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Abstract—This paper proposes a graph federated learning
approach wherein multiple servers collaborate to enhance per-
sonalized learning over clustered clients, essentially performing
correlated learning tasks. In contrast to earlier approaches,
relying on a cluster-dedicated server topology, the proposed
graph federated multitask learning (GFedMt) framework adopts
a more general setting wherein clients of the same cluster are
distributed across servers. In order to address problems with
unbalanced client distributions among servers and clusters as
well as data shortage of isolated clients, servers perform intra-
cluster and inter-cluster learning collaboratively through local
interaction with neighboring servers. Clients use the alternating
direction method of multipliers (ADMM) to learn their local
models. Numerical simulations demonstrate the ability of the
proposed method to ensure fast and accurate convergence when
data is scarce.

Index Terms—Personalized federated learning, graph feder-
ated learning, multi-server architecture, inter-cluster learning.

1. INTRODUCTION

In the age of the internet of things (IoT) and cyber-physical
systems (CPS), decentralized learning has gained considerable
attention as aggregating the data from geographically dispersed
edge devices at a single node is unpractical. Federated learning
is a decentralized learning framework in which edge devices,
also called clients, train a model on their local data without
exposing it to others. The local models are aggregated by
a central server into a global model that is shared with
the clients [1], [2]. Several studies have examined certain
practical implementation challenges associated with federated
learning, including communication efficiency [3], [4], privacy
[5], asynchronous behavior [6], noisy communication links [7],
and byzantine attacks [8]. However, these works are primarily
based on a single-server architecture, which is susceptible to
communication and computational bottlenecks. Additionally,
single-server architectures scale poorly when working with
multiple geographically dispersed clients.

A few alternatives have been proposed in the literature to
address the vulnerabilities associated with the single-server ar-
chitecture. Among these, client-edge-server hierarchical learn-
ing [9] recommended the use of edge servers. In the aggre-
gation process, the edge servers perform partial aggregation
with their assigned clients and communicate these partially
aggregated models with the cloud server that performs the final
aggregation. However, the single cloud server remains vulner-
able and can only accommodate up to a certain number of
edge servers. Graph federated learning (GFL) [10] advocates

utilizing a distributed network of servers. Following the partial
aggregation with their associated clients, the servers exchange
the partially aggregated models among themselves and then
perform a final aggregation to produce their own global shared
models. GFL offers greater scalability than client-edge-server
hierarchical learning and single-server architectures due to its
distributed structure.

Learning a universal global model for geographically dis-
persed clients is not suitable in many IoT or CPS applications;
instead, multiple models need to be learned [11]. For instance,
autonomous vehicles must maintain vehicle-specific models
that describe their highly dynamic environment [12]. Person-
alized federated learning enables clients or groups of clients
performing the same task (a cluster) to learn client- or cluster-
specific models [13]. Cluster-specific models usually exhibit
certain similarities [14]. For instance, an autonomous vehi-
cle’s environment is shared with other devices. The learning
performance can be improved through inter-cluster learning
by leveraging those similarities [14], [15]. In personalized
federated learning, inter-cluster learning plays a crucial role
when some clients or clusters lack data [16], [17]. In [18],
although personalized federated learning has been extended
to a multi-server architecture, all the clients associated with a
server are assumed to learn the same model. Since neighboring
clients may not solve the same learning task, this assumption
greatly limits the range of potential applications. The general
case where each server is assigned clients from various clusters
is yet to be studied.

This paper proposes a generalized graph federated per-
sonalized learning framework in which the clients associated
with each server can learn their cluster-specific models. The
clients of a cluster can be spread across many servers, and
isolated clients must rely on inter-cluster learning until cluster-
specific information reaches them. In the proposed framework,
clients use ADMM to learn a local model using their data.
ADMM-based learning is usually preferred to (sub)gradient-
based learning when the quantity of data is limited, as it allows
for faster convergence [19]. Each server receives the local
models from its clients and aggregate them into cluster-specific
models. Since many clusters are represented at each server,
the first iteration of inter-cluster learning is performed at the
server. Afterward, the servers communicate among neighbors
and share their cluster-specific models. Finally, the models
received from neighboring servers are aggregated with the
local models for identical clusters and used in the second
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Fig. 1: Graph personalized federated learning, where servers
are represented as circles and clients of the same color solve
the same task.

iteration of inter-cluster learning. Numerical simulations are
conducted to show that the proposed solution can ensure fast
and accurate convergence to cluster-specific models when the
client clusters are distributed among the servers.

II. PROPOSED METHOD

We consider a multi-server architecture comprising S
servers forming the set S. The servers are connected as
dictated by an undirected graph G = (8, £), where the edge set
£ is such that £(s,t) = 1 if the servers s and ¢ are neighbors
and 0 otherwise. A server s can only communicate with its
neighboring servers whose set is denoted ;. The architecture
is illustrated in Fig. 1. Each server s € S is connected with its
own set of clients, C,, sothat } o Cy = C. Eachclient k € C,
learns a client-specific model wy, ;. The clients associated with
a server s are grouped into up to @ clusters. The clients
that belong to the same cluster learn the same model, that is,
Wk,s = Wgq,s, Vk € C1. The models for different clusters are
nonidentical, yet similar, i.e., w, , ~ w, ., Vr,s € {1,...,Q}.

We consider the regularized empirical risk minimization
problem that is modified to take into account the correlation
between the learning tasks. Each client k& € C has access
to a data set Dy, of cardinality |Dy| = Dy, composed of
a matrix X [xk,1, - ..,xk,Dk]T and a response vector
¥k = [Yk.1,- .-, Uk, D, ] 7. The optimization problem for a given
cluster ¢ can be expressed as

. 1
‘E}Z > Dy
sES kec?

>

+T
re{l,...,Q}\q

Dy
ka(xk,i, Yrii W) + AR(W)
1

i=

(€]

[[wr = W[5,

where £, denotes the loss function of the task performed by
client &, R denotes the regularizer function, A > 0 is the
regularization parameter, and w, is an hypothetical global
cluster-specific optimization variable. Further, 7 > 0 is the
parameter that controls inter-cluster learning.
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The aforementioned optimization problem relies on a single
model per cluster. This is not feasible in the proposed multi-
server architecture, where the servers are distributed on a graph
and must communicate between neighbors to achieve consen-
sus. In the proposed learning process, each server maintains
local cluster-specific models, and consensus is enforced by the
auxiliary variables {z, ;;Vs,t: £(s,t) = 1}. The optimization
problem for a server s and cluster g is given by

Dy,
1
Z F Zf.‘c(xk,ia Yk i3 wq,a) + AR(WQ;S)

min
w‘JsB .
kec? i=1
2
+T D D W W}, @
re{l,... QMg tEN,
St Wy =244, Wy =12, E(s,t) =1,

where w, ; denotes the model of server s for cluster g.

From (2), we can derive the augmented Lagrangian with
the set of primal variables V, = {w, ;s € &}, Lagrange
multipliers M = ({gs:}, {7s.¢}). and auxiliary variables Z =
{zs:} as:

LoV M 2) = T ( 30 EEEIEN) i, )
seS kec?
i Y e w2

re{l,...,Q}\g tEN-

+ Z Z (#;—r,t(wq,s - zs,f.) + Fylt(wq,f - zb‘wf))

seSteN,

+ g Z Z (qu,s - zs,t

sES tEN,

(3

3+ 11w — 2acll3)

where p is the penalty parameter. Given that the Lagrange
multipliers are initialized to zero, by using the Karush-
Kuhn-Tucker conditions of optimality and setting -y,
23 ien Vsits it can be shown that the Lagrange multipliers
s+ and the auxiliary variables Z are eliminated [20].

From the above Lagrangian, it is possible to derive the local
update steps of the ADMM for clients and servers. For a given
client k € C;, the primal and dual updates are given by:

« Client primal update

n 1 A
wi) =argmin —-£u(Xg, ¥ W) + SoR(W) (@)
n—1 n— p n—
= (Y w w4 B - i,
« Client dual update
X = x4 p(wi) - wy), ®)

where (n) denotes the current iteration.
Further, the local updates for a server s € § are given by:
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« Server primal update

w{") =argmin || w — w5 |
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« Server dual update
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The above primal update performs aggregation, at the server
inter-cluster learning, inter-server aggregation, and inter-server
inter-cluster learning in a single operation. In addition to the
high computational complexity, doing so limits the added
value of inter-cluster learning since it has to rely on the esti-
mates from the previous primal update (W(n 1)) To address
this, the primal and dual updates at the servers are replaced
with a multi-step update mechanism. In the proposed solution,
the following updates are computed consecutively.

« Aggregation

1 w®
q,8 |Cq| Z k

« Inter-cluster learning

Wt(;,l) T e ong W

Z (n— 1) ©9)

kec?

pIC"I

o: = 10
Wos 1+ T(Q — 1) (10)
« Inter-server update
n) win)
W("s) = wq’ + EE'ENS q,t (11)
gy |Ns‘ + 1
« Inter-server inter-cluster learning
(n) (n)
Wg,s + 7 - W,
wim = 2 2orefl,,Q}\g 2oteN, Wt 12

L+ 7IN[(Q - 1)

The above decomposition has several advantages. First, it
allows inter-cluster learning to rely on the last available esti-
mates, both at the server and inter-server. Second, it increases
the servers learning rate as p is discarded on the server-
side. Finally, it enables the servers to share an intermediary
result with the clients so that clients and servers computations
happen in parallel.
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III. ALGORITHM DERIVATION

To solve the problem (2), we propose the following multi-
layer learning process. Consider a server s € &, and an
iteration n of the algorithm. To begin, all clients perform
ADMM-based batch learning on their locally available data.
A client k € C? updates its local primal variable as follows

n 1
W,& ) =argmin — £ (X, yi; W) + R(W) (13)
w Dy |C |
= (D, w = w0+ Efw - i Y,
where W(n Y is the existing model of server s for cluster q.

Following the primal update, the clients share their primal and
dual variables with their associated server.

In a second step, the servers aggregate the primal and dual
variables received from their associated clients to compose
their models. Server s updates its model for cluster ¢ by
performing the following aggregation

q, |Cq| Z (n)

keCy

Y.

keCd

14
pIqu 4

Further, the servers refine their cluster-specific models by
performing inter-cluster learning. The purpose of this step is to
leverage the similarities between the cluster-specific models to
improve the learning performance. Server s refines its model
for cluster ¢ by computing
_ wid + T rei1,,@M\a Wiy
— 1)

Once a server has refined its cluster-specific models, they

are shared with its associated clients for them to upda(te)their

(n)
Ve 1+7(Q

(15)

dual variables. A client & € CJ receives the model w, ¢ and
updates its dual variable as
£ n—1 n n
i = 4 p(wi —wi). (16)

Concurrently with the dual variable update at the clients,
the servers share their models among neighbors to reach
consensus. Server s receives the models of the servers in N
and refine its model for cluster ¢ by computing

(n) —
w + W
o ‘N | + 1 tg

amn

Since a server receives the models of its neighbors for all
clusters, it can at no extra cost use the received models to
perform another inter-cluster learning step. The server s refines
its model for cluster ¢ by using the models received from its
neighbors for all other clusters with

n) (n)
Wq, T el @R 2oteN, W
1+ 7IN[(Q — 1)
This concludes the learning process of the proposed graph

federated multitask learning (GFedMtl). The resulting algo-
rithm is presented in Algorithm 1.

w

s)=

(18)
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Algorithm 1 GFedMtl

Initialization: Wg]) and w[(,?z,Vk, q,ssetto 0
— Procedure at client k —
Forn=12,...,N

Update w\™ with (4)

Share w,(ﬁn), receive wi™

Update x\" with (5)
EndFor
— Procedure at server s —
Forn=12,...,.N

Update w(" with (9)

Refine w." with (10)

Share w(™, receive {WE?;V?S € N,,vr}

Aggregate wi) with (11)

Refine w(" with (12)

Share w[(;fs), receive {WL“Jrl);Vk € Cs}
EndFor

IV. NUMERICAL SIMULATIONS

To demonstrate the performance of the proposed graph per-
sonalized federated learning, we have conducted simulations
on the ridge regression problem. The loss function is given
by £ (Xk,y = K;w) = ||lyx — X, w||2 and the regularizer
function by R(w) = ||w]||2.

We consider |S| = 10 servers distributed over a graph, each
is associated with |Cs| = 15;s € {1,...,10} clients. Each
set C; comprises clients that may belong to ) = 3 different
clusters. Every client aim to learn its cluster-specific model
w,, generated by w, = wo +o,wy. Where wy is a randomly
generated base model and o, € 14(—0.1,0.1), & denoting
the uniform distribution. Each client k possesses a training
dataset composed of anywhere between 1 and 9 data samples
of dimension 60. The training response vector for client k
that belongs to cluster g is given by y; = Xyw, + ng, where
n; € N(0,7:Ip,) with ny a client-specific noise variance.
For each client, 7, is randomly selected so that the network’s
data is non i.i.d. for each cluster.

In addition to training data, each client possesses a testing
dataset, independent but identically distributed to its training
dataset. The testing data is aggregated for each cluster to
compute an estimate of the optimal cluster model, w,. The
metric used to compare the performance of the algorithms is
the mean-squared error (MSE). For each client belonging to
cluster ¢, the MSE is computed with respect to w,.

1 L

Iel ¢

Wi — woll3

Test MSE = (19)

— 2
=1 ”quz
In the first experiment, we studied the performance of the
following algorithms.
¢ GFed is defined in [10] and corresponds to conventional
federated learning adapted to the multi server architec-

ture, it learns a single universal model.
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« GFedMtl is the proposed algorithm that learns cluster-
specific models. The parameter T controls inter-cluster
learning, if 7 = 0 the clusters do not exchange informa-
tion with one another. If the edge set £ = 0, there is no
cooperation between servers.

The learning curves (Test MSE in dB vs. iteration index n) are
shown in Fig. 2 (a). The figure shows that GFed fails to achieve
satisfactory accuracy, this is due to the fact that it tries to learn
a single universal model that cannot accommodate the varied
learning tasks. The proposed GFedMtl with 7 = 0 achieves
better steady-state accuracy by learning cluster-specific mod-
els. However, it suffers from low convergence speed because
isolated clients need wait for cluster-specific estimates to
arrive after many hops. The proposed GFedMtl with 7 = 0.5
overcomes this issue and offers the same convergence speed as
GFed. In addition to increasing convergence speed, the use of
inter-cluster learning also increases the steady-state accuracy,
allowing this method to outperform both GFed and GFedMtl
with 7 = 0. For illustration purposes, the proposed GFedMtl
with 7 = 0.5 and £ = 0 is displayed. Its poor performance
shows that the clients associated with a given server do not
have sufficient data to learn satisfactory models on their own,
even when using inter-cluster learning. This confirms that
the other algorithms successfully aggregate the information
coming from other servers.

In the second experiment, we studied the impact of client
scheduling on the performance of the aforementioned al-
gorithms. Client scheduling is usually used to reduce the
communication and computation burden on the clients. In
this experiment, each server is allowed to perform partial
aggregation with a subset of 9 randomly selected clients, the
other hyper-parameters are untouched. From Fig. 2 (b), we
see that although client scheduling has a negative impact on
accuracy, this impact is minimal. The GFed algorithm using
client scheduling suffers from extensive randomness as the
proportion of clients from each cluster varies at each random
selection, and this algorithm learns a single model.

It is important to note that the choice of the parameter T,
which controls inter-cluster learning, impacts the performance
of the proposed GFedMtl. To illustrate this fact, the third
experiment, displayed in Fig. 2 (c), shows the test MSE after
100 iterations vs. the value of 7. We recognize the test MSE
attained by GFedMtl 7 = 0 and GFedMtl 7 = 0.5 in Fig.
2 (a). The figure shows that although most 7 values offer
an improvement over 7 = (), there is an optimal value for
this parameter, and over-using inter-cluster learning leads to
performance degradation and should be avoided. There is a
need for intelligent controlled inter-cluster learning that adapts
the value of 7 to the needs of the system automatically.

V. CONCLUSIONS

The proposed method handles the general case of graph
personalized federated learning, where each server is assigned
clients from several clusters. Estimates are exchanged between
clients and servers and through the multi-server architecture
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to ensure the aggregation of cluster-specific models. Inter-
cluster learning is used at the server and inter-servers to
speed up the learning process and increase learning accuracy.
The ADMM learning steps are modified so that inter-cluster
learning benefits from the last available estimates and to
increase further the convergence speed. Numerical simulations
show that the proposed method can ensure fast and accurate
learning of personalized models when data is scarce and each
cluster is spread across several servers.
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