesion versus Structural
Equivalence. Amer. J. Sociology 92, 6 (1987), 1287-1335.

Ronald S. Burt. 1999. The Social Capital of Opinion Leaders. The Annals of the
American Academy of Political and Social Science 566 (1999), 37-54.

Ronald S. Burt. 2000. The Network Structure Of Social Capital. Research in
Organizational Behavior 22 (2000), 345-423.

Ronald S. Burt, Robin M. Hogarth, and Claude Michaud. 2000. The Social Capital
of French and American Managers. Organization Science 11 (2000), 123-147.
Ronald S. Burt, Martin Kilduff, and Stefano Tasselli. 2013. Social Network Analysis:
Foundations and Frontiers on Advantage. Annual Review of Psychology 64, 1
(2013), 527-547.

Karen E. Campbell, Peter V. Marsden, and Jeanne S. Hurlbert. 1986. Social
Resources and Socioeconomic Status. Social Networks 8, 1 (1986), 97-117.
Alycia N. Carey and Xintao Wu. 2023. The statistical fairness field guide: per-
spectives from social and formal sciences. Al and Ethics 3 (2023), 1-23. Issue 1.
https://doi.org/10.1007/s43681-022-00183-3

Wei Chen, Chi Wang, and Yajun Wang. 2010. Scalable Influence Maximization
for Prevalent Viral Marketing in Large-Scale Social Networks. Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
1029-1038.

Aaron Clauset, Samuel Arbesman, and Daniel B. Larremore. 2015. Systematic
inequality and hierarchy in faculty hiring networks. Science Advances 1, 1 (2015),
€1400005.

Aaron Clauset, Ellen Tucker, and Matthias Sainz. 2016. The Colorado Index of
Complex Networks. https://icon.colorado.edu/

James S. Coleman. 1988. Social Capital in the Creation of Human Capital. Amer.
J. Sociology 94 (1988), S95-5120.

James S. Coleman, Elihu Katz, and Herbert Menzel. 1966. Medical Innovation: A
diffusion study. Bobbs-Merril, New York.

danah boyd. 2021. Knitting a Healthy Social Fabric. https://zephoria.medium.
com/knitting-a-healthy-social-fabric-86105cb92c1c

Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj. 2019. Recommending
links through influence maximization. Theoretical Computer Science 764 (2019),
30-41.

Erik Demaine and Morteza Zadimoghaddam. 2010. Minimizing the Diameter
of a Network Using Shortcut Edges. In Algorithm Theory - SWAT 2010. Springer
Berlin Heidelberg, 420-431.

Pedro Domingos and Matt Richardson. 2001. Mining the Network Value of
Customers. Proceedings of the Seventh International Conference on Knowledge
Discovery and Data Mining (2001), 57-66.

Yushun Dong, Ninghao Liu, Brian Jalaian, and Jundong Li. 2022. EDITS: Modeling
and Mitigating Data Bias for Graph Neural Networks. In Proceedings of the ACM
Web Conference 2022 (Virtual Event, Lyon, France). Association for Computing
Machinery, New York, NY, USA, 1259-1269. https://doi.org/10.1145/3485447.
3512173

Yushun Dong, Song Wang, Yu Wang, Tyler Derr, and Jundong Li. 2022. On
Structural Explanation of Bias in Graph Neural Networks. In Proceedings of

1644

[31

[32

[33

(34]

[35

[37

[38

[39

[40]

(41

[42

[43

[44

[45

[46

[47

(48

[54]
[55]

[56

Bashardoust et al.

the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(Washington DC, USA) (KDD °22). Association for Computing Machinery, New

York, NY, USA, 316-326. https://doi.org/10.1145/3534678.3539319

Benjamin Fish, Ashkan Bashardoust, danah boyd, Sorelle Friedler, Carlos Schei-
degger, and Suresh Venkatasubramanian. 2019. Gaps in Information Access in
Social Networks?. In The World Wide Web Conference. Association for Computing
Machinery, New York, NY, USA, 480-490.

Linton C. Freeman. 1977. A Set of Measures of Centrality Based on Betweenness.
Sociometry 40, 1 (1977), 35-41.

L C. Fung, Z. T. Tse, and K. W. Fu. 2015. The use of social media in public health
surveillance. Western Pac Surveill Response Journal (6 2015).

Paul A. Geroski and Mariana Mazzucato. 2002. Learning and the sources of
corporate growth. Industrial and Corporate Change 11, 4 (2002), 623-644.
Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro
Lio’, and Michael Bronstein. 2023. On Over-Squashing in Message Passing Neural
Networks: The Impact of Width, Depth, and Topology. arXiv:2302.02941 [cs.LG]
Mark S Granovetter. 1973. The strength of weak ties. The American Journal of
Sociology 78, 6 (1973), 1360-1380.

Matthew Jackson. 2019. The Human Network: How Your Social Position Determines
Your Power, Beliefs, and Behaviors. Knopf Doubleday Publishing Group.

Zeinab S. Jalali, Qilan Chen, Shwetha M. Srikanta, Weixiang Wang, Myunghwan
Kim, Hema Raghavan, and Sucheta Soundarajan. 2022. Fairness of Information
Flow in Social Networks. ACM Trans. Knowl. Discov. Data (dec 2022). https:
//doi.org/10.1145/3578268 Just Accepted.

Zeinab S. Jalali, Weixiang Wang, Myunghwan Kim, Hema Raghavan, and Sucheta
Soundarajan. 2020. On the information unfairness of social networks. In Proceed-
ings of the 2020 SIAM International Conference on Data Mining (SDM). 613-521.
Jian Kang, Yan Zhu, Yinglong Xia, Jiebo Luo, and Hanghang Tong. 2022. Rawls-
GCN: Towards Rawlsian Difference Principle on Graph Convolutional Net-
work. In Proceedings of the ACM Web Conference 2022 (Virtual Event, Lyon,
France) (WWW ’22). Association for Computing Machinery, New York, NY, USA,
1214-1225. https://doi.org/10.1145/3485447.3512169

Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montufar. 2023. FoSR: First-
order spectral rewiring for addressing oversquashing in GNNs. In The Eleventh
International Conference on Learning Representations. https://openreview.net/
forum?id=3YjQfCLdrzz

Fariba Karimi, Mathieu Génois, Claudia Wagner, Philipp Singer, and Markus
Strohmaier. 2018. Homophily influences ranking of minorities in social networks.
Scientific Reports 8 (07 2018).

Elihu Katz and Paul F. Lazarsfeld. 1966. Personal Influence: the Part Played by
People in the Flow of Mass Communications. Free Press.

David Kempe, Jon Kleinberg, and Eva Tardos. 2003. Maximizing the Spread of
Influence through a Social Network. Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2003), 137-146.

Moein Khajehnejad, Ahmad Asgharian Rezaei, Mahmoudreza Babaei, Jessica
Hoffmann, Mahdi Jalili, and Adrian Weller. 2021. Adversarial Graph Embeddings
for Fair Influence Maximization over Social Networks (IJCAI’20). Article 594,
7 pages.

David Knoke and Ronald S Burt. 1983. Prominence. Applied Network Analysis
(1983), 195-222.

Marina Kogan, Leysia Palen, and Kenneth Mark Anderson. 2015. Think Local,
Retweet Global: Retweeting by the Geographically-Vulnerable during Hurricane
Sandy. Proceedings of the 18th ACM Conference on Computer Supported Cooperative
Work & Social Computing (2015).

Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew Tomkins. 2008. Micro-
scopic evolution of social networks. Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 462—470.

Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and
Zoubin Ghahramani. 2010. Kronecker Graphs: An Approach to Modeling Net-
works. J. Mach. Learn. Res. 11 (2010), 985-1042.

Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

Yuchen Li, Ju Fan, Yanhao Wang, and Kian-Lee Tan. 2018. Influence maximization
on social graphs: A survey. IEEE Transactions on Knowledge and Data Engineering
30, 10 (2018), 1852-1872.

Nan Lin. 1999. Social Networks and Status Attainment. Annual Review of Sociology
25,1 (1999), 467-487.

Anay Mehrotra, Jeff Sachs, and L. Elisa Celis. 2022. Revisiting Group Fairness
Metrics: The Effect of Networks. Proc. ACM Hum.-Comput. Interact. 6, CSCW2,
Article 375 (nov 2022), 29 pages. https://doi.org/10.1145/3555100

Tanya Menon and Jeffrey Pfeffer. 2003. Valuing Internal vs. External Knowledge:
Explaining the Preference for Outsiders. Manag. Sci. 49 (2003), 497-513.

John Stuart Mills. 1848. Principles of Political Economy. Augustus M. Kelley,
Fairchild, N.J.

Allison C. Morgan, Dimitrios Economou, Samuel F. Way, and Aaron Clauset.
2018. Prestige drives epistemic inequality in the diffusion of scientific ideas. EPJ
Data Science 7 (2018), 40.


https://openreview.net/forum?id=i80OPhOCVH2
https://arxiv.org/abs/2206.07369
https://arxiv.org/abs/2209.08264
https://doi.org/10.1007/s43681-022-00183-3
https://icon.colorado.edu/
https://zephoria.medium.com/knitting-a-healthy-social-fabric-86105cb92c1c
https://zephoria.medium.com/knitting-a-healthy-social-fabric-86105cb92c1c
https://doi.org/10.1145/3485447.3512173
https://doi.org/10.1145/3485447.3512173
https://doi.org/10.1145/3534678.3539319
https://arxiv.org/abs/2302.02941
https://doi.org/10.1145/3578268
https://doi.org/10.1145/3578268
https://doi.org/10.1145/3485447.3512169
https://openreview.net/forum?id=3YjQfCLdrzz
https://openreview.net/forum?id=3YjQfCLdrzz
http://snap.stanford.edu/data
https://doi.org/10.1145/3555100

[57]

[58

Aida Rahmattalabi, Shahin Jabbari, Himabindu Lakkaraju, Phebe Vayanos, Max
Izenberg, Ryan Brown, Eric Rice, and Milind Tambe. 2021. Fair Influence Maxi-
mization: A Welfare Optimization Approach. Proceedings of the AAAI Conference
on Artificial Intelligence (2021).

Govardana Sachithanandam Ramachandran, Ivan Brugere, Lav R. Varshney, and
Caiming Xiong. 2021. GAEA: Graph Augmentation for Equitable Access via
Reinforcement Learning. In Proceedings of the 2021 AAA/ACM Conference on Al
Ethics, and Society. Association for Computing Machinery, New York, NY, USA,
884-894.

[59] John Rawls. 2009. A Theory of Justice. Harvard University Press.

[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Everett M. Rogers. 1962. Diffusion of Innovations. Free Press of Glencoe.
Rasmussen SA and Goodman RA. 2019. The CDC Field Epidemiology Manual.
New York: Oxford University Press.

Thomas C. Schelling. 1971. Dynamic models of segregation. The Journal of
Mathematical Sociology 1, 2 (1971), 143-186.

Ana-Andreea Stoica and Augustin Chaintreau. 2019. Fairness in Social Influence
Maximization. In Companion Proceedings of The 2019 World Wide Web Conference.
Association for Computing Machinery, 569-574.

Ana-Andreea Stoica and Christopher J. Riederer. 2018. Algorithmic Glass Ceiling
in Social Networks: The effects of social recommendations on network diversity.
WWW ’18: Proceedings of the 2018 World Wide Web Conference, 923-932.
Cassidy R. Sugimoto. 2021. Scientific success by numbers. https://www.nature.
com/articles/d41586-021-01169-7

Tan P. Swift, Sana Ebrahimi, Azade Nova, and Abolfazl Asudeh. 2022. Maximizing
Fair Content Spread via Edge Suggestion in Social Networks. Proc. VLDB Endow.
15, 11 (sep 2022), 2692-2705. https://doi.org/10.14778/3551793.3551824

Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. Influence Maximization: Near-
Optimal Time Complexity Meets Practical Efficiency. In Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data. Association for
Computing Machinery, 75-86.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen
Dong, and Michael M. Bronstein. 2022. Understanding over-squashing and
bottlenecks on graphs via curvature. In International Conference on Learning

1645

[69

[70

[71

[76

[77

]

]

FAccT 23, June 12-15, 2023, Chicago, IL, USA

Representations. https://openreview.net/forum?id=7UmjRGzp-A

Alan Tsang, Bryan Wilder, Eric Rice, Milind Tambe, and Yair Zick. 2019. Group-
fairness in influence maximization. In Proc. of the Int’l Joint Conf. on Artificial
Intelligence. AAAI Press, 5997-6005.

Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. 2011. The
Anatomy of the Facebook Social Graph. arXiv abs/1111.4503 (11 2011).

Thomas W. Valente and Patchareeya Pumpuang. 2007. Identifying Opinion
Leaders to Promote Behavior Change. Health Education & Behavior 34, 6 (2007),
881-896.

Ameya Velingker, Ali Kemal Sinop, Ira Ktena, Petar Velickovi¢, and Sreenivas
Gollapudi. 2022. Affinity-Aware Graph Networks. arXiv:2206.11941 [cs.LG]
Eric A. von Hippel. 1988. The Sources of Innovation. Oxford University Press.
Xindi Wang, Onur Varol, and Tina Eliassi-Rad. 2021. Information Access Equality
on Network Generative Models. ArXiv abs/2107.02263 (2021).

Samuel F. Way, Daniel B. Larremore, and Aaron Clauset. 2016. Gender, Productiv-
ity, and Prestige in Computer Science Faculty Hiring Networks. In Proceedings of
the 25th International Conference on World Wide Web. International World Wide
Web Conferences, 1169-1179.

Bryan Wilder, Laura Onasch-Vera, Graham Diguiseppi, Robin Petering, Chyna
Hill, Amulya Yadav, Eric Rice, and Milind Tambe. 2020. Clinical trial of an AI-
augmented intervention for HIV prevention in youth experiencing homelessness.
arXiv abs/2009.09559 (2020).

Bryan Wilder, Laura Onasch-Vera, Juliana Hudson, Jose Luna, Nicole Wilson,
Robin Petering, Darlene Woo, Milind Tambe, and Eric Rice. 2018. End-to-End
Influence Maximization in the Field. In International Conference on Autonomous
Agents and Multiagent Systems (AAMAS-18).

Amulya Yadav, Bryan Wilder, Eric Rice, Robin Petering, Jaih Craddock, Amanda
Yoshioka-Maxwell, Mary Hemler, Laura Onasch-Vera, Milind Tambe, and Darlene
Woo. 2018. Bridging the gap between theory and practice in influence maximiza-
tion: Raising awareness about HIV among homeless youth. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, I[JCAI-18.
International Joint Conferences on Artificial Intelligence, 5399-5403.


https://www.nature.com/articles/d41586-021-01169-7
https://www.nature.com/articles/d41586-021-01169-7
https://doi.org/10.14778/3551793.3551824
https://openreview.net/forum?id=7UmjRGzp-A
https://arxiv.org/abs/2206.11941

FAccT 23, June 12-15, 2023, Chicago, IL, USA

A APPENDIX

Bashardoust et al.

1.0 10
= rand —— Broadcast me= rand —— Broadcast
8 —— greedy-bc === Influence 8 —— greedy-bc === Influence
c —— bc-one c —— bc-one -
@© 084 — infl Q 084 —
E —— be-chord E —_—
4= =
£ £
_- 067 - 067
L o Bt
w0 w0
© ©
% 0.4 - -8 0.4 -
© @©
o o
@ 0.2 9 @ 0.2 1
£ £
= =
0.0 T T T T T T T T 0.0 T T T T T T T T T
25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
k = #Interventions k = #Interventions
(a) Email-EU (Left: o = 0.1, Right: a = 0.3)
1.0 10
me= rand —— Broadcast me= rand —— Broadcast
8 —— greedy-bc ——- Influence 8 —— greedy-bc ——- Influence
c —— be-one c —— bec-cne
@ 089 — infl O 089 — infl
E —— be-chord 2 —— be-chord
Y= Y—
£ £
- 067 _- 067
4 -~
%] [}
© ©
% 0.4 - % 0.4 -
© ©
o o
o 0.2 4 @ 0.2 q
£ £
= =
0.0 - T T T T T 0.0 T T T T T T T T T
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
k = #Interventions k = #Interventions
(b) Email-Arenas (Left: & = 0.2, Right: a = 0.4)
1.0 10
—— rand —— Broadcast —— rand —— Broadcast
8 —— greedy-bc ——- Influence 8 —— greedy-bc ——- Influence
c —— bc-one c —— bc-cne
© 089 — infl @O %89 — infl
E —— be-choxd 2 —— be-cheord .
Y= Y=
£ £
_- 061 _- 061
4 =t
[} wn
© ©
% 0.4 % 0.4
© ©
2 o
o 0.2 4 o 0.2 4
£ £
= =
0.0 - 0.0 T T

T T T T T T
Q 25 50 7 100 125 150 175

k = #Interventions

T T T T T T T
25 50 75 100 125 150 175 200

k = #Interventions

(c) Irvine (Left: @ = 0.2, Right: o = 0.4)
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Figure 3: For larger networks, we plot the improvement in min. broadcast and influence for low-moderate- and well-spreading a.

1647



FAccT 23, June 12-15, 2023, Chicago, IL, USA

Bashardoust et al.

1.0+ — -1 -1 - 104 — = T
(0] 0.8 + | oy 1 1 ) 0.8
[ o
c | S i e c
E 0.6 E 0.6
n Zaa
(@] [m]
wn 9]
n 0.4+ n 0.4
[0} [0}
9] 9]
(9] 9]
< 0.2 < 0.2
0.0 4 — — 0.0 4
init [ greedy-bc BN infl B bc-chord init [ greedy-bc BN infl M be-chord
(a) Email-EU (Left: @ = 0.1, Right: o = 0.3)
1.0+ — - -T— -IT— 104 — -1 e T
o %8 o %87 | 4 -t <
[ o
c c — e
E 0.6 E 0.6
o 2
(@] (@]
[9)] Tl jE w0
0 0.4 — b 0 0.4 a4
w L — - 4 ] -+
9] 9]
(9] 9]
< 0.2 - < 0.2
0.0 - = — 0.0 -
init Bl greedy-bc I infl I bc-chord init Il greedy-bc I infl I bc-chord
(b) Email-Arenas (Left: « = 0.2, Right: @ = 0.4)
1.0+ — -1 e T 1.0+ — -1 =
) 0.8 - ) 0.8 -
O O
c c
] = = == b &
'D_'.l 0.6 4 'U_'.l 0.6
(m)] (@)
wn 9] 4
n 0.4+ n 044
[0} [0}
(9] 9]
O O
< 0.2 - < 0.2 -
0.0 - — _ 0.0 - —
init I greedy-bc I infl B bc-chord init I greedy-bc I infl B bc-chord

(c) Irvine (Left: @ = 0.2, Right: & = 0.4)
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Figure 5: For larger networks, we plot the distribution of pairwise access proximities for low-moderate- and well-spreading a.
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Figure 6: For smaller networks, we plot the distribution of pairwise signature manhattan for low-moderate- and well-spreading a.
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Figure 7: For larger networks, we plot the distribution of pairwise signature manhattan distances for low-moderate- and

well-spreading a.
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