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by larger streams and rivers due to longitudinal con-
nectivity resulting in the downstream transference of 
energy, water, sediments, nutrients, organic matter 
and organisms. Small streams are, however, highly 
vulnerable to disturbances, which can compromise 
the ecosystem services they supply. We see a global 
need to effectively protect small streams to safeguard 
biodiversity and human wellbeing.

Keywords  Supporting services · Regulating 
services · Provisioning services · Cultural services · 
Longitudinal connectivity · Threats

Small streams and headwaters: definitions, 
characteristics and legislation

The definitions of “small streams” and “headwater 
streams” are not consensual and they are often used 

Abstract  Small streams constitute the majority 
of the water courses in a catchment and have spe-
cific characteristics that distinguish them from larger 
streams and rivers. Despite their small size and fre-
quently remote locations, small streams contribute 
to ecosystem services that are important for humans. 
Here, we have identified 27 ecosystem services that 
small streams provide: seven supporting services, 
eight regulating services, five provisioning services 
and seven cultural services. Small streams are espe-
cially important for the maintenance of biodiversity, 
which is the basis of many ecosystem services. Small 
streams also support ecosystem services provided 
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interchangeably (Biggs et  al., 2017). Richardson 
(2019) makes a distinction between both terms, defin-
ing “headwater streams” as 1st order streams, i.e., the 
smallest streams with a defined channel, and “small 
streams” as 2nd order streams, i.e., streams that 
result from the confluence of two 1st order streams 
(Strahler, 1957). Here we will use the term “small 
streams” to refer to 1st and 2nd order streams together 
(Meyer et al., 2007; Wohl, 2017), as they are all rela-
tively small and share similarities in many aspects, 
and we will use the term “headwaters” to refer to 
small streams at higher elevations (Fig.  1; Table  1). 
There are cases where 1st order streams emerge at 
the surface already with considerable width and high 
discharge, but this often results from geologic pecu-
liarities, e.g., outflows in karst regions (Paiva et  al., 
2016). Most often, 1st and 2nd order streams are up 
to a few meters wide and have low discharge (up to 
a few—tens of—liters per second; Ferreira et  al., 
2006; Rosemond et  al., 2015). Despite their small 
size, and consequently small drainage areas, many 
small streams are perennial, i.e., they flow year-round 
in a typical year, especially in humid regions. In arid 
regions, however, a large percentage of small streams 
are temporary: intermittent streams that stop flow-
ing or dry out at some point over their length and 
for some time, generally in the warmer months, and 
ephemeral streams that only flow as a consequence of 
heavy rainfall or snow melt (Hill et  al., 2014; Mes-
sager et  al., 2021). Here we address ecosystem ser-
vices provided by flowing small streams considering 
perennial streams and temporary streams together as 
both stream types share many characteristics when 
flowing (for reviews dedicated to ecosystem ser-
vices specifically provided by temporary streams (all 
hydrological phases) and dry rivers please see Datry 
et al., 2018; Stubbington et al., 2020; Gutiérrez et al., 
2022). The number of small streams in hydrographic 
networks is generally underestimated as they are too 
small to display on large scale maps, and may also 
not display on small-scale maps, especially if inter-
mittent (Meyer et  al., 2007). Still, small streams are 
the most numerous in total number and contribute the 
most to total stream length in hydrographic networks 
(Horton, 1945; Leopold et  al., 1964). For instance, 
small streams comprise > 70% of water course length 
in European catchments (Kristensen & Globevnik, 
2014) and ~ 75% of total water course length at a 
global scale (Downing et al., 2012). 

Despite their large number and cumulative length 
in hydrographic networks, small streams are gener-
ally disregarded; they are often not included in leg-
islation, not considered in official bioassessment 
programs, and consequently not protected. The 
European Water Framework Directive (enforced by 
the 27 European Union member states), in its size 
typology for rivers, defines the smallest size class as 
having a catchment area between 10 and 100 km2, 
which excludes many 1st and 2nd order streams 
that have catchment areas < 10 km2 (EC, 2000; 
Kristensen & Globevnik, 2014). The US Clean 
Water Act (CWA) from 1972 does not specifically 
protect small streams, although they were partially 
considered due to their important contribution to 
the health, productivity and navigability of larger 
(i.e., navigable) streams and rivers; however, the 
US Supreme Court SWANCC decision in 2001 lim-
ited small stream protection only to those streams 
that are directly connected to or influence naviga-
ble waters (Nadeau & Rains, 2007). The Obama 
Administration’s Waters of the US (WOTUS) Rule 
in 2015 placed small streams under CWA jurisdic-
tion, but an executive order by the Trump Admin-
istration in 2017 counteracted the WOTUS Rule 
(Colvin et  al., 2019), which itself was again over-
turned late in 2021, reasserting pre-2015 defini-
tions (https://​www.​epa.​gov/​wotus). These back-and-
forth decisions about the legal protection of small 
streams indicate that the relevance of small streams 
is not yet consensual at governmental scales.

Also, in many African countries, there is no spe-
cific legislation for the protection of small streams as 
this is done as part of protected areas (e.g., national 
reserves, national parks) and relevant legislations 
and regulations. In Kenya, for instance, protection 
of forested streams falls under the Water Act (2016) 
and as vulnerable water sources they can be pro-
tected by declaring the catchment area they drain as 
a protected area. Owing to rampant deforestation and 
declining water resources in Kenya, the government 
also established the Water Towers Agency in 2012 to 
coordinate and oversee the protection, rehabilitation, 
conservation and sustainable management of all the 
critical water towers, i.e., high elevation Afromontane 
landscapes in Kenya, such as the Aberdares, Mau 
Forests, Mt. Elgon and Mt. Kenya, which are sources 
of many streams and rivers that supply water to mil-
lions of people.

https://www.epa.gov/wotus
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Fig. 1   Small streams in different regions. Larrainsoroeta (A) 
and Agauntza (B) are 2nd order streams, both in mixed decidu-
ous forests dominated by beech (Fagus sylvatica L.) in the 
Basque Country, northern Spain. An unnamed tributary of 
Ribeira do Catarredor (C) and Ribeira do Candal (D) are 2nd 
order perennial streams in mixed deciduous forests dominated 
by oaks (Quercus spp.) and chestnuts (Castanea sativa Mill.) 
in Serra da Lousã, central Portugal. Arroyo Caracolito is a 1st 
order intermittent stream in a monospecific deciduous beech 
(Nothofagus pumilio (Poepp. & Endl.) Krasser) forest that 
forms the upper tree belt in southern Andes (E) and Arroyo 
Ottowest is a 1st order perennial stream in a mixed forest (F), 
both in the Cordillera de los Andes, Patagonia, Argentina. An 
unnamed 1st order perennial stream in Kaptagat Forest, Kerio 

Escarpment, western Kenya (G). Snyder Cove Creek (H) is a 
2nd order perennial stream in western Washington, US, which 
is a spawning site for several species of salmon (Oncorhyn‑
chus spp.). A 1st order perennial reach of Rio Preto at Parque 
Estadual do Rio Preto (I) and Córrego Taiobas, a 2nd order 
perennial stream at Serra do Cipó (J), both in the Cerrado 
(Brazilian savanna) biome in Minas Gerais, SE Brazil. Cór-
rego São Bartolomeu is a 2nd order perennial stream in Minas 
Gerais (K) and Córrego Luxemburgo is a 2nd order perennial 
stream in Espírito Santo (L), both in the Atlantic Forest biome, 
SE Brazil. Photo credits: A, B Aitor Larrañaga; C, D Verónica 
Ferreira; E, F Ricardo Albariño; G Christine Owade; H Carri 
LeRoy; I, J, K, L Marcelo Moretti
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Additionally, in Argentina, small streams are pro-
tected under different national and provincial laws, 
which establish the preservation and management 
of surface and subsurface water resources. Among 
the laws sanctioned by the Argentine National 
Congress, the Water Environmental Management 
Act (Law 25688, 2002), the Native Forest Protec-
tion Act (Law 26331, 2007) and the Civil and 

Commercial Code (Law 26994, 2014) provide some 
protection. National and provincial water depart-
ments and inter-jurisdictional Water Bureaus set the 
rules and/or administer water usage and pollution 
control. This does not mean that small streams are 
protected against human related impacts, e.g., from 
agriculture, livestock or urbanization, because in 
developing or low/middle income countries, such as 

Table 1   Generic characteristics that distinguish small streams (1st and 2nd order streams) from downstream larger streams and riv-
ers, and their drivers (adapted from Lowe & Likens, 2005; Meyer et al., 2007; Wohl, 2017; Richardson, 2019)

These characteristics partially determine the services provided by small streams and their vulnerability to environmental changes (see 
also Tables 2 and 4)

Stream characteristic Characteristic driver

Hydromorphology
Small size (narrow, shallow) Defining characteristic
Small water volume Defining characteristic
Close linkage to the terrestrial environment Large aquatic-terrestrial interface due to large perimeter-to-

volume ratio
Hydrological independence (isolation) No (in the case of 1st order streams) or few (in the case of 2nd 

order streams) tributaries due to their head position in the 
hydrographic network

Reduced surface storage zones No large valley bottoms or floodplains
Reduced subsurface storage zones Small hyporheic zones or alluvial aquifers
High spatial and temporal hydrological variability Small drainage areas and small surface and subsurface water stor-

age capacities increase susceptibility to storms and droughts
High susceptibility to local disturbances/High morphological 

instability
Small size increases susceptibility to landslides, wildfires, thun-

derstorms, which may promote bank collapse, inputs of large 
amounts of sediment, or inputs of large wood

High longitudinal variation Fast decrease in elevation (in high-relief regions); Variation in 
channel geometry resulting from e.g., large wood blockages, 
bank collapse

Longitudinal disconnectivity Waterfalls (in high-relief regions); Low subsurface flow
Hydrologically rough boundaries and coarse substrates (in high-

relief regions)
Waterfalls (in high-relief regions); Low erosional power

Riparian vegetation
Shaded (in forested landscapes) Closed riparian canopies due to small size
Heterotrophic (mostly in forested landscapes) Input of large amounts of coarse particulate organic matter from 

direct litter fall and lateral litter inputs; Low solar radiation, low 
temperatures and dissolved nutrient availabilities limit instream 
primary production

Water characteristics
Water chemistry highly influenced by geology, soil characteristics 

and atmospheric inputs
Water sources from groundwater inputs and overland flow; Small 

buffering capacity due to small water volume
Well oxygenated Cool water temperatures hold higher dissolved oxygen; High 

surface-to-volume ratio allows atmospheric interchange; High 
turbulence can increase dissolved gas concentration

Cool temperatures Shading from riparian forests (in forested landscapes); Closed 
valleys; High elevations

High or low thermal variation Low thermal buffering capacity due to small water volume; But, 
thermal stability if groundwater fed; Thermal stability if shaded



Hydrobiologia	

1 3
Vol.: (0123456789)

Argentina, limited economic resources go more fre-
quently to other projects instead of being used for 
environmental management and control.

Finally, in Brazil, a country with huge hydro-
graphic networks, environmental laws do not ade-
quately address small streams. The Forest Code 
(Law 12.651; Brasil, 2012) establishes riparian 
forests as Areas of Permanent Preservation. How-
ever, impacts that occur beyond the banks of small 
streams, such as deforestation to create areas for 
agriculture and livestock, road building, and con-
struction, are not addressed in the actual legislation. 
Although these are only several examples of the 
types of legislation that pertain to small streams, 
these examples are widely distributed over four con-
tinents and include both developed and developing 
regions. This shows that small streams being disre-
garded in legislation is not a localized issue and is 
not dependent on a region’s developmental state.

The protection of small streams can, neverthe-
less, help achieve several of the United Nations’ 
Sustainable Development Goals (https://​sdgs.​un.​
org/​goals). In particular, Goal 6, which aims to 
“ensure availability and sustainable management 
of water and sanitation for all”, in its Target 6.3 
aims to “improve water quality by reducing pollu-
tion, eliminating dumping and minimizing release 
of hazardous chemicals and materials” and in its 
Target 6.6 aims to “protect and restore water-related 
ecosystems”. Also, Goal 15, which aims to “protect, 
restore and promote sustainable use of terrestrial 
ecosystems, sustainably manage forests, combat 
desertification, and halt and reverse land degrada-
tion and halt biodiversity loss”, in its Target 15.1 
aims to “ensure the conservation, restoration and 
sustainable use of terrestrial and inland freshwa-
ter ecosystems and their services” and in its Target 
15.5 aims to “take urgent and significant action to 
reduce the degradation of natural habitats, halt the 
loss of biodiversity”.

In this review, we aim to (i) highlight the impor-
tance of small streams in providing ecosystem ser-
vices by making an exhaustive compilation of these 
services (including cultural services), (ii) describe the 
contributions of small streams to ecosystem services 
provided by downstream waters, and (iii) emphasize 
the vulnerability of small streams and their ecosys-
tem services by identifying specific threats to these 
ecosystems.

Ecosystem services provided by small streams

Definition of ecosystem services

The term “ecosystem services” was coined by Ehr-
lich and Ehrlich (1981) and popularized by Gretchen 
Daily (1997) and the Millennium Ecosystem Assess-
ment (MEA) report as “benefits people obtain from 
ecosystems” (MEA, 2003, 2005), and this is the 
definition we are using here. According to the MEA, 
ecosystem services are distributed into four catego-
ries: supporting, regulating, provisioning and cultural 
services (MEA, 2003, 2005). Supporting services 
are those “that are necessary for the production of all 
other ecosystem services”, and include primary pro-
duction, oxygen production, soil formation and reten-
tion, nutrient, and water cycling and provisioning of 
habitat. Regulating services are “the benefits obtained 
from the regulation of ecosystem processes”, and 
include, for instance, air quality maintenance, water 
regulation and purification and erosion control. Pro-
visioning services are “the products obtained from 
ecosystems”, such as food, fiber, fuel, energy, fresh 
water, genetic resources, biochemical, and ornamen-
tal resources. Finally, cultural services are “the non-
material benefits people obtain from ecosystems” 
through, for instance, esthetic enjoyment, inspiration, 
recreation and nature-based tourism (Fig. 2).

As defined by the MEA, ecosystem services are 
seen from an anthropogenic perspective (“benefits 
people obtain”) and, therefore, their recognition 
depends on people’s use, i.e., a given ecosystem ser-
vice is only recognized as such if and when people 
take advantage of it. For instance, small streams are a 
source of freshwater (provisioning service) and inspi-
ration (cultural service) only where they are accessi-
ble to people; in remote areas, small streams may not 
provide these (or other) ecosystem services, although 
they contribute to the services provided by down-
stream rivers. Also, ecosystem services are assumed 
as “benefits people obtain,” which is to some degree 
subjective. For instance, a small stream can be seen 
by some people as improving the esthetic appeal of 
a forested landscape (cultural service), while people 
with locomotion difficulties may see it as an obsta-
cle and, in this case, the stream could be providing 
a “disservice” (von Döhren & Haase, 2015). There-
fore, not all small streams are capable of providing 
all the ecosystem services addressed below, as these 

https://sdgs.un.org/goals
https://sdgs.un.org/goals


	 Hydrobiologia

1 3
Vol:. (1234567890)

services depend on the presence of people and on 
their positive perceptions regarding the services being 
provided. However, we will assume that most small 
streams can potentially provide the services discussed 
below (Fig. 2; Table 2).

It is also important to note that many ecosystem 
services are provided at the expense of others. For 
instance, hydropower generation (provisioning ser-
vice), with the establishment of transversal barriers 
(dams), is provided at the expense of several other 
ecosystem services, including habitat provision-
ing, nutrient cycling, and biodiversity (supporting 
services) (Martínez et  al., 2013, 2017) or even the 
reduction on their contribution to services provision 
by downstream ecosystems caused by alteration of 
the fluvial connectivity (regulating and provision-
ing services). Also, a given stream does not provide 
all ecosystem services simultaneously. For instance, 
temperature regulation, regulation of microclimate 
(regulating services), and recreation (cultural service) 

are mostly provided in summer, while flood control 
and erosion control (regulating services) are mostly 
provided in winter. Finally, not all ecosystem ser-
vices are provided with the same magnitude by small 
streams, especially if they result from somehow 
opposite mechanisms. For instance, erosion control 
(regulating service) likely has higher relevance than 
soil/sediment formation (supporting service) in small 
streams. Therefore, tradeoffs between different  eco-
system services, their timing and magnitude need to 
be considered in the management of streams and their 
catchments.

Because of longitudinal variation in the abiotic 
and biotic characteristics along hydrographic net-
works, there is great spatial variability in the impor-
tance of different ecosystem services (Bastian et  al., 
2012; Bagstad et al., 2013). In general, small streams 
provide more regulating and supporting ecosystem 
services while larger streams and rivers are more 
associated with provisioning services. Also, small 

Fig. 2   Ecosystem services provided by small streams: sup-
porting services (in green), regulating services (in blue), pro-
visioning services (in orange) and cultural services (in purple). 
In addition, contribution of small streams to downstream larger 

streams and rivers (in black) and some of the major threats 
to small streams (in red) are also shown. Original artwork by 
Carri LeRoy
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streams are important for the generation of many eco-
system services that are not necessarily utilized or 
consumed locally but may benefit other parts of the 
catchment due to the strong longitudinal connection 
along hydrographic networks. Additionally, many 
of the ecosystem services we present here are not 
restricted to the streams themselves, but also extend 
into the hyporheic zone (saturated sediments extend-
ing below and to the sides of streams) and riparian 
areas (streamside-vegetated areas) due to strong verti-
cal and lateral connections between streams and sur-
rounding areas (Fig. 2; Table 2).

Supporting services

Water cycling

Small streams are often located at higher elevations 
in hydrographic networks, where they are a crucial 
element of the global water cycle by collecting and 
concentrating the atmospheric water that ultimately 
feeds into and maintains the flows of larger rivers 
through hydrological connectivity. This connectivity 
facilitates the exchange of mass, energy, and organ-
isms across the four dimensions of riverine ecosys-
tems: longitudinally, vertically, laterally, and tem-
porally (Ward, 1989; Moore & Wondzell, 2005). 
Because of the large channel surface area-to-volume 
ratio of small streams, and the close contact between 
the water and the streambed, small streams are impor-
tant locations for water storage in hydrographic net-
works (Alexander et al., 2000; Peterson et al., 2001). 
Moreover, the relatively coarse substrate in head-
water streams offers more frictional resistance than 
other locations in the hydrographic network allow-
ing time for interstitial water infiltration (Harvey 
& Wagner, 2000; Harvey et  al., 2003). The riparian 
area along forested streams also enhances groundwa-
ter recharge. Additionally, the shading effect offered 
by riparian vegetation limits the solar radiation that 
reaches the streambed, minimizing water loss through 
evaporation.

Nutrient cycling

Small forested streams are hotspots for the process-
ing of coarse particulate organic matter (CPOM) pro-
duced by riparian vegetation, which enters streams 
mainly in the form of leaf litter (Fischer & Likens, 

1973; Vannote et al., 1980; Wallace et al., 1997). Pro-
cessing of CPOM is carried out by microbial decom-
posers and invertebrate shredders, who integrate it 
into their own biomass, and convert it into fine par-
ticulate organic matter (FPOM; e.g., small litter par-
ticles, feces, fungal spores), dissolved organic car-
bon (DOC), inorganic nutrients (mainly nitrogen and 
phosphorus), and CO2 (Marks, 2019), which are inte-
grated into food webs locally and downstream (Van-
note et al., 1980; Wipfli & Gregovich, 2002).

Small streams are important areas for the transport 
and transformation of nutrients  in fluvial networks 
(Mulholland 1992). Nitrogen and phosphorus input to 
small streams is mainly through litterfall, runoff, and 
groundwater flow. Because of the intimate connec-
tion between water and sediments and the numerous 
of debris dams, small streams play important roles in 
nitrogen and phosphorus cycling by controlling rates 
of sedimentation (mainly for phosphorus), transfor-
mation (mainly for nitrogen), and uptake by plants. 
Phosphorus removal from streams is mainly through 
sedimentation and uptake by photosynthetic organ-
isms, while nitrogen removal is mainly by uptake 
and denitrification. Although the biomass of photo-
synthetic organisms, such as macrophytes and algae, 
is low in small forested streams, and hence, their 
uptake of nitrogen and phosphorus may be low, they 
indirectly affect nitrogen cycling by supplying limit-
ing organic carbon and nitrate to denitrifying bacte-
ria, and in the process create favorable conditions for 
denitrification (Weisner et  al., 1994; Birgand et  al., 
2007).

Primary production

Primary production is another important process 
that influences the processing, retention, and export 
of carbon and nutrients in ecosystems. In small 
streams, primary producers are generally associated 
with benthic substrates, and include algae, cyano-
bacteria, bryophytes, and vascular macrophytes. 
Small forested streams, however, are not active 
areas for primary production in hydrographic net-
works because of the often-high canopy cover from 
riparian vegetation that limits solar radiation reach-
ing the streambed (i.e., there is light limitation of 
primary production; Hill et al., 1995; Friberg et al., 
1997; Larned, 2010). Therefore, forested stream 
food webs are postulated by the River Continuum 
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Concept to rely heavily on detritus or allochtho-
nous organic matter for secondary production (Van-
note et  al., 1980). However, the Riverine Produc-
tivity Model (Thorp & Delong, 2002) emphasizes 
the importance of microalgae as the main source 
of energy that sustains animal production, as well 
as the significance of the microbial loop that pro-
cesses the majority of allochthonous material. The 
exudates of primary producers, such as periphytic 
algae, can induce the mineralization of recalcitrant 
organic matter via priming effects in small for-
ested streams (Danger et al., 2013). Because of the 
growing recognition of the importance of microal-
gae and/or periphyton in streams, despite its small 
biomass compared to allochthonous organic matter, 
studies have sought to evaluate the relative impor-
tance of autochthonous production for food webs 
in small forested streams using stable-isotope tech-
niques and gut content analyses. Indeed, several 
studies have shown that autochthonous production 
can be a major source of energy for food webs in 
tropical (March & Pringle, 2003; Lau et  al., 2009; 
Neres-Lima et al., 2016) and temperate (Rosi-Mar-
shall et al., 2016) forested streams.

Soil/sediment formation

The formation of soil/sediment is probably not a 
significant in  situ feature of small streams. Small 
streams, however, act as sediment retention hot-
spots by entrapping hillslope sediments from land-
slides and chronic erosion (Terweh et al., 2021). In 
small forested streams, wood jams form retentive 
devices that trap sediment (Seixas et  al., 2020), 
which results directly in habitat provisioning as it 
increases hyporheic habitats for specific inverte-
brates/microbes and facilitates nutrient cycling pro-
cesses (Storey et  al., 2004; Harjung et  al., 2019). 
Additionally, small streams receive substantial 
inputs of CPOM (i.e., dung, leaves, twigs, seeds, 
fruits, etc.) and large wood from riparian forests 
through physical (erosion, landslides), biological 
(litter fall, defecation by animals), and hydrological 
processes (flooding, aggradation) and the decompo-
sition of this CPOM by bacteria, fungi, and detriti-
vores (Marks, 2019) releases organic and inorganic 
fractions, which together with the inorganic materi-
als resulting from entrapment and substrate erosion 

constitute the bulk of sediments ultimately carried 
downstream.

Habitat provisioning and maintenance

Small streams have unique habitat characteristics 
that are not found elsewhere in the hydrographic 
network. These characteristics include fast flows, 
highly oxygenated water, cooler temperatures, sta-
ble substrates and, if forested, high standing stocks 
of CPOM (Table  1). As a consequence, forested 
streams harbor species that have preferences for these 
environmental characteristics, such as stenotherm 
and rheophile species, as well as shredders that feed 
on CPOM. For instance, forested headwaters have a 
higher diversity of macroconsumers (fish, freshwa-
ter decapods, and semi-aquatic cockroaches; Mendes 
et al., 2017), shredders and other invertebrates, some 
endemic to these streams, than any other river sec-
tions or land-use types (Yule et  al., 2009; Masese 
et  al., 2014; Yegon et  al., 2021). Small forested 
streams also receive a large supply of wood (Naiman 
et al., 2002; Elosegi & Johnson, 2003; Gregory et al., 
2003), which is an important structural element and 
influences hydraulics, sediment stability, organic 
matter retention, channel form, and habitat across a 
wide range of spatial and temporal scales (Gurnell, 
2012). Wood is an important instream habitat feature 
for both invertebrates and fish, often associated with 
increased biodiversity (Hoffmann & Hering, 2000). 
Dead wood and logjams are areas of active physi-
cal, chemical, and biological processes such as the 
retention and processing of organic matter, nutrient 
cycling, and denitrification (Elosegi et al., 2007). It is 
because of these benefits that many restoration efforts 
in forested streams emphasize the retention or intro-
duction of dead wood to provide cover and increase 
habitat complexity for aquatic organisms (Beechie & 
Sibley, 1997; Moore et al., 2005; Flores et al., 2017).

Maintenance of biodiversity

Small streams can provide threatened species with 
critical refuge habitat allowing them to escape from 
exotic species invading downstream reaches or from 
downstream waters that are becoming warmer (Robi-
son & Buchanan, 1988; Zale et al., 1994; Magoulick 
& Lynch, 2015). Also, small streams vary in their 
hydrological regime (i.e., they can be perennial or 
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temporary), which allows for greater taxa heteroge-
neity among streams (i.e., great β-diversity) (Falke 
et al., 2012; Hutson et al., 2018). Additionally, small 
streams provide dispersal corridors along which 
aquatic organisms can move across the landscape 
(Jaeger et al., 2014).

Small streams have distinct biodiversity patterns 
depending on taxonomic groups and spatial scales, 
which contrast with patterns in other positions of the 
fluvial network. Small streams harbor higher species 
richness (α-diversity) of benthic microbes than mid-
sized streams, probably due to the higher aquatic-
terrestrial interface in small streams that allows for 
higher inputs of terrestrial microbes (e.g., phyllo-
sphere communities) into the aquatic environment 
(Besemer et al., 2013). There is also high variability in 
diversity among small streams (i.e., high β-diversity), 
which further contributes to making small streams 
important pools of regional microbial diversity (i.e., 
γ-diversity) (Besemer et  al., 2013). In contrast, for 
diatoms and macroinvertebrates, species richness 
increases with increasing stream order (i.e., lower 
α-diversity in low-order streams), but β-diversity is 
highest in small streams, making them important con-
tributors to regional diatom (Jyrkänkallio-Mikkola 
et  al., 2018) and macroinvertebrate (Clarke et  al., 
2008; Finn et al., 2011) diversity. Likely, a combina-
tion of high habitat heterogeneity and many species 
with limited dispersal capabilities lead to high varia-
tion in community composition among small streams, 
which results in high γ-diversity (Clarke et al., 2008; 
Finn et al., 2011; Jyrkänkallio-Mikkola et al., 2018). 
Many endemic fish species survive in geographically 
isolated headwater streams (Junk et  al., 2007). Even 
for semi-aquatic organisms, such as herpetofauna, 
headwater streams have a higher biodiversity than 
larger rivers (Welsh & Hodgson, 2011).

Biological diversity is also higher in small forested 
streams when compared with similar-sized human-
altered streams. This can be due to various drivers 
that interact with each other. First, there is higher 
hydromorphological heterogeneity in forested streams 
compared to agricultural and urban streams (Ramião 
et al., 2020). Second, due to inputs of organic matter, 
tree diversity of forests influences leaf litter decom-
position and all associated aquatic communities (bac-
teria, fungi, invertebrates) in forested streams (Gess-
ner et  al., 2010; Ferreira et  al., 2016a; LeRoy et al., 
2020). There is carryover from terrestrial ecosystems 

to aquatic communities, with phyllosphere communi-
ties in forests influencing fungal diversity in streams 
(Koivusaari et al., 2019). Finally, detrital inputs drive 
heterotrophic food webs within which energy is more 
conserved and recycled and so can lead to higher effi-
ciencies than in autotrophic food webs (Cebrian & 
Lartigue, 2004; Evans-White & Halvorson, 2017) as 
well as support increased biomass and diversity of 
higher trophic levels (e.g., birds, spiders, bats, lizards, 
and mammals).

Maintenance of aquatic and riparian productivity

Interactions between small streams and forests 
through allochthonous inputs of woody debris, 
leaves, flowers, fruits, and falling insects (Nakano 
& Murakami, 1999; Garthwaite et  al., 2021) drive 
instream food webs and can provide increased pro-
ductivity for both local and downstream aquatic eco-
systems. One side effect of increased organic material 
in small forested streams can be the increased export 
of DOC (Wahl et al., 1997). Although this can result 
in lowered water quality in some cases, DOC can also 
drive increased instream productivity, particularly for 
microbial communities (Williams et al. 2010). CPOM 
is generally not directly used by higher consumers 
such as fish and amphibians (Vannote et  al., 1980; 
Wallace et  al., 1997); however, the inputs of terres-
trial invertebrates from riparian forests (Nakano et al., 
1999; Jefferies, 2000) are a high-quality food source 
that can be foraged directly by fish (Mason & Mac-
Donald, 1982), and, thus, increase their productivity 
(Kawaguchi et al., 2003). Therefore, forested streams 
can maintain larger-than-expected populations of fish 
by facilitating foraging on large quantities of terres-
trial invertebrates (Allen, 1951).

Reciprocally, forested streams can subsidize terres-
trial food webs through insect emergence (Murakami 
& Nakano, 2002; Sabo & Power, 2002). Studies have 
shown that riparian forests generally support greater 
species diversity and population abundances of ter-
restrial consumers than adjacent upland habitats 
(McGarigal & McComb, 1992; Knopf & Samson, 
1994; Glass & Floyd, 2015). Riparian consumers, 
such as birds, bats, lizards, and spiders, can ben-
efit from energy transfer gained by feeding on adult 
aquatic insects that have emerged from streams, con-
tributing 25–100% of the energy or carbon to these 
species (Gray, 1993; Power, 1995; Baxter et  al., 
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2005), and also by feeding on aquatic specimens, 
as dippers and semi-aquatic spiders do (Baba et  al., 
2019; Hong et al., 2019).

Emergence of aquatic insects can make substantial 
contributions to soil fertility in riparian areas due to 
their high numbers and high body nitrogen concentra-
tions (~ 10%); aquatic insect-derived nitrogen deposi-
tion in the soil can reach 12.5 mg/m2/d in some areas, 
which exceeds the daily atmospheric nitrogen depo-
sition in some regions (Raitif et  al., 2019). In low-
land coastal catchments of North America, spawn-
ing migrations of anadromous salmonids represent 
another important vector for transfer of nutrients and 
organic matter from streams to riparian forests. Large 
numbers of dead fish are deposited in adjacent ripar-
ian forests by scavenging mammals, including rac-
coons, otters, and bears (Gende et al., 2002; Fellman 
et al., 2008). Studies have shown that salmon-borne, 
marine-derived nutrients are incorporated into terres-
trial vegetation adjacent to spawning streams (Hilder-
brand et al., 1999; Helfield & Naiman, 2002; Naiman 
et  al., 2002; Bilby et  al., 2003; Morris & Stanford, 
2011).

Riparian fertility is also enhanced through the 
deposition of organic matter and nutrients by animals 
through excretion and egestion. Several attributes of 
riparian forests make them hotspots of animal bio-
diversity, such as proximity to water, food availabil-
ity, diverse vegetative structures, low light incidence 
and stable temperatures (Sabo et al., 2005; McClure 
et  al., 2015; Cabette et  al., 2017). These conditions 
allow many animals to move from upland areas into 
riparian areas seasonally, and by doing so they trans-
fer nutrients and organic matter leading to increased 
fertility and productivity in riparian areas (Doughty 
et al., 2016).

Regulating services

Flood control

Small streams are generally surrounded by forests 
that intercept a significant proportion of the precipita-
tion (Zaimes et  al., 2006) and release it slowly into 
the stream channel, reducing variability in stream 
discharge (Bhattacharjee & Behera, 2017). Small 
streams have large substrates (e.g., cobbles, boulders, 
and large wood) that also delay water movement. As a 
result of these characteristics, small forested streams 

generally have lower mean and peak discharges than 
non-forested streams with similar catchment areas 
(Stott, 1997). Changing land cover, i.e., decreasing 
forest cover and increasing impervious surfaces in the 
catchment of small streams, can increase flow rates 
and chances for floods in hydrographic networks, 
both in rural and urban areas (Wissmar et al., 2004; 
Karagül & Çitgez, 2019). The morphology and lithol-
ogy of the stream channel can also contribute to flood 
control in small streams. In mountainous catchments, 
the magnitude of floods is related to stream width at 
the apex of a bend and overflows are less frequent 
around wide apexes (Scorpio et  al., 2018). In this 
context, the increased bank and stream channel sta-
bilization provided by the riparian vegetation in small 
streams helps to reduce water velocity. Small for-
ested streams are also important for restricting flood 
damage and, consequently, protecting human lives 
and property (Santos & Reis, 2018). Because of the 
important role of small forested streams in flood con-
trol, their protection is even more relevant in regions 
with frequent seasonal rainstorms. In Taiwan, for 
instance, permeable soils and high evapotranspiration 
in riparian areas contribute to reduced stream flows in 
small forested streams during the rainy season (Cheng 
et al., 2002).

Erosion control

Small forested streams, through interactions with 
riparian woody plants, minimize soil erosion and trap 
sediments on the streambed, slowing sediment input 
and export to downstream reaches (Stott, 1997). Also, 
the reduced water quantity reaching the stream chan-
nel and the lower flood magnitudes in these streams 
contribute to reduced stream bank erosion (Beeson 
& Doyle, 1995). Riparian trees can reduce erosion 
through mechanical strengthening and binding of the 
banks by roots (Laubel et  al., 1999). Bank erosion 
rates in small forested streams can be influenced by 
differences in bank material, climate and topogra-
phy, but also by stream flow, as well as the taxonomic 
composition of tree species (Zaimes et  al., 2006). 
While bank material with a high percentage of fine 
particles and the powerful flows that occur in steep 
catchments increase bank retreat (Lawler et al., 1999), 
the root systems of large tree species provide struc-
tural support to the stream bank and reduce erosion 
(Hughes, 2016). Additionally, large wood can have 
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a significant impact on channel form and processes 
in small forested streams (Schuller et al. 2010). Log 
steps effectively trap coarse sediment in these eco-
systems and act as a series of check dams that inhibit 
channel erosion, but may be less effective at trapping 
fine sediment (e.g., sand and small gravel) (Ryan 
et  al., 2014). The restoration of natural wood stand-
ing stocks in wood-depleted streams greatly increases 
erosion control and sediment retention, and the ben-
efits of these services surpass the costs of active res-
toration (Acuña et al., 2013).

Sinks for potentially harmful solutes

Small forested catchments are effective at improving 
water quality in streams by controlling the transport 
of both metals (Landre et al., 2010) and organic pol-
lutants (Bergknut et al., 2011). While lithogenic met-
als (e.g., Al, Co, Fe, Mn, Zn) primarily resulting from 
rock weathering are generally exported from these 
catchments, substantial amounts of metals contained 
in atmospheric pollution (e.g., As, Cd, Cu, Ni, Pb) 
can be taken up by riparian trees and retained as lit-
terfall on the forest floor (Landre et al., 2010). Con-
sequently, riparian areas of small streams, by storing 
litter inputs, can act as sinks for atmospheric depos-
ited metals (Kaste et al., 2003). Additionally, riparian 
forests can reduce pulses of nitrogen and phosphorus 
moving from the groundwater or agricultural drain-
age systems into stream water (Welsh et al., 2021).

Temperature regulation

Stream water temperature is mostly regulated by veg-
etation cover, air temperature, rainfall, surface run-
off and subsurface storage (Subehi et  al., 2009). In 
particular, riparian forests influence the incidence of 
solar radiation, slow wind speeds and reduce expo-
sure to air advected from open areas, thus, regulating 
stream water temperatures and increasing relative air 
humidity (Moore et  al., 2005). Headwater streams 
generally have high cooling rates, and these rates 
increase with an increase in forest cover (Coats & 
Jackson, 2020).

Regulation of microclimate

Small forested streams have cool and humid micro-
climates and these conditions contribute to habitat 

heterogeneity and biodiversity (Hannah et al., 2008). 
The higher relative humidity levels within riparian 
areas of small streams can be due to evapotranspira-
tion from the vegetation immediately adjacent to the 
stream and to evaporation from the stream channel 
(Danehy & Kirpes, 2000), and is essential for many 
plant and wildlife species that are dependent on these 
microclimates (Eskelson et  al., 2013). The gradient 
of relative humidity, as a function of lateral distance 
from the stream, can determine the spatial structure of 
riparian communities. In addition, the complex, steep 
topography of small forested streams also results in 
vertical gradients of humidity above the stream (Pabst 
& Spies, 1998). Small streams have a dynamic area 
of riparian influence on microclimate that fluctuates 
daily and seasonally (Rambo & North, 2008). Dur-
ing the winter, daily ranges of temperature and vapor 
pressure deficit tend to be dampened near the stream 
and increase with distance from it, while in summer 
daily ranges are greater near the stream and decrease 
with distance (Rambo & North, 2008).

Drainage and natural irrigation

The pattern and arrangement of natural stream chan-
nels determine the efficiency of the drainage system 
because the time required for water to flow a given 
distance is directly proportional to the cumulative 
stream length (Gray, 1965). In headwaters, catch-
ment runoff generation depends on canopy intercep-
tion, evapotranspiration rates, and throughfall volume 
(Dung et  al., 2012). Because dominant hydrologi-
cal processes may differ along stream catchments in 
association with differences in vegetation type and 
age, the hydrological responses to precipitation are 
strongly scale-dependent (Gomi et  al., 2008). The 
natural recharge rates of small streams are depend-
ent on catchment characteristics, such as vegeta-
tion cover, soil properties, topography, and land use 
(Maréchal et al., 2009).

The soils of forested catchments feature layers of 
leaf litter and soil organic matter, both of which con-
tribute to an abundant and diverse micro- and macro-
fauna and root systems of riparian trees that are exten-
sive and relatively deep (Jana et  al., 2017). These 
conditions create soils with high macroporosity, low 
bulk density, highly saturated hydraulic conductivi-
ties and high infiltration rates that facilitate more pro-
longed baseflows (Neary et  al., 2009). Sustainable 
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management of small forested catchments is essential 
for the continuous supply of good quality freshwater 
and protection against natural hazards such as long 
low flow periods and desertification (Dudley & Stol-
ton, 2003).

Water purification and quality

Small forested streams act as the finest scale connec-
tions between the landscape and the river system and, 
as such, provide the greatest lotic surface area for 
water purification. These streams can help to remove 
pollutants and nutrients through filtration, nutrient 
remineralization and assimilation into biomass. When 
comparisons are made between forested streams and 
urban streams of similar size, forested streams trans-
port lower sediment loads (Wahl et al., 1997), show a 
greater propensity to reduce nitrate-nitrogen concen-
trations in groundwater (Osborne & Kovacic, 1993) 
as well as stream water (Wahl et al., 1997; Schoono-
ver & Lockaby, 2006; Ramião et al., 2020) and also 
tend to have higher dissolved oxygen concentrations 
(Ramião et  al., 2020). The reasons for these differ-
ences are several, including higher woody debris 
inputs, which can slow flows and increase water puri-
fication (Acuña et al., 2013), and increase interactions 
between terrestrial and instream processes (Lowe & 
Likens, 2005). Taken in sum, the water purification 
abilities of small forested streams can be of consider-
able economic benefit in both temperate (Wang et al., 
2017) and tropical regions (Vincent et al., 2016; Piag-
gio & Siikamäki, 2021).

Through processes of water purification, but also 
due to complex interactions among forests, parent 
material (the geology of the catchment), soils, and 
organisms, small forested streams can have an over-
whelming influence on the chemical composition of 
the water flowing through each catchment. More spe-
cifically, dissolved minerals, nutrients, and organic 
matter make their way through terrestrial landscapes 
and together determine the physical and chemical 
conditions of stream water (White et  al., 1971; Lik-
ens & Bormann, 1974). The geology of the catchment 
interacts with land use to alter stream water chemis-
try (Bricker & Rice, 1989; Thornton & Dise, 1998), 
likely across most forested biomes.

Carbon and nitrogen sequestration

Due to the high reliance on organic matter inputs and 
high channel complexity, small forested streams can 
become locations on the landscape where both carbon 
and nitrogen sequestration can occur. Often located 
in steep canyons at high elevations, small forested 
streams receive large quantities of organic material 
from adjacent riparian areas. Because of their high 
channel surface-to-water volume ratio, high stream 
bottom roughness, and low water flows, small streams 
are more retentive of CPOM than larger streams and 
rivers (Richardson et al., 2005). Organic debris dams, 
which are created more frequently in small forested 
streams, can store large volumes of organic matter 
(Flores et  al., 2011) and reduce the export of dis-
solved organic matter (DOM) as well as the export 
of both FPOM and CPOM, leading to increased car-
bon sequestration (Bilby, 1981). In fact, when organic 
debris dams are removed from small streams, 6% 
increases in DOM and 500% increases in FPOM 
and CPOM export to downstream reaches can occur 
(Bilby, 1981).

Provisioning services

High quality water

Small streams are often located at higher elevations 
that can receive higher precipitation than lowland riv-
ers and are, thus, important contributors to long term 
drinking water reservoirs, such as aquifers or lakes. 
For instance, headwater areas provide clean water 
to one third of the US population (USEPA, 2009). 
Moreover, the new symbolic concept of “water tow-
ers” has been coined in Kenya to emphasize the role 
of mountain regions including headwater streams for 
providing freshwater to downstream regions (Viviroli 
et al., 2007). Recharge of aquifers has been shown to 
depend on land use, with natural vegetation (but also 
certain crops) supporting the largest recharge rates 
(Zomlot et al., 2015). As natural landscapes are more 
commonly found in headwater areas, they are espe-
cially important for the recharge of aquifers. In fact, 
the recharge of mountain aquifers in headwater catch-
ments is now recognized to be critical for supporting 
streamflow during low discharge periods (Somers & 
McKenzie, 2020). When the elevation or latitude is 
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high enough, precipitation in the headwaters can be 
accumulated as snow or ice that is gradually released 
as seasonal temperatures rise, providing high-qual-
ity water when precipitation is low (Liljedahl et  al., 
2017).

Food

Small streams support lower fish biomass than down-
stream larger streams and rivers; however, they pro-
vide spawning and rearing habitat for migratory 
species, some of which are commercially exploited 
(Quinn, 2005; Schindler et  al., 2010). For instance, 
production of important anadromous fish, such as 
salmon, depend on headwater streams as they need 
well-oxygenated waters and a relatively limited range 
of gravel sizes for spawning (Baum, 1997; NMFS, 
2009). Small streams, especially forested ones, harbor 
large densities of freshwater crabs and other decapods 
like crayfish and shrimp that are delicacies in some 
communities (Dobson, 2004; Padghane et al., 2016).

Ornamental resources

Humans collect various items from headwater 
streams that are used as ornamental resources, but 
here we will focus on those examples that have 
offered business opportunities. One of the most well-
known examples is ornamental fish. They account 
for a meaningful export value in some parts of the 
world, such as Colombia, Brazil, and Peru (Olivier, 
2001). As 50% of all fish species in the catchment 
of the Amazon are restricted to headwater streams 
(Junk et  al., 2007), these ecosystems have become 
an important source for ornamental fish exports. 
Another small-scale business model that is inextrica-
bly linked to small streams is jewelry produced with 
caddisfly (Trichoptera) cases (Macadam & Stockan, 
2015; Prommi, 2018). Coldwater caddisfly taxa are 
collected from the field and reared in aquaria with 
gemstones that they assemble to create their protec-
tive case. Once the larva emerges, the case is fixed, 
incorporated into a jewelry piece and sold as a fash-
ion accessory. Caddisfly cases made of natural min-
eral elements (coarse sand) are also used for the 
same purpose. Other examples of biological mate-
rials that are widely used as ornamental resources 
include skeletonized leaves, which represent the 

litter decomposition process, which is most relevant 
in small forested streams.

Genetic resources

Due to their location and topographic condition (e.g., 
remote areas, high elevation and terrain slope), and 
through deliberate efforts geared toward their pro-
tection and conservation, small forested streams are 
usually among the least disturbed ecosystems in the 
world. Forested streams tend to have stable water 
quality (e.g., temperature, dissolved oxygen, dissolved 
solids) due to the protective canopy cover offered by 
the riparian vegetation, and stable large substrates 
maintained by high elevations/gradients (Table  1). 
For these reasons, forested streams are major habi-
tats for threatened aquatic species such as freshwater 
crabs (Dobson, 2004; Cumberlidge, 2011) and ana-
dromous salmonids that return from the sea to spawn 
(Beschta & Platts, 1986). Also, forest streams receive 
large amounts of litter inputs and are privileged loca-
tions for aquatic hyphomycetes (a polyphyletic group 
of fungal decomposers), which can be used as source 
for a large number of metabolites (Seena et al., 2022).

Energy

Humans have used moving water as a source of 
energy for more than 5000 years (Smith, 1971; WCD, 
2000). Hydropower generation has slowly increased 
its presence throughout the twentieth century, but 
the demand for energy from renewable sources is 
increasing, leading to increases in new dam projects 
(Zarfl et al., 2015). Most of the hydropower plants are 
small in terms of the energy they produce. In Europe, 
for instance, 91% of the existing hydropower plants 
produce less than 10  MW (WWF, 2019), and most 
of these plants are located on small streams (EVE, 
1995).

Cultural services

Esthetic values

People highly appreciate aquatic elements in land-
scapes (Hammitt et  al., 1994; White et  al., 2010; 
Eroglu et al., 2018). Additionally, the sound of water 
flowing in streams is commonly a favorite natural 
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sound, as shown in studies aimed at identifying pre-
ferred natural sounds to improve urban acoustic qual-
ity (Jeon et al., 2010; Hong et al., 2020). Therefore, 
streams increase the appeal of forests for visitors by 
enhancing the landscape as well as the soundscape. 
Streams with waterfalls are especially regarded 
as attractive, as the latter contain elements of the 

beautiful and the sublime, and often help compose a 
picturesque scene (Hudson, 2000) (Fig. 3A).

Inspiration (cultural and artistic values)

Small forested streams have long caught the atten-
tion of artists, and during the nineteenth century, they 
were often the central element in paintings portraying 

Fig. 3   Illustration of some cultural ecosystem services pro-
vided by small streams: Esthetic values and nature-based 
tourism illustrated with a waterfall in a 2nd  order stream 
(Ribeira do Candal, central Portugal; A); Cultural and artis-
tic values illustrated with paintings (B “Stream in the forest” 
by Ivan Shishkin; C “Forest stream” by Arseny Meshchersky; 
D “Stream in the forest winter” by Thomas Hill; E “The for-
est stream” by Stanislav Zhukovsky) and advertisements (F 
muppi of the 2017 advertising campaign of bottled-water 
company Águas das Pedras®, Portugal; G outdoor of the 
2012 advertising campaign of the company of outdoor clothes 
company Schöffel®, Germany); Spiritual and religious values 
illustrated with a shrine of the most popular pagan saint in 
Argentina, the Difunta Correa (the Deceased Correa) raised 
near a small stream, and a detail showing bottled water left 

as votive offerings “to calm her eternal thirst” (South Andes, 
Argentina, H); Recreation illustrated with a “swimming 
pool” in a 1st order stream (unnamed tributary of Ribeira da 
Cerdeira, central Portugal, I); Science illustrated with whole-
stream manipulations (J nutrient enrichment at a 1st order 
stream (unnamed tributary of Ribeira da Margaraça, central 
Portugal); K organic matter exclusion at a 1st order stream 
(unnamed tributary of Arroyo de Salderrey, northern Spain); L 
warming at a branch of a 2nd order stream (Ribeira do Can-
dal, central Portugal)); Education illustrated with creeking in a 
1st order stream (unnamed tributary of Ribeira do Catarredor, 
central Portugal, M). Photo credits: A, I, J, M Verónica Fer-
reira; B, C, D, E Ann.; F Água das Pedras®; G Schöffel®; H 
Ricardo Albariño; K Arturo Elosegi; L João Rosa
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forested landscapes (Fig.  3B–E). Small forested 
streams are also pictured in many wallpapers, as an 
online search will show, further supporting the notion 
that they contribute to pleasant surroundings. Streams 
are often associated with the idea of purity in nature, 
and this association has been exploited in advertise-
ments to convey the message of a natural product 
or of a product that creates a connection to nature 
(Fig. 3F–G).

Streams have also inspired writers. Miguel Torga, 
one of the greatest Portuguese writers of the twenti-
eth century, wrote “Eclogue,” one of the most famous 
Portuguese pastoral poems, about a small stream that 
unexpectedly runs dry. Streams are also present in 
traditional folk music, as in the case of “When cross-
ing the little stream,” a popular song in Alentejo 
(south Portugal; https://​vimeo.​com/​86905​639), which 
integrates the repertoire of innumerous traditional 
folk groups in the region, and is part of the reper-
toire of Cante Alentejano, a musical genre recog-
nized by UNESCO as an intangible cultural heritage 
of humanity. More widely, a search on a specialized 
global website (https://​www.​lyrics.​com/) retrieves > 
18,000 English-language song lyrics including the 
word “stream.”

Spiritual and ritual values

In many religious societies, streams and other water 
sources have many symbolic meanings. Christians 
use them for baptizing the newly converted, and some 
denominations like Legio Maria in western Kenya 
consider water from some springs as “pi hawi” or 
holy water and use it in performing special rituals 
(Obiero et  al., 2012). In Argentina, shrines of the 
most popular pagan saint, La Difunta Correa (the 
Deceased Correa), are occasionally raised near small 
streams “to calm her eternal thirst” (Mrs. Correa died 
in 1840 while walking with her baby in search of her 
sick husband after her food and water ran out, and 
was found with her baby still alive and breast-feed-
ing, which was taken as her first miracle) (Fig. 3H). 
Additionally, streams play an important role in the 
rites of passage of members of many communities. 
Among the Kalenjin peoples of Kenya, streams were 
important areas for construction of isolation shel-
ters for circumcised boys as they provided water for 
drinking and cleaning. These isolation shelters were 
areas of educating the circumcised on their new roles 

and responsibilities as community warriors or pro-
tectors. Similarly, in many communities, recruits for 
circumcision had to swim in these streams very early 
in the morning before being circumcised as this was 
meant to reduce bleeding after the cut. For indigenous 
and traditional communities in Brazil, small streams 
are considered abundant divine gifts, and therefore, 
their disappearance means the end of the society. In 
the culture of these communities, stream waters are a 
symbol of life. Streams are inhabited by supernatural 
beings that protect them, such as “Oxum,” the queen 
of freshwaters in Afro-Brazilian cults, and “Mãe 
d’Água” (Mother of Water) of the Caboclos of the 
Amazon. For the riverside populations of the Ama-
zon and Pantanal, waters of small streams symbolize 
purity and innocence and, therefore, must be espe-
cially respected, under penalty of serious punishment 
(Diegues, 1996).

Identity and sense of place

Streams are important elements in providing iden-
tity and a sense of place. An example is their use 
as a surname in different languages. For instance, 
“Ribeiro” (“stream” in Portuguese) is the 18th most 
common surname in Portugal and the 12th in Brazil, 
where it is used by > 1.5 million people (Sociedade 
Portuguesa de Informação Económica, 2004; Cam-
pacci, 2012). The word “Ribeiro” originates from the 
Latin “ripariu”, which means “small stream”, mak-
ing the surname “Ribeiro” a toponymic surname, 
i.e., a name derived from a place. Also, the names 
“Brook” and “Brooke” (syn. for “stream”) are in the 
top 1000 first names in the US (https://​www.​ssa.​gov/​
cgi-​bin/​babyn​ame.​cgi). Another example is their use 
in the name of villages, towns and cities, as a search 
in Google Maps by the terms “Ribeiro”, “Ribeirinho” 
(small stream), and variations of these, will show for 
Portugal.

Nature‑based tourism

Streams increase landscape heterogeneity and the 
attractiveness of forests for outdoor activities (e.g., 
walking, trekking, orienteering, appreciation of 
scenery). This is especially true when streams have 
waterfalls, which are often regarded as natural sce-
nic attractions (Hudson, 1998). Although small 
stream waterfalls have low discharge, they can still be 

https://vimeo.com/86905639
https://www.lyrics.com/
https://www.ssa.gov/cgi-bin/babyname.cgi
https://www.ssa.gov/cgi-bin/babyname.cgi
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impressive in their height and complexity (Fig. 3A). 
Canyoneering is a major tourist activity in the US 
desert Southwest, often in slot canyons carved by 
ephemeral streams.

Recreation

In mountainous regions distant from littoral areas, 
populations often turn to freshwaters for bathing and 
swimming during summer. In small streams this is 
generally accompanied by human “improvements” to 
the stream, such as the widening of stream sections, 
the paving of the streambed and the construction of 
small temporary dams to create small “swimming 
pools” of accumulated water (Fig.  3I). The number 
of these swimming pools is difficult to estimate as 
they are often constructed out of individual or popu-
lar initiative. In small streams that have naturally high 
slopes or barriers (e.g., waterfalls), these reaches may 
be fishless, and the hydromorphological alterations 
in the swimming pool area (i.e., increased depth dur-
ing summer, homogenization of substrate) are likely 
to have only local and/or seasonal effects on aquatic 
communities.

Science and education

Small forested streams allow for unique opportunities 
for scientific research and education. Owing to their 
small size and reduced discharge, small streams are 
amenable to whole-stream experimental manipula-
tion, which is generally not feasible in larger streams 
and rivers. In whole-stream manipulations, the vari-
able of interest can be examined at the most relevant 
ecosystem scale, which allows for assessment of the 
effects of environmental changes on aquatic commu-
nities and ecosystem processes including all inter-
actions among species and with other environmen-
tal characteristics that may show diel, seasonal or 
interannual variation (Nakano & Murakami, 2001). 
Therefore, whole-stream manipulation is the most 
realistic experimental approach allowing for the 
establishment of causal relationships by comparison 
with a similar stream or stream reach not exposed to 
manipulation. Examples of whole-stream manipula-
tions include whole-stream litter exclusion to assess 
the importance of allochthonous organic matter to 
stream communities and functioning (Wallace et  al., 
1997), litter input manipulations to assess the effects 

of eucalyptus litter inputs (mimicking those of euca-
lyptus monocultures) vs. native litter inputs (mimick-
ing those of native temperate deciduous broadleaf 
forests) on stream communities and functioning (Lar-
rañaga et al., 2014), nutrient enrichment to assess the 
effects of increases in nutrient availability on organic 
matter processing and associated communities (Gulis 
& Suberkropp, 2003; Ferreira et  al., 2006; Rose-
mond et  al., 2015), insecticide additions to quantify 
the role of invertebrates on organic matter processing 
(Cuffney et  al., 1990) and water warming to assess 
the effects of global warming on stream communities 
and processes (Hogg & Williams, 1996; Ferreira & 
Canhoto, 2014) (Fig. 3J, K, L).

Small streams are also ideal places for introducing 
children, school groups, and families to stream eco-
systems, due to their reduced safety risks (i.e., they 
are shallow), abundance in the landscape and high 
environmental heterogeneity and biodiversity. Creek-
ing, i.e., “exploring a stream and picking up rocks to 
see what is on or under them” as defined by Suter & 
Cormier (2015), is ideally performed in small streams 
(Fig. 3M).

Contribution of small streams to ecosystem 
services provided by downstream waters

A common characteristic of many ecosystem ser-
vices is that areas of service supply and demand are 
spatially dislocated due to the separation between 
natural or semi-natural ecosystems and human-
dominated environments (Bagstad et  al., 2013; 
Schirpke et al., 2019). Mountain regions are poten-
tial hotspots of ecosystem services, whereas high 
demand areas are mostly associated with lowland 
urbanized or agricultural areas (Schirpke et  al., 
2019). Small streams perform ecological func-
tions (i.e., biological, geochemical and physical 
processes) that are critical for ecosystem services 
provided throughout their catchments (Hill et  al., 
2014; Colvin et al., 2019) and connect mountainous 
regions to lowlands. Moreover, when small streams 
directly flow into larger rivers, they provide sedi-
ments and resources that shape large river commu-
nities and make them more productive ecosystems 
(Rice et al., 2001; Kiffney et al., 2006). Longitudi-
nal connectivity is one of the fundamental dimen-
sions linking streams with downstream habitats and 
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ecosystems (Townsend, 1989; Ward, 1989) and it is 
the basis of different conceptualizations to enhance 
our understanding of the functioning of fluvial sys-
tems (e.g., Vannote et al., 1980; Thorp et al., 2010; 
Wohl et  al., 2015; Raymond et  al., 2016). While 
connectivity between headwaters and downstream 
reaches is bidirectional, the upstream–downstream 
direction, ruled by gravity, overrides in impor-
tance. Such characteristics determine the transpor-
tation of materials, including water, when surface 
flow occurs (MacDonald & Coe, 2007; Datry et al., 
2014; Allan et al., 2021) (Fig. 2). The linear connec-
tion between small streams and downstream reaches 
may, however, be discontinued by natural and man-
made lentic ecosystems (e.g., dam-produced reser-
voirs), which regulate hydrological regimes, water 
temperature and the export of dissolved and particu-
late material (Ward & Stanford, 1983; Jones, 2010; 
Covino, 2017). This fluvial discontinuity alters the 
spatial and temporal expression of ecosystem ser-
vice provisioning because lentic water bodies alter 
the timing and magnitude of water and other mate-
rial fluxes.

Water drained by small streams is the foundation 
of fluvial connectivity and, as a good itself, is pre-
dominantly taken up and used downstream; small 
streams contribute ~ 80% of mean annual flow vol-
ume to downstream reaches (estimation for 7th order 
hydrographic networks of the north-eastern US; 
Alexander et al., 2007) (Table 3). Human populations 
are distributed heterogeneously on Earth, preferably 
inhabiting lowlands (Kummu et al., 2016), and future 
population dependency on runoff from mountain 

landscapes (39% of land mass) for water provisioning 
(e.g., direct human consumption, animal growing and 
irrigation) has been estimated at ~ 1.4 billion peo-
ple (23% of world’s population) by 2050 compared 
to ~ 0.2 billion (~ 8%) in the 1960s (Viviroli et  al., 
2020). Water exported from small forested streams 
is also important for maintaining water quality in 
larger streams and rivers. Cool stream water flow-
ing from shaded environments into open areas helps 
in downstream cooling (Moore et  al., 2005) and, by 
containing low concentrations of nitrogen and phos-
phorus, small stream contributions can dilute nutri-
ents drained from pastures and other land uses that 
predominate in lowlands, limiting eutrophication in 
downstream reaches (Chiwa et al., 2015).

Sediment export to downstream reaches is slowed 
due to channel complexity, further reduced by large 
wood dams (Wohl & Beckman, 2014; Sklar et  al., 
2017). However, sediments arriving to downstream 
reaches may become suitable habitats for fish repro-
duction (Riebe et  al., 2014) (Table  3). Also, the 
adsorption of trace elements, phosphorus and DOM 
to clays, silts, and sand grains, makes them natural 
soil fertilizers (Lottig & Stanley, 2007; Ward et al., 
2017) (Table 3). These nutrient-rich sediments may 
deposit in floodplains of large streams and rivers 
when water overflows, contributing nutrients to 
landscapes, and supporting high biodiversity and 
productive soils for agriculture and livestock (Tock-
ner & Stanford, 2002; Chapman et  al., 2016). An 
endpoint of sediments transported from headwa-
ters is the dynamic formation of deltaic riverscapes 
at the mouth of inland water bodies and ocean 

Table 3   Contribution of small streams to ecosystem services (provisioning and supporting categories) provided by downstream 
larger streams and rivers

Contribution of small forested streams to downstream 
waters

Role in downstream waters Ecosystem services provided by downstream 
waters

Water Quantity and quality Resources Water for domestic, agricultural and indus-
trial use

Resources Energy production
Sediments Sediments Substrate Fish production

Trace elements, phosphorus and DOM 
adhered to clay and silt

Resources Agricultural and livestock production; 
Biodiversity

Nutrients Nitrogen, phosphorus, salts Resources Productivity of food webs
Organic matter Dissolved and particulate organic matter Resources Productivity of food webs

Large wood Resources; Substrate Productivity of food webs; Biodiversity
Organisms Mass, energy, nutrients and genes Resources Productivity of food webs; Biodiversity
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estuaries, areas that also support high biodiversity 
and provide many other ecosystem services (Tock-
ner & Stanford, 2002; Adger et al., 2018; Richard-
son et  al., 2021). In this regard, dam construction 
along watercourses obstructs these dynamic eco-
system services, resulting in river “sediment starva-
tion” and in generalized strong reductions in delta 
formation (Tockner et al., 2008). In contrast, excess 
sediment production and transportation to lowland 
streams and rivers, as happens when land use or 
wildfire increases catchment erosion, is also a prob-
lem (Grabowski & Gurnell, 2016). Fine sediments 
in transport are erosive to biota and are also trapped 
within channel bottoms embedding larger substrates 
by filling interstices, which causes habitat loss for 
sensitive benthic biota, especially invertebrates 
(Jones et al., 2012), and may undermine ecosystem 
services dependent on habitat heterogeneity and 
benthic biota (Table 2).

In general, dissolved nutrients and DOM exported 
from small streams travel further downstream than 
particulate organic matter, which mainly moves 
down episodically via rainstorms and snowmelt 
(Battin et al., 2008; Bernal et al., 2013; Bunte et al., 
2016; Rowland et  al., 2017). Spates produce mas-
sive movement of dissolved and particulate materials 
(e.g., FPOM, leaf litter and wood substrates) (Ber-
nal et al., 2013; García et al., 2015; Raymond et al., 
2016; Turowski et  al., 2016), but it is during base 
flow conditions that the fluvial ecosystem is most bio-
reactive (Battin et  al., 2008; Raymond et  al., 2016). 
Dissolved and suspended materials are biophysically 
removed and mineralized by microbes in biofilms and 
aggregates in the water column (Battin et  al., 2008, 
2016), although physical processes also take part 
(e.g., adsorption, flocculation, and photodegrada-
tion). Downstream processing results in more recal-
citrant, small-sized substances; however, even such 
substances can be photo- and biodegraded (Battin 
et al., 2008; García et al., 2018). As part of the carbon 
and nutrient cycles, these materials boost the produc-
tivity of food webs in downstream lowland streams, 
rivers, wetlands (e.g., floodplains, deltas and estuar-
ies), and further into the ocean environment (Cole 
et  al., 2007; Ward et  al., 2017; Bergström, 2020). It 
has been shown that 30 to 45% of DOM exported by 
small streams may be removed and mineralized on its 
way to the sea resulting in important CO2 outgassing 
(Cole et al., 2007; Battin et al., 2008; Mineau et al., 

2016). Leaf litter and FPOM, which only travel long 
distances during spates, are also exploitable resources 
for downstream food webs (Wipfli et  al., 2007) 
(Table  3). Finally, large driftwood pieces become 
important when sunk in lowland rivers, deltas and sea 
coasts. In particular, wood exported into marine envi-
ronments can amount to 4.7 million m3/year (Wohl 
& Iskin, 2021). Wood inputs to the seafloor create an 
oasis of habitat and food in the barren ocean benthos 
comparable to coral reef habitats, supporting distinc-
tive communities of fungi, mollusks, and crustaceans 
(Wohl & Iskin, 2021) (Table 3).

Living organisms move up- and downstream along 
hydrographic networks, exchanging mass, energy, 
nutrients, and genes (Meyer et  al., 2007; Wipfli 
et al., 2007; Pond et al., 2016) (Table 3). In particu-
lar, invertebrate drift is a natural phenomenon in flu-
vial systems. Drift is defined as individuals escaping 
from unfavorable conditions or being transported 
incidentally downstream during spates (Brittain & 
Eikeland, 1988; Naman et al., 2016). Therefore, drift 
contributes to species dispersion. While catastrophic 
events can result in drift (passive drift), the effects 
can include population mortality and the whole sys-
tem is under stress during spates. More controlled 
behavioral drift constitutes an essential strategy for 
invertebrates to colonize new reaches downstream 
and is also a resource for drift-feeding fish (Naman 
et al., 2016). Many small streams are fishless, mostly 
because they are isolated by natural barriers, such as 
waterfalls, and the surface flow is seasonally more 
variable than in downstream reaches, which results 
in a riskier habitat for strictly aquatic biota (Gomi 
et  al., 2002; Richardson, 2019). In these situations, 
drifting invertebrates exported from small streams 
constitute a potential net input of food to downstream 
fish populations inhabiting larger streams and rivers 
(Wipfli & Gregovich, 2002; Wipfli et al., 2007; Pond 
et  al., 2016). Headwater streams hold biota that are 
spread along hydrographic networks and may main-
tain genetic fluxes by dispersion of both aquatic and 
terrestrial stages to downstream reaches (Meyer 
et al., 2007). This contributes to a striking pattern in 
organisms, which display higher intraspecific genetic 
diversity in downstream reaches, in part because 
of asymmetrical longitudinal dispersal success due 
to unidirectional water flow (Paz-Vinas et  al., 2015; 
Blanchet et al., 2020).
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The ability of small streams to contribute to eco-
system service provision to downstream reaches 
may, however, be constrained by the in  situ acquisi-
tion and delivery of certain goods and services pro-
vided by small streams and their catchments. For 
instance, water abstraction from small streams for 
human use or energy generation can reduce the vol-
ume of water transported downstream, consequently 
limiting the transportation of sediments, organic mat-
ter and organisms. Also, human activities, such as 
mining, small hydropower dam and reservoir con-
struction, agriculture, and forestry (Lindberg et  al., 
2011; Deitch et  al., 2013; Couto & Olden, 2018; de 
Vries et  al., 2019; Erdozain et  al., 2021), may alter 
the hydrology and chemistry of small streams (e.g., 
dewatering and pollution, see below), reducing their 
contributions to ecosystem services provided to 
downstream reaches.

Threats to small stream ecosystem services

Headwaters are likely the most unpolluted water 
courses in a catchment given their relative isolation 
and often high elevation, which makes them individu-
ally drain small areas of low human occupation. This 
generally translates into better water quality at the 
headwaters of hydrographic networks than in low-
land areas (Ferreira et  al., 2004; Mou et  al., 2004). 
However, small streams are also the most vulnerable 
watercourses to environmental changes owing to their 
small size, reduced water volumes, strong aquatic-ter-
restrial connections, strong dependency on the ripar-
ian forest and isolation (Table 4). Consequently, even 
relatively small changes to catchment and instream 
characteristics can affect the services provided by 
small streams (Fig. 2; Table 2).

For instance, because of their size, small streams 
are vulnerable to burial (Meyer et  al., 2005). The 
proportion of stream length buried (e.g., through 
road building, piping, and channeling through cul-
verts) is higher for 1st and 2nd  order streams than 
for higher-order streams (Stammler, 2011). Stream 
burial impairs the connection between the stream 
and its riparian forest, impeding direct (i.e., from the 
canopy) and indirect (i.e., from the stream margins) 
litter inputs from the riparian vegetation, and lead-
ing to significant decreases in coarse and fine benthic 
organic matter standing stocks, and lower ecosystem 

respiration (Beaulieu et  al., 2014; Pennino et  al., 
2014). Stream burial also virtually eliminates the pen-
etration of solar radiation into the stream bed, which 
limits instream primary production (Beaulieu et  al., 
2014; Pennino et  al., 2014). Additionally, stream 
burial leads to decreases in habitat heterogeneity 
and to simplified hydromorphology, which results in 
increased current velocity (Beaulieu et al., 2014; Pen-
nino et  al., 2014). As a consequence, nitrate uptake 
length is longer and nitrate uptake velocity is lower 
in buried than in open streams, which suggests lower 
nitrate retention capacity in buried streams (Beaulieu 
et al., 2014, 2015; Pennino et al., 2014). Lower ben-
thic organic matter, ecosystem respiration, primary 
production, and nutrient retention capacity in buried 
streams alters carbon and nutrient export, potentially 
impairing the water quality of downstream reaches, 
especially for high levels of stream burial (Beaulieu 
et al., 2014, 2015; Pennino et al., 2014). Stream bur-
ial, with all consequent alterations in stream structure 
and functioning, potentially impacts all ecosystem 
services (Table 4).

The size and high elevation of small streams 
make them susceptible to obstruction by landslides. 
Landslides are natural events contributing important 
sediment and large wood inputs to streams, and are 
caused by natural phenomena, such as heavy rain-
fall, that decrease slope stability (Geertsema et  al., 
2009). Landslides can, however, be promoted by 
human activities and their frequency has been shown 
to increase with logging-related activities and road 
density, both of which remove vegetation and, there-
fore, promote changes to the root cohesion of the 
soil and soil moisture regimes (Guthrie, 2002; Sidle, 
2005; Imaizumi et al., 2008). Forest fires, by remov-
ing vegetation, can also promote landslides (Can-
non & Gartner, 2005). The predicted increase in the 
frequency of storms and wildfires and the foreseen 
expansion of planted forests for timber production 
(with associated road building and periodic harvest-
ing) will likely increase the frequency of landslides 
into small streams (Krawchuk et al., 2009; Payn et al. 
2015; Prein et al., 2017). Stream obstruction by land-
slides can have strong influences on supporting ser-
vices (mostly water cycling and habitat provisioning), 
regulating services (mostly flood control and erosion 
control), and cultural services (mostly esthetic values, 
nature-based tourism, recreation) (Table 4).
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Small water volumes and reduced storage zones 
of small streams make them highly vulnerable to 
the increased evapotranspiration associated with the 
replacement of native forests, or to the afforestation 
of grassland catchments, by dense, fast-growing, 
tree plantations, which can cause discharge reduc-
tions (Jackson et  al., 2005; Lara et  al., 2009). Also, 
unregulated water abstraction for domestic and agri-
cultural use can lead to drastic reduction in stream 
flows (Ashworth & Vizuete, 2017). Additionally, the 
boom of small hydropower plants deployed in small 
catchments as part of renewable energy and climate 
mitigation strategies (Kelly-Richards et  al., 2017; 
Couto & Olden, 2018; Crnobrnja-Isailović et  al., 
2021), by promoting water diversion, can severely 
impact streams depending on the stream length dewa-
tered and the amount of streamflow abstracted. Small 
streams are also at high risk of undergoing drought 
during the longer, warmer and drier summers fore-
casted under climate change scenarios, which will 
increase evapotranspiration and water demand by 
both riparian forests and human populations in many 
parts of the world (Reynolds et al., 2015). Decreases 
in water availability in small streams will lead to the 
loss of aquatic habitat, loss of longitudinal connec-
tivity with consequent reductions in water, sediment, 
nutrients, organic matter, and organism transport to 
downstream reaches, and decreases in water quality 
resulting from increases in temperature and conduc-
tivity and decreases in dissolved oxygen, all of which 
will negatively influence stream biota and ecosystem 
processes (Rolls et  al., 2012). Decreases in water 
availability, especially when considering perennial 
streams, potentially impacts all ecosystem services 
discussed above (Table 4).

The strong connections between small streams 
and their riparian forests, which provide shade and 
litter inputs that sustain heterotrophic food webs, 
make them highly susceptible to forest changes. For-
est clearcutting, by removing riparian vegetation, 
promotes changes in the relative importance of basal 
food resources to aquatic communities (i.e., decreases 
in litter inputs and increases in instream primary pro-
duction) and consequently changes the relative impor-
tance of heterotrophic (decreased) and autotrophic 
(increased) energetic pathways (Göthe et  al., 2009), 
which can be long lasting (Burrows et  al., 2021; 
Frainer & McKie, 2021). Replacement of native for-
ests by tree monocultures or their invasion by exotic 

species can also change shade patterns (e.g., when 
native forests and replacing species differ in decidu-
ousness, stand abundance and/or canopy density), or 
alter instream primary production and the character-
istics of litter inputs (Hladyz et al., 2011; Larrañaga 
et al., 2021; Ferreira et al., 2021). Reduction in shad-
ing with forest clearing increases water tempera-
tures (up to 15ºC) (Johnson & Jones, 2000; Kiffney 
et al., 2003; Reiter et al., 2015). Warming has strong 
influences on aquatic biota adapted to cool water, 
and stimulates biofilm activity and litter decompo-
sition, as shown by whole-stream warming experi-
ments and correlative studies along geothermal gra-
dients (Hogg & Williams, 1996; Friberg et al., 2009; 
O’Gorman et  al., 2012; Ferreira & Canhoto, 2014; 
Ylla et  al., 2014). Litter inputs become less diverse 
and are often dominated by recalcitrant litter, as when 
mixed deciduous forests are replaced by eucalyptus 
or conifer plantations (Molinero & Pozo, 2004; Inoue 
et al., 2012; Larrañaga et al., 2021), which can influ-
ence aquatic communities and processes (Larrañaga 
et  al., 2009; Ferreira et  al., 2016b; Monroy et  al., 
2017). Different forest changes (e.g., afforestation 
with native or exotic monocultures, invasion by exotic 
species, clearing) differ in the type and magnitude of 
their effects on stream structure and functioning (Lar-
rañaga et al., 2021; Ferreira et al., 2021), but they can 
potentially affect all ecosystem services (Table 4).

Small water volumes, and consequently small dilu-
tion capacities, make small streams vulnerable to 
inputs of nutrients and pollutants, which leads to the 
deterioration of water quality. In shaded streams with 
high heterotrophic activity (i.e., high nutrient uptake 
capacity), effects of mild nutrient enrichment (e.g., 
from small-scale agriculture) on water quality may be 
detectable only for a short distance after which dis-
solved nutrient concentrations return to ambient lev-
els (Ferreira et al., 2006). However, if nutrient inputs 
surpass the ecosystem nutrient uptake capacity, then 
there will be an increase in nutrient concentrations 
in stream water (Gulis et  al., 2006), and eutrophica-
tion may take place if light and temperature are not 
limiting (Hagen et  al., 2010). Eutrophication affects 
supporting services (mostly nutrient cycling, primary 
production, maintenance of biodiversity, and main-
tenance of aquatic and riparian productivity), regu-
lating services (mostly sinks for potentially harmful 
solutes, water purification and quality, carbon and 
nitrogen sequestration), provisioning services (mostly 
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high-quality water), and cultural services (mostly 
esthetic values, nature-based tourism, and recreation) 
(Table 4).

Headwaters are isolated due to their higher posi-
tion in the hydrographic network, which makes them 
vulnerable to environmental changes that lead to local 
species extinctions (e.g., warming, forest change). 
The high hydromorphological and habitat heterogene-
ity allow for high variation in species richness across 
streams (i.e., high β-diversity), and therefore, they 

contribute to regional biodiversity (i.e., γ-diversity) 
(Clarke et al., 2008; Finn et al., 2011; Besemer et al., 
2013; Jyrkänkallio-Mikkola et  al., 2018). However, 
by inhabiting the smallest, highest elevation streams 
already, these aquatic species do not have higher 
elevation refugia reaches to escape to in case envi-
ronmental and/or biotic conditions deteriorate (e.g., 
warming, invasion by exotic species). Species loss 
in these small streams may be difficult to reverse 
since they lack upstream sources of colonists and 

Table 5   Ecosystem 
services provided by small 
streams (see Table 2) in 
comparison with ecosystem 
services identified in MEA 
(2003, 2005)

Ecosystem services identified in MEA Ecosystem services attributed to small streams 
Supporting services 
Water cycling Water cycling 
Nutrient cycling Nutrient cycling 
Primary production Primary production 
Soil formation and retention Soil/sediment formation 
Provisioning of habitat Habitat provisioning and maintenance 

Maintenance of aquatic and riparian productivity
Maintenance of biodiversity 

Oxygen production

Regulating services 
lortnocdoolFnoitcetorpmrotS

lortnocnoisorElortnocnoisorE
setuloslufmrahyllaitnetopfoskniS

noitalugererutarepmeTnoitalugeretamilC
Air quality maintenance Regulation of microclimate 

noitagirrilarutandnaeganiarDnoitalugerretaW
Water purification and waste treatment Water purification and quality

Carbon and nitrogen sequestration 
Regulation of human diseases 
Biological control 
Pollination 

Provisioning services 
Fresh water High quality water 
Food Food 
Ornamental resources Ornamental resources 
Fuel Energy 
Genetic resources Genetic resources 
Fiber 
Biochemicals, natural medicines and 
pharmaceuticals 

Cultural services 
Aesthetic values Aesthetic values 
Inspiration Inspiration 
Spiritual and religious values Spiritual and cultural values 
Sense of place Identity and sense of place 
Ecotourism Nature-based tourism 
Recreation Recreation 
Educational values Science and education 
Cultural diversity 
Knowledge systems 
Social relations 
Cultural heritage values 

Highlighted in gray are services identified in MEA for which small streams do not presently 
contribute much; as knowledge on these systems accumulates, additional ecosystem services 
may be identified in the future
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colonization from other small streams may be difficult 
due to high variation in diversity between streams and 
to limited dispersal capabilities (e.g., macroinverte-
brates without flying adults) (Parkyn & Smith, 2011), 
which will have negative influences on regional diver-
sity. Species extinctions affect all biological-driven 
ecosystem services such as primary production (sup-
porting service), carbon and nitrogen sequestration 
(regulating service), and food (provisioning service) 
(Table 4).

Conclusions

Of the 33 ecosystem services identified by the MEA 
(2003, 2005), 23 are (fully or partially) provided by 
small streams; four additional ecosystem services 
were identified (Table 5). These ecosystems are also 
key to maintaining aquatic and riparian productivity, 
as sinks for potentially harmful solutes and in terms 
of carbon and nitrogen sequestration. Additionally, 
small streams make a fundamental contribution to 
regional biodiversity owing to their high variation 
in species composition and preservation of special-
ist taxa. Because of their large numbers and broad 
distribution, small streams also present a wide diver-
sity of environmental and habitat conditions that 
are favorable for different and diverse organisms. 
The high number of ecosystem services provided by 
small streams makes them critical to human wellbe-
ing and biodiversity. Therefore, stronger efforts need 
to be pursued to protect small streams, and to restore 
those that are degraded. The protection of small 
streams (e.g., establishment of micro-reserves) can be 
extremely cost-efficient considering the gain in biodi-
versity and other ecosystem services. Nevertheless, it 
is not enough to protect small streams only on pub-
lic lands (e.g., protected areas); those within private 
properties need to be sustainably managed as well. 
For private owners to engage in the protection of 
small streams, their importance in the landscape and 
for human wellbeing, their vulnerability to human 
activities, and the consequences of environmental 
changes on their ability to provide ecosystem services 
need to be conveyed to society.
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