Computing transition path theory quantities with trajectory

stratification

Bodhi P. Vani,! Jonathan Weare,? and Aaron R. Dinner*!
DDepartment of Chemistry and James Franck Institute, University of Chicago,

Chicago IL 60637

2 Courant Institute of Mathematical Sciences, New York University, New York 10012

(*Electronic mail: dinner @uchicago.edu)

(Dated: 23 August 2023)

Transition path theory computes statistics from ensembles of reactive trajectories. A common strategy for
sampling reactive trajectories is to control the branching and pruning of trajectories so as to enhance the
sampling of low probability segments. However, it can be challenging to apply transition path theory to
data from such methods because determining whether configurations and trajectory segments are part of
reactive trajectories requires looking backward and forward in time. Here, we show how this issue can
be overcome efficiently by introducing simple data structures. We illustrate the approach in the context of
nonequilibrium umbrella sampling (NEUS), but the strategy is general and can be used to obtain transition
path theory statistics from other methods that sample segments of unbiased trajectories.

I. INTRODUCTION

One of the main purposes of simulations is to learn
how processes occur. However, most processes of in-
terest occur on timescales that are orders of magnitude
longer than the numerical integration time step. In the
case of molecular systems, on which we focus here,
the time step for all-atom models is in the femtosecond
range, while conformational transitions of functional sig-
nificance typically take place in the microsecond to sec-
onds range. As a result, at best, only a small number of
events can be observed by direct simulation. Moreover,
even if one obtains examples of events of interest, the
number of dynamical variables is generally sufficiently
large that it is not obvious which are the key steps’, leave
alone their likelihoods and the distributions of times that
they occur.

Transition Path Theory (TPT) provides a means of
computing these statistics for transitions between two
metastable states from the ensemble of reactive trajec-
tories (i.e., those that contain an event)*. A key idea in
TPT is that these statistics can be expressed as products
over the steady-state distribution and the probabilities of
coming from or going to the metastable states (known as
commitment probabilities or committors). This factor-
ization allows estimating these probabilities separately,
which opens the door to computing statistics of reactive
trajectories from a broader range of data.

Markov State Models (MSMs) are a popular means
of computing TPT statistics>®. In MSMs, dynamics are
coarse-grained to transitions between a set of discrete
states, the probabilities of which are assumed to be in-
dependent of the sequence of states visited. The ad-
vantage relative to direct simulation comes from the fact

that there is considerable freedom in how one estimates
the state-to-state transition probabilities”®. Dynamical
Galerkin Approximation (DGA)?1%is a generalization of
MSMs for TPT statistics that accounts for the boundary
conditions of the statistics'!' and represents them through
expansions over sets of basis functions (which can take
a form beyond indicator functions on discrete states).
Recently, TPT statistics have also been computed with
milestoning!?, which instead assumes that the system
reaches an equilibrium within selected parts of the con-
figuration space (the milestones )24,

Although often reasonable, the above approximation
schemes can break down, and, even if they do not,
they ultimately limit the resolution with which statistics
can be computed. Methods that sample the ensemble
of trajectories that connect the metastable states with-
out such assumptions can in principle provide results
with arbitrary resolution. One such method is Transi-
tion Path Sampling (TPS), a Monte Carlo procedure that
accepts and rejects whole trajectories'>''Z. However,
generally it is more efficient to divide the configuration
space and sample segments of trajectories that transi-
tion between regions. This idea is at the foundation of
the Weighted Ensemble (WE)'82, Transition Interface
Sampling (TIS)?!22, Forward Flux Sampling (FFS >4,
Nonequilibrium Umbrella Sampling (NEUS)*"22, and
Exact Milestoning (EM)?Y methods. With the exception
of TIS, these methods allow treatment of microscopically
irreversible dynamics, which is also not straightforward
in TPS.

The differences between these methods are in the de-
tails of the trajectory segments they select and how they
track their probabilities to enable reconstruction of the
overall statistics. Generally the interfaces are speci-
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fied through collective variables that combine informa-
tion from multiple coordinates used for the underly-
ing numerical integration. TIS and FFS require non-
intersecting interfaces because they are formulated in
terms of the probabilities of going from one to another
in order. WE, NEUS, and EM do not have this restric-
tion and thus readily allow control of sampling in more
than one collective variable. In its traditional form, WE
tracked the weight of each trajectory segment (equiva-
lent to a member of the ensemble) individually. NEUS
instead tracked the weight of a subpopulation within a re-
gion (termed a stratum in statistics) and redistributed the
weight to satisfy a global flux balance condition. Later
implementations of WE that incorporate this idea®! are
very similar to NEUS, as is EM, which relaxes the dis-
tributions on the milestones. Several of these algorithms
can thus be described by a common framework, trajec-
tory stratification2.

Because these methods sample trajectory segments
rather than whole trajectories, care must be used to
weight trajectory segments appropriately when comput-
ing statistics. Vanden-Eijnden and Venturoli*’ showed
that the rate can be obtained exactly from NEUS by aug-
menting the dynamics with information about the last
metastable state visited, and this scheme was further re-
fined and applied in ref. 26l However, the rate requires
only tracking transitions into the metastable states, mak-
ing it easier to compute than statistics that require in-
formation about intervening states. Vanden-Eijnden and
Venturoli*Z provided a formula for computing the (back-
ward) committor from the region weights, but, to the
best of our knowledge, statistics such as committors and
probability currents of reactive trajectories (reactive cur-
rents for short), which reveal microscopic likelihoods of
reaction and reaction pathways, respectively, have not
been computed from such methods. The challenge pre-
sented by these quantities is that each trajectory segment
can contribute to an infinite number of complete trajecto-
ries, and determining the ones that contribute to a given
statistic requires looking both forward and backward in
time.

Here, we introduce a simple bookkeeping procedure
and practical formulas for computing committors and re-
active currents. While we present our methods in terms
of the NEUS algorithm, they can be adapted to the other
algorithms for sampling trajectory segments described
above. The paper is organized as follows. In Section
we define these quantities in the TPT framework, and
in an associated appendix we provide an explicit justifi-
cation for an estimator of the current. In Section [l we
provide a succint description of the NEUS algorithm and
show how it must be modified. We demonstrate the algo-
rithm for isomerization of a peptide in Section

Il. TRANSITION PATH THEORY

We are interested in learning the statistics of reactive
trajectories. In TPT, these are defined to be trajectories
that start in a state A and end in a non-overlapping state B
without returning to A. To delimit their ends, we define

t+(t) =min(t’ > 1, Xy EAUB) (1)
t(t)=max(t' <t, X, € AUB), )

where X, is the configuration at time ', and X, € (AUB)°.
The forward committor ¢ (x) is the probability that the
system goes to B before A starting from state x:

¢+ () =PX(1:(0) € BX(0) =2, ()

Similarly, the backward committor g_(x) is the probabil-
ity that a system at x came from A after B:

¢-() =PX(_(0) €AX(0) =x. (4

In the present study, for visualization, we project the
committors onto the space defined by a vector of col-
lective variables, 0(x), weighted by 7(x):

¢2(0) = [ 4:(2(x)8(0(0) ~O)dx,  (5)

A key element of TPT is that the probability that a tra-
jectory is reactive can be expressed in terms of quantities
that are local in space. Specifically, the probability that a
trajectory that passes through x is reactive is proportional
to 7(x)g— (x)g+(x), where (x) is the steady-state distri-
bution. The fact that TPT is based on local statistics aids
in interpretation, but it also can make obtaining certain
statistics challenging. We discuss how TPT of an aug-
mented process can be used to obtain additional statistics
that require knowledge of sequences of states visited in
ref. |33l Of course, the analysis we propose here can be
complemented by direct analysis of the reactive trajecto-
ries as well.

A. Reactive current

The reactive current is a central quantity in TPT2=53%,

It can be used to define reactive pathways, and averages
over reactive trajectories—in particular the rate—can be
computed from it. The reactive current is defined by con-
sidering a surface § that divides the space into two re-
gions: C containing A and its complement C¢ containing
B. Then, the reactive current, /45(x), is the vector field



whose integral is the reactive flux across S:

1 T
/S agisdas = lim Jim > [ [1e(X(0) 1 (X(1+ 7))

T=50T— 2T T J_T
—Lee(X (1)) 1e(X (1 + 7)) [a (X (1 (1)) 1p(X (11 (t + 7)) )dt

(6)

where 7ig is a unit vector normal to S (pointing from C to
C°), dog is a surface element, 7 is a lag time, and

1 ifxeD

Ip(x) = { (N

0 otherwise.

In general, the full state space of the system has many
dimensions. /4p(x) is a vector field in the full space of
dynamical variables, of which there are many in general.
However, most of these are irrelevant for determining
whether the reaction proceeds, and we seek a small num-
ber of key dimensions. Because these are often combina-
tions of the original dynamical variables, we term them
collective variables. We show in the Supplemental Infor-
mation that

A+ VO(x) = m(x)q-(x)q+(x)

x lim ZLE[(G(X(T)) —0(X(—1))]

=0 27T

X(-(0) € A,X(14(0)) € BX(0) = (8)

We use E to denote expectations over the steady-state
trajectory ensemble. This formula is simply the product
of the probability of being on a reactive trajectory and
the average increment per unit time of 6 along a reac-
tive trajectory. We project this current onto the space of
collective variables:

53(0) = [1an(0) - VOWS(6(x) - @) (©)
1

= lim —— -VO(x)dx.
Id@l>H0 |d@| Jio(x)cd0} an(%) (x)dx

10)

We recently showed that this projected reactive current
can also be used to compute the reactive flux through an
integral similar in form to (6] but in the 6 space; the pro-
jected current g (@) can in turn be used to compute the
rate!V. The expressions in (§) and () allow us to obtain
the reactive current in the space of collective variables
from reactive trajectories.

In the next section, we discuss how reactive trajecto-
ries can be sampled efficiently. Although we treat time
as continuous above, with a view toward developing a
practical algorithm, we henceforth assume a dynamics
with discrete time steps; the lag time 7 is thus an integer
multiple of the time step in practice.

I1l. TRAJECTORY STRATIFICATION

The idea of stratification in general is to obtain better
overall statistics by controlling the sampling of subpop-
ulations (strata). The most familiar form of stratification
in molecular simulations is umbrella sampling®?3>738
which is frequently used to compute free energies. In
this case, the strata are defined by regions in a space of
collective variables. Each of the strata is sampled inde-
pendently by a copy of the system, and the information
is then combined to obtain unbiased averages. Trajec-
tory stratification extends this strategy from states to tra-
jectories and thus enables treating microscopically irre-
versible systems and estimating dynamical statistics (for
microscopically reversible or irreversible systems)>"=.

Here, we focus on the case of steady-state, time-
independent quantities. To formulate the algorithm
mathematically, we associate with X (r) a variable J(¢)
that reports the index of the stratum at time 7. For ex-
ample, a trajectory that spent one time step in stratum 1,
two time steps in stratum 2, went back to stratum 1 for
one time step, and then spent three time steps in stratum
Swouldhave J(t =1)=1,J(t=2)=2,J(t =3) =2,
Jt=4)=1,J(t=5)=5,J(t=6)=5,and J(t =7) =5.
Then, denoting the time that a trajectory first exits a stra-
tum as s = min{z : J(t) # J(0)}, we can write expecta-
tions as

1
E[f] = agziﬁ, (11)
where Q is a normalization factor and
fi= /'Zf(x(z))Px,,-[x(w,t <smldx).  (12)
JX t

P, ; indicates that we are conditioning the probability on
starting at configuration x in stratum #; m;(dx) = m;(x)dx
is the probability of being in the differential volume ele-
ment dx conditioned on entering stratum i at that state,
and z; is the normalization factor for m;(dx). Opera-
tionally, (T2) corresponds to initiating trajectories from
steady-state entry points to stratum i, terminating them
when they leave the stratum, and averaging over the sam-
pled points. We show in ref.|[32|that, for ergodic averages,
the vector z can be obtained by solving an eigenequation:
7’'G=7". (13)

The matrix G tracks the number of transitions between
strata; we define it precisely below in (I7). Physically,
(T3) can be viewed as a statement of global flux balance.
The key idea in the present work is that we define the
index process so as to track the last metastable state vis-
ited, in the spirit of refs. |26 and 27. In other words, if



there are K strata with domains D; defined in terms of a
set of order parameters, then J(z) runs from 1 to 2K:

J(t) = K1[X(t_(1)) € B] + f AX(@)eD]]. (4
j=1

Thus strata with indices from 1 to K capture data for tra-
jectories that last came from state A, and strata with in-
dices K + 1 to 2K represent trajectories that last came
from state B.

A. A self-consistent iteration

Given the index process, we can now define z;, 7;, and
G;j more precisely (we note that these quantities corre-
spond to the steady-state averages of Z;, ;, and G;; de-
fined in (24), (31), and (34), respectively in ref. 32} we
suppress the overbars here for simplicity of notation):

mi(dx) = TIIEZO%ZT PY() = iJ(tZ._ 1) #i,X(t) € dx]

(15)
and

T
Zi:TliLEO%ZP[J(Z) =i Jt—1)#£i. (16)

To obtain Gjj, we draw states from m;(dx) and evolve
them until they leave stratum i:

T 1y

Gi; = lim 1Y PU@)=jJ@-1) =] an
T—oo T %

= [Pulis) = jim(a). a8

Furthermore, we add to the distribution of entry points to
stratum j that come from stratum i:

1YT PU(t)=j,J(t—1)=1i,X(t) € dx]

Yij(dx) = Th_rgo T Girzi
(19)
- / P,.[J(s) = j.X(s) € dami(dy). 20)

Thus, given 7;(dx), we can compute G;; and %;;(dx),
and in turn z; from (T3). Because the entries of G depend
on the dynamics within the strata, and those are initial-
ized using G, the algorithm is iterative in nature. To com-
plete the iteration, we start from (I5) and write 7;(dx) in

terms of the other quantities:

mj(dx) = lim lZT PJ(1) = j,J(@—1) # j,X(1) € dx]

T—oo T Zj

15 X PU@) =) J(=1) =i, X(1) € do]

= lim
T—oo T Zj
1

=—Y zGijyj(dx). 1)

i

B. Algorithm

If one had a long trajectory that passed between the
metastable states many times, one could compute (8) by
identifying the reactive trajectories from A to B and accu-
mulating the increment per unit time in 6 as a function of
0. However, in the stratification scheme above, we gen-
erally do not know whether a copy of the system (random
walker, or walker for short) is part of a reactive trajectory
as we are evolving it.

The key to addressing this issue is based on the fact
that, as described previously®220325 in practice, ¥;(dx)
is a list of configurations that are saved when walkers
enter stratum j from stratum i. Consequently, for each
walker, we can save the 0 points visited, the increments
in O at those points, and a pointer to the configuration
in 7%;(dx) from which the walker originated; then, when
a walker enters A or B, we reconstruct the full sequence
of walkers connecting the metastable states and in turn
the sequence of 6 values visited and the associated in-
crements, and we add these data to the appropriate sums.
The algorithm is as follows.

1. Initialize simulation quantities as follows.

(a) Define the 2K strata as in (T4).

(b) Use preliminary trajectories (obtained from
either unbiased simulation or an enhanced
sampling method such as STePS*) to pop-
ulate %;(dx). In practice, ¥;;(dx) is a list of
configurations used to represent the distribu-
tion of entry points to stratum j from stra-
tum i, and each element contains a full con-
figuration and a pointer (set to null for the
configurations from the preliminary trajec-
tories). In the present study, we allow the
list to grow throughout the simulation (i.e.,
we do not overwrite configurations, as doing
so may bias the statistics as discussed in ref.
26).

(c) Estimate G;; as the number of transitions
from stratum i to stratum j in the prelimi-



nary trajectories, normalized by the number
of transitions out of stratum i.

(d) Initialize z by solving (I3).

(e) Create a grid over the collective variables and
denote the volume of each grid element by
A®. Denoting the grid points by @, initialize
all elements of the following arrays to zero:

i. pi(©) (resp. pj(®)), which accumu-
lates the weight of trajectories entering
state A (resp. B);

ii. p, (®) (resp. pg(®)), which accumu-
lates the weight of trajectories exiting
state A (resp. B);

iii. vap(@®) (resp. vpa(®)), which accumu-
lates the weighted CV increments of
trajectories exiting state A and entering
state B (resp. exiting state B and enter-
ing state A).

2. Run NEUS essentially as described in Section 3.3

of ref. |32l Namely, at each iteration /:

(a) Initialize all elements of a matrix gU) with
the same dimensions as G (i.e., 2K x 2K) to
zero.

(b) For each stratum j, draw N walkers from 7;.
To be precise, for each walker, select an el-
ement of %;;(dx) with probability z;G;; and
use the saved configuration to initialize the
walker; this procedure represents (2I)). Asso-
ciate with the walker a pointer to the element
of i (dx).

(c) Evolve each walker by unbiased dynamics
until it exits its initial stratum (j in step [2b).

(d) When a walker exits from stratum j to stra-
tum k, save its final configuration and associ-
ated pointer to ¥jx(dx) and add 1 to g%() Also

save the sequence of 6 values visited by the

walker trajectory.

(e) Compute G;; as

ll
G — Zg/:LgEj)

Y (l—-L+ 1N’

where L = max[1,min(/ — L', L')], and L' is
chosen to minimize bias from the prelimi-
nary trajectories (i.e., to provide a burn-in pe-
riod for the simulation).

(f) Update z by solving (T3).

(g) Check convergence criteria and go to step [2a]
if not satisfied. We examine both the change
in the z vector and the number of complete
reactive trajectories.

3. When a walker enters A U B, reconstruct the se-
quence of walkers leading to that event from the
last exit of AU B and in turn the sequence of 0 val-
ues and strata visited. For each stratum i and each
point 0(7) in the sequence, determine the nearest

grid point ® and
(a) if the
sequence A (resp. B);
(b) if the
sequence A (resp. B);
(©)
if the sequence A and
B (resp. Band
A).

4. Construct the TPT quantities for reactive trajecto-
ries from A to B as follows (exchange A and B be-
low for reactive trajectories from B to A).

(a) Compute the forward committor to B as

0 PE(©)
O e e

(b) Compute the backward committor from A as

P4 (©)

2] _
0= o)1 pi@)

Note that p, + py = pi + pj is the total
weight associated with all trajectories that
start and end in AUB.

(c) Compute the current from A to B as

_ VAB(®)
21AO Loy [ (@) + pjs (©')]

25(0)

Figure[I|shows how the algorithm samples the ensemble
of reactive trajectories in a piecewise fashion and how
they are reconstructed.
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FIG. 1. Schematic of algorithm. (upper left) Define the
metastable states and the strata (black grid) and initialize the
data structures (step[I). In the example shown, trajectories are
initialized from the upper left metastable state boundary, so the
last metastable state visited is known. (upper right) In each
stratum, draw configurations from 7;;(dx), save pointers to the
associated 7;j(dx) elements, and then run unbiased dynamics
from these configurations until the trajectories exit the stratum
(steps 2B and 2c). A single example stratum is shown. (lower
right) As the simulation progresses, each point in ¥;;(dx) may
give rise to segments of reactive or unreactive trajectories. Save
the collective variable values associated with these trajectory
segments (step . (lower left) When a reactive or unreac-
tive trajectory is realized (i.e., a trajectory segment enters a
metastable state), trace back from pointer to pointer to deter-
mine the sequences of strata and collective variable grid sites
(gray grid) visited (step[3). Use these to increment unnormal-
ized statistics with appropriate weights (steps [Bh-c). Note that
the collective variable grid sites and the strata need not coin-
cide.

IV. NUMERICAL RESULTS

We demonstrate our method by analyzing the C7,x —
C7¢q transition of the alanine dipeptide (N-acetyl-alanyl-
N’-methylamide) in vacuum. The peptide is represented
by the CHARMM?36m force field*"*3. The simulations
are performed at 300 K with the SD (stochastic dynam-
ics) integrator44 in GROMACS 5.1.4%: LINCS was used
to constrain the lengths of bonds to hydrogen atoms;
the step size was 1 fs, and the friction coefficient was
10 ps~!. We used PLUMED 2.340"48 to extract collective
variables; simulations were terminated when walkers left
their strata using the PLUMED COMMITTOR function.

The metastable states and strata are defined in terms
of the ¢ and y dihedral angles. The metastable states

are taken to be circles of radius 20° around (¢,y) =
(—83°,75°) and (70°,—70°), which correspond to the
minima of the potential of mean force determined be-
low. The system was initialized from preliminary tra-
jectories that were generated by using Steered Transition
Path Sampling (STePS)*” to drive the system from each
metastable state to the other. STePS builds up trajec-
tories by repeatedly shooting bursts of short segments
and then preferentially selecting those that make for-
ward progress for continuation. Trajectories were ini-
tialized from points in the equilibrium ensemble within
each metastable state, and progress was measured by the
distance to the center of the other metastable state. The
segment length was 1 ps, and the bias threshold was 0.75
(i.e., forward trajectories are selected with a probabil-
ity of 0.75 or their probability estimated from the burst,
whichever is higher). Initially, 10 trajectories were re-
leased in each burst; subsequently, we varied the number
with the progress distance such as to expect two forward
segments in each burst based on statistics of the previous
run. We do not use the statistics to correct for the STePS
bias—i.e., each reactive trajectory is weighted equally.

The strata form a partition of unity; their centers are at
(—=7+2n)30° for integer n € [1,6], and their widths are
100°, so they overlap 40° both ways, and the strata wrap
around to enforce periodicity. We release 10 walkers in
every stratum in each iteration and run each iteration un-
til all 10 walkers exit their stratum. The collective vari-
ables ¢ and y and their increments are saved every 100
fs. The lag time used to compute the increments (7 in
(8)) was 2 ps. The simulation is run until we see at least
1000 crossings in each direction between the metastable
states, i.e., walkers that cross from j < K to j > K and the
other way. We used a burn-in period of L' = 100 itera-
tions. The full simulation was approximately 140 million
steps. Though we stratify in ¢ and y, we can project the
results onto other variables as well, and we also consider
o (Figure[2). Statistics are accumulated for 50 values of
each dihedral angle.

Potentials of mean force (PMF) computed by NEUS
are shown in Figure 3] In Figure 4] we show the forward
committor and the A — B and B — A currents in the ¢ y-
plane. We can see the clear existence of two main path-
ways, one of which cuts diagonally across the middle of
the figure and one of which cuts across the upper left
and lower right corners. Three representative trajecto-
ries consistent with the pathways are shown in Figure [3
In Figure [6| we show the commitor and currents in the
¢ w-plane. We observe a diagonal structure in these plots
that is consistent with coupling between distortion of the
peptide plane and ¢ noted previously*”.

To assess the accuracy of our committor estimates, we
compute the committor as a function of all three dihe-
dral angles (not shown), select configurations predicted



FIG. 2. Alanine dipeptide with the three dihedral angles la-
beled: ¢ (C5-N7-C9(x)-C15), v (N7-C9(x)-C15-N17), and
(C1-C5-N7-C9()). Colors are cyan for carbon, blue for nitro-
gen, white for hydrogen, and red for oxygen.

to have 0.49 < qi < 0.51, and evaluate their committors
by shooting 20 independent simulations from each con-
figuration. The resulting histogram of values is peaked
at g+ ~ 0.5, as desired. To characterize the convergence
of the committor estimates, we compute the backwards
committor and plot q?r +¢% — 1, which should be close
to zero for this system (Figures S1 and S2); the deviation
provides an indication of the numerical error. We see that
after 250 crossings between the metastable states the er-
ror overall is small, with the largest deviations in regions
with high free energy close to where qﬁ = 0.5. These
deviations decrease with additional crossings.

To assess the reactive current estimates, we compute
the rate as a function of the number of crossings two
ways. First we directly sum the flux into

Zz]

, (22)
Z, 12j j<K

RngUs =

H|\w

where n? is the number of reactive trajectories that enter
B from stratum j, 7; is the total time simulated in that
stratum, and the sum over j < K selects for contributions
from trajectories that were last in A. Second, we sum the
reactive currents that cross a dividing surface S:
Rrpr =Y /25(0)
s

-figAg, (23)

where 7ig is the unit vector normal to S, and Ag is a dif-
ferential element with the same dimension as S. Since
the collective variable space is periodic, there are two
pathways, and we average over a set of surfaces for each.
Specifically, we use vertical lines in the ¢y plots: (i)
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FIG. 3. Potentials of mean force computed from the NEUS
simulations: projections on (top) ¢ and ¥ and (bottom) ¢ and
. The stable states are marked with white circles on the top
plot.

¢ = (—=57.647.2n)° for integer n in [0, 15], which cut
through the middle of Figure 4] and (i) ¢ = (—172.8+
7.2n)° for integer n in [0,9] and [37,49], which line the
left and right sides of Figure ]

The two estimates are about a factor of two different
from each other (Figure [)); we also obtain a direct esti-
mate of 1.4 x 107® ps~! from an unbiased trajectory of
length 2.5 us. We consider the three estimates to be good
agreement given that the rate can be a very challenging
statistic to converge to even its order of magnitude. We
expect (22) to be most precise (as evidenced by the scale
of fluctuations in Figure [8) and recommend its use; we
consider (23) only as a means of validating the reactive
currents. That said, we can use the currents to obtain
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FIG. 4. Committor (top) and forward (middle) and backward
(bottom) reactive currents for the C7ax — C7eq transition of
the alanine dipeptide, plotted on the ¢ y-plane.
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FIG. 5. Example trajectories plotted on the ¢ y-plane. Dots

mark the centers of the metastable states.

the fluxes associated with each of the pathways. We find
them to be Rrpr = 4.6 x 1077 ps~! for the pathway that
crosses ¢ = 0° and Rypr = 8.1 x 10~7 ps~! for the path-
way that crosses ¢ = 180°.

To further assess the reactive currents, we also com-
pute /§,(©) +J,(®) (Figure S3). We expect this sum
to be close to but not exactly equal to zero given that
the integrator is underdamped. We see that this is the
case, with the only significant deviations close to the
metastable states. Put together, these results validate the
method.

V. CONCLUSIONS

In this paper, we investigated the computation of com-
mittors and reactive currents with trajectory stratifica-
tion. The fundamental challenge is that these quantities
require knowledge of the metastable states in which tra-
jectories begin and end, but this information cannot be
obtained directly from most walkers within the simula-
tion. To address this issue, we store the collective vari-
able values visited by each walker and the associated col-
lective variable increments sampled, as well as a pointer
to the previous walker. This enables us to reconstruct the
sequence of walkers that gave rise to a trajectory once
it reaches a metastable state, despite the fact that the
number of trajectories to which a single walker can con-
tribute grows exponentially with the number of walkers
that follow it. The current work builds on previous trajec-
tory stratification studies that showed that computation of
the rate requires separating the ensemble of trajectories
based on the metastable state in which they originat.



180 1.0

0.8
90
v 0.6
3 0
- 0.4
-90
0.2
—180 - T T T i 0.0
—180 -90 0 90 180
¢
le-5
180 1.0
0.8
90 1
OV NS oSSR 06
"//'/:"""f_'j ¥ o
3 01 === e —
re (wach ok >
Z’/T\%}}fzi{‘;*\‘ﬁ TR 0.4
-90 -
0.2
-180 A
-180 -90 0 90 180
¢
le-5
180 A
1.0
90 A 0.8
-~ \
SRSy, AT A 0.6
3 01 == -+ =
e e | M,
-90 A
0.2
-180 A
-180 -90 0 90 180

FIG. 6. Committor (top) and forward (middle) and backward
(bottom) reactive currents for the C7ax — C7eq transition of
the alanine dipeptide, plotted on the ¢ w-plane. For the reactive
currents, only grid points with data from at least 5 trajectories
are shown.

10

p(g+)
o

0.0 0.2 0.4 0.6 0.8 1.0
q+

Histogram of committors computed by shooting for 137 struc-
tures predicted to have 0.49 < qi < 0.51 for reaction from A
to B. 20 independent simulations were used for each configu-
ration.

le—6

0 200 400 600 800 1000
number of reactive trajectories entering AuB

le—6

2.00

1.75+

=
U
o

=
N
8

rate (ps~1)

1.00+

0.75 1

0 200 400 600 800 1000
number of reactive trajectories entering AuB
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As in previous trajectory stratification studies, the results
are exact in the limit of infinite sampling, in contrast to
MSMs and DGA.

Although we demonstrated the approach with NEUS,



it is general and can be applied to other algorithms that
sample trajectory segments'® 2%V By the same token,
we focused on a simple numerical example that permits
validation of the results. Extending the approach to more
complex systems should be straightforward, so long as
collective variables that enable an efficient stratification
and the accumulation of statistics can be identified. This
challenge is system specific, though methods for facili-
tating the selection of collective variables based on sim-
ulation data exist (e.g., refs. [1/ and [10). In the case of
NEUS, the most significant challenge may be that the
lists representing %;;(dx) can become large (up to 5500
elements in the present example).

is an important practical consideration that we leave
for future work.

VI. SUPPLEMENTARY MATERIAL

Justification of (8), committor convergence plots,
sums of forward and backward reactive currents.
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