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a b s t r a c t 

This paper proposes a Bayesian Cramér-Rao type lower bound on the minimum mean square error. The 

key idea is to minimize the latter subject to the constraint that the joint distribution of the input-output 

statistics lies in a Kullback–Leibler divergence ball centered at a Gaussian reference distribution. The 

bound is tight and is attained by a Gaussian distribution whose mean is identical to that of the refer- 

ence distribution and whose covariance matrix is determined by a scalar parameter that can be obtained 

by finding the unique root of a simple function. Examples of applications in signal processing and infor- 

mation theory illustrate the usefulness of the proposed bound in practice. 
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1. Introduction 

The mean square error (MSE) is a natural and commonly used 

measure for the accuracy of an estimator. The minimum MSE 

(MMSE) plays a central role in statistics [1,2] , information theory 

[3,4] , and signal processing [5–7] and has been shown to have 

close connections to entropy and mutual information [8,9] . 

However, often the MMSE is difficult to compute so that bounds 

have to be considered instead. Generally, MMSE lower bounds can 

roughly be broken into three families. The first family, termed Ziv–

Zakai bounds, works by connecting estimation and binary hypoth- 

esis testing [10] . The second family, termed the genie approach, 

works by providing side information and, thus, reducing the MMSE 

[11] . Finally, the third family, termed Weiss–Weinstein, works by 

using the Cauchy-Schwarz inequality [12] ; the ubiquitous Cramér- 
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Rao bound (CRB) is an example of this family. The bound proposed 

here falls in neither of these families, yet it can be argued to be of 

the Cramér–Rao type. 

In [13] , we showed that instead of using the Cauchy–Schwarz 

inequality, both the conventional and the Bayesian CRB can also 

be proven via variational arguments. Seen from this angle, the 

Bayesian CRB corresponds to the minimum MMSE that can be at- 

tained under a constraint on the Fisher information of the joint 

input-output distribution. The bound proposed in this paper is de- 

fined in analogy to this interpretation, but with the Fisher informa- 

tion replaced by the Kullback–Leibler (KL) divergence to a Gaussian 

reference distribution. 

A specialized version of the bound presented in this paper has 

previously been shown in [14] , where a similar approach was used 

to derive upper and lower bounds on the MMSE of additive Gaus- 

sian noise channels. The bound presented here extends the one in 

[14] in three ways. First, it applies to a significantly larger class 

of channels, namely, to all joint input-output distributions whose 

KL divergence from a Gaussian reference distribution is finite. Sec- 

ond, it is tight, which is not the case for the lower bound in 

[14] . Finally, the connection to the variational interpretation of 

the CRB, which positions the proposed bound in the larger con- 
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text of lower bounds in estimation theory, was not identified in 

[14] . 

It is interesting to note that a complementary result to the 

bound in this paper, namely, an upper bound on the MMSE based 

on the KL divergence to a Gaussian reference distribution, is 

well-known in the literature and has been studied repeatedly in 

the context of robust estimation [15–17] . While both bounds are 

closely related and formally similar, their underlying motivations 

are markedly different: In robust estimation, the goal is to design 

estimators that are insensitive against small, random model mis- 

matches. Consequently, the KL divergence is used to model the de- 

viation of the true, unknown distribution from an ideal Gaussian 

distribution. The minimax robust estimator is then defined as the 

one that minimizes the worst-case MSE over this neighborhood. 

The motivation for introducing a KL divergence constraint in the 

derivation of the lower bound is different. Here, it is assumed that 

the true distribution is known exactly , but that the corresponding 

MMSE is prohibitively hard to calculate. Hence, the idea is to look 

for a “surrogate property” that is easier to evaluate. A bound can 

then be obtained by minimizing the MMSE over all distributions 

for which the value of the surrogate property does not exceed that 

of the true distribution. For the CRB, this surrogate property is the 

Fisher information; for the bound proposed in this paper, it is the 

KL divergence to a Gaussian reference distribution. In a nutshell, 

while in robust MMSE estimation the KL divergence constraint cap- 

tures unknown and potentially harmful aspects of the distribution, 

in Cramér–Rao type lower bounds it captures a known and useful 

property. 

This conceptual difference between the lower and upper bound 

might explain why the two have not been derived as a pair. An- 

other reason for why the upper bound was established indepen- 

dently and much earlier could be that the underlying minimax 

optimization problem is strictly convex and, therefore, guaranteed 

to have a unique solution. The minimization problem underlying 

the lower bound, on the other hand, is non-convex, so that it is 

not clear whether a global minimum can be identified in the first 

place. This aspect will be discussed in more detail later in the pa- 

per. Finally, as can be seen in [15–17] , the focus in robustness is 

naturally on the minimax robust estimator that attains the upper 

bound, while the upper bound itself is of little interest. More pre- 

cisely, if the aim is to upper bound the MMSE, the bounds obtained 

via the best linear estimator are simpler and more accurate; com- 

pare the discussion in [14, Section V.B] . 

Clearly, the idea of bounding the MMSE by minimizing it over 

a suitable class of distributions and estimators is applicable in a 

much more general setting. The MMSE, the Fisher information, and 

the KL divergence are by no means the only candidates for use- 

ful bounds of this type. In the course of the paper, it should be- 

come clear that the Bayesian CRB and its Kullback–Leibler variant 

are just two members of a much larger family of bounds. We con- 

jecture that further investigating the properties and members of 

this family is a promising avenue for future research. Preliminary 

results exist for risks induced by Bregman divergences and expo- 

nential family reference distributions [18] . Nevertheless, the spe- 

cific bound presented in this paper stands out among the mem- 

bers of the proposed family since it is an exact equivalent of the 

Bayesian CRB , which makes it relevant from a theoretical point of 

view, and since it is easy to evaluate numerically, which makes it 

relevant from a practical point of view. 

The remainder of the paper is organized as follows: A formal 

problem formulation is given in Section 2 . The main result of the 

paper, a Cramér–Rao type lower bound on the MMSE, is stated 

in Section 3 , proved in Section 4 , and discussed in Section 5 . 

Some illustrative numerical examples are presented in Section 6 . 

Section 7 concludes the paper. 

2. Problem formulation 

Let (R K , B K ) denote the K-dimensional Borel space, and let X ∈ 

(R K , B K ) and Y ∈ (R M , B M ) be two random variables with joint dis- 

tribution P . The MSE when estimating X from Y is defined as a 

function of the joint distribution P and an estimator f , that is, 

mse X| Y ( f, P ) := E P 

[ 

‖ X − f (Y ) ‖ 
2 
] 

, (1) 

where E P denotes the expectation taken with respect to P (the sub- 

script P will occasionally be dropped when the distribution is clear 

from the context), and f denotes a measurable function mapping 

from (R K , B K ) to (R M , B M ) . The set of all estimators 3 is denoted by 

F , and the MMSE is defined as 

mmse X| Y (P ) := inf 
f∈F 

mse X| Y ( f, P ) . (2) 

The estimator attaining the MMSE is f (Y ) = E 
[

X| Y 
]

, the latter de- 

noting the expected value of X given Y . 

The problem investigated in this paper is 

inf 
P 

mmse X| Y (P ) s.t. P ∈ P ε (P 0 ) , (3) 

where P ε (P 0 ) is a KL divergence ball of radius ε centered at P 0 , 

that is, 

P ε (P 0 ) := 
{

P : D KL 

(

P ‖ P 0 
)

≤ ε 
}

. (4) 

Moreover, P 0 is assumed to be a Gaussian distribution, 

P 0 = N (μ0 , �0 ) , (5) 

with mean vector 

μ0 = 

[

μX 0 
μY 0 

]

∈ R 
K+ M , (6) 

μX 0 
∈ R K , μX 0 

∈ R M , and covariance matrix 

�0 = 

[

A 0 B 0 
B T 0 C 0 

]

∈ S 
K+ M , (7) 

where A 0 ∈ S K , B 0 ∈ R K×M and C 0 ∈ S M 
+ . Here S K + ( S 

K ) denotes the 

sets of real positive (semi)definite matrices of size K × K. 

3. Main result 

Before stating the solution of (3) , it is useful to briefly summa- 

rize the Gaussian case 

P = P 0 = N (μ0 , �0 ) , (8) 

which corresponds to ε = 0 . In this case, the MMSE estimator is 

given by 

f 0 (Y ) := E P 0 [ X | Y ] = μX 0 + B 0 C 
−1 
0 (Y − μY 0 ) (9) 

and the MMSE calculates to 

mmse X| Y (P 0 ) = tr 
(

�0 

)

= 

K 
∑ 

k =1 

ξ0 ,k , (10) 

where 

�0 := �0 /C 0 = A 0 − B 0 C 
−1 
0 B 

T 
0 (11) 

denotes the Schur complement of �0 in C 0 and ξ0 , 1 ≥ ξ0 , 2 ≥ . . . ≥
ξ0 ,K denote the ordered eigenvalues of �0 . It is now possible to 

state the main results of this paper. 

3 More precisely, F denotes a quotient set, where two estimators are equivalent 

if they differ only on an Lebesgue null set. 
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Theorem 1. For all distributions P ∈ P ε (P 0 ) , with P 0 of the form 

Eq. (5) , it holds that 

mmse X| Y (P ) ≥
K 

∑ 

k =1 

ξ0 ,k 
1 + γ ∗ξ0 ,k 

(12) 

where γ ∗ is the unique positive solution of 

K 
∑ 

k =1 

φ(γ ξ0 ,k ) = 2 ε, (13) 

and 

φ(t) := log (1 + t) −
t 

1 + t 
. (14) 

The bound is attained by the estimator f 0 in Eq. (9) and the Gaussian 

distribution N (μ0 , �γ ∗ ) , where 

�γ = �0 − γ

[

�0 (I K + γ�0 ) 
−1 �0 0 

0 0 

]

, (15) 

and I K denotes the identity matrix of size K × K. 

The theorem is proved in the next section. 

4. Proof of the main result 

The proof of the bounds given in the previous section is based 

on the Lagrange function 

L λ( f, P ) := mse X| Y ( f, P ) + λD KL 

(

P ‖ P 0 
)

, (16) 

with λ > 0 . Some useful properties of L λ are stated in the following 

two Lemmas. 

Lemma 1. The function L λ( f, •) is strictly convex for all f ∈ F . 

Lemma 2. Let f ∈ F be given, and let η denote the standard 

Lebesgue measure on (R K , B K ) . If some c f > 0 exists such that 

p ∗f (x, y ) = c f p 0 (x, y ) e 
− 1 

λ ‖ x − f (y ) ‖ 2 2 (17) 

is a valid density w.r.t. η, then the corresponding distribution P ∗
f 
solves 

inf 
P 

L λ( f, P ) . (18) 

The proofs of both Lemmas follow in close analogy to the 

proofs of Lemma 1 and Lemma 2 in [14] and are omitted for 

brevity. A proof of Lemma 2 , based on the Donsker–Varadhan 

representation of the KL divergence can be found in Appendix A 

of [19] . 

Another result that will be useful in what follows is the unique- 

ness of the MMSE estimator, which is fixed in the following 

lemma. 

Lemma 3. Suppose that E 
[

‖ f (Y ) ‖ 2 2 
]

< ∞ . Then, 

E 
[

〈 X − f (Y ) , g(Y ) 〉 
]

≤ 0 ∀ g s.t. E 
[

‖ g(Y ) ‖ 
2 
2 

]

< ∞ (19) 

where 〈• , •〉 denotes the inner product, if and only if 
f (Y ) = E[ X | Y ] a.s. (20) 

Moreover, E[ X| Y ] attains Eq. (19) with equality. 

Proof. First, Eq. (19) can be re-written as 

E [ 〈 X − f ( Y ) , g ( Y ) 〉 ] 
= E [ 〈 X − E [ X | Y ] , g ( Y ) 〉 ] + E [ 〈 E [ X | Y ] − f ( Y ) , g ( Y ) 〉 ] (21) 

= E 
[

〈 E[ X | Y ] − f (Y ) , g(Y ) 〉 
]

, (22) 

where the last equality follows from the orthogonality principle. 

Therefore, Eq. (19) can equivalently be written as 

E 
[

〈 E[ X | Y ] − f (Y ) , g(Y ) 〉 
]

≤ 0 ∀ g s.t. E 
[

‖ g(Y ) ‖ 
2 
2 

]

< ∞ . (23) 

Clearly, the estimator in Eq. (20) forces Eq. (23) to be zero. In or- 

der to see the other direction, choose g(Y ) = E[ X| Y ] − f (Y ) , which 

results in 

E 
[

‖ E[ X | Y ] − f (Y ) ‖ 
2 
2 

]

≤ 0 . (24) 

Hence, the only function that satisfies Eq. (24) is given by f (Y ) = 

E[ X| Y ] a.s. . This concludes the proof. �

4.1. Proof of the main result 

Consider the auxiliary problem 

inf 
f 

inf 
P 

L λ( f, P ) , (25) 

with 

λ = 
2 

γ
, γ > 0 . (26) 

The inner minimization in Eq. (25) can be solved via Lemma 2 : 

inf 
P 

L λ( f, P ) = E P ∗
f 

[

‖ X − f (Y ) ‖ 
2 
2 + 

2 

γ
log 

p ∗
f 
(X, Y ) 

p 0 (X, Y ) 

]

(27) 

= E P ∗
f 

[

‖ X − f (Y ) ‖ 
2 
2 + 

2 

γ
log c f − ‖ X − f (Y ) ‖ 

2 
2 

]

(28) 

= 
2 

γ
log c f (29) 

= −
2 

γ
log E P 0 

[ 

e −
γ
2 ‖ X− f (Y ) ‖ 2 2 

] 

, (30) 

where the last equality follows from c f having to be chosen such 

that p ∗
f 
is a valid density function, that is 

∫ 

p ∗f (x, y ) d x d y = 

∫ 

c f p 0 (x, y ) e 
− 1 

λ ‖ x − f (y ) ‖ 2 2 d x d y (31) 

= c f E P 0 

[ 

e −
1 
λ ‖ x − f (y ) ‖ 2 2 

] 

= 1 . (32) 

The optimal estimator in Eq. (25) can hence be characterized by 

the problem 

sup 
f 

E P 0 

[ 

e −
γ
2 ‖ X− f (Y ) ‖ 2 2 

] 

. (33) 

This problem is in general nonconvex. However, using the uniquess 

of the MMSE estimator, we will show that Eq. (33) admits a sin- 

gle, unique local maximum, which in turn implies that the local 

maximum is a global maximum. 

A necessary condition for an estimator to be a local maximum 

of Eq. (33) is that the Gâteaux derivative of the objective function 

is nonpositive in the direction of every estimator g ∈ F [20, Ch. 7.4, 

Thm. 2] . This derivative calculates to 

−γ E P 0 
[

〈 X − f ( Y ) , g ( Y ) 〉 e − γ
2 ‖ X− f ( Y ) ‖ 2 2 

]

= −
γ

c f 
E P ∗

f 
[ 〈 X − f ( Y ) , g ( Y ) 〉 ] , (34) 

This yields the necessary optimality condition 

E P ∗
f 

[ 

〈 X − f (Y ) , g(Y ) 〉 
] 

≥ 0 (35) 

for all g ∈ F . In view of Lemma 3 , the only function that satisfies 

this condition is the conditional mean estimator under P ∗
f 
, that is 

f ∗(Y ) = E P ∗
f ∗

[

X | Y 
]

a.s. (36) 

3 
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Moreover, since the conditional expectation is the only function 

that satisfies Eq. (35) , there exist no other local maxima. Since the 

global maximum is a local maximum, this implies that Eq. (36) at- 

tains the global maximum. 

Next, it is shown that the condition in Eq. (36) is satisfied by 

the estimator f 0 in Eq. (9) . In order to see this, note that for f = f 0 , 

P ∗
f 0 

in Eq. (17) is a Gaussian distribution with mean μ f 0 
= μ0 and 

precision matrix 

�−1 
f 0 

= �−1 
0 − γU 

T 
0 U 0 (37) 

where 

U 0 = 
[

I K −B 0 C 
−1 
0 

]

. (38) 

From Woodbury’s matrix identity it follows that the corresponding 

covariance matrix is of the form 

� f 0 = �0 −
(

U 0 �0 

)T ( 1 
γ I + U 0 �0 U 

T 
0 

)−1 
U 0 �0 . (39) 

Using (7) , 

U 0 �0 = 
[

I K −B 0 C 
−1 
0 

]

[

A B 
B T C 

]

(40) 

= 
[

A 0 − B 0 C 
−1 
0 B 

T 
0 B 0 − B 0 C 

−1 
0 C 0 

]

(41) 

= 
[

�0 0 
]

, (42) 

so that � f 0 
calculates to 

� f 0 = �0 −
[

�0 

(

γ −1 I K + �0 

)−1 
�0 0 

0 0 

]

(43) 

= �0 − γ

[

�0 (I K + γ�0 ) 
−1 �0 0 

0 0 

]

. (44) 

Since the Gaussian MMSE estimator only depends on the mean 

vector and the M right most columns of the covariance matrix, 

compare (9) , it immediately follows that 

E P ∗
f 0 

[

X | Y = y 
]

= E N (μ f 0 , � f 0 ) 

[

X | Y = y 
]

(45) 

= E N (μ0 , �0 ) 

[

X | Y = y 
]

(46) 

= f 0 (y ) , (47) 

which is the optimality condition in (36) . 

Using this result, it holds that 

sup 
f 

E P 0 

[ 

e −
γ
2 ‖ X− f (Y ) ‖ 2 2 

] 

= E P 0 

[ 

e −
γ
2 ‖ (X−μX ) −BC −1 (Y −μY ) ‖ 2 2 

] 

(48) 

= E N (0 ,I K ) 

[ 

e −
γ
2 ‖ �

1 / 2 
0 Z‖ 2 

] 

(49) 

= E N (0 ,I K ) 

[ 

e −
γ
2 

∑ K 
k =1 ξ0 ,k Z 

2 
k 

] 

(50) 

where Z = [ Z 1 , . . . , Z K ] is a vector of standard normally distributed 

random variables. The expression in (50) is the product of K mo- 

ment generating functions of χ2 distributed random variables eval- 

uated at − γ
2 ξ0 ,k , hence, it evaluates to 

K 
∏ 

k =1 

E N (0 , 1) 

[ 

e −
γ
2 ξ0 ,k Z 

2 
k 

] 

= 

K 
∏ 

k =1 

(1 + γ ξ0 ,k ) 
− 1 

2 . (51) 

Inserting this result back into (30) yields 

inf 
f 

inf 
P 

L λ( f, P ) = 
1 

γ

K 
∑ 

k =1 

log (1 + γ ξ0 ,k ) (52) 

for all γ > 0 . 

In order to establish the connection to the original problem (3) , 

let ( f † , P † ) denote the solution of the latter. For all γ > 0 it holds 

that 

mmse X| Y (P 
† ) ≥ mse X| Y ( f 

† , P † ) + 
2 

γ

(

D KL 

(

P † ‖ P 0 
)

− ε 
)

(53) 

≥ inf 
P, f 

(

mse X| Y ( f, P ) + 
2 

γ
D KL 

(

P ‖ P 0 
)

)

−
2 

γ
ε (54) 

≥
1 

γ

( 
K 

∑ 

k =1 

log (1 + γ ξ0 ,k ) − 2 ε 

) 

=: ρ(γ ) . (55) 

In order to maximize this bound with respect to γ , note that 

ρ ′ (γ ) = 
1 

γ

( 
K 

∑ 

k =1 

ξ0 ,k 
1 + γ ξ0 ,k 

− ρ(γ ) 

) 

(56) 

=: 
1 

γ
( ̃  ρ(γ ) − ρ(γ ) ) , (57) 

where ρ′ denotes the derivative of ρ and ˜ ρ(γ ) is defined implic- 

itly. Since ρ is concave by construction, every stationary point is a 

global maximum, which yields the optimality condition 

ρ(γ ) − ˜ ρ(γ ) = 0 (58) 

K 
∑ 

k =1 

(

log (1 + γ ξ0 ,k ) −
γ ξ0 ,k 

1 + γ ξ0 ,k 

)

= 2 ε (59) 

K 
∑ 

k =1 

φ(γ ξ0 ,k ) = 2 ε. (60) 

Since φ : [0 , ∞ ) → [0 , ∞ ) is continuous and increasing, the left- 

hand side of (60) is continuous and increasing in γ , so that γ ∗

is unique. Finally, by definition of γ ∗, 

ρ(γ ∗) = ˜ ρ(γ ∗) = 

K 
∑ 

k =1 

ξ0 ,k 
1 + γ ∗ξ0 ,k 

. (61) 

Since the estimator/distribution pair in Theorem 1 attains this 

bound, it is tight. This completes the proof. 

5. Discussion 

In this section, some notewothy properties and special cases of 

the proposed bound are discussed. 

5.1. Connection to the Cramér–Rao bound 

As explained in the introduction, the bound in Theorem 1 can 

be interpreted as a Bayesian Cramér–Rao bound that is based on 

the KL divergence instead of the Fisher information. More formally, 

the CRB can be obtained by solving (3) with P ε redefined as 

P ε := 
{

P : I(P ) ≤ ε 
}

, (62) 

where I(P ) denotes the Bayesian Fisher information; see [13] for 

more details. 

In view of this interpretation, the question which version of the 

CRB is more suitable for a given estimation problem translates to 

4 
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the question which property, the Fisher information or the KL di- 

vergence from P 0 , leads to a tighter constraint in (3) . Both prop- 

erties are measures for the deviation from Gaussianity, but they 

quantify the deviation differently. Since the requirement of having 

a finite KL divergence to a Gaussian reference distribution requires 

no additional regularity conditions, the KL divergence based bound 

is defined for a larger class of distributions than the conventional 

Bayesian CRB. As a rule of thumb, the less smooth a distribution 

function, the more likely it is that the KL divergence based CRB 

outperforms the conventional CRB. This aspect will be illustrated 

with an example in Section 6 . 

5.2. Additive noise channels 

The bounds presented in [14] hold for additive noise channels 

in which noise and input are independent and at least one of 

them is Gaussian distributed. With the bound in Theorem 1 at 

hand, these assumptions can be relaxed. Moreover, if the additive 

noise channel is approximated by an additive Gaussian noise (AGN) 

channel, the KL divergence of the joint input-output distributions 

simplifies to the sum of the KL divergences of the input and the 

noise distributions. 

In general, the KL divergence between two distributions P XY = 

P X P Y | X and Q XY = Q X Q Y | X can be decomposed into 

D KL 

(

P XY ‖ Q XY 

)

= D KL 

(

P X ‖ Q X 

)

+ E P X 
[

D KL 

(

P Y | X ‖ Q Y | X 
)]

. (63) 

Now, consider an additive channel 

Y = X + N, (64) 

where X ∼ P X and N ∼ P N are independent. In this case it holds that 

E P X 
[

D KL 

(

P Y | X ‖ Q Y | X 
)]

= E P X 
[

D KL 

(

P Y −X ‖ Q Y −X 

)]

= E P N 
[

D KL 

(

P N ‖ Q N 

)]

(65) 

= D KL 

(

P N ‖ Q N 

)

, (66) 

so that 

D KL 

(

P XY ‖ Q XY 

)

= D KL 

(

P X ‖ Q X 

)

+ D KL 

(

P N ‖ Q N 

)

. (67) 

Moreover, if the reference distribution P 0 is chosen such that it cor- 

responds to an additive Gaussian noise channel 

Y 0 = X 0 + N 0 , (68) 

where X 0 ∼ N (μX 0 
, �X 0 

) and N 0 ∼ N (μN 0 
, �N 0 

) , then the MMSE 

matrix �0 in (11) simplifies to 

�0 = �X 0 (�X 0 + �N 0 ) 
−1 �N 0 . (69) 

Using these results, MMSE bounds for additive noise chan- 

nels can be obtained by adding the non-Gaussianity parameters 

of the input and noise distributions instead of considering their 

joint non-Gaussianity. This is a natural extension of the bounds in 

[14] and will be illustrated with an example in the next section. 

However, this simplicity comes at the cost of less tight bounds, 

since only allowing reference distributions that correspond to AGN 

channels reduces the degrees of freedom. 

5.3. A special case with explicit bounds 

For the special case that the covariance matrix of the refer- 

ence distribution, �0 , is chosen such that its Schur complement 

admits a flat spectrum, that is, if ξ0 , 1 = . . . = ξ0 ,K = ξ0 , the solution 
of (13) can be expressed explicitly, namely 

γ ∗ξ0 = 
1 − ω 0 (ε/K) 

ω 0 (ε/K) 
(70) 

Fig. 1. Graph of ω 0 defined in (71) . 

where 

ω 0 (t) = −W 0 

(

−e −(2 t+1) 
)

(71) 

and W 0 denotes the main branch of the Lambert W function [21] . 

Inserting (71) back into (12) yields bounds of the simple form 

mmse X| Y (P ) 

K 
≥ ω 0 (ε/K) ξ0 (72) 

For illustration purposes, the function ω 0 is plotted in Fig. 1 . More- 

over, (72) indicates that the proposed bound is asymptotically ex- 

act for K → ∞ , whenever the KL divergence of P from P 0 grows 

sublinearly in K, that is D KL 

(

P ‖ P 0 
)

∈ o(K) . This is in line with the 

results in [14] , where this behavior was demonstrated for uniform 

input distributions on balls in R K . 

5.4. Bounds on γ ∗

In order to solve (13) for γ , it is useful to be able to bound 

γ ∗ from above and below, so that the problem can be reduced to 

finding the root of a monotonic function on a finite interval. The 

following corollary provides such bounds 

Corollary 1. For γ ∗ as in Theorem 1 it holds that 

1 − ω 0 (ε/K) 

ω 0 (ε/K) 
≤ γ ∗ξ0 , 1 ≤

1 − ω 0 (ε) 

ω 0 (ε) 
, (73) 

with ω 0 defined in (71) . 

The corollary follows from the monotonicity of φ and the 

bounds 

φ(γ ξ0 , 1 ) ≤
K 

∑ 

k =1 

φ(γ ξ0 ,k ) ≤ Kφ(γ ξ0 , 1 ) . (74) 

Bounding the sum on the left-hand side of (60) via (74) and solving 

for γ yields the desired result. 

5.5. Connection to the AWGN channel 

A possibly helpful interpretation of the bound in Theorem 1 is 

via the AWGN channel: 

V = 
√ 

γ X + N, (75) 

where N ∼ N (0 , I K ) , X ∼ N (μX , �0 ) , and γ denotes the signal-to- 

noise ratio (SNR). The MMSE of the channel in (75) is given by 

mmse X| V (γ ) = 

K 
∑ 

k =1 

ξ0 ,k 
1 + γ ξ0 ,k 

, (76) 

so that the bounds in (12) can be written as 

mmse X| Y (P ) ≥ mmse X| U (γ
∗) . (77) 
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That is, the parameter γ ∗ can be interpreted as the SNR of an 

equivalent AWGN channel. 

Interestingly, it can be shown that the minimax robust MMSE 

estimator studied in [15–17] leads to an MMSE upper bound of the 

form 

mmse X| Y (P ) ≤ mmse X| U ( ̃  γ ) , (78) 

where ˜ γ is the unique negative solution of (13) . However, this neg- 

ative SNR clearly does not admit a physical interpretation compa- 

rable to that of γ ∗. 

6. Examples 

In this section, three examples are given that illustrate how the 

proposed bound 

A. can be applied to additive channels when both the input signal 

and the noise are non-Gaussian distributed. 

B. can be used to obtain (asymptotically tight) MMSE bounds in a 

case where the Bayesian Cramér–Rao bound does not apply. 

C. can be used to arrive at useful asymptotic expressions, with a 

particular emphasize on the fact that it is guaranteed to out- 

perform the Baysian Cramér–Rao lower bound at low SNRs. 

Python code for all examples can be found in a public Git 

repository [22] . 

In all but the first example the result in Theorem 1 is not 

used directly to bound the MMSE over a KL divergence ball, but 

to bound the MMSE for a given distribution P XY . Such bounds can 

be obtained as follows: For any given P 0 , it trivially holds that P XY 
is within a KL divergence ball with radius D KL 

(

P XY ‖ P 0 
)

centered at 

P 0 . Hence, mmse X| Y (P XY ) is bounded by (12) with ε = D KL 

(

P XY ‖ P 0 
)

. 

Since this is true for all Gaussian reference distributions, the lower 

bound can further be maximized with respect to P 0 , that is, 

mmse X| Y (P XY ) ≥ sup 
P 0 

inf 
P 

{ 

mmse X| Y (P ) : P ∈ P D KL (P XY ‖ P 0 ) (P 0 ) 
} 

, (79) 

where P 0 is restricted to be Gaussian. We refer to a reference dis- 

tribution that solves (79) as best Gaussian approximation of P XY . 

6.1. Generalized-Gaussian signal in additive generalized-Gaussian 

noise 

There are many applications in signal processing and commu- 

nications for which the noise can be assumed to be additive, but it 

cannot be assumed to be normally distributed [23,24] . Given this 

prominent role of additive channels, it is useful to illustrate how 

to apply the bound in Theorem 1 to this particular model. 

Using the channel model in (64) , let X ∼ G(a, p) and N ∼
G (b, q ) , where G (a, p) denotes a generalized Gaussian (GG) distri- 

bution with density function 

g(x | a, p) = 
p 

2 a 
(1 /p) 
e −

( | x | 
a 

)p 

, (80) 

where 
 denotes the gamma function [25] , a > 0 is a scale param- 

eter, and p > 0 determines the type of decay of the tails [26] . In 

[14] , it is shown that the best Gaussian approximation of a zero- 

mean GG distribution, in terms of the KL divergence, is attained by 

choosing the variance of the reference distribution as 

σ 2 
0 = a 

√ 


(3 /p) 


(1 /p) 
, (81) 

so that 

d G (p) := min 
σ 2 
0 ≥0 

D KL 

(

G(a, p) ‖N (0 , σ 2 
0 ) 

)

(82) 

Fig. 2. Proposed MMSE lower bound (top) and Cramér–Rao bound (bottom) for an 

additive channel with generalized Gaussian noise and input. 

= log 
p 

√ 
2 

√ 


(3 /p) 


(1 /p) 


(1 / 2) 


(1 /p) 
+ 

1 

2 
−

1 

p 
. (83) 

See Fig. 4 in [14] for a plot of the graph of d G . From (67) it follows 

that the KL divergence of the true input-output distribution 4 and 

its best (additive) Gaussian approximation is given by 

d XY (p, q ) := d G (p) + d G (q ) . (84) 

Combining (84), (69) , and (72) yields the bound 

mmse Y | X (P GG ) ≥ ω 0 

(

d X,Y (p, q ) 
)

mmse Y | X (P 0 ) (85) 

= ω 0 

(

d X,Y (p, q ) 
) σ 2 

X σ
2 
N 

σ 2 
X + σ 2 

N 

, (86) 

where σ 2 
X and σ

2 
N denote the signal and noise power, respectively. 

Examples of the lower bound in (86) are shown in the upper 

plot of Fig. 2 for p, q ∈ [2 −2 , 2 5 ] and at an SNR of 0dB ( σ 2 
X = σ 2 

N = 

1 ). For comparison, the Crámer–Rao bound is depicted in the lower 

plot. The latter can be shown to be given by 

mmse Y | X (P GG ) ≥
1 

I 
(

G(a, p) 
)

+ I 
(

G(b, q ) 
) , (87) 

where 

I 
(

G(a, p) 
)

= 

{

p 2 

a 2 

(2 −1 /p) 

(1 /p) , 1 / 2 < p < ∞ 

∞ , 0 < p ≤ 1 / 2 
(88) 

4 Note that unless both the input and the noise are Gaussian distributed, the joint 

input-output distribution is not a multivariate GG distribution itself. 
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Fig. 3. Difference between the proposed MMSE lower bound and the Cramér–Rao 

bound for an additive channel with generalized Gaussian noise and input. 

denotes the Fisher information of the zero-mean generalized Gaus- 

sian distribution [27, Chapter 3.2.1] . 

By inspection, the KL divergence based CRB is an improvement 

over the Fisher information based CRB for a variety of combi- 

nations of p and q . In particular, the proposed bound is signifi- 

cantly tighter as long as one of the distributions is close to Gaus- 

sian ( p, q ≈ 2 ), while the other distribution is more concentrated 

( q, p > 2 ). In contrast, it can be seen that the conventional CRB 

only performs well if both distributions are approximately Gaus- 

sian, with a pronounced peak around p = q = 2 . 

This improvement becomes more obvious when considering the 

difference between the two bounds, which is plotted in Fig. 3 . 

Again, the proposed bound is notably tighter, with the exception 

of a small region around the Gaussian case. Since this region is 

difficult to recognize in the surface plot, it is shown separately in 

the plot below, where it is indicated by the white contour lines. Fi- 

nally, for comparison, note that for all p, q > 0 in this example the 

MMSE is upper bounded by 0.5, which is the MSE obtained by the 

best linear estimator. 

6.2. Multiplicative channel with uniform input distribution 

The example in the previous section allowed for a comparison 

between the KL divergence based CRB and the conventional CRB. 

In this example, we would like to highlight a scenario in which 

the latter cannot be applied at all, namely that of uniform input 

distributions on K-dimensional balls, K-balls for short. A K-ball is 

defined as 

B K (c, r) = 

{ 

x ∈ R 
K : 

K 
∑ 

k =1 

(x k − c k ) 
2 

r 2 
≤ 1 

} 

, (89) 

where r > 0 denotes the radius of the K-ball and c ∈ R K denotes 

its center. Uniform distributions over balls are used, for example, 

in communication and signal processing to model parameter toler- 

ances or estimation errors [28] . 

Now, consider the multiplicative channel 

Y = X · N, (90) 

where · denotes the elementwise product, N ∈ R K is standard nor- 

mally distributed, N ∼ N (0 , I K ) , and X is uniformly distributed on 

B K (c, r) , here denoted by X ∼ U B K (c, r) . For simplicity, it is as- 

sumed that B K (c, r) ⊂ R K + , that is, c k > r for all k = 1 , . . . , K. In light 

of the discussion above, this scenario corresponds to measuring a 

parameter X with known tolerance r via a multiplicative channel 

with random channel gain N. 

The joint distribution of X and Y in (90) can be approxi- 

mated by jointly Gaussian random variables X 0 and Y 0 as follows. 

First, it is shown in [14] that the best Gaussian approximation for 

B K (c, r) ⊂ R K + is obtained by moment matching, that is, 

μX 0 = c and �X 0 = I k 
r 2 

K + 2 
. (91) 

The KL divergence between P X = U B K (c, r) and P X 0 = N (μX 0 
, �X 0 

) 

can be shown to be given by 

D KL 

(

P X ‖ P X 0 
)

= 
K 

2 
−

K 

2 
log 

K + 2 

2 
+ log 


K + 2 

2 
(92) 

=: d U (K) . (93) 

Since in a jointly Gaussian channel the conditional variance of Y | X
is independent of X , the conditional distribution P Y | X = N (0 , I K X 

2 ) 

can only be approximated by a Gaussian distribution with fixed, 

diagonal covariance matrix, so that P Y 0 | X 0 = P Y 0 = N (0 , I K σ
2 
Y 0 

) . The 

corresponding conditional KL divergence is given by 

D KL 

(

P Y | X ‖ P Y 0 
)

= 

K 
∑ 

k =1 

D KL 

(

P Y k | X k ‖ P Y 0 ,k 
)

, (94) 

where 

D KL 

(

P Y k | X k ‖ P Y 0 ,k 
)

= 
1 

2 

( 

X 2 
k 

σ 2 
Y 0 ,k 

− 1 − log 
X 2 
k 

σ 2 
Y 0 ,k 

) 

. 

In order to evaluate D KL 

(

P XY ‖ P X 0 Y 0 
)

via (63) , the expected value of 

D KL 

(

P Y | X ‖ P Y 0 
)

with respect to P X is required, which is given by 

E P X 
[

D KL 

(

P Y | X ‖ P Y 0 
)]

= 

K 
∑ 

k =1 

E P X k 

[

D KL 

(

P Y k | X k ‖ P Y 0 ,k 
)]

(95) 

= 
1 

2 

K 
∑ 

k =1 

( 

E[ X 2 
k 
] 

σ 2 
Y 0 ,k 

− 1 − E 
[

log X 2 k 
]

+ log σ 2 
Y 0 ,k 

) 

. 

(96) 

Minimizing with respect to σ 2 
Y 0 | X 0 

yields the best Gaussian approx- 

imation σ 2 
Y 0 ,k 

= E[ X 2 
k 
] , so that 

E P X 
[

D KL 

(

P Y | X ‖ P Y 0 
)]

= 
1 

2 

K 
∑ 

k =1 

(

log E 
[

X 2 k 
]

− E 
[

log X 2 k 
])

. (97) 
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It is not difficult to show 5 that 

p X k (x ) = 
1 

√ 
π r 


( K+2 
2 ) 


( K+3 
2 ) 

β1 , K+1 
2 

(

(x − c k ) 
2 

r 2 

)

, (98) 

where βa,b denotes the PDF of the beta distribution with parame- 

ters a and b. From (98) it follows that 

E 
[

X 2 k 
]

= c 2 k + 
r 2 

K + 2 
(99) 

and 

E 
[

log X 2 k 
]

= log c 2 k + 
2 

√ 
π


( K+2 
2 ) 


( K+1 
2 ) 

H 

(

r 

c k 
, 
K + 1 

2 

)

, (100) 

where H : (0 , 1] × R + → R is defined as 

H(a, b) := 

∫ 1 

−1 
log (1 + ax )(1 − x 2 ) b−1 d x. (101) 

If evaluating the right hand side of (100) is too costly, the bound 

E 
[

log X 2 k 
]

> 
1 

2 

(

log (c k − r) 2 + log (c k + r) 2 
)

(102) 

= log (c 2 k − r 2 ) (103) 

can be used instead, which is obtained by lower bounding the log- 

arithmic function by an affine function on the interval [ c k − r, c k + 

r] and is a good approximation when c k � r. 

Given this Gaussian approximation and using the fact that 

�0 in (91) admits a flat spectrum, the lower MMSE bound in 

Theorem 1 evaluates to 

mmse X| Y (P XY ) ≥ Kω 0 

(

ε K (c, r) 

K 

)

σ 2 
X 0 , 1 

(104) 

= ω 0 

(

ε K (c, r) 

K 

)

K 

K + 2 
r 2 , (105) 

where 

ε K (c, r) = D KL 

(

P XY ‖ P X 0 Y 0 
)

(106) 

= d U (K) + 
1 

2 

K 
∑ 

k =1 

d β (c k , r, K) , (107) 

with d U defined in (93) and 

d β (c k , r, K) = log E 
[

X 2 k 
]

− E 
[

log X 2 k 
]

(108) 

= c 2 k + 
r 2 

K + 2 
− log c 2 k −

2 
√ 

π


( K+2 
2 ) 


( K+1 
2 ) 

H 

(

r 

c k 
, 
K + 1 

2 

)

(109) 

< c 2 k + 
r 2 

K + 2 
− log (c 2 k − r 2 ) . (110) 

An example of the bound in (105) is shown in Fig. 4 . Here the 

center point is chosen to be c 1 = . . . = c K = 10 , the radius of the 

K-ball is set to r = 2 , and K varies between 1 and 100. Clearly, the 

lower bound becomes tighter for large K. In fact, it is not hard to 

show that 

ε K (c, r) 

K 
→ 0 for K → ∞ , (111) 

meaning the lower bound is asymptotically tight and 

lim 
K→∞ 

mmse X| Y (P XY ) = r 2 . (112) 

5 For a unit K-ball centered at the origin, the probability of the event { X k ≤ x } , 
x ∈ [0 , 1] , corresponds to the ratio of the volume of the spherical cap [29] of height 

x to the volume of the entire K-ball. 

Fig. 4. MMSE bounds for the model in (90) , where X is distributed uniformly on a 

K-ball with center point c 1 = . . . = c K = 10 and radius r = 2 . The exact lower bound 

is given in (105) , and the approximate version is obtained by using the inequality 

in (103) to bound ε K in (107) . 

Fig. 5. MMSE lower bound in (105) with K = 2 and r = 1 for different center points 

c = (c 1 , c 2 ) . 

While this result could have been obtained in a more straight- 

forward manner, it allows for some interesting insights. The limit 

in (112) implies that, asymptotically, the MMSE estimator for 

the model in (90) is a constant, namely f ∗(y ) = μX = c. Interest- 

ingly, the aspect that the observations contain a vanishingly small 

amount of information is captured by the Gaussian approximation 

model, where X 0 and Y 0 are entirely independent. Nevertheless, the 

distribution of Y is of importance since it contributes to the dis- 

tance between the approximated and the true joint distribution. 

Hence, the proposed bound capture the asymptotic independence 

of input and output, while using the Gaussian approximation to 

bound the impact of ignoring this dependence for finite K. 

The influence of the center point c on the lower bound is illus- 

trated in Fig. 5 for the case K = 2 and r = 1 . The bound is lower 

towards the axis, where small values of X lead to small variances 

of Y , which in turn makes estimating X from Y easier. This effect 

becomes less and less pronounced as c moves away from the ori- 

gin, thus increasing the variance of Y . Asymptotically, for c → ∞ , 

the lower bound again approaches the upper bound ( σ 2 
X 0 

= 1 / 4 ), 

meaning that Y becomes increasingly uninformative. 

6.3. Low SNR behavior 

Next, we show that the proposed bounds can be used to study 

the SNR behavior of the MMSE. More precisely, we show that the 

proposed lower bound performs better than the Cramér-Rao bound 

in the low SNR regime. This result is fixed in the next Lemma. 
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Lemma 4. For additive channels, the KL divergence based CRB is 

tighter than the Fisher information based CRB in the low SNR regime. 

Proof. Consider the additive channel in (64) , with N ∼ N (0 , σ 2 
N I) 

and choose �N 0 
= σ 2 

N I and �X 0 
= σ 2 

0 I. Using the lower bound in 

(72) , we have that 

lim 
σ 2 
N →∞ 

mmse X| Y (P X ) ≥ ω 0 

(

ε 

K 

)

σ 2 
0 K, (113) 

where σ 2 
0 is arbitrary and 

ε = D KL 

(

P X ‖ Q X 0 

)

= −h (X ) + 
K 

2 
log (2 πσ 2 

0 ) + 
tr(�X ) 

2 σ 2 
0 

. (114) 

Taking σ 2 
0 → ∞ on the right side of (113) leads to 

lim 
σ 2 
N →∞ 

mmse X| Y (P X ) ≥
1 

2 πe 
e 

2 
K h (X ) . (115) 

The above procedure can now be compared to the Cramér-Rao 

bound, which leads to the following limit: 

lim 
σ 2 
N →∞ 

mmse X| Y (P X ) ≥ lim 
σ 2 
N →∞ 

tr 

( 
(

1 

σ 2 
N 

I + I(P X ) 

)−1 
) 

(116) 

= tr 
(

I −1 (P X ) 
)

. (117) 

Next, invoking Stam’s inequality [30] we have that 

1 

2 πe 
e 

2 
K h (X ) ≥ tr 

(

I −1 (P X ) 
)

. (118) 

This completes the proof. �

7. Conclusion 

This work has considered the problem of minimizing the mean 

square error when estimating a random vector X ∈ R K from a ran- 

dom vector Y ∈ R M , subject to the constraint that their joint dis- 

tribution P XY lies in a KL divergence ball of radius ε centered at a 

Gaussian reference distribution. It has been shown that the mini- 

mum is attained by a jointly Gaussian distribution whose mean is 

identical to that of the reference distribution and whose covariance 

matrix can be determined by finding a scalar root of a simple func- 

tion. This bound has been identified as a variant of the Bayesian 

Cramér–Rao bound, where the Fisher information is replaced by 

the Kullback–Leibler divergence. 
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