

REVIEW PAPER

Ecosystem services provided by small streams: an overview

Verónica Ferreira · Ricardo Albariño ·
Aitor Larrañaga · Carri J. LeRoy ·
Frank O. Masese · Marcelo S. Moretti

Received: 12 March 2022 / Revised: 15 October 2022 / Accepted: 16 November 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract Small streams constitute the majority of the water courses in a catchment and have specific characteristics that distinguish them from larger streams and rivers. Despite their small size and frequently remote locations, small streams contribute to ecosystem services that are important for humans. Here, we have identified 27 ecosystem services that small streams provide: seven supporting services, eight regulating services, five provisioning services and seven cultural services. Small streams are especially important for the maintenance of biodiversity, which is the basis of many ecosystem services. Small streams also support ecosystem services provided

by larger streams and rivers due to longitudinal connectivity resulting in the downstream transference of energy, water, sediments, nutrients, organic matter and organisms. Small streams are, however, highly vulnerable to disturbances, which can compromise the ecosystem services they supply. We see a global need to effectively protect small streams to safeguard biodiversity and human wellbeing.

Keywords Supporting services · Regulating services · Provisioning services · Cultural services · Longitudinal connectivity · Threats

Handling editor: Sidinei M. Thomaz

Guest editors: Verónica Ferreira, Luis Mauricio Bini, Katya E. Kovalenko, Andre A. Padial, Judit Padisák & María de los Ángeles González Sagrario / Aquatic Ecosystem Services

V. Ferreira (✉)
MARE – Marine and Environmental Sciences Centre,
ARNET – Aquatic Research Network, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
e-mail: veronica@ci.uc.pt

R. Albariño
INIBIOMA, National University of Comahue – CONICET, Bariloche, Argentina

A. Larrañaga
University of the Basque Country, UPV/EHU, Bilbao, Spain

Small streams and headwaters: definitions, characteristics and legislation

The definitions of “small streams” and “headwater streams” are not consensual and they are often used

C. J. LeRoy
The Evergreen State College, Olympia, WA, USA

F. O. Masese
Department of Fisheries & Aquatic Sciences, School of Natural Resource Management, University of Eldoret, Eldoret, Kenya

M. S. Moretti
Laboratory of Aquatic Insect Ecology, University of Vila Velha, Vila Velha, Espírito Santo, Brazil

interchangeably (Biggs et al., 2017). Richardson (2019) makes a distinction between both terms, defining “headwater streams” as 1st order streams, i.e., the smallest streams with a defined channel, and “small streams” as 2nd order streams, i.e., streams that result from the confluence of two 1st order streams (Strahler, 1957). Here we will use the term “small streams” to refer to 1st and 2nd order streams together (Meyer et al., 2007; Wohl, 2017), as they are all relatively small and share similarities in many aspects, and we will use the term “headwaters” to refer to small streams at higher elevations (Fig. 1; Table 1). There are cases where 1st order streams emerge at the surface already with considerable width and high discharge, but this often results from geologic peculiarities, e.g., outflows in karst regions (Paiva et al., 2016). Most often, 1st and 2nd order streams are up to a few meters wide and have low discharge (up to a few—tens of—liters per second; Ferreira et al., 2006; Rosemond et al., 2015). Despite their small size, and consequently small drainage areas, many small streams are perennial, i.e., they flow year-round in a typical year, especially in humid regions. In arid regions, however, a large percentage of small streams are temporary: intermittent streams that stop flowing or dry out at some point over their length and for some time, generally in the warmer months, and ephemeral streams that only flow as a consequence of heavy rainfall or snow melt (Hill et al., 2014; Messager et al., 2021). Here we address ecosystem services provided by flowing small streams considering perennial streams and temporary streams together as both stream types share many characteristics when flowing (for reviews dedicated to ecosystem services specifically provided by temporary streams (all hydrological phases) and dry rivers please see Datry et al., 2018; Stubbington et al., 2020; Gutiérrez et al., 2022). The number of small streams in hydrographic networks is generally underestimated as they are too small to display on large scale maps, and may also not display on small-scale maps, especially if intermittent (Meyer et al., 2007). Still, small streams are the most numerous in total number and contribute the most to total stream length in hydrographic networks (Horton, 1945; Leopold et al., 1964). For instance, small streams comprise > 70% of water course length in European catchments (Kristensen & Globenvik, 2014) and ~ 75% of total water course length at a global scale (Downing et al., 2012).

Despite their large number and cumulative length in hydrographic networks, small streams are generally disregarded; they are often not included in legislation, not considered in official bioassessment programs, and consequently not protected. The European Water Framework Directive (enforced by the 27 European Union member states), in its size typology for rivers, defines the smallest size class as having a catchment area between 10 and 100 km², which excludes many 1st and 2nd order streams that have catchment areas < 10 km² (EC, 2000; Kristensen & Globenvik, 2014). The US Clean Water Act (CWA) from 1972 does not specifically protect small streams, although they were partially considered due to their important contribution to the health, productivity and navigability of larger (i.e., navigable) streams and rivers; however, the US Supreme Court SWANCC decision in 2001 limited small stream protection only to those streams that are directly connected to or influence navigable waters (Nadeau & Rains, 2007). The Obama Administration’s Waters of the US (WOTUS) Rule in 2015 placed small streams under CWA jurisdiction, but an executive order by the Trump Administration in 2017 counteracted the WOTUS Rule (Colvin et al., 2019), which itself was again overturned late in 2021, reasserting pre-2015 definitions (<https://www.epa.gov/wotus>). These back-and-forth decisions about the legal protection of small streams indicate that the relevance of small streams is not yet consensual at governmental scales.

Also, in many African countries, there is no specific legislation for the protection of small streams as this is done as part of protected areas (e.g., national reserves, national parks) and relevant legislations and regulations. In Kenya, for instance, protection of forested streams falls under the Water Act (2016) and as vulnerable water sources they can be protected by declaring the catchment area they drain as a protected area. Owing to rampant deforestation and declining water resources in Kenya, the government also established the Water Towers Agency in 2012 to coordinate and oversee the protection, rehabilitation, conservation and sustainable management of all the critical water towers, i.e., high elevation Afromontane landscapes in Kenya, such as the Aberdares, Mau Forests, Mt. Elgon and Mt. Kenya, which are sources of many streams and rivers that supply water to millions of people.

Fig. 1 Small streams in different regions. Larrainsoroeta (**A**) and Agauntza (**B**) are 2nd order streams, both in mixed deciduous forests dominated by beech (*Fagus sylvatica* L.) in the Basque Country, northern Spain. An unnamed tributary of Ribeira do Catarredor (**C**) and Ribeira do Candal (**D**) are 2nd order perennial streams in mixed deciduous forests dominated by oaks (*Quercus* spp.) and chestnuts (*Castanea sativa* Mill.) in Serra da Lousã, central Portugal. Arroyo Caracolito is a 1st order intermittent stream in a monospecific deciduous beech (*Nothofagus pumilio* (Poepp. & Endl.) Krasser) forest that forms the upper tree belt in southern Andes (**E**) and Arroyo Ottowest is a 1st order perennial stream in a mixed forest (**F**), both in the Cordillera de los Andes, Patagonia, Argentina. An unnamed 1st order perennial stream in Kaptagat Forest, Kerio

Escarpment, western Kenya (**G**). Snyder Cove Creek (**H**) is a 2nd order perennial stream in western Washington, US, which is a spawning site for several species of salmon (*Oncorhynchus* spp.). A 1st order perennial reach of Rio Preto at Parque Estadual do Rio Preto (**I**) and Córrego Taiobas, a 2nd order perennial stream at Serra do Cipó (**J**), both in the Cerrado (Brazilian savanna) biome in Minas Gerais, SE Brazil. Córrego São Bartolomeu is a 2nd order perennial stream in Minas Gerais (**K**) and Córrego Luxemburgo is a 2nd order perennial stream in Espírito Santo (**L**), both in the Atlantic Forest biome, SE Brazil. Photo credits: **A, B** Aitor Larrañaga; **C, D** Verónica Ferreira; **E, F** Ricardo Albariño; **G** Christine Owade; **H** Carri LeRoy; **I, J, K, L** Marcelo Moretti

Table 1 Generic characteristics that distinguish small streams (1st and 2nd order streams) from downstream larger streams and rivers, and their drivers (adapted from Lowe & Likens, 2005; Meyer et al., 2007; Wohl, 2017; Richardson, 2019)

Stream characteristic	Characteristic driver
<i>Hydromorphology</i>	
Small size (narrow, shallow)	Defining characteristic
Small water volume	Defining characteristic
Close linkage to the terrestrial environment	Large aquatic-terrestrial interface due to large perimeter-to-volume ratio
Hydrological independence (isolation)	No (in the case of 1st order streams) or few (in the case of 2nd order streams) tributaries due to their head position in the hydrographic network
Reduced surface storage zones	No large valley bottoms or floodplains
Reduced subsurface storage zones	Small hyporheic zones or alluvial aquifers
High spatial and temporal hydrological variability	Small drainage areas and small surface and subsurface water storage capacities increase susceptibility to storms and droughts
High susceptibility to local disturbances/High morphological instability	Small size increases susceptibility to landslides, wildfires, thunderstorms, which may promote bank collapse, inputs of large amounts of sediment, or inputs of large wood
High longitudinal variation	Fast decrease in elevation (in high-relief regions); Variation in channel geometry resulting from e.g., large wood blockages, bank collapse
Longitudinal disconnectivity	Waterfalls (in high-relief regions); Low subsurface flow
Hydrologically rough boundaries and coarse substrates (in high-relief regions)	Waterfalls (in high-relief regions); Low erosional power
<i>Riparian vegetation</i>	
Shaded (in forested landscapes)	Closed riparian canopies due to small size
Heterotrophic (mostly in forested landscapes)	Input of large amounts of coarse particulate organic matter from direct litter fall and lateral litter inputs; Low solar radiation, low temperatures and dissolved nutrient availabilities limit instream primary production
<i>Water characteristics</i>	
Water chemistry highly influenced by geology, soil characteristics and atmospheric inputs	Water sources from groundwater inputs and overland flow; Small buffering capacity due to small water volume
Well oxygenated	Cool water temperatures hold higher dissolved oxygen; High surface-to-volume ratio allows atmospheric interchange; High turbulence can increase dissolved gas concentration
Cool temperatures	Shading from riparian forests (in forested landscapes); Closed valleys; High elevations
High or low thermal variation	Low thermal buffering capacity due to small water volume; But, thermal stability if groundwater fed; Thermal stability if shaded

These characteristics partially determine the services provided by small streams and their vulnerability to environmental changes (see also Tables 2 and 4)

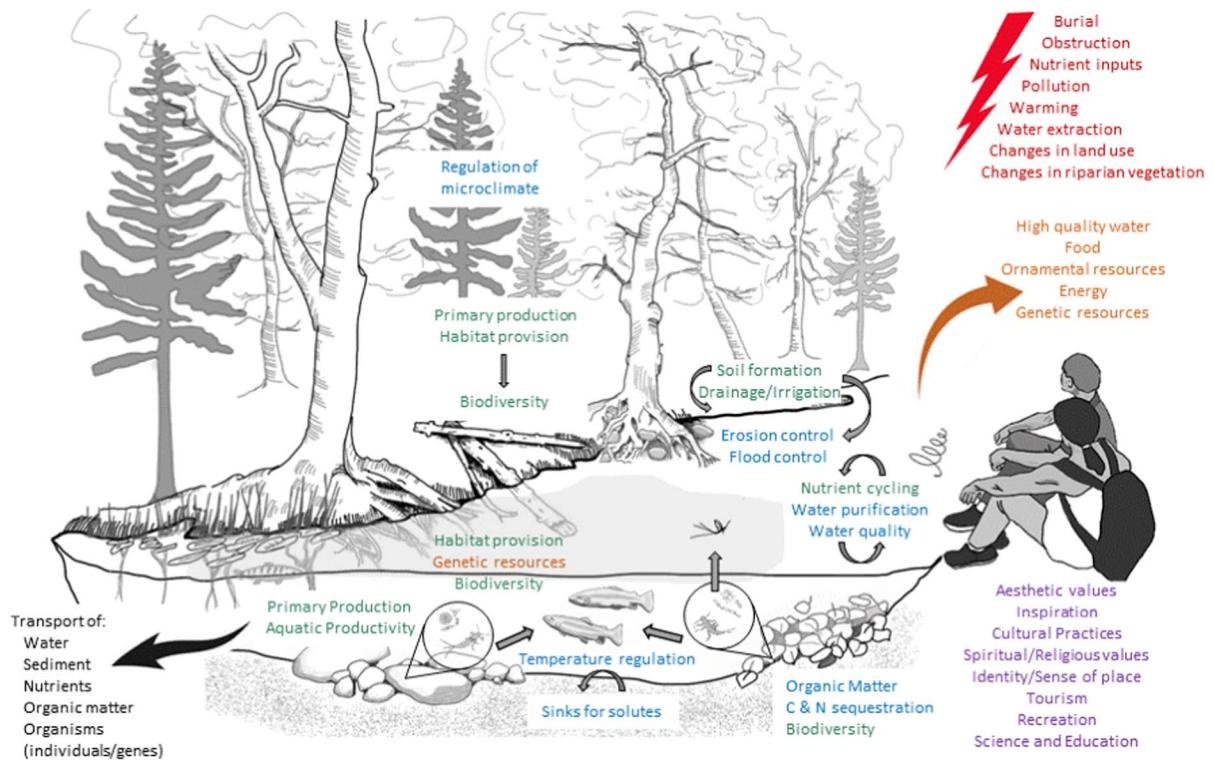
Additionally, in Argentina, small streams are protected under different national and provincial laws, which establish the preservation and management of surface and subsurface water resources. Among the laws sanctioned by the Argentine National Congress, the Water Environmental Management Act (Law 25688, 2002), the Native Forest Protection Act (Law 26331, 2007) and the Civil and

Commercial Code (Law 26994, 2014) provide some protection. National and provincial water departments and inter-jurisdictional Water Bureaus set the rules and/or administer water usage and pollution control. This does not mean that small streams are protected against human related impacts, e.g., from agriculture, livestock or urbanization, because in developing or low/middle income countries, such as

Argentina, limited economic resources go more frequently to other projects instead of being used for environmental management and control.

Finally, in Brazil, a country with huge hydrographic networks, environmental laws do not adequately address small streams. The Forest Code (Law 12.651; Brasil, 2012) establishes riparian forests as Areas of Permanent Preservation. However, impacts that occur beyond the banks of small streams, such as deforestation to create areas for agriculture and livestock, road building, and construction, are not addressed in the actual legislation. Although these are only several examples of the types of legislation that pertain to small streams, these examples are widely distributed over four continents and include both developed and developing regions. This shows that small streams being disregarded in legislation is not a localized issue and is not dependent on a region's developmental state.

The protection of small streams can, nevertheless, help achieve several of the United Nations' Sustainable Development Goals (<https://sdgs.un.org/goals>). In particular, Goal 6, which aims to "ensure availability and sustainable management of water and sanitation for all", in its Target 6.3 aims to "improve water quality by reducing pollution, eliminating dumping and minimizing release of hazardous chemicals and materials" and in its Target 6.6 aims to "protect and restore water-related ecosystems". Also, Goal 15, which aims to "protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss", in its Target 15.1 aims to "ensure the conservation, restoration and sustainable use of terrestrial and inland freshwater ecosystems and their services" and in its Target 15.5 aims to "take urgent and significant action to reduce the degradation of natural habitats, halt the loss of biodiversity".


In this review, we aim to (i) highlight the importance of small streams in providing ecosystem services by making an exhaustive compilation of these services (including cultural services), (ii) describe the contributions of small streams to ecosystem services provided by downstream waters, and (iii) emphasize the vulnerability of small streams and their ecosystem services by identifying specific threats to these ecosystems.

Ecosystem services provided by small streams

Definition of ecosystem services

The term "ecosystem services" was coined by Ehrlich and Ehrlich (1981) and popularized by Gretchen Daily (1997) and the Millennium Ecosystem Assessment (MEA) report as "benefits people obtain from ecosystems" (MEA, 2003, 2005), and this is the definition we are using here. According to the MEA, ecosystem services are distributed into four categories: supporting, regulating, provisioning and cultural services (MEA, 2003, 2005). Supporting services are those "that are necessary for the production of all other ecosystem services", and include primary production, oxygen production, soil formation and retention, nutrient, and water cycling and provisioning of habitat. Regulating services are "the benefits obtained from the regulation of ecosystem processes", and include, for instance, air quality maintenance, water regulation and purification and erosion control. Provisioning services are "the products obtained from ecosystems", such as food, fiber, fuel, energy, fresh water, genetic resources, biochemical, and ornamental resources. Finally, cultural services are "the non-material benefits people obtain from ecosystems" through, for instance, esthetic enjoyment, inspiration, recreation and nature-based tourism (Fig. 2).

As defined by the MEA, ecosystem services are seen from an anthropogenic perspective ("benefits *people* obtain") and, therefore, their recognition depends on people's use, i.e., a given ecosystem service is only recognized as such if and when people take advantage of it. For instance, small streams are a source of freshwater (provisioning service) and inspiration (cultural service) only where they are accessible to people; in remote areas, small streams may not provide these (or other) ecosystem services, although they contribute to the services provided by downstream rivers. Also, ecosystem services are assumed as "benefits *people* obtain," which is to some degree subjective. For instance, a small stream can be seen by some people as improving the esthetic appeal of a forested landscape (cultural service), while people with locomotion difficulties may see it as an obstacle and, in this case, the stream could be providing a "disservice" (von Döhren & Haase, 2015). Therefore, not all small streams are capable of providing *all* the ecosystem services addressed below, as these

Fig. 2 Ecosystem services provided by small streams: supporting services (in green), regulating services (in blue), provisioning services (in orange) and cultural services (in purple). In addition, contribution of small streams to downstream larger

streams and rivers (in black) and some of the major threats to small streams (in red) are also shown. Original artwork by Carri LeRoy

services depend on the presence of people and on their positive perceptions regarding the services being provided. However, we will assume that most small streams *can potentially provide* the services discussed below (Fig. 2; Table 2).

It is also important to note that many ecosystem services are provided at the expense of others. For instance, hydropower generation (provisioning service), with the establishment of transversal barriers (dams), is provided at the expense of several other ecosystem services, including habitat provisioning, nutrient cycling, and biodiversity (supporting services) (Martínez et al., 2013, 2017) or even the reduction on their contribution to services provision by downstream ecosystems caused by alteration of the fluvial connectivity (regulating and provisioning services). Also, a given stream does not provide all ecosystem services simultaneously. For instance, temperature regulation, regulation of microclimate (regulating services), and recreation (cultural service)

are mostly provided in summer, while flood control and erosion control (regulating services) are mostly provided in winter. Finally, not all ecosystem services are provided with the same magnitude by small streams, especially if they result from somehow opposite mechanisms. For instance, erosion control (regulating service) likely has higher relevance than soil/sediment formation (supporting service) in small streams. Therefore, tradeoffs between different ecosystem services, their timing and magnitude need to be considered in the management of streams and their catchments.

Because of longitudinal variation in the abiotic and biotic characteristics along hydrographic networks, there is great spatial variability in the importance of different ecosystem services (Bastian et al., 2012; Bagstad et al., 2013). In general, small streams provide more regulating and supporting ecosystem services while larger streams and rivers are more associated with provisioning services. Also, small

Table 2 Ecosystem services provided by small streams, their benefits for humans and the stream characteristics that support them (see Table 1 for characteristics that are specific to small streams)

Ecosystem service	Benefits for humans	Supporting stream characteristics
<i>Supporting services</i>		
Water cycling	Water source	Water storage in the hyporheic zone/sediments; Hydrological connectivity; Shading
Nutrient cycling	Clean water; Food resources for organisms beneficial to humans (e.g., fish)	Nutrient assimilation by decomposers/biofilms/ plants; Primary production; Secondary production; Biogeochemical transformations in the hyporheic zone; Organic matter processing by decomposers and detritivores; Accumulation of organic matter
Primary production	Food resources for organisms beneficial to humans (e.g., fish)	Availability of nutrients and dissolved organic carbon for microbial and primary production
Soil/sediment formation	Alluvial deposition and fertilization of floodplains and riparian lands; Production of biomass	Accumulation of allochthonous materials enabled by the steep slopes; Erosion and deposition processes; Alluvial deposition
Habitat provisioning and maintenance	Biodiversity; Maintenance of endemic species; Support for other ecosystem services	Conducive environment (fast flows, highly oxygenated cool water, etc.) for adapted species; Habitat complexity
Maintenance of biodiversity	Biota-driven ecosystem processes	High productivity at all trophic levels; Robust autotrophic and heterotrophic food webs; Habitat complexity
Maintenance of aquatic and riparian productivity	Maintenance of aquatic species; Support for terrestrial species; Alluvial deposition and fertilization riparian lands; Food production	Strong terrestrial-aquatic connectivity; Reciprocal flows of energy; Robust autotrophic and heterotrophic food webs; Erosion and deposition processes; Alluvial deposition; Longitudinal and lateral connectivity
<i>Regulating services</i>		
Flood control	Minimizing the frequency and magnitude of floods; Protection of human lives and properties	Rainfall interception and evapotranspiration of the riparian forest; Presence of large substrates and permeability of the streambed; Bank stabilization
Erosion control	Low bank and channel erosion; Maintenance of water quality	Sediment retention on the streambed; Bank stabilization by the root system; Lower flood magnitudes
Sinks for potentially harmful solutes	Control of metal and organic pollutants; Minimizing eutrophication and other human impacts on stream water and biota	Nutrient and litter fall retention on the forest floor; Atmospheric deposition of metals
Temperature regulation	Maintenance of biodiversity and ecosystem processes; Downstream water cooling	Radiation and wind interception by the riparian forest; Shading the stream channel; Low fluctuations in water and air temperatures
Regulation of microclimate	Biodiversity; Maintenance of terrestrial and aquatic species	Riparian forest transpiration and shading; Stream channel evaporation
Drainage and natural irrigation	Water collection and supply; Water quantity and quality	Rainfall interception and evapotranspiration of the riparian forest; Soil properties; Stream topography
Water purification and quality	Clean drinking water; Uncontaminated food	Riparian buffers; Wetlands; Debris dams; Woody debris
Carbon and nitrogen sequestration	Lowered concentrations of CO ₂ ; Lower eutrophication	Organic material; Debris dams; Burial of organic material

Table 2 (continued)

Ecosystem service	Benefits for humans	Supporting stream characteristics
<i>Provisioning services</i>		
High quality water	Water source	Lower pollution levels; Recharge of aquifers
Food	Fish, crustaceans	Spawning and rearing habitat; Resources exported to larger rivers
Ornamental resources	Trading, economic benefit	Repositories of biodiversity, and thus, diverse in morphology and color
Genetic resources	Maintenance of aquatic species; Metabolites	Conducive environment (fast flows, highly oxygenated cool water, etc.) for adapted species; Habitat complexity; Strong terrestrial-aquatic connectivity; Good water quality; Biodiversity
Energy	Sustainable energy source	Steep slopes; Rainy areas
<i>Cultural services</i>		
Esthetic values	Enjoyment of scenery	Water availability; Biodiversity; Geomorphology
Inspiration (cultural and artistic values)	Use as motive and inspiration for cultural and artistic activities; Inspiration for given names, surnames, place names	Water availability; Biodiversity; Geomorphology
Spiritual and ritual values	Use of stream water for baptism (Christians) and as "holy water" for performing special rituals; During circumcision, diving in the cold water by initiates helps reduce bleeding; Source of clean water for the circumcised initiates during the period of isolation	Clean and cold water
Identity and sense of place	Names, surnames and place names	Geomorphology
Nature-based tourism	Enjoyment of scenery; Outdoor activities	Water availability and quality; Biodiversity; Geomorphology
Recreation	Swimming, bathing	High water availability and quality
Science and education	Use for research and education	All characteristics support education

streams are important for the generation of many ecosystem services that are not necessarily utilized or consumed locally but may benefit other parts of the catchment due to the strong longitudinal connection along hydrographic networks. Additionally, many of the ecosystem services we present here are not restricted to the streams themselves, but also extend into the hyporheic zone (saturated sediments extending below and to the sides of streams) and riparian areas (streamside-vegetated areas) due to strong vertical and lateral connections between streams and surrounding areas (Fig. 2; Table 2).

Supporting services

Water cycling

Small streams are often located at higher elevations in hydrographic networks, where they are a crucial element of the global water cycle by collecting and concentrating the atmospheric water that ultimately feeds into and maintains the flows of larger rivers through hydrological connectivity. This connectivity facilitates the exchange of mass, energy, and organisms across the four dimensions of riverine ecosystems: longitudinally, vertically, laterally, and temporally (Ward, 1989; Moore & Wondzell, 2005). Because of the large channel surface area-to-volume ratio of small streams, and the close contact between the water and the streambed, small streams are important locations for water storage in hydrographic networks (Alexander et al., 2000; Peterson et al., 2001). Moreover, the relatively coarse substrate in headwater streams offers more frictional resistance than other locations in the hydrographic network allowing time for interstitial water infiltration (Harvey & Wagner, 2000; Harvey et al., 2003). The riparian area along forested streams also enhances groundwater recharge. Additionally, the shading effect offered by riparian vegetation limits the solar radiation that reaches the streambed, minimizing water loss through evaporation.

Nutrient cycling

Small forested streams are hotspots for the processing of coarse particulate organic matter (CPOM) produced by riparian vegetation, which enters streams mainly in the form of leaf litter (Fischer & Likens,

1973; Vannote et al., 1980; Wallace et al., 1997). Processing of CPOM is carried out by microbial decomposers and invertebrate shredders, who integrate it into their own biomass, and convert it into fine particulate organic matter (FPOM; e.g., small litter particles, feces, fungal spores), dissolved organic carbon (DOC), inorganic nutrients (mainly nitrogen and phosphorus), and CO₂ (Marks, 2019), which are integrated into food webs locally and downstream (Vannote et al., 1980; Wipfli & Gregovich, 2002).

Small streams are important areas for the transport and transformation of nutrients in fluvial networks (Mulholland 1992). Nitrogen and phosphorus input to small streams is mainly through litterfall, runoff, and groundwater flow. Because of the intimate connection between water and sediments and the numerous of debris dams, small streams play important roles in nitrogen and phosphorus cycling by controlling rates of sedimentation (mainly for phosphorus), transformation (mainly for nitrogen), and uptake by plants. Phosphorus removal from streams is mainly through sedimentation and uptake by photosynthetic organisms, while nitrogen removal is mainly by uptake and denitrification. Although the biomass of photosynthetic organisms, such as macrophytes and algae, is low in small forested streams, and hence, their uptake of nitrogen and phosphorus may be low, they indirectly affect nitrogen cycling by supplying limiting organic carbon and nitrate to denitrifying bacteria, and in the process create favorable conditions for denitrification (Weisner et al., 1994; Birgand et al., 2007).

Primary production

Primary production is another important process that influences the processing, retention, and export of carbon and nutrients in ecosystems. In small streams, primary producers are generally associated with benthic substrates, and include algae, cyanobacteria, bryophytes, and vascular macrophytes. Small forested streams, however, are not active areas for primary production in hydrographic networks because of the often-high canopy cover from riparian vegetation that limits solar radiation reaching the streambed (i.e., there is light limitation of primary production; Hill et al., 1995; Friberg et al., 1997; Larned, 2010). Therefore, forested stream food webs are postulated by the River Continuum

Concept to rely heavily on detritus or allochthonous organic matter for secondary production (Vannote et al., 1980). However, the Riverine Productivity Model (Thorp & DeLong, 2002) emphasizes the importance of microalgae as the main source of energy that sustains animal production, as well as the significance of the microbial loop that processes the majority of allochthonous material. The exudates of primary producers, such as periphytic algae, can induce the mineralization of recalcitrant organic matter via priming effects in small forested streams (Danger et al., 2013). Because of the growing recognition of the importance of microalgae and/or periphyton in streams, despite its small biomass compared to allochthonous organic matter, studies have sought to evaluate the relative importance of autochthonous production for food webs in small forested streams using stable-isotope techniques and gut content analyses. Indeed, several studies have shown that autochthonous production can be a major source of energy for food webs in tropical (March & Pringle, 2003; Lau et al., 2009; Neres-Lima et al., 2016) and temperate (Rosi-Marshall et al., 2016) forested streams.

Soil/sediment formation

The formation of soil/sediment is probably not a significant *in situ* feature of small streams. Small streams, however, act as sediment retention hot-spots by entrapping hillslope sediments from landslides and chronic erosion (Terweh et al., 2021). In small forested streams, wood jams form retentive devices that trap sediment (Seixas et al., 2020), which results directly in habitat provisioning as it increases hyporheic habitats for specific invertebrates/microbes and facilitates nutrient cycling processes (Storey et al., 2004; Harjung et al., 2019). Additionally, small streams receive substantial inputs of CPOM (i.e., dung, leaves, twigs, seeds, fruits, etc.) and large wood from riparian forests through physical (erosion, landslides), biological (litter fall, defecation by animals), and hydrological processes (flooding, aggradation) and the decomposition of this CPOM by bacteria, fungi, and detritivores (Marks, 2019) releases organic and inorganic fractions, which together with the inorganic materials resulting from entrapment and substrate erosion

constitute the bulk of sediments ultimately carried downstream.

Habitat provisioning and maintenance

Small streams have unique habitat characteristics that are not found elsewhere in the hydrographic network. These characteristics include fast flows, highly oxygenated water, cooler temperatures, stable substrates and, if forested, high standing stocks of CPOM (Table 1). As a consequence, forested streams harbor species that have preferences for these environmental characteristics, such as stenotherm and rheophile species, as well as shredders that feed on CPOM. For instance, forested headwaters have a higher diversity of macroconsumers (fish, freshwater decapods, and semi-aquatic cockroaches; Mendes et al., 2017), shredders and other invertebrates, some endemic to these streams, than any other river sections or land-use types (Yule et al., 2009; Masese et al., 2014; Yegon et al., 2021). Small forested streams also receive a large supply of wood (Naiman et al., 2002; Elosegi & Johnson, 2003; Gregory et al., 2003), which is an important structural element and influences hydraulics, sediment stability, organic matter retention, channel form, and habitat across a wide range of spatial and temporal scales (Gurnell, 2012). Wood is an important instream habitat feature for both invertebrates and fish, often associated with increased biodiversity (Hoffmann & Hering, 2000). Dead wood and logjams are areas of active physical, chemical, and biological processes such as the retention and processing of organic matter, nutrient cycling, and denitrification (Elosegi et al., 2007). It is because of these benefits that many restoration efforts in forested streams emphasize the retention or introduction of dead wood to provide cover and increase habitat complexity for aquatic organisms (Beechie & Sibley, 1997; Moore et al., 2005; Flores et al., 2017).

Maintenance of biodiversity

Small streams can provide threatened species with critical refuge habitat allowing them to escape from exotic species invading downstream reaches or from downstream waters that are becoming warmer (Robinson & Buchanan, 1988; Zale et al., 1994; Magoulick & Lynch, 2015). Also, small streams vary in their hydrological regime (i.e., they can be perennial or

temporary), which allows for greater taxa heterogeneity among streams (i.e., great β -diversity) (Falke et al., 2012; Hutson et al., 2018). Additionally, small streams provide dispersal corridors along which aquatic organisms can move across the landscape (Jaeger et al., 2014).

Small streams have distinct biodiversity patterns depending on taxonomic groups and spatial scales, which contrast with patterns in other positions of the fluvial network. Small streams harbor higher species richness (α -diversity) of benthic microbes than mid-sized streams, probably due to the higher aquatic-terrestrial interface in small streams that allows for higher inputs of terrestrial microbes (e.g., phyllosphere communities) into the aquatic environment (Besemer et al., 2013). There is also high variability in diversity among small streams (i.e., high β -diversity), which further contributes to making small streams important pools of regional microbial diversity (i.e., γ -diversity) (Besemer et al., 2013). In contrast, for diatoms and macroinvertebrates, species richness increases with increasing stream order (i.e., lower α -diversity in low-order streams), but β -diversity is highest in small streams, making them important contributors to regional diatom (Jyrkäkallio-Mikkola et al., 2018) and macroinvertebrate (Clarke et al., 2008; Finn et al., 2011) diversity. Likely, a combination of high habitat heterogeneity and many species with limited dispersal capabilities lead to high variation in community composition among small streams, which results in high γ -diversity (Clarke et al., 2008; Finn et al., 2011; Jyrkäkallio-Mikkola et al., 2018). Many endemic fish species survive in geographically isolated headwater streams (Junk et al., 2007). Even for semi-aquatic organisms, such as herpetofauna, headwater streams have a higher biodiversity than larger rivers (Welsh & Hodgson, 2011).

Biological diversity is also higher in small forested streams when compared with similar-sized human-altered streams. This can be due to various drivers that interact with each other. First, there is higher hydromorphological heterogeneity in forested streams compared to agricultural and urban streams (Ramião et al., 2020). Second, due to inputs of organic matter, tree diversity of forests influences leaf litter decomposition and all associated aquatic communities (bacteria, fungi, invertebrates) in forested streams (Gessner et al., 2010; Ferreira et al., 2016a; LeRoy et al., 2020). There is carryover from terrestrial ecosystems

to aquatic communities, with phyllosphere communities in forests influencing fungal diversity in streams (Koivusaari et al., 2019). Finally, detrital inputs drive heterotrophic food webs within which energy is more conserved and recycled and so can lead to higher efficiencies than in autotrophic food webs (Cebrian & Lartigue, 2004; Evans-White & Halvorson, 2017) as well as support increased biomass and diversity of higher trophic levels (e.g., birds, spiders, bats, lizards, and mammals).

Maintenance of aquatic and riparian productivity

Interactions between small streams and forests through allochthonous inputs of woody debris, leaves, flowers, fruits, and falling insects (Nakano & Murakami, 1999; Garthwaite et al., 2021) drive instream food webs and can provide increased productivity for both local and downstream aquatic ecosystems. One side effect of increased organic material in small forested streams can be the increased export of DOC (Wahl et al., 1997). Although this can result in lowered water quality in some cases, DOC can also drive increased instream productivity, particularly for microbial communities (Williams et al. 2010). CPOM is generally not directly used by higher consumers such as fish and amphibians (Vannote et al., 1980; Wallace et al., 1997); however, the inputs of terrestrial invertebrates from riparian forests (Nakano et al., 1999; Jefferies, 2000) are a high-quality food source that can be foraged directly by fish (Mason & Macdonald, 1982), and, thus, increase their productivity (Kawaguchi et al., 2003). Therefore, forested streams can maintain larger-than-expected populations of fish by facilitating foraging on large quantities of terrestrial invertebrates (Allen, 1951).

Reciprocally, forested streams can subsidize terrestrial food webs through insect emergence (Murakami & Nakano, 2002; Sabo & Power, 2002). Studies have shown that riparian forests generally support greater species diversity and population abundances of terrestrial consumers than adjacent upland habitats (McGarigal & McComb, 1992; Knopf & Samson, 1994; Glass & Floyd, 2015). Riparian consumers, such as birds, bats, lizards, and spiders, can benefit from energy transfer gained by feeding on adult aquatic insects that have emerged from streams, contributing 25–100% of the energy or carbon to these species (Gray, 1993; Power, 1995; Baxter et al.,

2005), and also by feeding on aquatic specimens, as dippers and semi-aquatic spiders do (Baba et al., 2019; Hong et al., 2019).

Emergence of aquatic insects can make substantial contributions to soil fertility in riparian areas due to their high numbers and high body nitrogen concentrations (~ 10%); aquatic insect-derived nitrogen deposition in the soil can reach 12.5 mg/m²/d in some areas, which exceeds the daily atmospheric nitrogen deposition in some regions (Raitif et al., 2019). In lowland coastal catchments of North America, spawning migrations of anadromous salmonids represent another important vector for transfer of nutrients and organic matter from streams to riparian forests. Large numbers of dead fish are deposited in adjacent riparian forests by scavenging mammals, including raccoons, otters, and bears (Gende et al., 2002; Fellman et al., 2008). Studies have shown that salmon-borne, marine-derived nutrients are incorporated into terrestrial vegetation adjacent to spawning streams (Hilderbrand et al., 1999; Helfield & Naiman, 2002; Naiman et al., 2002; Bilby et al., 2003; Morris & Stanford, 2011).

Riparian fertility is also enhanced through the deposition of organic matter and nutrients by animals through excretion and egestion. Several attributes of riparian forests make them hotspots of animal biodiversity, such as proximity to water, food availability, diverse vegetative structures, low light incidence and stable temperatures (Sabo et al., 2005; McClure et al., 2015; Cabette et al., 2017). These conditions allow many animals to move from upland areas into riparian areas seasonally, and by doing so they transfer nutrients and organic matter leading to increased fertility and productivity in riparian areas (Doughty et al., 2016).

Regulating services

Flood control

Small streams are generally surrounded by forests that intercept a significant proportion of the precipitation (Zaimes et al., 2006) and release it slowly into the stream channel, reducing variability in stream discharge (Bhattacharjee & Behera, 2017). Small streams have large substrates (e.g., cobbles, boulders, and large wood) that also delay water movement. As a result of these characteristics, small forested streams

generally have lower mean and peak discharges than non-forested streams with similar catchment areas (Stott, 1997). Changing land cover, i.e., decreasing forest cover and increasing impervious surfaces in the catchment of small streams, can increase flow rates and chances for floods in hydrographic networks, both in rural and urban areas (Wissmar et al., 2004; Karagül & Çitgez, 2019). The morphology and lithology of the stream channel can also contribute to flood control in small streams. In mountainous catchments, the magnitude of floods is related to stream width at the apex of a bend and overflows are less frequent around wide apexes (Scorpio et al., 2018). In this context, the increased bank and stream channel stabilization provided by the riparian vegetation in small streams helps to reduce water velocity. Small forested streams are also important for restricting flood damage and, consequently, protecting human lives and property (Santos & Reis, 2018). Because of the important role of small forested streams in flood control, their protection is even more relevant in regions with frequent seasonal rainstorms. In Taiwan, for instance, permeable soils and high evapotranspiration in riparian areas contribute to reduced stream flows in small forested streams during the rainy season (Cheng et al., 2002).

Erosion control

Small forested streams, through interactions with riparian woody plants, minimize soil erosion and trap sediments on the streambed, slowing sediment input and export to downstream reaches (Stott, 1997). Also, the reduced water quantity reaching the stream channel and the lower flood magnitudes in these streams contribute to reduced stream bank erosion (Beeson & Doyle, 1995). Riparian trees can reduce erosion through mechanical strengthening and binding of the banks by roots (Laubel et al., 1999). Bank erosion rates in small forested streams can be influenced by differences in bank material, climate and topography, but also by stream flow, as well as the taxonomic composition of tree species (Zaimes et al., 2006). While bank material with a high percentage of fine particles and the powerful flows that occur in steep catchments increase bank retreat (Lawler et al., 1999), the root systems of large tree species provide structural support to the stream bank and reduce erosion (Hughes, 2016). Additionally, large wood can have

a significant impact on channel form and processes in small forested streams (Schuller et al. 2010). Log steps effectively trap coarse sediment in these ecosystems and act as a series of check dams that inhibit channel erosion, but may be less effective at trapping fine sediment (e.g., sand and small gravel) (Ryan et al., 2014). The restoration of natural wood standing stocks in wood-depleted streams greatly increases erosion control and sediment retention, and the benefits of these services surpass the costs of active restoration (Acuña et al., 2013).

Sinks for potentially harmful solutes

Small forested catchments are effective at improving water quality in streams by controlling the transport of both metals (Landre et al., 2010) and organic pollutants (Bergknut et al., 2011). While lithogenic metals (e.g., Al, Co, Fe, Mn, Zn) primarily resulting from rock weathering are generally exported from these catchments, substantial amounts of metals contained in atmospheric pollution (e.g., As, Cd, Cu, Ni, Pb) can be taken up by riparian trees and retained as litterfall on the forest floor (Landre et al., 2010). Consequently, riparian areas of small streams, by storing litter inputs, can act as sinks for atmospheric deposited metals (Kaste et al., 2003). Additionally, riparian forests can reduce pulses of nitrogen and phosphorus moving from the groundwater or agricultural drainage systems into stream water (Welsh et al., 2021).

Temperature regulation

Stream water temperature is mostly regulated by vegetation cover, air temperature, rainfall, surface runoff and subsurface storage (Subehi et al., 2009). In particular, riparian forests influence the incidence of solar radiation, slow wind speeds and reduce exposure to air advected from open areas, thus, regulating stream water temperatures and increasing relative air humidity (Moore et al., 2005). Headwater streams generally have high cooling rates, and these rates increase with an increase in forest cover (Coats & Jackson, 2020).

Regulation of microclimate

Small forested streams have cool and humid microclimates and these conditions contribute to habitat

heterogeneity and biodiversity (Hannah et al., 2008). The higher relative humidity levels within riparian areas of small streams can be due to evapotranspiration from the vegetation immediately adjacent to the stream and to evaporation from the stream channel (Danehy & Kirpes, 2000), and is essential for many plant and wildlife species that are dependent on these microclimates (Eskelson et al., 2013). The gradient of relative humidity, as a function of lateral distance from the stream, can determine the spatial structure of riparian communities. In addition, the complex, steep topography of small forested streams also results in vertical gradients of humidity above the stream (Pabst & Spies, 1998). Small streams have a dynamic area of riparian influence on microclimate that fluctuates daily and seasonally (Rambo & North, 2008). During the winter, daily ranges of temperature and vapor pressure deficit tend to be damped near the stream and increase with distance from it, while in summer daily ranges are greater near the stream and decrease with distance (Rambo & North, 2008).

Drainage and natural irrigation

The pattern and arrangement of natural stream channels determine the efficiency of the drainage system because the time required for water to flow a given distance is directly proportional to the cumulative stream length (Gray, 1965). In headwaters, catchment runoff generation depends on canopy interception, evapotranspiration rates, and throughfall volume (Dung et al., 2012). Because dominant hydrological processes may differ along stream catchments in association with differences in vegetation type and age, the hydrological responses to precipitation are strongly scale-dependent (Gomi et al., 2008). The natural recharge rates of small streams are dependent on catchment characteristics, such as vegetation cover, soil properties, topography, and land use (Maréchal et al., 2009).

The soils of forested catchments feature layers of leaf litter and soil organic matter, both of which contribute to an abundant and diverse micro- and macrofauna and root systems of riparian trees that are extensive and relatively deep (Jana et al., 2017). These conditions create soils with high macroporosity, low bulk density, highly saturated hydraulic conductivities and high infiltration rates that facilitate more prolonged baseflows (Neary et al., 2009). Sustainable

management of small forested catchments is essential for the continuous supply of good quality freshwater and protection against natural hazards such as long low flow periods and desertification (Dudley & Stoltz, 2003).

Water purification and quality

Small forested streams act as the finest scale connections between the landscape and the river system and, as such, provide the greatest lotic surface area for water purification. These streams can help to remove pollutants and nutrients through filtration, nutrient remineralization and assimilation into biomass. When comparisons are made between forested streams and urban streams of similar size, forested streams transport lower sediment loads (Wahl et al., 1997), show a greater propensity to reduce nitrate-nitrogen concentrations in groundwater (Osborne & Kovacic, 1993) as well as stream water (Wahl et al., 1997; Schoonover & Lockaby, 2006; Ramião et al., 2020) and also tend to have higher dissolved oxygen concentrations (Ramião et al., 2020). The reasons for these differences are several, including higher woody debris inputs, which can slow flows and increase water purification (Acuña et al., 2013), and increase interactions between terrestrial and instream processes (Lowe & Likens, 2005). Taken in sum, the water purification abilities of small forested streams can be of considerable economic benefit in both temperate (Wang et al., 2017) and tropical regions (Vincent et al., 2016; Piaggio & Siikamäki, 2021).

Through processes of water purification, but also due to complex interactions among forests, parent material (the geology of the catchment), soils, and organisms, small forested streams can have an overwhelming influence on the chemical composition of the water flowing through each catchment. More specifically, dissolved minerals, nutrients, and organic matter make their way through terrestrial landscapes and together determine the physical and chemical conditions of stream water (White et al., 1971; Likens & Bormann, 1974). The geology of the catchment interacts with land use to alter stream water chemistry (Bricker & Rice, 1989; Thornton & Dise, 1998), likely across most forested biomes.

Carbon and nitrogen sequestration

Due to the high reliance on organic matter inputs and high channel complexity, small forested streams can become locations on the landscape where both carbon and nitrogen sequestration can occur. Often located in steep canyons at high elevations, small forested streams receive large quantities of organic material from adjacent riparian areas. Because of their high channel surface-to-water volume ratio, high stream bottom roughness, and low water flows, small streams are more retentive of CPOM than larger streams and rivers (Richardson et al., 2005). Organic debris dams, which are created more frequently in small forested streams, can store large volumes of organic matter (Flores et al., 2011) and reduce the export of dissolved organic matter (DOM) as well as the export of both FPOM and CPOM, leading to increased carbon sequestration (Bilby, 1981). In fact, when organic debris dams are removed from small streams, 6% increases in DOM and 500% increases in FPOM and CPOM export to downstream reaches can occur (Bilby, 1981).

Provisioning services

High quality water

Small streams are often located at higher elevations that can receive higher precipitation than lowland rivers and are, thus, important contributors to long term drinking water reservoirs, such as aquifers or lakes. For instance, headwater areas provide clean water to one third of the US population (USEPA, 2009). Moreover, the new symbolic concept of “water towers” has been coined in Kenya to emphasize the role of mountain regions including headwater streams for providing freshwater to downstream regions (Viviroli et al., 2007). Recharge of aquifers has been shown to depend on land use, with natural vegetation (but also certain crops) supporting the largest recharge rates (Zomlot et al., 2015). As natural landscapes are more commonly found in headwater areas, they are especially important for the recharge of aquifers. In fact, the recharge of mountain aquifers in headwater catchments is now recognized to be critical for supporting streamflow during low discharge periods (Somers & McKenzie, 2020). When the elevation or latitude is

high enough, precipitation in the headwaters can be accumulated as snow or ice that is gradually released as seasonal temperatures rise, providing high-quality water when precipitation is low (Liljedahl et al., 2017).

Food

Small streams support lower fish biomass than downstream larger streams and rivers; however, they provide spawning and rearing habitat for migratory species, some of which are commercially exploited (Quinn, 2005; Schindler et al., 2010). For instance, production of important anadromous fish, such as salmon, depend on headwater streams as they need well-oxygenated waters and a relatively limited range of gravel sizes for spawning (Baum, 1997; NMFS, 2009). Small streams, especially forested ones, harbor large densities of freshwater crabs and other decapods like crayfish and shrimp that are delicacies in some communities (Dobson, 2004; Padghane et al., 2016).

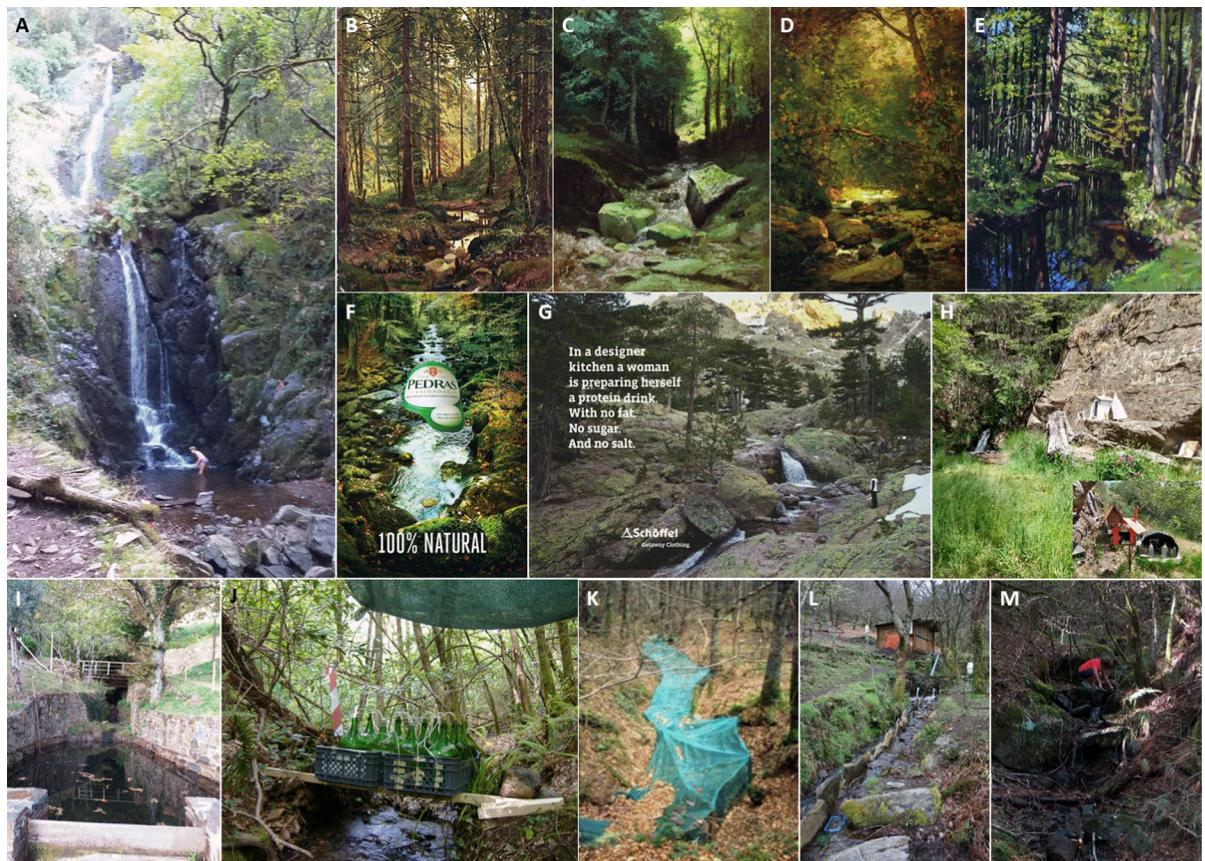
Ornamental resources

Humans collect various items from headwater streams that are used as ornamental resources, but here we will focus on those examples that have offered business opportunities. One of the most well-known examples is ornamental fish. They account for a meaningful export value in some parts of the world, such as Colombia, Brazil, and Peru (Olivier, 2001). As 50% of all fish species in the catchment of the Amazon are restricted to headwater streams (Junk et al., 2007), these ecosystems have become an important source for ornamental fish exports. Another small-scale business model that is inextricably linked to small streams is jewelry produced with caddisfly (Trichoptera) cases (Macadam & Stockan, 2015; Prommi, 2018). Coldwater caddisfly taxa are collected from the field and reared in aquaria with gemstones that they assemble to create their protective case. Once the larva emerges, the case is fixed, incorporated into a jewelry piece and sold as a fashion accessory. Caddisfly cases made of natural mineral elements (coarse sand) are also used for the same purpose. Other examples of biological materials that are widely used as ornamental resources include skeletonized leaves, which represent the

litter decomposition process, which is most relevant in small forested streams.

Genetic resources

Due to their location and topographic condition (e.g., remote areas, high elevation and terrain slope), and through deliberate efforts geared toward their protection and conservation, small forested streams are usually among the least disturbed ecosystems in the world. Forested streams tend to have stable water quality (e.g., temperature, dissolved oxygen, dissolved solids) due to the protective canopy cover offered by the riparian vegetation, and stable large substrates maintained by high elevations/gradients (Table 1). For these reasons, forested streams are major habitats for threatened aquatic species such as freshwater crabs (Dobson, 2004; Cumberlidge, 2011) and anadromous salmonids that return from the sea to spawn (Beschta & Platts, 1986). Also, forest streams receive large amounts of litter inputs and are privileged locations for aquatic hyphomycetes (a polyphyletic group of fungal decomposers), which can be used as source for a large number of metabolites (Seena et al., 2022).


Energy

Humans have used moving water as a source of energy for more than 5000 years (Smith, 1971; WCD, 2000). Hydropower generation has slowly increased its presence throughout the twentieth century, but the demand for energy from renewable sources is increasing, leading to increases in new dam projects (Zarfl et al., 2015). Most of the hydropower plants are small in terms of the energy they produce. In Europe, for instance, 91% of the existing hydropower plants produce less than 10 MW (WWF, 2019), and most of these plants are located on small streams (EVE, 1995).

Cultural services

Esthetic values

People highly appreciate aquatic elements in landscapes (Hammitt et al., 1994; White et al., 2010; Eroglu et al., 2018). Additionally, the sound of water flowing in streams is commonly a favorite natural

Fig. 3 Illustration of some cultural ecosystem services provided by small streams: Esthetic values and nature-based tourism illustrated with a waterfall in a 2nd order stream (Ribeira do Candal, central Portugal; **A**); Cultural and artistic values illustrated with paintings (**B** “Stream in the forest” by Ivan Shishkin; **C** “Forest stream” by Arseny Meshchersky; **D** “Stream in the forest winter” by Thomas Hill; **E** “The forest stream” by Stanislav Zhukovsky) and advertisements (**F** muppi of the 2017 advertising campaign of bottled-water company Águas das Pedras®, Portugal; **G** outdoor of the 2012 advertising campaign of the company of outdoor clothes company Schöffel®, Germany); Spiritual and religious values illustrated with a shrine of the most popular pagan saint in Argentina, the Difunta Correa (the Deceased Correa) raised near a small stream, and a detail showing bottled water left

as votive offerings “to calm her eternal thirst” (South Andes, Argentina, **H**); Recreation illustrated with a “swimming pool” in a 1st order stream (unnamed tributary of Ribeira da Cerdeira, central Portugal, **I**); Science illustrated with whole-stream manipulations (**J** nutrient enrichment at a 1st order stream (unnamed tributary of Ribeira da Margaraça, central Portugal); **K** organic matter exclusion at a 1st order stream (unnamed tributary of Arroyo de Salderrey, northern Spain); **L** warming at a branch of a 2nd order stream (Ribeira do Candal, central Portugal)); Education illustrated with creeking in a 1st order stream (unnamed tributary of Ribeira do Catarredor, central Portugal, **M**). Photo credits: **A, I, J, M** Verónica Ferreira; **B, C, D, E** Ann.; **F** Água das Pedras®; **G** Schöffel®; **H** Ricardo Albariño; **K** Arturo Elosegi; **L** João Rosa

sound, as shown in studies aimed at identifying preferred natural sounds to improve urban acoustic quality (Jeon et al., 2010; Hong et al., 2020). Therefore, streams increase the appeal of forests for visitors by enhancing the landscape as well as the soundscape. Streams with waterfalls are especially regarded as attractive, as the latter contain elements of the

beautiful and the sublime, and often help compose a picturesque scene (Hudson, 2000) (Fig. 3A).

Inspiration (cultural and artistic values)

Small forested streams have long caught the attention of artists, and during the nineteenth century, they were often the central element in paintings portraying

forested landscapes (Fig. 3B–E). Small forested streams are also pictured in many wallpapers, as an online search will show, further supporting the notion that they contribute to pleasant surroundings. Streams are often associated with the idea of purity in nature, and this association has been exploited in advertisements to convey the message of a natural product or of a product that creates a connection to nature (Fig. 3F–G).

Streams have also inspired writers. Miguel Torga, one of the greatest Portuguese writers of the twentieth century, wrote “Eclogue,” one of the most famous Portuguese pastoral poems, about a small stream that unexpectedly runs dry. Streams are also present in traditional folk music, as in the case of “When crossing the little stream,” a popular song in Alentejo (south Portugal; <https://vimeo.com/86905639>), which integrates the repertoire of innumerable traditional folk groups in the region, and is part of the repertoire of Cante Alentejano, a musical genre recognized by UNESCO as an intangible cultural heritage of humanity. More widely, a search on a specialized global website (<https://www.lyrics.com/>) retrieves > 18,000 English-language song lyrics including the word “stream.”

Spiritual and ritual values

In many religious societies, streams and other water sources have many symbolic meanings. Christians use them for baptizing the newly converted, and some denominations like Legio Maria in western Kenya consider water from some springs as “pi hawi” or holy water and use it in performing special rituals (Obiero et al., 2012). In Argentina, shrines of the most popular pagan saint, La Difunta Correa (the Deceased Correa), are occasionally raised near small streams “to calm her eternal thirst” (Mrs. Correa died in 1840 while walking with her baby in search of her sick husband after her food and water ran out, and was found with her baby still alive and breast-feeding, which was taken as her first miracle) (Fig. 3H). Additionally, streams play an important role in the rites of passage of members of many communities. Among the Kalenjin peoples of Kenya, streams were important areas for construction of isolation shelters for circumcised boys as they provided water for drinking and cleaning. These isolation shelters were areas of educating the circumcised on their new roles

and responsibilities as community warriors or protectors. Similarly, in many communities, recruits for circumcision had to swim in these streams very early in the morning before being circumcised as this was meant to reduce bleeding after the cut. For indigenous and traditional communities in Brazil, small streams are considered abundant divine gifts, and therefore, their disappearance means the end of the society. In the culture of these communities, stream waters are a symbol of life. Streams are inhabited by supernatural beings that protect them, such as “Oxum,” the queen of freshwaters in Afro-Brazilian cults, and “Mãe d’Água” (Mother of Water) of the Caboclos of the Amazon. For the riverside populations of the Amazon and Pantanal, waters of small streams symbolize purity and innocence and, therefore, must be especially respected, under penalty of serious punishment (Diegues, 1996).

Identity and sense of place

Streams are important elements in providing identity and a sense of place. An example is their use as a surname in different languages. For instance, “Ribeiro” (“stream” in Portuguese) is the 18th most common surname in Portugal and the 12th in Brazil, where it is used by > 1.5 million people (Sociedade Portuguesa de Informação Económica, 2004; Campancci, 2012). The word “Ribeiro” originates from the Latin “ripariu”, which means “small stream”, making the surname “Ribeiro” a toponymic surname, i.e., a name derived from a place. Also, the names “Brook” and “Brooke” (syn. for “stream”) are in the top 1000 first names in the US (<https://www.ssa.gov/cgi-bin/babynames.cgi>). Another example is their use in the name of villages, towns and cities, as a search in Google Maps by the terms “Ribeiro”, “Ribeirinho” (small stream), and variations of these, will show for Portugal.

Nature-based tourism

Streams increase landscape heterogeneity and the attractiveness of forests for outdoor activities (e.g., walking, trekking, orienteering, appreciation of scenery). This is especially true when streams have waterfalls, which are often regarded as natural scenic attractions (Hudson, 1998). Although small stream waterfalls have low discharge, they can still be

impressive in their height and complexity (Fig. 3A). Canyoneering is a major tourist activity in the US desert Southwest, often in slot canyons carved by ephemeral streams.

Recreation

In mountainous regions distant from littoral areas, populations often turn to freshwaters for bathing and swimming during summer. In small streams this is generally accompanied by human “improvements” to the stream, such as the widening of stream sections, the paving of the streambed and the construction of small temporary dams to create small “swimming pools” of accumulated water (Fig. 3I). The number of these swimming pools is difficult to estimate as they are often constructed out of individual or popular initiative. In small streams that have naturally high slopes or barriers (e.g., waterfalls), these reaches may be fishless, and the hydromorphological alterations in the swimming pool area (i.e., increased depth during summer, homogenization of substrate) are likely to have only local and/or seasonal effects on aquatic communities.

Science and education

Small forested streams allow for unique opportunities for scientific research and education. Owing to their small size and reduced discharge, small streams are amenable to whole-stream experimental manipulation, which is generally not feasible in larger streams and rivers. In whole-stream manipulations, the variable of interest can be examined at the most relevant ecosystem scale, which allows for assessment of the effects of environmental changes on aquatic communities and ecosystem processes including all interactions among species and with other environmental characteristics that may show diel, seasonal or interannual variation (Nakano & Murakami, 2001). Therefore, whole-stream manipulation is the most realistic experimental approach allowing for the establishment of causal relationships by comparison with a similar stream or stream reach not exposed to manipulation. Examples of whole-stream manipulations include whole-stream litter exclusion to assess the importance of allochthonous organic matter to stream communities and functioning (Wallace et al., 1997), litter input manipulations to assess the effects

of eucalyptus litter inputs (mimicking those of eucalyptus monocultures) vs. native litter inputs (mimicking those of native temperate deciduous broadleaf forests) on stream communities and functioning (Larrañaga et al., 2014), nutrient enrichment to assess the effects of increases in nutrient availability on organic matter processing and associated communities (Gulis & Suberkropp, 2003; Ferreira et al., 2006; Rosemond et al., 2015), insecticide additions to quantify the role of invertebrates on organic matter processing (Cuffney et al., 1990) and water warming to assess the effects of global warming on stream communities and processes (Hogg & Williams, 1996; Ferreira & Canhoto, 2014) (Fig. 3J, K, L).

Small streams are also ideal places for introducing children, school groups, and families to stream ecosystems, due to their reduced safety risks (i.e., they are shallow), abundance in the landscape and high environmental heterogeneity and biodiversity. Creeking, i.e., “exploring a stream and picking up rocks to see what is on or under them” as defined by Suter & Cormier (2015), is ideally performed in small streams (Fig. 3M).

Contribution of small streams to ecosystem services provided by downstream waters

A common characteristic of many ecosystem services is that areas of service supply and demand are spatially dislocated due to the separation between natural or semi-natural ecosystems and human-dominated environments (Bagstad et al., 2013; Schirpke et al., 2019). Mountain regions are potential hotspots of ecosystem services, whereas high demand areas are mostly associated with lowland urbanized or agricultural areas (Schirpke et al., 2019). Small streams perform ecological functions (i.e., biological, geochemical and physical processes) that are critical for ecosystem services provided throughout their catchments (Hill et al., 2014; Colvin et al., 2019) and connect mountainous regions to lowlands. Moreover, when small streams directly flow into larger rivers, they provide sediments and resources that shape large river communities and make them more productive ecosystems (Rice et al., 2001; Kiffney et al., 2006). Longitudinal connectivity is one of the fundamental dimensions linking streams with downstream habitats and

ecosystems (Townsend, 1989; Ward, 1989) and it is the basis of different conceptualizations to enhance our understanding of the functioning of fluvial systems (e.g., Vannote et al., 1980; Thorp et al., 2010; Wohl et al., 2015; Raymond et al., 2016). While connectivity between headwaters and downstream reaches is bidirectional, the upstream–downstream direction, ruled by gravity, overrides in importance. Such characteristics determine the transportation of materials, including water, when surface flow occurs (MacDonald & Coe, 2007; Datry et al., 2014; Allan et al., 2021) (Fig. 2). The linear connection between small streams and downstream reaches may, however, be discontinued by natural and man-made lentic ecosystems (e.g., dam-produced reservoirs), which regulate hydrological regimes, water temperature and the export of dissolved and particulate material (Ward & Stanford, 1983; Jones, 2010; Covino, 2017). This fluvial discontinuity alters the spatial and temporal expression of ecosystem service provisioning because lentic water bodies alter the timing and magnitude of water and other material fluxes.

Water drained by small streams is the foundation of fluvial connectivity and, as a good itself, is predominantly taken up and used downstream; small streams contribute ~ 80% of mean annual flow volume to downstream reaches (estimation for 7th order hydrographic networks of the north-eastern US; Alexander et al., 2007) (Table 3). Human populations are distributed heterogeneously on Earth, preferably inhabiting lowlands (Kummu et al., 2016), and future population dependency on runoff from mountain

landscapes (39% of land mass) for water provisioning (e.g., direct human consumption, animal growing and irrigation) has been estimated at ~ 1.4 billion people (23% of world's population) by 2050 compared to ~ 0.2 billion (~ 8%) in the 1960s (Viviroli et al., 2020). Water exported from small forested streams is also important for maintaining water quality in larger streams and rivers. Cool stream water flowing from shaded environments into open areas helps in downstream cooling (Moore et al., 2005) and, by containing low concentrations of nitrogen and phosphorus, small stream contributions can dilute nutrients drained from pastures and other land uses that predominate in lowlands, limiting eutrophication in downstream reaches (Chiwa et al., 2015).

Sediment export to downstream reaches is slowed due to channel complexity, further reduced by large wood dams (Wohl & Beckman, 2014; Sklar et al., 2017). However, sediments arriving to downstream reaches may become suitable habitats for fish reproduction (Riebe et al., 2014) (Table 3). Also, the adsorption of trace elements, phosphorus and DOM to clays, silts, and sand grains, makes them natural soil fertilizers (Lottig & Stanley, 2007; Ward et al., 2017) (Table 3). These nutrient-rich sediments may deposit in floodplains of large streams and rivers when water overflows, contributing nutrients to landscapes, and supporting high biodiversity and productive soils for agriculture and livestock (Tockner & Stanford, 2002; Chapman et al., 2016). An endpoint of sediments transported from headwaters is the dynamic formation of deltaic riverscapes at the mouth of inland water bodies and ocean

Table 3 Contribution of small streams to ecosystem services (provisioning and supporting categories) provided by downstream larger streams and rivers

Contribution of small forested streams to downstream waters		Role in downstream waters	Ecosystem services provided by downstream waters
Water	Quantity and quality	Resources	Water for domestic, agricultural and industrial use
Sediments	Sediments	Resources	Energy production
	Trace elements, phosphorus and DOM adhered to clay and silt	Substrate	Fish production
Nutrients	Nitrogen, phosphorus, salts	Resources	Agricultural and livestock production; Biodiversity
Organic matter	Dissolved and particulate organic matter	Resources	Productivity of food webs
	Large wood	Resources; Substrate	Productivity of food webs; Biodiversity
Organisms	Mass, energy, nutrients and genes	Resources	Productivity of food webs; Biodiversity

estuaries, areas that also support high biodiversity and provide many other ecosystem services (Tockner & Stanford, 2002; Adger et al., 2018; Richardson et al., 2021). In this regard, dam construction along watercourses obstructs these dynamic ecosystem services, resulting in river “sediment starvation” and in generalized strong reductions in delta formation (Tockner et al., 2008). In contrast, excess sediment production and transportation to lowland streams and rivers, as happens when land use or wildfire increases catchment erosion, is also a problem (Grabowski & Gurnell, 2016). Fine sediments in transport are erosive to biota and are also trapped within channel bottoms embedding larger substrates by filling interstices, which causes habitat loss for sensitive benthic biota, especially invertebrates (Jones et al., 2012), and may undermine ecosystem services dependent on habitat heterogeneity and benthic biota (Table 2).

In general, dissolved nutrients and DOM exported from small streams travel further downstream than particulate organic matter, which mainly moves down episodically via rainstorms and snowmelt (Battin et al., 2008; Bernal et al., 2013; Bunte et al., 2016; Rowland et al., 2017). Spates produce massive movement of dissolved and particulate materials (e.g., FPOM, leaf litter and wood substrates) (Bernal et al., 2013; García et al., 2015; Raymond et al., 2016; Turowski et al., 2016), but it is during base flow conditions that the fluvial ecosystem is most bio-reactive (Battin et al., 2008; Raymond et al., 2016). Dissolved and suspended materials are biophysically removed and mineralized by microbes in biofilms and aggregates in the water column (Battin et al., 2008, 2016), although physical processes also take part (e.g., adsorption, flocculation, and photodegradation). Downstream processing results in more recalcitrant, small-sized substances; however, even such substances can be photo- and biodegraded (Battin et al., 2008; García et al., 2018). As part of the carbon and nutrient cycles, these materials boost the productivity of food webs in downstream lowland streams, rivers, wetlands (e.g., floodplains, deltas and estuaries), and further into the ocean environment (Cole et al., 2007; Ward et al., 2017; Bergström, 2020). It has been shown that 30 to 45% of DOM exported by small streams may be removed and mineralized on its way to the sea resulting in important CO₂ outgassing (Cole et al., 2007; Battin et al., 2008; Mineau et al.,

2016). Leaf litter and FPOM, which only travel long distances during spates, are also exploitable resources for downstream food webs (Wipfli et al., 2007) (Table 3). Finally, large driftwood pieces become important when sunk in lowland rivers, deltas and sea coasts. In particular, wood exported into marine environments can amount to 4.7 million m³/year (Wohl & Iskin, 2021). Wood inputs to the seafloor create an oasis of habitat and food in the barren ocean benthos comparable to coral reef habitats, supporting distinctive communities of fungi, mollusks, and crustaceans (Wohl & Iskin, 2021) (Table 3).

Living organisms move up- and downstream along hydrographic networks, exchanging mass, energy, nutrients, and genes (Meyer et al., 2007; Wipfli et al., 2007; Pond et al., 2016) (Table 3). In particular, invertebrate drift is a natural phenomenon in fluvial systems. Drift is defined as individuals escaping from unfavorable conditions or being transported incidentally downstream during spates (Brittain & Eikeland, 1988; Naman et al., 2016). Therefore, drift contributes to species dispersion. While catastrophic events can result in drift (passive drift), the effects can include population mortality and the whole system is under stress during spates. More controlled behavioral drift constitutes an essential strategy for invertebrates to colonize new reaches downstream and is also a resource for drift-feeding fish (Naman et al., 2016). Many small streams are fishless, mostly because they are isolated by natural barriers, such as waterfalls, and the surface flow is seasonally more variable than in downstream reaches, which results in a riskier habitat for strictly aquatic biota (Gomi et al., 2002; Richardson, 2019). In these situations, drifting invertebrates exported from small streams constitute a potential net input of food to downstream fish populations inhabiting larger streams and rivers (Wipfli & Gregovich, 2002; Wipfli et al., 2007; Pond et al., 2016). Headwater streams hold biota that are spread along hydrographic networks and may maintain genetic fluxes by dispersion of both aquatic and terrestrial stages to downstream reaches (Meyer et al., 2007). This contributes to a striking pattern in organisms, which display higher intraspecific genetic diversity in downstream reaches, in part because of asymmetrical longitudinal dispersal success due to unidirectional water flow (Paz-Vinas et al., 2015; Blanchet et al., 2020).

The ability of small streams to contribute to ecosystem service provision to downstream reaches may, however, be constrained by the in situ acquisition and delivery of certain goods and services provided by small streams and their catchments. For instance, water abstraction from small streams for human use or energy generation can reduce the volume of water transported downstream, consequently limiting the transportation of sediments, organic matter and organisms. Also, human activities, such as mining, small hydropower dam and reservoir construction, agriculture, and forestry (Lindberg et al., 2011; Deitch et al., 2013; Couto & Olden, 2018; de Vries et al., 2019; Erdozain et al., 2021), may alter the hydrology and chemistry of small streams (e.g., dewatering and pollution, see below), reducing their contributions to ecosystem services provided to downstream reaches.

Threats to small stream ecosystem services

Headwaters are likely the most unpolluted water courses in a catchment given their relative isolation and often high elevation, which makes them individually drain small areas of low human occupation. This generally translates into better water quality at the headwaters of hydrographic networks than in lowland areas (Ferreira et al., 2004; Mou et al., 2004). However, small streams are also the most vulnerable watercourses to environmental changes owing to their small size, reduced water volumes, strong aquatic-terrestrial connections, strong dependency on the riparian forest and isolation (Table 4). Consequently, even relatively small changes to catchment and instream characteristics can affect the services provided by small streams (Fig. 2; Table 2).

For instance, because of their size, small streams are vulnerable to burial (Meyer et al., 2005). The proportion of stream length buried (e.g., through road building, piping, and channeling through culverts) is higher for 1st and 2nd order streams than for higher-order streams (Stammler, 2011). Stream burial impairs the connection between the stream and its riparian forest, impeding direct (i.e., from the canopy) and indirect (i.e., from the stream margins) litter inputs from the riparian vegetation, and leading to significant decreases in coarse and fine benthic organic matter standing stocks, and lower ecosystem

respiration (Beaulieu et al., 2014; Pennino et al., 2014). Stream burial also virtually eliminates the penetration of solar radiation into the stream bed, which limits instream primary production (Beaulieu et al., 2014; Pennino et al., 2014). Additionally, stream burial leads to decreases in habitat heterogeneity and to simplified hydromorphology, which results in increased current velocity (Beaulieu et al., 2014; Pennino et al., 2014). As a consequence, nitrate uptake length is longer and nitrate uptake velocity is lower in buried than in open streams, which suggests lower nitrate retention capacity in buried streams (Beaulieu et al., 2014, 2015; Pennino et al., 2014). Lower benthic organic matter, ecosystem respiration, primary production, and nutrient retention capacity in buried streams alters carbon and nutrient export, potentially impairing the water quality of downstream reaches, especially for high levels of stream burial (Beaulieu et al., 2014, 2015; Pennino et al., 2014). Stream burial, with all consequent alterations in stream structure and functioning, potentially impacts all ecosystem services (Table 4).

The size and high elevation of small streams make them susceptible to obstruction by landslides. Landslides are natural events contributing important sediment and large wood inputs to streams, and are caused by natural phenomena, such as heavy rainfall, that decrease slope stability (Geertsema et al., 2009). Landslides can, however, be promoted by human activities and their frequency has been shown to increase with logging-related activities and road density, both of which remove vegetation and, therefore, promote changes to the root cohesion of the soil and soil moisture regimes (Guthrie, 2002; Sidle, 2005; Imaizumi et al., 2008). Forest fires, by removing vegetation, can also promote landslides (Cannon & Gartner, 2005). The predicted increase in the frequency of storms and wildfires and the foreseen expansion of planted forests for timber production (with associated road building and periodic harvesting) will likely increase the frequency of landslides into small streams (Krawchuk et al., 2009; Payn et al. 2015; Prein et al., 2017). Stream obstruction by landslides can have strong influences on supporting services (mostly water cycling and habitat provisioning), regulating services (mostly flood control and erosion control), and cultural services (mostly esthetic values, nature-based tourism, recreation) (Table 4).

Table 4 Threats to small streams as a function of stream characteristics (see Table 1), and their major direct consequences

Stream characteristics	Threats	Major direct consequences	Affected ecosystem services
Small size	Burial (e.g., piping, road building)	Loss of aquatic-terrestrial connectivity; Reduction of litter inputs; Loss of habitat; Loss of light	Potentially impacts all ecosystem services
Small size and close linkage to the terrestrial environment	Obstruction by landslides; Wildfires; Logging	Loss of habitat; Reduction in downstream transport of water, sediments, organic matter and organisms	Supporting services (e.g., water cycling and habitat provisioning); Regulating services (e.g., flood control and erosion control); and cultural services (e.g., esthetic values, nature-based tourism, recreation)
Small water volume and reduced storage zones	Replacement of native forests by dense fast-growing tree plantations and climate change, which increase evapotranspiration leading to reductions in water availability	Loss of habitat; Reduction in downstream transport of water, sediments, organic matter and organisms	Potentially impacts all ecosystem services
Close linkage to the terrestrial environment, shaded and heterotrophic	Changes in the riparian vegetation that affect shading and litter inputs (e.g., clearcuts, replacement by tree monocultures, invasion by exotic species)	Change in the relative importance of basal food sources (i.e., decrease in litter inputs and increase in instream primary production) and consequent changes in the relative importance of the heterotrophic (decrease) and autotrophic (increase) energetic pathways; Changes in litter characteristics; Water warming	Potentially all ecosystem services
Small water volume	Inputs of nutrients and pollutants	Deterioration of water quality (e.g., eutrophication, pollution)	Supporting services (e.g., nutrient cycling, primary production, maintenance of aquatic and riparian productivity and maintenance of biodiversity); Regulating services (e.g., sinks for potentially harmful solutes, water purification and quality, carbon and nitrogen sequestration); Provisioning services (e.g., high-quality water and genetic resources); Cultural services (e.g., esthetic values, nature-based tourism, and recreation)
Isolation	Warming and changes in land use	Extinction of local species that do not have upstream refugees and have limited dispersal capabilities	All biological-driven ecosystem services, e.g., primary production (supporting service), carbon and nitrogen sequestration (regulating service), and food (provisioning service)

Small water volumes and reduced storage zones of small streams make them highly vulnerable to the increased evapotranspiration associated with the replacement of native forests, or to the afforestation of grassland catchments, by dense, fast-growing, tree plantations, which can cause discharge reductions (Jackson et al., 2005; Lara et al., 2009). Also, unregulated water abstraction for domestic and agricultural use can lead to drastic reduction in stream flows (Ashworth & Vizuete, 2017). Additionally, the boom of small hydropower plants deployed in small catchments as part of renewable energy and climate mitigation strategies (Kelly-Richards et al., 2017; Couto & Olden, 2018; Crnobrnja-Isailović et al., 2021), by promoting water diversion, can severely impact streams depending on the stream length dewatered and the amount of streamflow abstracted. Small streams are also at high risk of undergoing drought during the longer, warmer and drier summers forecasted under climate change scenarios, which will increase evapotranspiration and water demand by both riparian forests and human populations in many parts of the world (Reynolds et al., 2015). Decreases in water availability in small streams will lead to the loss of aquatic habitat, loss of longitudinal connectivity with consequent reductions in water, sediment, nutrients, organic matter, and organism transport to downstream reaches, and decreases in water quality resulting from increases in temperature and conductivity and decreases in dissolved oxygen, all of which will negatively influence stream biota and ecosystem processes (Rolls et al., 2012). Decreases in water availability, especially when considering perennial streams, potentially impacts all ecosystem services discussed above (Table 4).

The strong connections between small streams and their riparian forests, which provide shade and litter inputs that sustain heterotrophic food webs, make them highly susceptible to forest changes. Forest clearcutting, by removing riparian vegetation, promotes changes in the relative importance of basal food resources to aquatic communities (i.e., decreases in litter inputs and increases in instream primary production) and consequently changes the relative importance of heterotrophic (decreased) and autotrophic (increased) energetic pathways (Göthe et al., 2009), which can be long lasting (Burrows et al., 2021; Frainer & McKie, 2021). Replacement of native forests by tree monocultures or their invasion by exotic

species can also change shade patterns (e.g., when native forests and replacing species differ in deciduousness, stand abundance and/or canopy density), or alter instream primary production and the characteristics of litter inputs (Hladzy et al., 2011; Larrañaga et al., 2021; Ferreira et al., 2021). Reduction in shading with forest clearing increases water temperatures (up to 15°C) (Johnson & Jones, 2000; Kiffney et al., 2003; Reiter et al., 2015). Warming has strong influences on aquatic biota adapted to cool water, and stimulates biofilm activity and litter decomposition, as shown by whole-stream warming experiments and correlative studies along geothermal gradients (Hogg & Williams, 1996; Friberg et al., 2009; O’Gorman et al., 2012; Ferreira & Canhoto, 2014; Ylla et al., 2014). Litter inputs become less diverse and are often dominated by recalcitrant litter, as when mixed deciduous forests are replaced by eucalyptus or conifer plantations (Molinero & Pozo, 2004; Inoue et al., 2012; Larrañaga et al., 2021), which can influence aquatic communities and processes (Larrañaga et al., 2009; Ferreira et al., 2016b; Monroy et al., 2017). Different forest changes (e.g., afforestation with native or exotic monocultures, invasion by exotic species, clearing) differ in the type and magnitude of their effects on stream structure and functioning (Larrañaga et al., 2021; Ferreira et al., 2021), but they can potentially affect all ecosystem services (Table 4).

Small water volumes, and consequently small dilution capacities, make small streams vulnerable to inputs of nutrients and pollutants, which leads to the deterioration of water quality. In shaded streams with high heterotrophic activity (i.e., high nutrient uptake capacity), effects of mild nutrient enrichment (e.g., from small-scale agriculture) on water quality may be detectable only for a short distance after which dissolved nutrient concentrations return to ambient levels (Ferreira et al., 2006). However, if nutrient inputs surpass the ecosystem nutrient uptake capacity, then there will be an increase in nutrient concentrations in stream water (Gulis et al., 2006), and eutrophication may take place if light and temperature are not limiting (Hagen et al., 2010). Eutrophication affects supporting services (mostly nutrient cycling, primary production, maintenance of biodiversity, and maintenance of aquatic and riparian productivity), regulating services (mostly sinks for potentially harmful solutes, water purification and quality, carbon and nitrogen sequestration), provisioning services (mostly

Table 5 Ecosystem services provided by small streams (see Table 2) in comparison with ecosystem services identified in MEA (2003, 2005)

Ecosystem services identified in MEA	Ecosystem services attributed to small streams
<i>Supporting services</i>	
Water cycling	Water cycling
Nutrient cycling	Nutrient cycling
Primary production	Primary production
Soil formation and retention	Soil/sediment formation
Provisioning of habitat	Habitat provisioning and maintenance
Oxygen production	Maintenance of aquatic and riparian productivity Maintenance of biodiversity
<i>Regulating services</i>	
Storm protection	Flood control
Erosion control	Erosion control
Climate regulation	Sinks of potentially harmful solutes
Air quality maintenance	Temperature regulation
Water regulation	Regulation of microclimate
Water purification and waste treatment	Drainage and natural irrigation Water purification and quality Carbon and nitrogen sequestration
Regulation of human diseases	
Biological control	
Pollination	
<i>Provisioning services</i>	
Fresh water	High quality water
Food	Food
Ornamental resources	Ornamental resources
Fuel	Energy
Genetic resources	Genetic resources
Fiber	
Biochemicals, natural medicines and pharmaceuticals	
<i>Cultural services</i>	
Aesthetic values	Aesthetic values
Inspiration	Inspiration
Spiritual and religious values	Spiritual and cultural values
Sense of place	Identity and sense of place
Ecotourism	Nature-based tourism
Recreation	Recreation
Educational values	Science and education
Cultural diversity	
Knowledge systems	
Social relations	
Cultural heritage values	

Highlighted in gray are services identified in MEA for which small streams do not presently contribute much; as knowledge on these systems accumulates, additional ecosystem services may be identified in the future

high-quality water), and cultural services (mostly esthetic values, nature-based tourism, and recreation) (Table 4).

Headwaters are isolated due to their higher position in the hydrographic network, which makes them vulnerable to environmental changes that lead to local species extinctions (e.g., warming, forest change). The high hydromorphological and habitat heterogeneity allow for high variation in species richness across streams (i.e., high β -diversity), and therefore, they

contribute to regional biodiversity (i.e., γ -diversity) (Clarke et al., 2008; Finn et al., 2011; Besemer et al., 2013; Jyrkäkallio-Mikkola et al., 2018). However, by inhabiting the smallest, highest elevation streams already, these aquatic species do not have higher elevation refugia reaches to escape to in case environmental and/or biotic conditions deteriorate (e.g., warming, invasion by exotic species). Species loss in these small streams may be difficult to reverse since they lack upstream sources of colonists and

colonization from other small streams may be difficult due to high variation in diversity between streams and to limited dispersal capabilities (e.g., macroinvertebrates without flying adults) (Parkyn & Smith, 2011), which will have negative influences on regional diversity. Species extinctions affect all biological-driven ecosystem services such as primary production (supporting service), carbon and nitrogen sequestration (regulating service), and food (provisioning service) (Table 4).

Conclusions

Of the 33 ecosystem services identified by the MEA (2003, 2005), 23 are (fully or partially) provided by small streams; four additional ecosystem services were identified (Table 5). These ecosystems are also key to maintaining aquatic and riparian productivity, as sinks for potentially harmful solutes and in terms of carbon and nitrogen sequestration. Additionally, small streams make a fundamental contribution to regional biodiversity owing to their high variation in species composition and preservation of specialist taxa. Because of their large numbers and broad distribution, small streams also present a wide diversity of environmental and habitat conditions that are favorable for different and diverse organisms. The high number of ecosystem services provided by small streams makes them critical to human wellbeing and biodiversity. Therefore, stronger efforts need to be pursued to protect small streams, and to restore those that are degraded. The protection of small streams (e.g., establishment of micro-reserves) can be extremely cost-efficient considering the gain in biodiversity and other ecosystem services. Nevertheless, it is not enough to protect small streams only on public lands (e.g., protected areas); those within private properties need to be sustainably managed as well. For private owners to engage in the protection of small streams, their importance in the landscape and for human wellbeing, their vulnerability to human activities, and the consequences of environmental changes on their ability to provide ecosystem services need to be conveyed to society.

Author contributions VF idealized the review. All authors contributed sections to the review, revised the manuscript and approved the final version.

Funding VF was supported by the Portuguese Foundation for Science and Technology (UIDB/04292/2020, LA/P/0069/2020, CEEIND/02484/2018), RA was supported by the FONCYT-Argentina (PICT-2020-serieA-1426), CJL was supported by a grant from the National Science Foundation (NSF DEB #1836387), FOM was supported by a grant from the National Research Fund, Kenya (FY 2017/2018) and MSM was supported by a research productivity grant from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; # 316372/2021-8).

Data availability Not applicable.

Code availability Not applicable.

Declarations

Conflict of interest The authors declare no conflict of interests.

References

- Acuña, V., J. R. Díez, L. Flores, M. Meleason & A. Elosegi, 2013. Does it make economic sense to restore rivers for their ecosystem services? *Journal of Applied Ecology* 50: 988–997.
- Adger, W. N., H. Adams, S. Kay, R. J. Nicholls, C. W. Hutton, S. E. Hanson, M. M. Rahman & M. Salehin, 2018. Ecosystem services, well-being and deltas: current knowledge and understanding. In Nicholls R. J., C. W. Hutton, W. N. Adger, S. E. Hanson, M. M. Rahman & M. Salatin (eds), *Ecosystem Services for Well-Being in Deltas*. Palgrave, MacMillan, Cham: 3–27.
- Alexander, R. B., R. A. Smith & G. E. Schwarz, 2000. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. *Nature* 403: 758–776.
- Alexander, R. B., E. W. Boyer, R. A. Smith, G. E. Schwarz & R. B. Moore, 2007. The role of headwater streams in downstream water quality. *Journal of the American Water Resources Association* 43: 41–59.
- Allan, J. D., M. M. Castillo & K. A. Capps, 2021. *Stream Ecology: Structure and Function of Running Waters*. Springer Nature.
- Allen, K. R., 1951. The Horokiwi Stream: a study of a trout population. New Zealand Department of Fisheries Bulletin 10: 1–231.
- Ashworth, K. & W. Vizuete, 2017. High time to assess the environmental impacts of cannabis cultivation. *Environmental Science & Technology* 51: 2531–2533.
- Baba, Y. G., Y. Watari, M. Nishi & T. Sasaki, 2019. Notes on the feeding habits of the Okinawan fishing spider, *Dolomedes orion* (Araneae: Pisauridae), in the southwestern islands of Japan. *The Journal of Arachnology* 47: 154–158.

Bagstad, K. J., D. J. Semmens, S. Waage & R. Winthrop, 2013. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. *Ecosystem Services* 5: 27–39.

Bastian, O., K. Grunewald & R. U. Syrbe, 2012. Space and time aspects of ecosystem services, using the example of the EU Water Framework Directive. *International Journal of Biodiversity Science, Ecosystem Services and Management* 8: 5–16.

Battin, T. J., L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Martí, A. I. Packman, J. D. Newbold & F. Sabater, 2008. Biophysical controls on organic carbon fluxes in fluvial networks. *Nature Geoscience* 1: 95–100.

Battin, T. J., K. Besemer, M. M. Bengtsson, A. M. Romani & A. I. Packmann, 2016. The ecology and biogeochemistry of stream biofilms. *Nature Reviews Microbiology* 14: 251–263.

Baum, E. T., 1997. Maine Atlantic Salmon: A National Treasure, 1st ed. Atlantic Salmon Unlimited, Hermon, Maine.

Baxter, C. V., K. D. Fausch & W. C. Saunders, 2005. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. *Freshwater Biology* 50: 201–220.

Beaulieu, J. J., P. M. Mayer, S. S. Kaushal, M. J. Pennino, C. P. Arango, D. A. Balz, T. J. Canfield, C. M. Elonen, K. M. Fritz, B. H. Hill, H. Ryu & J. W. S. Domingo, 2014. Effects of urban stream burial on organic matter dynamics and reach scale nitrate retention. *Biogeochemistry* 121: 107–126.

Beaulieu, J. J., H. E. Golden, C. D. Knights, P. M. Mayer, S. S. Kaushal, M. J. Pennino, C. P. Arango, D. A. Balz, C. M. Elonen, K. M. Fritz & B. H. Hill, 2015. Urban stream burial increases watershed-scale nitrate export. *PLoS One* 10: e0132256.

Beechie, T. & T. H. Sibley, 1997. Relationships between channel characteristics, woody debris and fish habitat in northwestern Washington streams. *Transactions of the American Fisheries Society* 126: 217–229.

Beeson, C. E. & P. F. Doyle, 1995. Comparison of bank erosion at vegetated and non-vegetated channel bends. *Water Resources Bulletin* 31: 983–990.

Bergknut, M., H. Laudon, S. Jansson, A. Larsson, T. Gocht & K. Wiberg, 2011. Atmospheric deposition, retention, and stream export of dioxins and PCBs in a pristine boreal catchment. *Environmental Pollution* 159: 1592–1598.

Bergström, A. K., 2020. Hydrological controls on pelagic food structure: from shunts to chemostats as caused by runoff magnitudes and frequency of episodes. *Hydrological Processes* 34: 4150–4155.

Bernal, S., D. von Schiller, F. Sabater & E. Martí, 2013. Hydrological extremes modulate nutrient dynamics in mediterranean climate streams across different spatial scales. *Hydrobiologia* 719: 31–42.

Beschta, R. L. & W. S. Platts, 1986. Morphological features of small streams: significance and function. *Journal of the American Water Resources Association* 22: 369–379.

Besemer, K., G. Singer, C. Quince, E. Bertuzzo, W. Sloan & T. J. Battin, 2013. Headwaters are critical reservoirs of microbial diversity for fluvial networks. *Proceedings of the Royal Society b: Biological Sciences* 280: 20131760.

Bhattacharjee, K. & B. Behera, 2017. Forest cover change and flood hazards in India. *Land Use Policy* 67: 436–448.

Biggs, J., S. von Fumetti & M. Kelly-Quinn, 2017. The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. *Hydrobiologia* 793: 3–39.

Bilby, R. E., 1981. Role of organic debris dams in regulating the export of dissolved and particulate matter from a forested watershed. *Ecology* 62: 1234–1243.

Bilby, R. E., E. Beach, B. Fransen, J. Walter & P. Bisson, 2003. Transfer of nutrients from spawning salmon to riparian vegetation in western Washington. *Transactions of the American Fisheries Society* 132: 733–745.

Birgand, F., R. W. Skaggs, G. M. Chescheir & J. W. Gilliam, 2007. Nitrogen removal in streams of agricultural catchments—a literature review. *Critical Reviews in Environmental Science and Technology* 37: 381–487.

Blanchet, S., J. G. Prunier, I. Paz-Vinas, K. Saint-Pé, O. Rey, A. Raffard & e. Mathieu-Bégné, G. Loot, L. Fournue & V. Dubut, 2020. A river runs through it: the causes, consequences, and management of intraspecific diversity in river networks. *Evolutionary Applications* 13: 1195–1213.

Brasil, 2012. http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm

Bricker, O. P. & K. C. Rice, 1989. Acidic deposition to streams: a geology-based method predicts their sensitivity. *Environmental Science & Technology* 23: 379–385.

Brittain, J. E. & T. J. Eikeland, 1988. Invertebrate drift—a review. *Hydrobiologia* 166: 77–93.

Bunte, K., K. W. Swingle, J. M. Turowski, S. R. Abt & D. A. Cenderelli, 2016. Measurements of coarse particulate organic matter transport in steep mountain streams and estimates of decadal CPOM exports. *Journal of Hydrology* 539: 162–176.

Burrows, R. M., M. Jonsson, E. Fältström, J. Andersson & R. A. Sponseller, 2021. Interactive effects of light and nutrients on stream algal growth modified by forest management in boreal landscapes. *Forest Ecology and Management* 492: 119212.

Cabette, H. S., J. R. Souza, Y. Shimano & L. Juen, 2017. Effects of changes in the riparian forest on the butterfly community (Insecta: Lepidoptera) in Cerrado areas. *Revista Brasileira De Entomologia* 61: 43–50.

Campacci, C., 2012. Os sobrenomes mais comuns do Brasil. Vol. II. Clube de Autores.

Cannon, S. H. & J. E. Gartner, 2005. Wildfire-related debris flow from a hazards perspective. In Matthias, J. & O. Hungr (eds), *Debris-flow Hazards and Related Phenomena* Springer, Berlin: 363–385.

Cebrian, J. & J. Lartigue, 2004. Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. *Ecological Monographs* 7: 237–259.

Chapman, A. D., S. E. Darby, H. M. Hōng, E. L. Tompkins & T. P. Van, 2016. Adaptation and development trade-offs: fluvial sediment deposition and the sustainability of rice-cropping in An Giang Province, Mekong Delta. *Climatic Change* 137: 593–608.

Cheng, J. D., L. L. Lin & H. S. Lu, 2002. Influences of forests on water flows from headwater watersheds in Taiwan. *Forest Ecology and Management* 165: 11–28.

Chiwa, M., S. Inoue, N. Tashiro, D. Ohgi, Y. Uehara, H. Shiba & A. Kume, 2015. Assessing the role of forests

in mitigating eutrophication downstream of pasture during spring snowmelt. *Hydrological Processes* 29: 615–623.

Clarke, A., R. MacNally, N. Bond & P. S. Lake, 2008. Macroinvertebrate diversity in headwater streams: a review. *Freshwater Biology* 53: 1707–1721.

Coats, W. A. & C. R. Jackson, 2020. Riparian canopy openings on mountain streams: landscape controls upon temperature increases within openings and cooling downstream. *Hydrological Processes* 34: 1966–1980.

Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. *Ecosystems* 10: 172–185.

Colvin, S. A., S. M. P. Sullivan, P. D. Shirey, R. W. Colvin, K. O. Winemiller, R. M. Hughes, K. D. Fausch, D. M. Infante, J. D. Olden, K. R. Bestgen, R. J. Danehy & L. Eby, 2019. Headwater streams and wetlands are critical for sustaining fish, fisheries, and ecosystem services. *Fisheries* 44: 73–91.

Couto, T. B. & J. D. Olden, 2018. Global proliferation of small hydropower plants—science and policy. *Frontiers in Ecology and the Environment* 16: 91–100.

Covino, T., 2017. Hydrologic connectivity as a framework for understanding biogeochemical flux through watersheds and along fluvial networks. *Geomorphology* 277: 133–144.

Crnobrnja-Isailović, J., B. Jovanović, M. Ilić, J. Čorović, T. Čubrić, D. Stojadinović & N. Čosić, 2021. Small hydropower plants' proliferation would negatively affect local herpetofauna. *Frontiers in Ecology and Evolution* 9: 610325.

Cuffney, T. F., J. B. Wallace & G. J. Lugthart, 1990. Experimental evidence quantifying the role of benthic invertebrates in organic matter dynamics of headwater streams. *Freshwater Biology* 23: 281–299.

Cumberlidge, N., 2011. The status and distribution of freshwater crabs. In Brooks, E. G. E., D. J. Allen & W. R. T. Darwall (ed), *The Status and Distribution of Freshwater Biodiversity in Central Africa*. International Union for Conservation of Nature.

Daily, G., 1997. *Nature's Services: Societal Dependence on Natural Ecosystems*. Island Press, Washington DC.

Danehy, R. J. & B. J. Kirpes, 2000. Relative humidity gradients across riparian areas in eastern Oregon and Washington forests. *Northwest Science* 74: 224–233.

Danger, M., J. Cornut, E. Chauvet, P. Chavez, A. Elger & A. Lecerf, 2013. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? *Ecology* 94: 1604–1613.

Datry, T., S. T. Larned & K. Tockner, 2014. Intermittent rivers: a challenge for freshwater ecology. *BioScience* 64: 229–235.

Datry, T., A. J. Boulton, N. Bonada, K. Fritz, C. Leigh, E. Sauquet, K. Tockner, B. Hugueny & C. N. Dahm, 2018. Flow intermittence and ecosystem services in rivers of the Anthropocene. *Journal of Applied Ecology* 55: 353–364.

de Vries, J., M. H. Kraak, R. C. Verdonschot & P. F. Verdonschot, 2019. Quantifying cumulative stress acting on macroinvertebrate assemblages in lowland streams. *Science of the Total Environment* 694: 133630.

Deitch, M. J., A. M. Merenlender & S. Feirer, 2013. Cumulative effects of small reservoirs on streamflow in northern coastal California catchments. *Water Resources Management* 27: 5101–5118.

Diegues, A. C. S., 2006. *O Mito Moderno da Natureza Intocada*, 6^a Nupaub, Universidade de São Paulo, Hucitec.

Dobson, M., 2004. Freshwater crabs in Africa. *Freshwater Forum* 21: 3–26.

Doughty, C. E., J. Roman, S. Faurby, A. Wolf, A. Haque, E. S. Bakker, Y. Malhi, J. B. Dunning Jr. & J.-C. Svenning, 2016. Global nutrient transport in a world of giants. *Proceedings of the National Academy of Sciences* 113: 868–873.

Downing, J. A., J. J. Cole, C. M. Duarte, J. J. Middelburg, J. M. Melack, Y. T. Prairie, P. Kortelainen, R. G. Striegl, W. H. McDowell & L. J. Tranvik, 2012. Global abundance and size distribution of streams and rivers. *Inland Waters* 2: 229–236.

Dudley, N. & S. Stolton, 2003. Running pure: the importance of forest protected areas to drinking water. *World Bank/WWF Alliance for Forest Conservation and Sustainable Use*. © World Bank. <https://openknowledge.worldbank.org/handle/10986/15006>. License: CC BY 3.0 IGO.

Dung, B. X., T. Gomi, S. Miyata, R. C. Sidle, K. Kosugi & Y. Onda, 2012. Runoff responses to forest thinning at plot and catchment scales in a headwater catchment draining Japanese cypress forest. *Journal of Hydrology* 444–445: 51–62.

Ehrlich, P. & A. Ehrlich, 1981. *Extinction: The Causes and Consequences of the Disappearance of Species*, Random House, New York.

Elosegi, A. & L. B. Johnson, 2003. Wood in streams and rivers in developed landscapes. *American Fisheries Society Symposium* 37: 337–353.

Elosegi, A., J. Díez & J. Pozo, 2007. Contribution of dead wood to the carbon flux in forested streams. *Earth Surface Processes and Landforms* 32: 1219–1228.

Erdozain, M., K. A. Kidd, E. J. Emilson, S. S. Capell, T. Luu, D. P. Kreutzweiser & M. A. Gray, 2021. Forest management impacts on stream integrity at varying intensities and spatial scales: do biological effects accumulate spatially? *Science of the Total Environment* 763: 144043.

Eroglu, E., S. Kaya, T. G. Dogan, A. Meral, S. Demirci, N. Başaran & O. L. Corbaci, 2018. Determination of the visual preferences of different habitat types. *Preprints*: 2018070243.

Eskelson, B. N. I., P. D. Anderson & H. Temesgen, 2013. Modeling relative humidity in headwater forests using correlation with air temperature. *Northwest Science* 87: 40–58.

European Commission, 2000. Directive 2000/60/EC. European Parliament and Council. *Official Journal of the European Communities* 22 December: 1–72.

Evans-White, M. A. & H. M. Halvorson, 2017. Comparing the ecological stoichiometry in green and brown food webs—a review and meta-analysis of freshwater food webs. *Frontiers in Microbiology* 8: 1184.

EVE (Ente Vasco de Energía), 1995. *Minihidráulica en el País Vasco*, Bilbao, Spain.

Falke, J. A., L. L. Bailey, K. D. Fausch & K. R. Bestgen, 2012. Colonization and extinction in dynamic habitats: an occupancy approach for a Great Plains stream fish assemblage. *Ecology* 93: 858–867.

Fellman, J. B., E. Hood, R. T. Edwards & D. V. D'Amore, 2008. Return of salmon-derived nutrients from the riparian zone to the stream during a storm in southeastern Alaska. *Ecosystems* 11: 537–544.

Ferreira, V. & C. Canhoto, 2014. Effect of experimental and seasonal warming on litter decomposition in a temperate stream. *Aquatic Sciences* 76: 155–163.

Ferreira, V., M. A. S. Graça, M. J. Feio & C. Mieiro, 2004. Water quality in the Mondego river basin: pollution and habitat heterogeneity. *Limnetica* 23: 295–306.

Ferreira, V., V. Gulis & M. A. S. Graça, 2006. Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. *Oecologia* 149: 718–729.

Ferreira, V., J. Castela, P. Rosa, A. M. Tonin, L. Boyero & M. A. S. Graça, 2016a. Aquatic hyphomycetes, benthic macroinvertebrates and leaf litter decomposition in streams naturally differing in riparian vegetation. *Aquatic Ecology* 50: 711–725.

Ferreira, V., J. Koricheva, J. Pozo & M. A. S. Graça, 2016b. A meta-analysis on the effects of changes in the composition of native forests on litter decomposition in streams. *Forest Ecology and Management* 364: 27–38.

Ferreira, V., A. Figueiredo, M. A. S. Graça, E. Marchante & A. Pereira, 2021. Invasion of temperate deciduous broadleaf forests by N-fixing tree species—consequences for stream ecosystems. *Biological Reviews* 96: 877–902.

Finn, D. S., N. Bonada, C. Múrria & J. M. Hughes, 2011. Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization. *Journal of the North American Benthological Society* 30: 963–980.

Fischer, S. G. & G. E. Likens, 1973. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. *Ecological Monographs* 43: 421–439.

Flores, L., A. Larrañaga, J. Diez & A. Elosegi, 2011. Experimental wood addition in streams: effects on organic matter storage and breakdown. *Freshwater Biology* 56: 2156–2167.

Flores, L., A. Giorgi, J. M. González, A. Larrañaga, J. R. Díez & A. Elosegi, 2017. Effects of wood addition on stream benthic invertebrates differed among seasons at both habitat and reach scales. *Ecological Engineering* 106: 116–123.

Frainer, A. & B. G. McKie, 2021. The legacy of forest disturbance on stream ecosystem functioning. *Journal of Applied Ecology* 58: 1511–1522.

Friberg, N., M. J. Winterbourn, K. A. Shearer & S. E. Larsen, 1997. Benthic communities of forest streams in the South Island, New Zealand: effects of forest type and location. *Archiv Für Hydrobiologie* 138: 289–306.

Friberg, N., J. B. Dybkaer, J. S. Olafsson, G. M. Gislason, S. E. Larsen & T. L. Lauridsen, 2009. Relationships between structure and function in streams contrasting in temperature. *Freshwater Biology* 54: 2051–2068.

García, R. D., M. Reissig, C. P. Queimaliños, P. E. García & M. C. Dieguez, 2015. Climate-driven terrestrial inputs in ultraoligotrophic mountain streams of Andean Patagonia revealed through chromophoric and fluorescent dissolved organic matter. *Science of the Total Environment* 521: 280–292.

García, R. D., M. D. C. Diéguez, M. Gerea, P. E. García & M. Reissig, 2018. Characterisation and reactivity continuum of dissolved organic matter in forested headwater catchments of Andean Patagonia. *Freshwater Biology* 63: 1049–1062.

Garthwaite, I. J., A. Frodin-Morgensen, S. H. Hartford, S. M. Claeson, J. M. R. Hobbs & C. J. LeRoy, 2021. Summer flower pulses: Catkin litter processing in headwater streams. *Fundamental and Applied Limnology* 195: 243–254.

Geertsema, M., L. Highland & L. Vaugeouis, 2009. Environmental impact of landslides. In Sassa, K. & P. Canuti (eds), *Landslides—Disaster Risk Reduction* Springer, Berlin, Heidelberg: 589–607.

Gende, S. M., R. T. Edwards, M. F. Willson & M. S. Wipfli, 2002. Pacific salmon in aquatic and terrestrial ecosystems. *BioScience* 52: 917–928.

Gessner, M. O., C. M. Swan, C. K. Dang, B. G. McKie, R. D. Bardgett, D. H. Wall & S. Hättenschwiler, 2010. Diversity meets decomposition. *Trends in Ecology & Evolution* 25: 372–380.

Glass, J. R. & C. H. Floyd, 2015. Effects of proximity to riparian zones on avian species richness and abundance in montane aspen woodlands. *Journal of Field Ornithology* 86: 252–265.

Gomi, T., R. C. Sidle & J. S. Richardson, 2002. Understanding processes and downstream linkages of headwater systems: headwaters differ from downstream reaches by their close coupling to hillslope processes, more temporal and spatial variation, and their need for different means of protection from land use. *BioScience* 52: 905–916.

Gomi, T., R. C. Sidle, S. Miyata, K. Kosugi & Y. Onda, 2008. Dynamic runoff connectivity of overland flow on steep forested hillslopes: scale effects and runoff transfer. *Water Resources Research* 44: W08411.

Göthe, E., F. Lepori & B. Malmqvist, 2009. Forestry affects food webs in northern Swedish coastal streams. *Fundamental and Applied Limnology* 175: 281.

Grabowski, R. C. & A. M. Gurnell, 2016. Diagnosing problems of fine sediment delivery and transfer in a lowland catchment. *Aquatic Sciences* 78: 95–106.

Gray, D. M., 1965. Physiographic characteristics and the runoff patterns: proceedings of Hydrology Symposium, No. 4, Research Watershed, National Research Council of Canada, pp 147–164.

Gray, L. J., 1993. Response of insectivorous birds to emerging aquatic insects in riparian habitats of a tallgrass prairie stream. *American Midland Naturalist* 129: 288–300.

Gregory, S. V., K. L. Boyer & A. M. Gurnell, eds. 2003. *The Ecology and Management of Wood in World Rivers: International Conference on Wood in World Rivers, held at Oregon State Univ., Corvallis, Oregon, 23–27 October 2000*. American Fisheries Society Symposium 37. Bethesda, MD: American Fisheries Society.

Gulis, V. & K. Suberkropp, 2003. Leaf litter decomposition and microbial activity in nutrient-enriched and

unaltered reaches of a headwater stream. *Freshwater Biology* 48: 123–134.

Gulis, V., V. Ferreira & M. A. S. Graça, 2006. Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. *Freshwater Biology* 51: 1655–1669.

Gurnell, A., 2012. Fluvial geomorphology: wood and river landscapes. *Nature Geoscience* 5: 93–94.

Guthrie, R. H., 2002. The effects of logging on frequency and distribution of landslides in three watersheds on Vancouver Island, British Colum 20bia. *Geomorphology* 43: 273–292.

Gutiérrez, M.R.V.-A., N. Nicolás-Ruiz, M. M. Sánchez-Montoya & M. L. S. Alonso, 2022. Ecosystem services provided by dry river socio-ecological systems and their drivers of change. *Hydrobiologia*. <https://doi.org/10.1007/s10750-022-04915-8>.

Hagen, E. M., M. E. McTammany, J. R. Webster & E. F. Benfield, 2010. Shifts in allochthonous input and autochthonous production in streams along an agricultural land-use gradient. *Hydrobiologia* 655: 61–77.

Hammitt, W. E., M. E. Patterson & F. P. Noe, 1994. Identifying and predicting visual preference of southern Appalachian forest recreation vistas. *Landscape and Urban Planning* 29: 171–183.

Hannah, D. M., I. A. Malcolm, C. Soulsby & A. F. Youngson, 2008. A comparison of forest and moorland stream microclimate, heat exchanges and thermal dynamics. *Hydrological Processes* 22: 919–940.

Harjung, A., N. Perujo, A. Butturini, A. M. Romaní & F. Sabater, 2019. Responses of microbial activity in hyporheic pore water to biogeochemical changes in a drying headwater stream. *Freshwater Biology* 64: 735–749.

Harvey, J. W. & B. J. Wagner, 2000. Quantifying hydrologic interactions between streams and their subsurface hyporheic zones. In Jones, J. A. & P. J. Mulholland (eds), *Streams and Groundwaters* Academic Press, New York: 3–44.

Harvey, J. W., M. H. Conklin & R. S. Koelsch, 2003. Predicting changes in hydrologic retention in an evolving semi-arid alluvial stream. *Advances in Water Resources* 26: 939–950.

Helfield, J. M. & R. J. Naiman, 2002. Salmon and alder as nitrogen sources to riparian forests in a boreal Alaskan watershed. *Oecologia* 133: 573–582.

Hilderbrand, G. V., T. A. Hanley, C. T. Robbins & C. C. Schwartz, 1999. Role of brown bears (*Ursus arctos*) in the flow of marine nitrogen into a terrestrial ecosystem. *Oecologia* 121: 546–550.

Hill, W. R., M. G. Ryon & E. M. Schilling, 1995. Light limitation in a stream ecosystem—responses by primary producers and consumers. *Ecology* 76: 1297–1309.

Hill, B. H., R. K. Kolka, F. H. McCormick & M. A. Starry, 2014. A synoptic survey of ecosystem services from headwater catchments in the United States. *Ecosystem Services* 7: 106–115.

Hladyz, S., K. Åbjörnsson, P. S. Giller & G. Woodward, 2011. Impacts of an aggressive riparian invader on community structure and ecosystem functioning in stream food webs. *Journal of Applied Ecology* 48: 443–452.

Hoffmann, A. & D. Hering, 2000. Wood-associated macroinvertebrate fauna in Central European streams. *International Review of Hydrobiology* 85: 25–48.

Hogg, I. D. & D. D. Williams, 1996. Response of stream invertebrates to a global warming thermal regime: an ecosystem-level manipulation. *Ecology* 77: 395–407.

Hong, S. Y., T. W. Wang, Y. H. Sun, M. C. Chiu, M. H. Kuo & C. C. Chen, 2019. Stream type influences food abundance and reproductive performance of a stream specialist: the Brown Dipper (*Cinclus pallasii*). *Journal of Ornithology* 160: 105–115.

Hong, J. Y., Z. T. Ong, B. Lam, K. Ooi, W. S. Gan, J. Kang, J. Feng & S. T. Tan, 2020. Effects of adding natural sounds to urban noises on the perceived loudness of noise and soundscape quality. *Science of the Total Environment* 711: 134571.

Horton, R. E., 1945. Erosional development of streams and their drainage basins. *Geological Society of America Bulletin* 56: 275–370.

Hudson, B. J., 2000. The experience of waterfalls. *Australian Geographical Studies* 38: 71–84.

Hughes, A. O., 2016. Riparian management and stream bank erosion in New Zealand. *New Zealand Journal of Marine and Freshwater Research* 50: 277–290.

Hutson, A. M., L. A. Toya & D. Tave, 2018. Determining preferred spawning habitat of the endangered Rio Grande silvery minnow by hydrological manipulation of a conservation aquaculture facility and the implications for management. *Ecohydrology* 11: e1964.

Imaizumi, F., R. C. Sidle & R. Kamei, 2008. Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan. *Earth Surface Processes and Landforms* 33: 827–840.

Inoue, M., S. I. Shinotou, Y. Maruo & Y. Miyake, 2012. Input, retention, and invertebrate colonization of allochthonous litter in streams bordered by deciduous broadleaved forest, a conifer plantation, and a clear-cut site in southwestern Japan. *Limnology* 13: 207–219.

Jackson, R. B., E. G. Jobbágy, R. Avissar, S. B. Roy, D. J. Barrett, C. W. Cook, K. A. Farley, D. C. le Maitre, B. A. McCarl & B. C. Murray, 2005. Trading water for carbon with biological carbon sequestration. *Science* 310: 1944–1947.

Jaeger, K. L., J. D. Olden & N. A. Pellant, 2014. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. *Proceedings of the National Academy of Sciences of the United States of America* 111: 13894–13899.

Jana, P., S. Dasgupta & N. P. Todaria, 2017. Impact and ecosystem service of forest and sacred grove as saviour of water quantity and quality in Garhwal Himalaya, India. *Environmental Monitoring and Assessment* 189: 477.

Jefferies, R. L., 2000. Allochthonous inputs: integrating population changes and food-web dynamics. *Trends in Ecology and Evolution* 15: 19–22.

Jeon, J. Y., P. J. Lee, J. You & J. Kang, 2010. Perceptual assessment of quality of urban soundscapes with combined noise sources and water sounds. *The Journal of the Acoustical Society of America* 127: 1357–1366.

Johnson, S. L. & J. A. Jones, 2000. Stream temperature responses to forest harvest and debris flows in western

Cascades, Oregon. Canadian Journal of Fisheries and Aquatic Sciences 57: 30–39.

Jones, N. E., 2010. Incorporating lakes within the river discontinuum: longitudinal changes in ecological characteristics in stream–lake networks. Canadian Journal of Fisheries and Aquatic Sciences 67: 1350–1362.

Jones, J. I., J. F. Murphy, A. L. Collins, D. A. Sear, P. S. Naden & P. D. Armitage, 2012. The impact of fine sediment on macro-invertebrates. River Research and Applications 28: 1055–1071.

Junk, W. J., M. G. M. Soares & P. B. Bayley, 2007. Freshwater fishes of the Amazon River basin: their biodiversity, fisheries, and habitats. Aquatic Ecosystem Health and Management 10: 153–173.

Jyrkäkallio-Mikkola, J., M. Siljander, V. Heikinheimo, P. Pellikka & J. Soininen, 2018. Tropical stream diatom communities—the importance of headwater streams for regional diversity. Ecological Indicators 95: 183–193.

Karagül, R. & T. Çitgez, 2019. Estimation of peak runoff and frequency in an ungauged stream of a forested watershed for flood hazard mapping. Journal of Forestry Research 30: 555–564.

Kaste, J. M., A. J. Friedland & S. Sturup, 2003. Using stable and radioactive isotopes to trace atmospherically deposited Pb in montane forest soils. Environmental Science & Technology 37: 3560–3567.

Kawaguchi, Y., Y. Taniguchi & S. Nakano, 2003. Terrestrial invertebrate inputs determine the local abundance of stream fishes in a forested stream. Ecology 84: 701–708.

Kelly-Richards, S., N. Silber-Coats, A. Crootof, D. Tecklin & C. Bauer, 2017. Governing the transition to renewable energy: a review of impacts and policy issues in the small hydropower boom. Energy Policy 101: 251–264.

Kiffney, P. M., J. S. Richardson & J. P. Bull, 2003. Responses of periphyton and insects to experimental manipulation of riparian buffer width along forest streams. Journal of Applied Ecology 40: 1060–1076.

Kiffney, P. M., C. M. Greene, J. E. Hall & J. R. Davies, 2006. Tributary streams create spatial discontinuities in habitat, biological productivity, and diversity in Mainstem rivers. Canadian Journal of Fisheries and Aquatic Sciences 63: 2518–2530.

Knopf, F. L. & F. B. Samson, 1994. Scale perspectives on avian diversity in western riparian ecosystems. Conservation Biology 8: 669–676.

Koivusaari, P., M. V. Tejesvi, M. Tolkkinen, A. Markkola, H. Mykrä & A. M. Pirttilä, 2019. Fungi originating from tree leaves contribute to fungal diversity of litter in streams. Frontiers in Microbiology 10: 651.

Krawchuk, M. A., S. G. Cumming & M. D. Flannigan, 2009. Predicted changes in fire weather suggest increases in lightning fire initiation and future area burned in the mixedwood boreal forest. Climatic Change 92: 83–97.

Kristensen, P. & L. Globenvik, 2014. European small water bodies. Biology and Environment: Proceedings of the Royal Irish Academy 114: 281–287.

Kummu, M., H. De Moel, G. Salvucci, D. Viviroli, P. J. Ward & O. Varis, 2016. Over the hills and further away from coast: global geospatial patterns of human and environment over the 20th-21st centuries. Environmental Research Letters 11: 034010.

Landre, A. L., S. A. Watmough & P. J. Dillon, 2010. Metal pools, fluxes, and budgets in an acidified forested catchment on the precambrian shield, Central Ontario, Canada. Water Air and Soil Pollution 209: 209–228.

Lara, A., C. Little, R. Urrutia, J. McPhee, C. Álvarez-Garretón, C. Oyarzún, D. Soto, P. Donoso, L. Nahuelhual, M. Pino & I. Arismendi, 2009. Assessment of ecosystem services as an opportunity for the conservation and management of native forests in Chile. Forest Ecology and Management 258: 415–424.

Larned, S. T., 2010. A prospectus for periphyton: recent and future ecological research. Journal of the North American Benthological Society 29: 182–206.

Larrañaga, A., A. Basaguren, A. Elosegi & J. Pozo, 2009. Impacts of *Eucalyptus globulus* plantations on Atlantic streams: changes in invertebrate density and shredder traits. Fundamental and Applied Limnology 175: 151–160.

Larrañaga, S., A. Larrañaga, A. Basaguren, A. Elosegi & J. Pozo, 2014. Effects of exotic eucalypt plantations on organic matter processing in Iberian streams. International Review of Hydrobiiology 99: 363–372.

Larrañaga, A., A. Martínez, R. Albariño, J. J. Casas, V. Ferreira & R. Principe, 2021. Effects of exotic tree plantations on plant litter decomposition in streams. In Swan, C. M., L. Boyero & C. Canhoto (eds), *The Ecology of Plant Litter Decomposition in Stream Ecosystems* Springer, Cham: 297–322.

Lau, D. C. P., K. M. Y. Leung & D. Dudgeon, 2009. Are autochthonous food more important than allochthonous resources to benthic consumers in tropical headwater streams? Journal of the North American Benthological Society 28: 426–439.

Laubel, A., L. M. Svendsen, B. Kronvang & S. E. Larsen, 1999. Bank erosion in a Danish lowland stream system. Hydrobiologia 410: 279–285.

Law 25688, 2002. <http://servicios.infoleg.gob.ar/infolegInternet/anexos/80000-84999/81032/norma.htm>

Law 26331, 2007. <http://servicios.infoleg.gob.ar/infolegInternet/anexos/139000-139999/136125/norma.htm>

Law 26994, 2014. <http://servicios.infoleg.gob.ar/infolegInternet/verNorma.do?id=235975>

Lawler, D. M., J. R. Grove, J. S. Couperthwaite & G. J. L. Leeks, 1999. Downstream change in river bank erosion rates in the Swale-Ouse system, northern England. Hydrological Processes 13: 977–992.

Leopold, L. B., M. G. Wolman & J. P. Miller, 1964. Fluvial Processes in Geomorphology. W. H. Freeman and Company, San Francisco, California.

LeRoy, C. J., A. L. Hipp, K. Lueders, J. J. Follstad Shah, J. S. Kominoski, M. Ardón, W. K. Dodds, M. O. Gessner, N. A. Griffiths, A. Lecerf & D. W. Manning, 2020. Plant phylogenetic history explains in-stream decomposition at a global scale. Journal of Ecology 108: 17–35.

Likens, G. E. & F. H. Bormann, 1974. Linkages between terrestrial and aquatic ecosystems. BioScience 24: 447–456.

Liljedahl, A. K., A. Gádeke, S. O’Neel, T. A. Gatesman & T. A. Douglas, 2017. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska. Geophysical Research Letters 44: 6876–6885.

Lindberg, T. T., E. S. Bernhardt, R. Bier, A. M. Helton, R. B. Merola, A. Vengosh & R. T. Di Giulio, 2011. Cumulative impacts of mountaintop mining on an Appalachian watershed. *Proceedings of the National Academy of Sciences* 108: 20929–20934.

Lottig, N. R. & E. H. Stanley, 2007. Benthic sediment influence on dissolved phosphorus concentrations in a headwater stream. *Biogeochemistry* 84: 297–309.

Lowe, W. H. & G. E. Likens, 2005. Moving headwater streams to the head of the class. *BioScience* 55: 196–197.

Macadam, C. R. & J. A. Stockan, 2015. More than just fish food: ecosystem services provided by freshwater insects. *Ecological Entomology* 40: 113–123.

MacDonald, L. H. & D. Coe, 2007. Influence of headwater streams on downstream reaches in forested areas. *Forest Science* 53: 148–168.

Magoulick, D. D. & D. T. Lynch, 2015. Occupancy and abundance modeling of the endangered Yellowcheek Darter in Arkansas. *Copeia* 103: 433–439.

March, J. G. & C. M. Pringle, 2003. Food web structure and basal resource utilization along a tropical island stream continuum, Puerto Rico. *Biotropica* 35: 84–93.

Maréchal, J. C., M. R. Varma, J. Riotté, J. M. Vouillamoz, M. M. Kumar, L. Ruiz, M. Sekhar & J. J. Braun, 2009. Indirect and direct recharges in a tropical forested watershed: Mule Hole, India. *Journal of Hydrology* 364: 272–284.

Marks, J. C., 2019. Revisiting the fates of dead leaves that fall into streams. *Annual Review of Ecology, Evolution, and Systematics* 50: 547–568.

Martínez, A., A. Larrañaga, A. Basaguren, J. Pérez, C. Mendoza-Lera & J. Pozo, 2013. Stream regulation by small dams affects benthic macroinvertebrate communities: from structural changes to functional implications. *Hydrobiologia* 711: 31–42.

Martínez, A., A. Larrañaga, J. Pérez, C. Casado, J. J. Casas, J. M. González, M. Menéndez, S. Mollá & J. Pozo, 2017. Climate modulates the magnitude of the effects of flow regulation on leaf-litter decomposition. *Aquatic Sciences* 79: 507–514.

Masese, F. O., N. Kitaka, J. Kipkemboi, G. M. Gettel, K. Irvine & M. E. McClain, 2014. Macroinvertebrate functional feeding groups in Kenyan highland streams: evidence for a diverse shredder guild. *Freshwater Science* 33: 435–450.

Mason, C. F. & S. M. MacDonald, 1982. The input of terrestrial invertebrates from tree canopies to a stream. *Freshwater Biology* 12: 305–311.

McClure, C. J., A. C. Korte, J. A. Heath & J. R. Barber, 2015. Pavement and riparian forest shape the bird community along an urban river corridor. *Global Ecology and Conservation* 4: 291–310.

McGarigal, K. & W. C. McComb, 1992. Streamside versus upslope breeding bird communities in the central Oregon Coast Range. *The Journal of Wildlife Management* 56: 10–23.

Mendes, F., W. P. Kiffer & M. S. Moretti, 2017. Structural and functional composition of invertebrate communities associated with leaf patches in forest streams: a comparison between mesohabitats and catchments. *Hydrobiologia* 800: 115–127.

Messager, M. L., B. Lehner, C. Cockburn, N. Lamouroux, H. Pella, T. Snelder, K. Tockner, T. Trautmann & T. Datry, 2021. Global prevalence of non-perennial rivers and streams. *Nature* 594: 391–397.

Meyer, J. L., G. C. Poole & K. L. Jones, 2005. Buried alive: potential consequences of burying headwater streams in drainage pipes. *Georgia Institute of Technology*.

Meyer, J. M., L. A. Kaplan, D. Newbold, D. L. Strayer, C. J. Woltemade, J. B. Zedler, R. Beilfuss, Q. Carpenter, R. Semlitsch, M. C. Watzin & P. H. Zedler, 2007. Where rivers are born: the scientific imperative for defending small streams and wetlands. *Sierra Club and American Rivers*.

Millennium Ecosystem Assessment, 2003. *Ecosystems and Human Well-being: A Framework for Assessment*. Island Press, Washington D.C.

Millennium Ecosystem Assessment, 2005. *Ecosystems and Human Well-being: Synthesis*. Island Press, Washington D.C.

Mineau, M. M., W. M. Wollheim, I. Buffam, S. E. G. Findlay, R. O. Hall Jr., E. R. Hotchkiss, L. E. Koenig, W. H. McDowell & T. B. Parr, 2016. Dissolved organic carbon uptake in streams: a review and assessment of reach-scale measurements. *Journal of Geophysical Research: Biogeosciences* 121: 2019–2029.

Molinero, J. & J. Pozo, 2004. Impact of a eucalyptus (*Eucalyptus globulus* Labill.) plantation on the nutrient content and dynamics of coarse particulate organic matter (CPOM) in a small stream. *Hydrobiologia* 528: 143–165.

Monroy, S., A. Martínez, N. López-Rojo, A. V. Pérez-Calpe, A. Basaguren & J. Pozo, 2017. Structural and functional recovery of macroinvertebrate communities and leaf litter decomposition after a marked drought: does vegetation type matter? *Science of the Total Environment* 599: 1241–1250.

Moore, R. D. & S. M. Wondzell, 2005. Physical hydrology and the effects of forest harvesting in the Pacific Northwest: a review. *Journal of the American Water Resources Association* 41: 763–784.

Moore, R. D., D. L. Spittlehouse & A. Story, 2005. Riparian microclimate and stream temperature response to forest harvesting: a review. *Journal of the American Water Resources Association* 41: 813–834.

Morris, M. R. & J. A. Stanford, 2011. Floodplain succession and soil nitrogen accumulation on a salmon river in southwestern Kamchatka. *Ecological Monographs* 81: 43–61.

Mou, P. P., W. Qingcheng, A. E. Hershey, Y. Hongli & G. Baoqin, 2004. Land-use, stream order and stream water physical and chemical qualities. *Acta Ecologica Sinica* 24: 1486–1492.

Mulholland, P. J., 1992. Regulation of nutrient concentrations in a temperate forest stream: roles of upland, riparian, and in-stream processes. *Limnology and Oceanography* 37: 1512–1526.

Murakami, M. & S. Nakano, 2002. Indirect effect of aquatic insect emergence on a terrestrial insect population through predation by birds. *Ecology Letters* 5: 333–337.

Nadeau, T. L. & M. C. Rains, 2007. Hydrological connectivity between headwater streams and downstream waters: how

science can inform policy. JAWRA Journal of the American Water Resources Association 43: 118–133.

Naiman, R. J., E. V. Balian, K. K. Bartz, R. E. Bilby & J. J. Latterell, 2002. Dead wood dynamics in stream ecosystems. US Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, California, General Technical Report PSW-GTR-181: 23–48.

Nakano, S. & M. Murakami, 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences 98: 166–170.

Nakano, S., H. Miyasaka & N. Kuhara, 1999. Terrestrial–aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology 80: 2435–2411.

Naman, S. M., J. S. Rosenfeld & J. S. Richardson, 2016. Causes and consequences of invertebrate drift in running waters: from individuals to populations and trophic fluxes. Canadian Journal of Fisheries and Aquatic Sciences 73: 1292–1305.

Neary, D. G., C. G. Ice & C. R. Jackson, 2009. Linkages between forest soils and water quality and quantity. Forest Ecology and Management 258: 2269–2281.

Neres-Lima, V., E. F. Brito, F. A. M. Krsulović, A. M. Detweiler, A. E. Hershey & T. P. Moulton, 2016. High importance of autochthonous basal food source for the food web of a Brazilian tropical stream regardless of shading. International Review of Hydrobiiology 101: 132–142.

National Marine Fisheries Service (NOAA-Fisheries), 2009. Biological valuation of Atlantic Salmon habitat with the Gulf of Maine Distinct Population Segment. Gloucester, MA: National Marine Fisheries Service, Greater Atlantic Regional Fisheries Office.

Obiero, K. O., P. O. Wa'Munga, P. O. Raburu & J. B. Okeyo-Owuor, 2012. The people of Nyando Wetland: Socioeconomics, gender and cultural issues. In Raburu, P. O., J. B. Okeyo-Owuor & F. Kwena (eds), Community Based Approach to The Management of the Nyando Wetland, Lake Victoria Basin, Kenya. Kenya Disaster Concern - VIRED - UNDP: 32–52.

O'Gorman, E. J., D. E. Pichler, G. Adams, J. P. Benstead, H. Cohen, N. Craig, W. F. Cross, B. O. L. Demars, N. Friberg, G. M. Gislason, R. Gudmundsdóttir, A. Hawczak, J. M. Hood, L. N. Hudson, L. Johansson, M. P. Johansson, J. R. Junker, A. Laurila, J. R. Mansson, E. Mavromati, D. Nelson, J. S. Ólafsson, D. M. Perkins, O. L. Petchey, M. Plebani, D. C. Reuman, B. C. Rall, R. Stewart, M. S. A. Thompson & G. Woodward, 2012. Impacts of warming on the structure and functioning of aquatic communities: individual to ecosystem-level responses. Advances in Ecological Research 47: 81–176.

Olivier, K., 2001. The Ornamental Fish Market. GLOBEFISH Research Programme (FAO). FAO.

Pabst, R. J. & T. A. Spies, 1998. Distribution of herbs and shrubs in relation to landform and canopy cover in riparian forests of coastal Oregon. Canadian Journal of Botany 76: 298–315.

Padghane, S., S. P. Chavan & D. Dudhmal, 2016. Fresh water crab *Barytelphusa cunicularis* as a food commodity: Weekly crab market study of Nanded city, Maharashtra, India. International Journal of Fisheries and Aquatic Studies 4: 14–18.

Paiva, I., C. Ramos & L. Cunha, 2016. A especificidade da hidrodinâmica cárssica: as exsurgências do bordo ocidental do maciço de Sicó no contexto da bacia hidrográfica do rio Arunca. In Nunes, A., C. O. Moreira, I. R. Paiva & L. S. Cinha (eds), Territórios de Água | Water Territories Centro de Estudos de Geografia e Ordenamento do Território (CEGOT), Universidade de Coimbra, Coimbra: 44–56.

Parkyn, S. M. & B. J. Smith, 2011. Dispersal constraints for stream invertebrates: setting realistic timescales for biodiversity restoration. Environmental Management 48: 602–614.

Payn, T., J.-M. Carnus, P. Freer-Smith, M. Kimberley, W. Kollert, S. Liu, C. Orazio, L. Rodriguez, L. N. Silva & M. J. Wingfield, 2015. Changes in planted forests and future global implications. Forest Ecology and Management 352: 57–67.

Paz-Vinas, I., G. Loot, V. M. Stevens & S. Blanchet, 2015. Evolutionary processes driving spatial patterns of intraspecific genetic diversity in river ecosystems. Molecular Ecology 24: 4586–4604.

Pennino, M. J., S. S. Kaushal, J. J. Beaulieu, P. M. Mayer & C. P. Arango, 2014. Effects of urban stream burial on nitrogen uptake and ecosystem metabolism: implications for watershed nitrogen and carbon fluxes. Biogeochemistry 121: 247–269.

Peterson, B. J., W. M. Wollheim, P. J. Mulholland, J. R. Webster, J. L. Meyer, J. L. Tank, E. Martí, W. B. Bowden, H. M. Valett, A. E. Hershey, W. H. McDowell, W. K. Dodds, S. K. Hamilton, S. Gregory & D. D. Morrall, 2001. Control of nitrogen export from watersheds by headwater streams. Science 292: 86–90.

Piaggio, M. & J. Siikamäki, 2021. The value of forest water purification ecosystem services in Costa Rica. Science of the Total Environment 789: 147952.

Pond, G. J., K. M. Fritz & B. R. Johnson, 2016. Macroinvertebrate and organic matter export from headwater tributaries of a Central Appalachian stream. Hydrobiologia 779: 75–91.

Power, M. E., 1995. Floods, food chains, and ecosystem processes in rivers. In Jones, C. G. & J. H. Lawton (eds), Linking Species and Ecosystems Chapman & Hall, New York: 52–60.

Prein, A. F., C. Liu, K. Ikeda, S. B. Trier, R. M. Rasmussen, G. J. Holland & M. P. Clark, 2017. Increased rainfall volume from future convective storms in the US. Nature Climate Change 7: 880–884.

Prommi, T. O., 2018. Ecological and economic importance of Trichoptera (aquatic insect). Journal of Food Health and Bioenvironmental Science 11: 125–148.

Quinn, T. P., 2005. The Behavior and Ecology of Pacific Salmon and Trout, University of Washington Press, Seattle.

Raitif, J., M. Plantegenest & J. M. Roussel, 2019. From stream to land: ecosystem services provided by stream insects to agriculture. Agriculture, Ecosystems & Environment 270: 32–40.

Rambo, T. R. & M. P. North, 2008. Spatial and temporal variability of canopy microclimate in a Sierra Nevada riparian forest. *Northwest Science* 82: 259–268.

Ramião, J. P., F. Cássio & C. Pascoal, 2020. Riparian land use and stream habitat regulate water quality. *Limnologica* 82: 125762.

Raymond, P. A., J. E. Saiers & W. V. Sobczak, 2016. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept. *Ecology* 97: 5–16.

Reiter, M., R. E. Bilby, S. Beech & J. Heffner, 2015. Stream temperature patterns over 35 years in a managed forest of Western Washington. *Journal of the American Water Resources Association* 51: 1418–1435.

Reynolds, L. V., P. B. Shafroth & N. L. Poff, 2015. Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change. *Journal of Hydrology* 523: 768–780.

Rice, S. P., M. T. Greenwood & C. B. Joyce, 2001. Tributaries, sediment sources, and the longitudinal organisation of macroinvertebrate fauna along river systems. *Canadian Journal of Fisheries and Aquatic Sciences* 58: 824–840.

Richardson, J. S., 2019. Biological diversity in headwater streams. *Water* 11: 366.

Richardson, J. S., R. E. Bilby & C. A. Bondar, 2005. Organic matter dynamics in small streams of the Pacific Northwest. *Journal of the American Water Resources Association* 41: 921–934.

Richardson, J. S., T. Michalski & M. Becu, 2021. Stream inflows to lake deltas: a tributary junction that provides a unique habitat in lakes. *Freshwater Biology* 66: 2021–2029.

Riebe, C. S., L. S. Sklar, B. T. Overstreet & J. K. Wooster, 2014. Optimal reproduction in salmon spawning substrates linked to grain size and fish length. *Water Resources Research* 50: 898–918.

Robison, H. W. & T. M. Buchanan, 1988. *Fishes of Arkansas*, The University of Arkansas Press, Fayetteville.

Rolls, R. J., C. Leigh & F. Sheldon, 2012. Mechanistic effects of low-flow hydrology on riverine ecosystems: ecological principles and consequences of alteration. *Freshwater Science* 31: 1163–1186.

Rosemond, A. D., J. P. Benstead, P. M. Bumpers, V. Gulis, J. S. Kominoski, D. W. Manning, K. Suberkropp & J. B. Wallace, 2015. Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. *Science* 347: 1142–1145.

Rosi-Marshall, E. J., K. L. Vallis, C. V. Baxter & J. M. Davis, 2016. Retesting a prediction of the River Continuum Concept: autochthonous versus allochthonous resources in the diets of invertebrates. *Freshwater Science* 35: 534–543.

Rowland, R., S. Inamdar & T. Parr, 2017. Evolution of particulate organic matter (POM) along a headwater drainage: role of sources, particle size class, and storm magnitude. *Biogeochemistry* 133: 181–200.

Ryan, S. E., E. L. Bishop & J. M. Daniels, 2014. Influence of large wood on channel morphology and sediment storage in headwater mountain streams, Fraser Experimental Forest, Colorado. *Geomorphology* 217: 73–88.

Sabo, J. L. & M. E. Power, 2002. River–watershed exchange: effects of riverine subsidies on riparian lizards and their terrestrial prey. *Ecology* 83: 1860–1869.

Sabo, J. L., R. Sponseller, M. Dixon, K. Gade, T. Harms, J. Heffernan, A. Jani, G. Katz, C. Soykan, J. Watts & J. Welter, 2005. Riparian zones increase regional species richness by harboring different, not more, species. *Ecology* 86: 56–62.

Santos, P. P. & E. Reis, 2018. Assessment of stream flood susceptibility: a cross-analysis between model results and flood losses. *Journal of Flood Risk Management* 11: 1038–1050.

Schindler, D. E., R. Hilborn, B. Chasco, C. P. Boatright, T. P. Quinn, L. A. Rogers & M. S. Webster, 2010. Population diversity and the portfolio effect in an exploited species. *Nature* 465: 609–612.

Schirpke, U., S. Candiago, L. E. Vigl, H. Jäger, A. Labadini, T. Marsoner, C. Meisch, E. Tasser & U. Tappeiner, 2019. Integrating supply, flow and demand to enhance the understanding of interactions among multiple ecosystem services. *Science of the Total Environment* 651: 928–941.

Schoonover, J. E. & B. G. Lockaby, 2006. Land cover impacts on stream nutrients and fecal coliform in the lower Piedmont of West Georgia. *Journal of Hydrology* 331: 371–382.

Schuller, P., D. E. Walling, A. Iroumé & A. Castillo, 2010. Use of beryllium-7 to study the effectiveness of woody trash barriers in reducing sediment delivery to streams after forest clearcutting. *Soil and Tillage Research* 110: 143–153.

Scorpio, V., S. Crema, F. Marra, M. Righini, G. Ciccarese, M. Borga, M. Cavalli, A. Corsini, L. Marchi, N. Surian & F. Comiti, 2018. Basin-scale analysis of the geomorphic effectiveness of flash floods: a study in the northern Apennines (Italy). *Science of the Total Environment* 640: 337–351.

Seena, S., C. Baschien, J. Barros, K. R. Sridhar, M. A. S. Graça, H. Mykrä & M. Bundschuh, 2022. Ecosystem services provided by fungi in freshwaters: a wake-up call. *Hydrobiologia*. <https://doi.org/10.1007/s10750-022-05030-4>.

Seixas, G. B., C. N. Veldhuisen & M. Olis, 2020. Wood controls on pool spacing, step characteristics and sediment storage in headwater streams of the northwestern Cascade Mountains. *Geomorphology* 348: 106898.

Sidle, R. C., 2005. Influence of forest harvesting activities on debris avalanches and flows. In Matthias, J. & O. Hungr (eds), *Debris-flow Hazards and Related Phenomena* Springer, Berlin: 387–409.

Sklar, L. S., C. S. Riebe, J. A. Marshall, J. Genetti, S. Leclere, C. L. Lukens & V. Merces, 2017. The problem of predicting the size distribution of sediment supplied by hillslopes to rivers. *Geomorphology* 277: 31–49.

Sociedade Portuguesa de Informação Económica, 2004. Os 100 apelidos mais frequentes da população Portuguesa. https://web.archive.org/web/20131014174225/http://www.bbg.pt/sites_off/SPIE_01/faqs4.htm, accessed on 5 October 2021.

Somers, L. D. & J. M. McKenzie, 2020. A review of groundwater in high mountain environments. *Wiley Interdisciplinary Reviews: Water* 7: e1475.

Stammer, K. L., 2011. Extent, characteristics and downstream effects of stream enclosure in Southwestern Ontario. PhD dissertation. The University of Western Ontario.

Storey, R. G., D. D. Williams & R. R. Fulthorpe, 2004. Nitrogen processing in the hyporheic zone of a pastoral stream. *Biogeochemistry* 69: 285–313.

Stott, T., 1997. A comparison of stream bank erosion processes on forested and moorland streams in the Balquhidder catchments, central Scotland. *Earth Surface Processes and Landforms* 22: 383–399.

Strahler, A. N., 1957. Quantitative analysis of watershed geomorphology. *Transactions American Geophysical Union* 38: 913–920.

Stubbington, R., M. Acreman, V. Acuña, P. J. Boon, A. J. Boulton, J. England, D. Gilvear, T. Sykes & P. J. Wood, 2020. Ecosystem services of temporary streams differ between wet and dry phases in regions with contrasting climates and economies. *People and Nature* 2: 660–677.

Subehi, L., T. Fukushima, Y. Onda, S. Mizugaki, T. Gomi, T. Terajima, K. Kosugi, S. Hiramatsu, H. Kitahara, K. Kuraji & N. Ozaki, 2009. Influences of forested watershed conditions on fluctuations in stream water temperature with special reference to watershed area and forest type. *Limnology* 10: 33–45.

Suter, G. W. & S. M. Cormier, 2015. Why care about aquatic insects: uses, benefits, and services. *Integrated Environmental Assessment and Management* 11: 188–194.

Terweh, S., M. A. Hassan, L. Mao, L. Schrott & T. O. Hoffmann, 2021. Bio-climate affects hillslope and fluvial sediment grain size along the Chilean Coastal Cordillera. *Geomorphology* 384: 107700.

Thornton, G. J. P. & N. B. Dise, 1998. The influence of catchment characteristics, agricultural activities and atmospheric deposition on the chemistry of small streams in the English Lake District. *Science of the Total Environment* 216: 63–75.

Thorp, J. H. & M. D. Delong, 2002. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. *Oikos* 96: 543–550.

Thorp, J. H., M. C. Thoms & M. D. Delong, 2010. The Riverine Ecosystem Synthesis: Toward conceptual cohesiveness in river science. Elsevier.

Tockner, K. & J. A. Stanford, 2002. Riverine flood plains: present state and future trends. *Environmental Conservation* 29: 308–330.

Tockner, K., S. E. Bunn, C. Gordon, R. J. Naiman, G. P. Quinn & J. A. Stanford, 2008. Flood plains: Critically threatened ecosystems. In Polunin, N. V. C. (ed), *Aquatic Ecosystems* Cambridge University Press, Cambridge, Trends and Global Prospects: 45–62.

Townsend, C. R., 1989. The patch dynamics concept of stream community ecology. *Journal of the North American Benthological Society* 8: 36–50.

Turowski, J. M., R. G. Hilton & R. Sparkes, 2016. Decadal carbon discharge by a mountain stream is dominated by coarse organic matter. *Geology* 44: 27–30.

USEPA, 2009. Section 404 of the Clean Water Act. Geographic information systems analysis of the surface drinking water provided by intermittent, ephemeral, and headwater streams in the U.S. Washington, D.C. Retrieved from <https://www.epa.gov/cwa-404/geogr>

aphic-information-systems-analysis-surface-drinking-water-provided-intermittent

Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. *Canadian Journal of Fisheries and Aquatic Sciences* 37: 130–137.

Vincent, J. R., I. Ahmad, N. Adnan, W. B. Burwell, S. K. Pattanayak, J.-S. Tan-Soo & K. Thomas, 2016. Valuing water purification by forests: an analysis of Malaysian panel data. *Environmental and Resource Economics* 64: 59–80.

Viviroli, D. & Dürr B. Meybeck, M. Messerli & R. Weingartner, 2007. Mountains of the world, water towers for humanity: typology, mapping, and global significance. *Water Resources Research* 43: W07447.

Viviroli, D., M. Kummu, M. Meybeck, M. Kallio & Y. Wada, 2020. Increasing dependence of lowland populations on mountain water resources. *Nature Sustainability* 3: 917–928.

Von Döhren, P. & D. Haase, 2015. Ecosystem disservices research: a review of the state of the art with a focus on cities. *Ecological Indicators* 52: 490–497.

Wahl, M. H., H. N. McKellar & T. M. Williams, 1997. Patterns of nutrient loading in forested and urbanized coastal streams. *Journal of Experimental Marine Biology and Ecology* 213: 111–131.

Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. *Science* 277: 102–104.

Wang, Y., S. Atallah & G. Shao, 2017. Spatially explicit return on investment to private forest conservation for water purification in Indiana, USA. *Ecosystem Services* 26: 45–57.

Ward, J. V., 1989. The four-dimensional nature of lotic ecosystems. *Journal of the North American Benthological Society* 8: 2–8.

Ward, J. V. & J. A. Stanford, 1983. The serial discontinuity concept of lotic ecosystems. In Fontaine III, T. D & S. M Bartell (eds), *Dynamics of Lotic Ecosystems*. Ann Arbor Science Publishers, Ann Arbor MI: 29–42.

Ward, N. D., T. S. Bianchi, P. M. Medeiros, M. Seidel, J. E. Richey, R. G. Keil & H. O. Sawakuchi, 2017. Where carbon goes when water flows: carbon cycling across the aquatic continuum. *Frontiers in Marine Science* 4: 7.

Water Act, 2016. Ministry of Water, Sanitation & Irrigation. Government Printers, Nairobi. <https://wasreb.go.ke/downloads/Water%20Act%202016.pdf>. Accessed 20 November, 2021.

Weisner, S. E. B., P. G. Eriksson, W. Granell & L. Leonardsson, 1994. Influence of macrophytes on nitrate removal in wetlands. *Ambio* 23: 363–366.

Welsh, H. H., Jr. & G. R. Hodgson, 2011. Spatial relationships in a dendritic network: the herpetofaunal metacommunity of the Mattole River catchment of northwest California. *Ecography* 34: 49–66.

Welsh, M. K., P. G. Vidon & S. K. McMillan, 2021. Riparian seasonal water quality and greenhouse gas dynamics following stream restoration. *Biogeochemistry* 156: 453–474.

White, E., R. S. Starkey & M. J. Saunders, 1971. An assessment of the relative importance of several chemical

sources to the waters of a small upland catchment. *Journal of Applied Ecology* 8: 743–749.

White, M., A. Smith, K. Humphries, S. Pahl, D. Snelling & M. Depledge, 2010. Blue space: the importance of water for preference, affect, and restorativeness ratings of natural and built scenes. *Journal of Environmental Psychology* 30: 482–493.

Williams, C. J., Y. Yamashita, H. F. Wilson, R. Jaffé & M. A. Xenopoulos, 2010. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. *Limnology and Oceanography* 55: 1159–1171.

Wipfli, M. S. & D. P. Gregovich, 2002. Export of invertebrates and detritus from fishless headwater streams in southeastern Alaska: implications for downstream salmonid production. *Freshwater Biology* 47: 957–969.

Wipfli, M. S., J. S. Richardson & R. J. Naiman, 2007. Ecological linkages between headwaters and downstream ecosystems: transport of organic matter, invertebrates, and wood down headwater channels. *JAWRA Journal of the American Water Resources Association* 43: 72–85.

Wissmar, R. C., R. K. Timm & M. G. Logsdon, 2004. Effects of changing forest and impervious land covers on discharge characteristics of watersheds. *Environmental Management* 34: 91–98.

Wohl, E., 2017. The significance of small streams. *Frontiers of Earth Science* 11: 447–456.

Wohl, E. & N. D. Beckman, 2014. Leaky rivers: implications of the loss of longitudinal fluvial disconnectivity in headwater streams. *Geomorphology* 205: 27–35.

Wohl, E. & E. P. Iskin, 2021. Damming the wood falls. *Science Advances* 7: eabj0988.

Wohl, E., B. P. Bledsoe, R. B. Jacobson, N. L. Poff, S. L. Rathbun, D. M. Walters & A. C. Wilcox, 2015. The natural sediment regime in rivers: broadening the foundation for ecosystem management. *BioScience* 65: 358–371.

Yegon, M. J., F. O. Masese, A. Sitati & W. Graf, 2021. Elevation and land use as drivers of macroinvertebrate functional composition in Afromontane headwater streams. *Marine and Freshwater Research*. <https://doi.org/10.1071/MF21048>.

Ylla, I., C. Canhoto & A. M. Romaní, 2014. Effects of warming on stream biofilm organic matter use capabilities. *Microbial Ecology* 68: 132–145.

Yule, C. M., M. Y. Leong, K. C. Liew, L. Ratnarajah, K. Schmidt, H. M. Wong, R. G. Pearson & L. Boyero, 2009. Shredders in Malaysia: abundance and richness are higher in cool upland tropical streams. *Journal of the North American Benthological Society* 28: 404–415.

Zaimes, G. N., R. C. Schultz & T. M. Isenhart, 2006. Riparian land uses and precipitation influences on stream bank erosion in central Iowa. *Journal of the American Water Resources Association* 42: 83–97.

Zale, A. V., S. C. Leon, M. Lechner, O. E. Maughan, M. T. Ferguson, S. O'Donnell, B. James & P. W. James, 1994. Distribution of the threatened Leopard Darter, *Percina pantherine* (Osteichthyes Percidae). *The Southwestern Naturalist* 39: 11–20.

Zarfl, C., A. E. Lumsdon, J. Berlekamp, L. Tydecks & K. Tockner, 2015. A global boom in hydropower dam construction. *Aquatic Sciences* 77: 161–170.

Zomlot, Z., B. Verbeiren, M. Huysmans & O. Batelaan, 2015. Spatial distribution of groundwater recharge and base flow: assessment of controlling factors. *Journal of Hydrology* 4: 349–368.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.