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1. Introduction

The mean square error (MSE) is a natural and commonly used
measure for the accuracy of an estimator. The minimum MSE
(MMSE) plays a central role in statistics [1,2], information theory
[3,4], and signal processing [5-7] and has been shown to have
close connections to entropy and mutual information [8,9].

However, often the MMSE is difficult to compute so that bounds
have to be considered instead. Generally, MMSE lower bounds can
roughly be broken into three families. The first family, termed Ziv-
Zakai bounds, works by connecting estimation and binary hypoth-
esis testing [10]. The second family, termed the genie approach,
works by providing side information and, thus, reducing the MMSE
[11]. Finally, the third family, termed Weiss-Weinstein, works by
using the Cauchy-Schwarz inequality [12]; the ubiquitous Cramér-

* Corresponding author.
E-mail address: mfauss@princeton.edu (M. FauR).
T The work of M. FauR was supported by the German Research Foundation (DFG)
under Grant 424522268.
2 The work of H. V. Poor was in part supported by the U.S. National Science Foun-
dation (NSF) under Grant CCF-1908308.

https://doi.org/10.1016/j.sigpro.2023.108933
0165-1684/© 2023 Elsevier B.V. All rights reserved.

Rao bound (CRB) is an example of this family. The bound proposed
here falls in neither of these families, yet it can be argued to be of
the Cramér-Rao type.

In [13], we showed that instead of using the Cauchy-Schwarz
inequality, both the conventional and the Bayesian CRB can also
be proven via variational arguments. Seen from this angle, the
Bayesian CRB corresponds to the minimum MMSE that can be at-
tained under a constraint on the Fisher information of the joint
input-output distribution. The bound proposed in this paper is de-
fined in analogy to this interpretation, but with the Fisher informa-
tion replaced by the Kullback-Leibler (KL) divergence to a Gaussian
reference distribution.

A specialized version of the bound presented in this paper has
previously been shown in [14], where a similar approach was used
to derive upper and lower bounds on the MMSE of additive Gaus-
sian noise channels. The bound presented here extends the one in
[14] in three ways. First, it applies to a significantly larger class
of channels, namely, to all joint input-output distributions whose
KL divergence from a Gaussian reference distribution is finite. Sec-
ond, it is tight, which is not the case for the lower bound in
[14]. Finally, the connection to the variational interpretation of
the CRB, which positions the proposed bound in the larger con-



M. Faufs, A. Dytso and H.V. Poor

text of lower bounds in estimation theory, was not identified in
[14].

It is interesting to note that a complementary result to the
bound in this paper, namely, an upper bound on the MMSE based
on the KL divergence to a Gaussian reference distribution, is
well-known in the literature and has been studied repeatedly in
the context of robust estimation [15-17]. While both bounds are
closely related and formally similar, their underlying motivations
are markedly different: In robust estimation, the goal is to design
estimators that are insensitive against small, random model mis-
matches. Consequently, the KL divergence is used to model the de-
viation of the true, unknown distribution from an ideal Gaussian
distribution. The minimax robust estimator is then defined as the
one that minimizes the worst-case MSE over this neighborhood.
The motivation for introducing a KL divergence constraint in the
derivation of the lower bound is different. Here, it is assumed that
the true distribution is known exactly, but that the corresponding
MMSE is prohibitively hard to calculate. Hence, the idea is to look
for a “surrogate property” that is easier to evaluate. A bound can
then be obtained by minimizing the MMSE over all distributions
for which the value of the surrogate property does not exceed that
of the true distribution. For the CRB, this surrogate property is the
Fisher information; for the bound proposed in this paper, it is the
KL divergence to a Gaussian reference distribution. In a nutshell,
while in robust MMSE estimation the KL divergence constraint cap-
tures unknown and potentially harmful aspects of the distribution,
in Cramér-Rao type lower bounds it captures a known and useful
property.

This conceptual difference between the lower and upper bound
might explain why the two have not been derived as a pair. An-
other reason for why the upper bound was established indepen-
dently and much earlier could be that the underlying minimax
optimization problem is strictly convex and, therefore, guaranteed
to have a unique solution. The minimization problem underlying
the lower bound, on the other hand, is non-convex, so that it is
not clear whether a global minimum can be identified in the first
place. This aspect will be discussed in more detail later in the pa-
per. Finally, as can be seen in [15-17], the focus in robustness is
naturally on the minimax robust estimator that attains the upper
bound, while the upper bound itself is of little interest. More pre-
cisely, if the aim is to upper bound the MMSE, the bounds obtained
via the best linear estimator are simpler and more accurate; com-
pare the discussion in [14, Section V.B].

Clearly, the idea of bounding the MMSE by minimizing it over
a suitable class of distributions and estimators is applicable in a
much more general setting. The MMSE, the Fisher information, and
the KL divergence are by no means the only candidates for use-
ful bounds of this type. In the course of the paper, it should be-
come clear that the Bayesian CRB and its Kullback-Leibler variant
are just two members of a much larger family of bounds. We con-
jecture that further investigating the properties and members of
this family is a promising avenue for future research. Preliminary
results exist for risks induced by Bregman divergences and expo-
nential family reference distributions [18]. Nevertheless, the spe-
cific bound presented in this paper stands out among the mem-
bers of the proposed family since it is an exact equivalent of the
Bayesian CRB, which makes it relevant from a theoretical point of
view, and since it is easy to evaluate numerically, which makes it
relevant from a practical point of view.

The remainder of the paper is organized as follows: A formal
problem formulation is given in Section 2. The main result of the
paper, a Cramér-Rao type lower bound on the MMSE, is stated
in Section 3, proved in Section 4, and discussed in Section 5.
Some illustrative numerical examples are presented in Section 6.
Section 7 concludes the paper.
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2. Problem formulation

Let (RX, BX) denote the K-dimensional Borel space, and let X
(RX, By and Y € (RM, BM) be two random variables with joint dis-
tribution P. The MSE when estimating X from Y is defined as a
function of the joint distribution P and an estimator f, that is,

msexyy (f.P) := Ep[ux - f(Y)IIZ], (1)

where Ep denotes the expectation taken with respect to P (the sub-
script P will occasionally be dropped when the distribution is clear
from the context), and f denotes a measurable function mapping
from (RK, BX) to (RM, BM). The set of all estimators® is denoted by
F, and the MMSE is defined as

mmseyy (P) := inf msexy (f, P). (2)
feFr
The estimator attaining the MMSE is f(Y) = E[X|Y], the latter de-

noting the expected value of X given Y.
The problem investigated in this paper is

igf mmseyy (P) s.t. P e Pe(Py), (3)

where P.(Py) is a KL divergence ball of radius & centered at P,
that is,

Pe(Ry) :={P: D (PIIP) < €} (4)
Moreover, P is assumed to be a Gaussian distribution,
Py = N (o, o). (5)
with mean vector
Mo = /’LXui| € RK+M, (6)
| 1Y
tx, € R¥, ux, € RM, and covariance matrix
4 Bo K-+M
20 = B—g C()i| €S s (7)

where Ag e SK, By e RFM and Gy e sM. Here SX (SX) denotes the
sets of real positive (semi)definite matrices of size K x K.

3. Main result

Before stating the solution of (3), it is useful to briefly summa-
rize the Gaussian case

P =Py = N(po, Zo). (8)

which corresponds to ¢ = 0. In this case, the MMSE estimator is
given by

fo(Y) := Ep[X|Y] = fax, +BoCy ' (Y — pty,) (9)
and the MMSE calculates to

K

mmseyyy (o) = tr(E0) = > & (10)
k=1

where

Eo := Zo/Co = Ao — BoC,'B} (11)

denotes the Schur complement of Xy in Gy and &§p1 >&p2 > ... >
&ox denote the ordered eigenvalues of Eg. It is now possible to
state the main results of this paper.

3 More precisely, F denotes a quotient set, where two estimators are equivalent
if they differ only on an Lebesgue null set.
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Theorem 1. For all distributions P € P.(Py), with Py of the form
Eq. (5), it holds that

K
€0k
mmseyy (P) > —_— 12
XY ,;: 1+ y+&oi (12)
where y* is the unique positive solution of
K
S (v o) = 26 (13)
k=1
and
t
¢(t) :=log(1+t) — —— (14)

14+t

The bound is attained by the estimator fy in Eq. (9) and the Gaussian
distribution N (g, X,+), where

Bolk+yEo) 18y O
Ey:EO_y[ ok 360) 0 O]’ (15)

and Ix denotes the identity matrix of size K x K.

The theorem is proved in the next section.
4. Proof of the main result

The proof of the bounds given in the previous section is based
on the Lagrange function

L,.(f, P) := msexyy (f, P) + ADy. (P||Ry), (16)

with A > 0. Some useful properties of L, are stated in the following
two Lemmas.

Lemma 1. The function L, (f, e) is strictly convex for all f € F.

Lemma 2. Let f e F be given, and let n denote the standard
Lebesgue measure on (RK, BX). If some c; > 0 exists such that

P;(x.¥) = ¢r po(x,y) o~ H=fmI3 (17)

is a valid density w.r.t. n, then the corresponding distribution P}‘ solves

inf L, (. P). (18)

The proofs of both Lemmas follow in close analogy to the
proofs of Lemma 1 and Lemma 2 in [14] and are omitted for
brevity. A proof of Lemma 2, based on the Donsker-Varadhan
representation of the KL divergence can be found in Appendix A
of [19].

Another result that will be useful in what follows is the unique-
ness of the MMSE estimator, which is fixed in the following
lemma.

Lemma 3. Suppose that E[|| f(Y)||3] < oc. Then,

E[(X - f(Y),g(Y))] <0 Vg st E[lg¥)[3] < oo (19)
where (e, o) denotes the inner product, if and only if
f(Y) =E[X]|Y] as. (20)

Moreover, E[X|Y] attains Eq. (19) with equality.
Proof. First, Eq. (19) can be re-written as
E[(X = f(Y).&(Y))]
= E[(X — E[X|Y].g(")) ]+ E[(EIX|Y] = f(¥).g(1))] (21)

— E[EIXIY] - F(¥).g())]. (22)
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where the last equality follows from the orthogonality principle.
Therefore, Eq. (19) can equivalently be written as

E[(EIXIY] - f(Y).g(Y))] <0 Vg st E[g¥)[3] <oo.  (23)

Clearly, the estimator in Eq. (20) forces Eq. (23) to be zero. In or-
der to see the other direction, choose g(Y) = E[X|Y] — f(Y), which
results in

E[IEIXIY] - f(V)I3] <. (24)

Hence, the only function that satisfies Eq. (24) is given by f(Y) =
E[X]|Y] a.s.. This concludes the proof. O

4.1. Proof of the main result

Consider the auxiliary problem

ir}f igf L, (f,P), (25)
with

o2 y>0 (26)
= —, > 0.

Y
The inner minimization in Eq. (25) can be solved via Lemma 2:
2 ppXY)

inf L, (f,P) = Ep.| |X = SOV + = log L~ 27
nf L,.(f. P) p,[n SOOI+ log L (27)

.

2
= Zlogc (29)
% f

X — FONIE + ; logc; — [IX - f(Y)H%] (28)

= _;logEPO [e‘%HX—f(Y)H%]’ (30)

where the last equality follows from ¢, having to be chosen such
that p’} is a valid density function, that is

[ prxydxdy= [erpoxyye Il dedy (31)

:CfEPO[ef%IIXff(y)Ili] -1 (32)

The optimal estimator in Eq. (25) can hence be characterized by
the problem

sup Ep, [e*%llefmllﬁ]. (33)

This problem is in general nonconvex. However, using the uniquess
of the MMSE estimator, we will show that Eq. (33) admits a sin-
gle, unique local maximum, which in turn implies that the local
maximum is a global maximum.

A necessary condition for an estimator to be a local maximum
of Eq. (33) is that the Gateaux derivative of the objective function
is nonpositive in the direction of every estimator g € F [20, Ch. 7.4,
Thm. 2]. This derivative calculates to

—y En[(X = f(V), g(¥))e HIXTOIE]
= LB (X~ f(V). g (34)
f
This yields the necessary optimality condition
Er [ (X - 1Y), g(1))] = 0 (35)

for all g€ F. In view of Lemma 3, the only function that satisfies
this condition is the conditional mean estimator under P}‘, that is

f(¥) =Ep, [XIY] as. (36)
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Moreover, since the conditional expectation is the only function
that satisfies Eq. (35), there exist no other local maxima. Since the
global maximum is a local maximum, this implies that Eq. (36) at-
tains the global maximum.

Next, it is shown that the condition in Eq. (36) is satisfied by
the estimator f; in Eq. (9). In order to see this, note that for f = fy,
P;O in Eqg. (17) is a Gaussian distribution with mean iy = po and
precision matrix

2;01 =3, = yUsUo (37)
where
Up=[Ik —BoG'] (38)

From Woodbury’s matrix identity it follows that the corresponding
covariance matrix is of the form

T -1
Efo =Y — (U[)Zo) (%I-‘r— UOZQUg) UoXp. (39)
Using (7),
A B
UpXo = [IK —BOC(;]] [BT C] (40)
= [Ao — BOC(;]BE By — BoCalCo] (41)
=[E0 0], (42)
so that ¥ fo calculates to
- _ ~\ 1=
Efo = EO _ L’:“O(y lIK + DO) =0 O (43)
0 0
o (] Bo) 1B 0
=Eo—)/|: 0(K+)(/) 0) 0 0:|. (44)

Since the Gaussian MMSE estimator only depends on the mean
vector and the M right most columns of the covariance matrix,
compare (9), it immediately follows that

Ep, [XIY =] = Exuy, 5, [XIY =] (45)
= Exug. 50y [XIY = Y] (46)
= fo). (47)

which is the optimality condition in (36).
Using this result, it holds that

sup Ep, [e—%HX—f(Y)Hg] — Ep, [e—%||(X—ux>—BC*1<Y—uy>H§] (48)
f

— EN(O.IK)I:e_%” sg)/zzllz] (49)

=En.10 [37% Th E“Zq (50)

where Z = [Z1, ..., Zg] is a vector of standard normally distributed

random variables. The expression in (50) is the product of K mo-
ment generating functions of x?2 distributed random variables eval-
uated at —4&,,, hence, it evaluates to

K K
]_[Emo,w[ef%g“zf] =[]+ & 2. (51)
k=1

k=1
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Inserting this result back into (30) yields

K
inf inf L, (f, P) = 1 > log(1+yé&ox) (52)

k=1

for all y > 0.

In order to establish the connection to the original problem (3),
let (ff, PT) denote the solution of the latter. For all ¥ > 0 it holds
that

mmseyy (P") > mseyy (f, P) + ;(DI(L(PT”PO) —¢) (53)
> inf ( msexy (f,P) + 2D (PlIRo) | - 26 (54
> inf x|y (f. D (PllRo Y

K
> % <Zlog(1 + 780k — 28) = p(y). (55)

k=1

In order to maximize this bound with respect to y, note that

Py =1 o G o) (56)
Y\ 1+ vk
- %(ﬁ(y) — o). (57)

where p’ denotes the derivative of p and f(y) is defined implic-
itly. Since p is concave by construction, every stationary point is a
global maximum, which yields the optimality condition

py)-py)=0 (58)
o Yok

é (IOg(] +vé&x) — 1+V$0k> =2¢e (59)
K

D by o) = 2e. (60)

k=1

Since ¢ : [0, 00) — [0, 00) is continuous and increasing, the left-
hand side of (60) is continuous and increasing in y, so that y*
is unique. Finally, by definition of y*,

K
. ok
Py =p(y) =) . (61)
v Y k; +7*6ok
Since the estimator/distribution pair in Theorem 1 attains this
bound, it is tight. This completes the proof.

5. Discussion

In this section, some notewothy properties and special cases of
the proposed bound are discussed.

5.1. Connection to the Cramér-Rao bound

As explained in the introduction, the bound in Theorem 1 can
be interpreted as a Bayesian Cramér-Rao bound that is based on
the KL divergence instead of the Fisher information. More formally,
the CRB can be obtained by solving (3) with P, redefined as

Pei={P:Z(P) <&}, (62)

where Z(P) denotes the Bayesian Fisher information; see [13] for
more details.

In view of this interpretation, the question which version of the
CRB is more suitable for a given estimation problem translates to
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the question which property, the Fisher information or the KL di-
vergence from Py, leads to a tighter constraint in (3). Both prop-
erties are measures for the deviation from Gaussianity, but they
quantify the deviation differently. Since the requirement of having
a finite KL divergence to a Gaussian reference distribution requires
no additional regularity conditions, the KL divergence based bound
is defined for a larger class of distributions than the conventional
Bayesian CRB. As a rule of thumb, the less smooth a distribution
function, the more likely it is that the KL divergence based CRB
outperforms the conventional CRB. This aspect will be illustrated
with an example in Section 6.

5.2. Additive noise channels

The bounds presented in [14] hold for additive noise channels
in which noise and input are independent and at least one of
them is Gaussian distributed. With the bound in Theorem 1 at
hand, these assumptions can be relaxed. Moreover, if the additive
noise channel is approximated by an additive Gaussian noise (AGN)
channel, the KL divergence of the joint input-output distributions
simplifies to the sum of the KL divergences of the input and the
noise distributions.

In general, the KL divergence between two distributions Py =
PxPy|x and Qxy = QxQy|x can be decomposed into

Dt (Pxy [1Qxy) = Dicu (BellQx) + Er [ Dice (P x 1Qvix) |- (63)
Now, consider an additive channel

where X ~ Py and N ~ Py are independent. In this case it holds that

Ep, [DKL (PY\X | QY|X)] =Ep, [DKL (PY—X l QY—X)]

=Ep, [DKL(PN”QN)] (65)
= DKL(PN”QN), (66)
so that
Dt (Py [1Qxy) = Dicw (Pl Qx) + D (P [1Qu).- (67)

Moreover, if the reference distribution Py is chosen such that it cor-
responds to an additive Gaussian noise channel

Yo = Xo + Np, (68)

where Xo ~ N (ux,, Zx,) and Np ~ N (un,, Zn,), then the MMSE
matrix Eq in (11) simplifies to

Bo = Xx, (Zx, + z31\10)4 PV (69)

Using these results, MMSE bounds for additive noise chan-
nels can be obtained by adding the non-Gaussianity parameters
of the input and noise distributions instead of considering their
joint non-Gaussianity. This is a natural extension of the bounds in
[14] and will be illustrated with an example in the next section.
However, this simplicity comes at the cost of less tight bounds,
since only allowing reference distributions that correspond to AGN
channels reduces the degrees of freedom.

5.3. A special case with explicit bounds

For the special case that the covariance matrix of the refer-
ence distribution, X, is chosen such that its Schur complement

admits a flat spectrum, that is, if £y ;1 = ... = §y x = &, the solution
of (13) can be expressed explicitly, namely

1—wo(e/K
Y& = M (70)

wo (E/K)
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Fig. 1. Graph of wy defined in (71).

where
wo(t) = —Wo(—e~ D) (71)

and W, denotes the main branch of the Lambert W function [21].
Inserting (71) back into (12) yields bounds of the simple form
mmsexy (P)
—— = wo(e /K)o (72)
For illustration purposes, the function wy is plotted in Fig. 1. More-
over, (72) indicates that the proposed bound is asymptotically ex-
act for K — oo, whenever the KL divergence of P from P, grows
sublinearly in K, that is Dy (P||Py) € o(K). This is in line with the
results in [14], where this behavior was demonstrated for uniform
input distributions on balls in RX.

5.4. Bounds on y*

In order to solve (13) for y, it is useful to be able to bound
y* from above and below, so that the problem can be reduced to
finding the root of a monotonic function on a finite interval. The
following corollary provides such bounds

Corollary 1. For y* as in Theorem 1 it holds that

1 —wo(e/K) .
oo/ =Y €01 <

with wq defined in (71).

1—wo(e)
wo(e) (73)

The corollary follows from the monotonicity of ¢ and the
bounds

K
(v o) <D (v Eox) <Koy &oa). (74)

k=1
Bounding the sum on the left-hand side of (60) via (74) and solving
for y yields the desired result.

5.5. Connection to the AWGN channel

A possibly helpful interpretation of the bound in Theorem 1 is
via the AWGN channel:

V=J7X+N, (75)

where N~ N(0, Ix), X ~ N (uux, Eg), and y denotes the signal-to-
noise ratio (SNR). The MMSE of the channel in (75) is given by

K
§o.x
mmse = —2 76
v (V) k§=] 1T e (76)

so that the bounds in (12) can be written as

mmsexy (P) = mmsexy (¥*). (77)
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That is, the parameter y* can be interpreted as the SNR of an
equivalent AWGN channel.

Interestingly, it can be shown that the minimax robust MMSE
estimator studied in [15-17] leads to an MMSE upper bound of the
form

mmseyy (P) < mmsexy (7). (78)

where 7 is the unique negative solution of (13). However, this neg-
ative SNR clearly does not admit a physical interpretation compa-
rable to that of y*.

6. Examples

In this section, three examples are given that illustrate how the
proposed bound

A. can be applied to additive channels when both the input signal
and the noise are non-Gaussian distributed.

B. can be used to obtain (asymptotically tight) MMSE bounds in a
case where the Bayesian Cramér-Rao bound does not apply.

C. can be used to arrive at useful asymptotic expressions, with a
particular emphasize on the fact that it is guaranteed to out-
perform the Baysian Cramér-Rao lower bound at low SNRs.

Python code for all examples can be found in a public Git
repository [22].

In all but the first example the result in Theorem 1 is not
used directly to bound the MMSE over a KL divergence ball, but
to bound the MMSE for a given distribution Pxy. Such bounds can
be obtained as follows: For any given Py, it trivially holds that Pyy
is within a KL divergence ball with radius Dy (Pyy[|Py) centered at
Py. Hence, mmseyy (Pyy) is bounded by (12) with & = Dy (nyllPo).
Since this is true for all Gaussian reference distributions, the lower
bound can further be maximized with respect to P, that is,

mmsexy (Pxy) > Slljlpill}f{mmsexw (P):Pe PDI(L(B(y\lPO)(PO)}v (79)
0

where P, is restricted to be Gaussian. We refer to a reference dis-
tribution that solves (79) as best Gaussian approximation of Pyy.

6.1. Generalized-Gaussian signal in additive generalized-Gaussian
noise

There are many applications in signal processing and commu-
nications for which the noise can be assumed to be additive, but it
cannot be assumed to be normally distributed [23,24]. Given this
prominent role of additive channels, it is useful to illustrate how
to apply the bound in Theorem 1 to this particular model.

Using the channel model in (64), let X ~G(a,p) and N ~
G(b, q), where G(a, p) denotes a generalized Gaussian (GG) distri-
bution with density function
Py
2al’(1/p)
where I" denotes the gamma function [25], a > 0 is a scale param-
eter, and p > 0 determines the type of decay of the tails [26]. In
[14], it is shown that the best Gaussian approximation of a zero-

mean GG distribution, in terms of the KL divergence, is attained by
choosing the variance of the reference distribution as

TG/p)
% =9/ F(i/p) (81)

so that
dg(p) := min Dia((a. p)IN(0. o3)) (82)
2>

g(x|a, p) = (80)
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Proposed Lower Bound

0.4

(AT
AN
0.2 i

Cramer Rao Bound

2

log, q -2 -2

log, p

Fig. 2. Proposed MMSE lower bound (top) and Cramér-Rao bound (bottom) for an
additive channel with generalized Gaussian noise and input.

p [IG/pT@1/2) 1 1

= log — +5 - (83)
ERNTOn T "2 p

See Fig. 4 in [14] for a plot of the graph of dg. From (67) it follows
that the KL divergence of the true input-output distribution* and
its best (additive) Gaussian approximation is given by

dxy (. q) 1= dg(p) + dg(q). (84)
Combining (84), (69), and (72) yields the bound
mmseyx (Pog) > wo (dx,y (p. q))mmsey x (Py) (85)
o020}
= wo(dx,y(Ps Q)) XN (86)

o2 +o}’

where a)% and 01\21 denote the signal and noise power, respectively.
Examples of the lower bound in (86) are shown in the upper

plot of Fig. 2 for p,q € [272,2°] and at an SNR of 0dB (0 =02 =

1). For comparison, the Cramer-Rao bound is depicted in the lower

plot. The latter can be shown to be given by

1

mmseyx (Pyg) > , (87)
X 1(6(a. p)) +1(g(b. 9))
where
P re-i/p 1/2<p<o
— e Tam
1((a, p)) {go’ P 1 (88)

4 Note that unless both the input and the noise are Gaussian distributed, the joint
input-output distribution is not a multivariate GG distribution itself.
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Improvement over CRB
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Fig. 3. Difference between the proposed MMSE lower bound and the Cramér-Rao
bound for an additive channel with generalized Gaussian noise and input.

denotes the Fisher information of the zero-mean generalized Gaus-
sian distribution [27, Chapter 3.2.1].

By inspection, the KL divergence based CRB is an improvement
over the Fisher information based CRB for a variety of combi-
nations of p and q. In particular, the proposed bound is signifi-
cantly tighter as long as one of the distributions is close to Gaus-
sian (p, g ~ 2), while the other distribution is more concentrated
(q, p > 2). In contrast, it can be seen that the conventional CRB
only performs well if both distributions are approximately Gaus-
sian, with a pronounced peak around p =q = 2.

This improvement becomes more obvious when considering the
difference between the two bounds, which is plotted in Fig. 3.
Again, the proposed bound is notably tighter, with the exception
of a small region around the Gaussian case. Since this region is
difficult to recognize in the surface plot, it is shown separately in
the plot below, where it is indicated by the white contour lines. Fi-
nally, for comparison, note that for all p, g > 0 in this example the
MMSE is upper bounded by 0.5, which is the MSE obtained by the
best linear estimator.

6.2. Multiplicative channel with uniform input distribution

The example in the previous section allowed for a comparison
between the KL divergence based CRB and the conventional CRB.
In this example, we would like to highlight a scenario in which
the latter cannot be applied at all, namely that of uniform input
distributions on K-dimensional balls, K-balls for short. A K-ball is
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defined as

K _ 2
Be(er) = fxerk: Y, W g f (89)

k=1

where r > 0 denotes the radius of the K-ball and c € RX denotes
its center. Uniform distributions over balls are used, for example,
in communication and signal processing to model parameter toler-
ances or estimation errors [28].

Now, consider the multiplicative channel

Y=X-N, (90)

where - denotes the elementwise product, N € RX is standard nor-
mally distributed, N ~ A (0, Ig), and X is uniformly distributed on
By(c, 1), here denoted by X ~ ug,(c,r). For simplicity, it is as-
sumed that By (c,r) c R, that is, ¢, > r for all k=1, ..., K. In light
of the discussion above, this scenario corresponds to measuring a
parameter X with known tolerance r via a multiplicative channel
with random channel gain N.

The joint distribution of X and Y in (90) can be approxi-
mated by jointly Gaussian random variables X, and Y, as follows.
First, it is shown in [14] that the best Gaussian approximation for
By (c,r) c RX is obtained by moment matching, that is,

2

r
Mx, =C and EXO = IkK_—|—2 (91)
The KL divergence between Px =g, (c,r) and Py, = N (ix,, Xx,)
can be shown to be given by
K K+2 K+2
DI(L(PX”PXO) = = — = log + IOgF— (92)
2 2
=: dy(K). (93)

Since in a jointly Gaussian channel the conditional variance of Y|X
is independent of X, the conditional distribution By = N (0, [xX?)
can only be approximated by a Gaussian distribution with fixed,
diagonal covariance matrix, so that Pyix, =B, = N(O, IKU‘}0 ). The
corresponding conditional KL divergence is given by

K
D (Prix 1) = > D (Prpx 1 Py, ) (94)
k=1
where
1( X2 X2
DKL(RMX,(”PYO,k) =3 GTk -1- IOEU—zk .
Yok Yo

In order to evaluate DKL(nyHPXOyO) via (63), the expected value of
Dy (Pyix [Py, ) with respect to Py is required, which is given by

K

= 3" g, [Dia (R IRy,)] (95)

k=1

Ep [Dic (Prix IRy ) ]

<[ EIX2]
=lZ [ —1—E[logX,f]+loga§0k )
2 k=1 UYOk '
(96)

Minimizing with respect to o2

Yol% yields the best Gaussian approx-

imation cf&o = E[X?], so that
1 X
Ep [P (Rrix IR )] = 5 > (logE[XZ] -

k=1

E[logX?]). (97)
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It is not difficult to show® that
(&2 _ 2
1 (KL) B, @(M) (98)
Jrrr(E2) e r

where f; ), denotes the PDF of the beta distribution with parame-
ters a and b. From (98) it follows that

px, (%) =

2
2 2 r
E[X?]=ct+ ) (99)
and
2 &2 r K+1
2] _ 2 2

E[logX?] Jogcﬁﬁr(,%) (F,(T> (100)
where H : (0,1] x R, — R is defined as

1
H(a, b) :=/ log(1 + ax) (1 — x?)>~1 dx. (101)

-1

If evaluating the right hand side of (100) is too costly, the bound

1
E[logX?] > 5 (log(cy — )% + log(cy +1)?) (102)

=log(cz —1?) (103)

can be used instead, which is obtained by lower bounding the log-
arithmic function by an affine function on the interval [c, — 1, ¢, +
r] and is a good approximation when ¢, > 1.

Given this Gaussian approximation and using the fact that
3o in (91) admits a flat spectrum, the lower MMSE bound in
Theorem 1 evaluates to

ex(c, )
% )ogm (104)

mmseyy (Py) > Kag (

B ex(c,r) K ,
where
ex(c, 1) =Dy (PXY ”PXDYU) (106)
1K
=dy(K) + 5 > dg(ci. 1. K). (107)
k=1
with d; defined in (93) and
dg (k. 1.K) = log E[XZ] — E[log X7 ] (108)
2 (&2
:cﬁ—i-ri —logc} — 2 (K21) (L’ K+1>
K+2 JT r4) a2
(109)
2 r’ 22
<Ci+ K12~ log(c;, —1°). (110)
An example of the bound in (105) is shown in Fig. 4. Here the
center point is chosen to be ¢; =...=cg = 10, the radius of the

K-ball is set to r = 2, and K varies between 1 and 100. Clearly, the
lower bound becomes tighter for large K. In fact, it is not hard to
show that

81((1? D0 for K- oo, (111)
meaning the lower bound is asymptotically tight and
l}im mmseyy (Pey) = 12 (112)

5 For a unit K-ball centered at the origin, the probability of the event {X, < x},
x € [0, 1], corresponds to the ratio of the volume of the spherical cap [29] of height
x to the volume of the entire K-ball.
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—— Upper bound (best linear estimator)
—— Lower bound

- -- Lower bound (approximation)

0 I I I I
20 40 60 80 100

K

Fig. 4. MMSE bounds for the model in (90), where X is distributed uniformly on a
K-ball with center point ¢; = ... = cx = 10 and radius r = 2. The exact lower bound
is given in (105), and the approximate version is obtained by using the inequality
in (103) to bound g in (107).

MSE

Fig. 5. MMSE lower bound in (105) with K = 2 and r = 1 for different center points
c=(cq,C).

While this result could have been obtained in a more straight-
forward manner, it allows for some interesting insights. The limit
in (112) implies that, asymptotically, the MMSE estimator for
the model in (90) is a constant, namely f*(y) = ux = c. Interest-
ingly, the aspect that the observations contain a vanishingly small
amount of information is captured by the Gaussian approximation
model, where X, and Y, are entirely independent. Nevertheless, the
distribution of Y is of importance since it contributes to the dis-
tance between the approximated and the true joint distribution.
Hence, the proposed bound capture the asymptotic independence
of input and output, while using the Gaussian approximation to
bound the impact of ignoring this dependence for finite K.

The influence of the center point ¢ on the lower bound is illus-
trated in Fig. 5 for the case K =2 and r = 1. The bound is lower
towards the axis, where small values of X lead to small variances
of Y, which in turn makes estimating X from Y easier. This effect
becomes less and less pronounced as ¢ moves away from the ori-
gin, thus increasing the variance of Y. Asymptotically, for ¢ — oo,
the lower bound again approaches the upper bound (a)%o =1/4),
meaning that Y becomes increasingly uninformative.

6.3. Low SNR behavior

Next, we show that the proposed bounds can be used to study
the SNR behavior of the MMSE. More precisely, we show that the
proposed lower bound performs better than the Cramér-Rao bound
in the low SNR regime. This result is fixed in the next Lemma.
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Lemma 4. For additive channels, the KL divergence based CRB is
tighter than the Fisher information based CRB in the low SNR regime.

Proof. Consider the additive channel in (64), with N ~ A/(0, 62)
and choose Xy, =0}l and x, = oZl. Using the lower bound in
(72), we have that

lim mmseyy (P) > a)0<f)0021<, (113)
o —>00 K
where o is arbitrary and
K tr(¥
& =Dy (P [1Qx,) = —h(X) + 5 log(2mod) + % (114)
0
Taking 002 — oo on the right side of (113) leads to
——_ekh®), (115)

lim mmse >
m xiy (Bx) = e

The above procedure can now be compared to the Cramér-Rao
bound, which leads to the following limit:

-1

. . 1

lim mmseyy (Px) > lim tr (21+I(Px)> (116)
gZ—>00 ot—>o0 oy

=tr(I"' (Fx)). (117)

Next, invoking Stam’s inequality [30] we have that

1 2h(X) —1
e > tr(I7 (B)). (118)

This completes the proof. O
7. Conclusion

This work has considered the problem of minimizing the mean
square error when estimating a random vector X € RX from a ran-
dom vector Y € RM, subject to the constraint that their joint dis-
tribution Pyy lies in a KL divergence ball of radius ¢ centered at a
Gaussian reference distribution. It has been shown that the mini-
mum is attained by a jointly Gaussian distribution whose mean is
identical to that of the reference distribution and whose covariance
matrix can be determined by finding a scalar root of a simple func-
tion. This bound has been identified as a variant of the Bayesian
Cramér-Rao bound, where the Fisher information is replaced by
the Kullback-Leibler divergence.
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