2303.03921v2 [cs.CC] 22 May 2023

.
.

arxiv

Approximate degree lower bounds for oracle identification problems

Mark Bun* Nadezhda Voronoval

March 2023

Abstract

The approximate degree of a Boolean function is the minimum degree of real polynomial
that approximates it pointwise. For any Boolean function, its approximate degree serves as a
lower bound on its quantum query complexity, and generically lifts to a quantum communication
lower bound for a related function.

We introduce a framework for proving approximate degree lower bounds for certain oracle
identification problems, where the goal is to recover a hidden binary string « € {0,1}" given
possibly non-standard oracle access to it. Our lower bounds apply to decision versions of these
problems, where the goal is to compute the parity of z. We apply our framework to the ordered
search and hidden string problems, proving nearly tight approximate degree lower bounds of
Q(n/log®n) for each. These lower bounds generalize to the weakly unbounded error setting,
giving a new quantum query lower bound for the hidden string problem in this regime. Our
lower bounds are driven by randomized communication upper bounds for the greater-than and
equality functions.

1 Introduction

In an oracle identification problem, there is an unknown string =z € {0,1}". A query algorithm
is given possibly non-standard oracle access to x, and its goal is to reconstruct x by making a
minimal number of queries to this oracle. More specifically, an oracle identification problem is
specified by a fixed family of Boolean functions ai,...,ay. A query algorithm may inspect any
value a;(z) of its choice at the cost of one query, and its goal is to determine z. Many influential
problems in the study of quantum algorithms and complexity can be viewed as oracle identification
problems, including van Dam’s original oracle interrogation problem [vD98], the Bernstein-Vazirani
problem [BV93], combinatorial group testing [AM14, Bell5], symmetric junta learning [Bell5], and
more [BAW99, ATKT04, ATKT07, INRT12, CIGT12, Kot14]. In this work, we study two such oracle
identification problems:

Ordered Search. Consider the following abstraction of the problem of searching an ordered list of
N = 2" elements. Given a list of N bits a; € {0,1} under the promise that ap < a3 <--- <ay_1,
find the (binary encoding of the) minimum index x € {0,1}" such that a, = 1. Binary search
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yields a deterministic algorithm making n queries, and it is not hard to see that this is optimal
for randomized algorithms as well. As for quantum algorithms, it turns out that a constant-factor
speedup is possible [FGGS99, CLP07, BH08|, but a lower bound of Q(n) holds in this model
as well [BAW99, FGGS98, Amb99, HNS02, CLO08]. Ordered search may be viewed as an oracle
identification problem where the query algorithm is given oracle access to ag = GTg(z),...,an—1 =
GTyn-—1(x), where each “greater-than” function GT;(x) evaluates to 1 if ¢ > = and to 0 otherwise.

Hidden String. In the hidden string problem, the goal is to reconstruct a hidden string x €
{0,1}" given information about the presence of absence of potential substrings of x. That is, the
goal is to determine x given “substring oracle” access, i.e., oracle access to a; = ¢s(x) for every
binary string s of length at most n, where ¢4(x) evaluates to 1 iff s is a substring of z. Building on a
classical query algorithm of Skiena and Sundaram [SS95], Cleve et al. [CIGT12] gave a 3n/4 + o(n)
quantum query algorithm for this problem, and proved a nearly matching quantum query lower
bound of Q(n/log?n).

The state-of-the-art quantum query lower bounds for both problems are proved via the quantum
adversary method, which in its modern formulation [HLS07a], characterizes the bounded-error
quantum query complexity of every function up to a constant factor [Reill]. The other major
technique for proving quantum query lower bounds is the polynomial method [BBC*01], which
lower bounds the quantum query complexity of a function by lower bounding its approzimate
degree. The approximate degree of a Boolean function is the least degree of a real polynomial that
approximates it pointwise to error 1/3. Since the acceptance probability of a T-query quantum
algorithm is a polynomial of degree 2T, the approximate degree of a function is always at most (half
of its) quantum query complexity, but it can be much smaller [Amb06, ABK16, She20, BKT20].

In this work, we prove lower bounds of Q(n/log?n) on the approximate degree of (decision
variants) of the ordered search and hidden string problems. These lower bounds are nearly optimal,
as the known quantum (indeed, even classical) query algorithms for these problems automatically
yield O(n) upper bounds on their approximate degree. For the ordered search problem, Childs
and Lee [CLO08| explicitly posed the question of investigating approximate degree lower bounds to
circumvent limitations of the adversary method. Meanwhile, our lower bound on the approximate
degree of the hidden string problem implies a quantum query lower bound matching the state-of-
the-art [CIGT12].

Approximate degree is a fundamental measure of the complexity of Boolean functions that has
been the subject of extensive study in its own right (see, e.g., [BT22] for a recent survey). And
while nearly tight quantum query lower bounds for these problems were already known, we see two
main quantum motivations for recovering these bounds via approximate degree. First, there are
senses in which approximate degree is a more robust lower bound technique than the adversary
method. For example, via Sherstov’s pattern matrix method [Shell], any approximate degree
lower bound for a Boolean function f can be “lifted” to give the same quantum communication
lower bound for a related two-party function F. Such a generic lifting result is not known for
any other general quantum query lower bound technique. Moreover, variants of the polynomial
method are capable of proving lower bounds against zero-, small-, and unbounded-error quantum
algorithms [BBCT01, BCAWZ99], as well as time-space tradeoffs [KSAWO07]. Indeed, using the
polynomial method, we give weakly-unbounded-error quantum query lower bounds for the hidden
string problem (see Corollary 2) that significantly improve over the lower bound implied by the
adversary method [CIG112].



Second, we believe that our approximate degree lower bounds shed additional light on what
makes the ordered search and hidden string problems hard, and may be more transparent in this
regard than existing adversary lower bounds. In particular, our lower bounds show that it is not
only hard for quantum algorithms to reconstruct the hidden string =, but even to simply compute
its parity (a decision problem). The other nearly tight lower bounds for the problems we consider
appear to make essential use of the fact that the query algorithm needs to reconstruct all of z, and
it isn’t clear (at least to us) how to adapt them to hold for their decision variants. We believe that
the technique we introduce, or at the very least the “indirect” method we use to prove our lower
bounds, will be more broadly useful in understanding the approximate degree and quantum query
complexity of other oracle identification problems.

1.1 Techniques

Here we give a brief summary of the ideas behind our lower bound for ordered search. A more
detailed technical overview, including a discussion of how we apply our framework to the hidden
string problem, appears in Section 2. Full proofs appear in Sections 3 and 4.

The first lower bound for quantum ordered search was given by Buhrman and de Wolf [BAW99],
who actually showed an Q(y/n) lower bound on its approximate degree. The starting point for the
proof of our lower bound is their ingenious indirect argument, so let us review it here. Recall that
the ability to solve ordered search on inputs ag < a; < --- < ay_1 enables recovering the string
x € {0,1}", where N = 2", for which every a; = GT;(x). This, in particular, enables the evaluation
of any “hard” Boolean function of z, e.g., its parity. In light of this, define the partial Boolean
function OSy (ag, . ..,an—1) := parity(z) whenever there exists an x for which a; = GT;(x) for every
i. Let p: {0,1}V — R be a polynomial of degree d approximating OSy. It is known that every
polynomial approximating parity must have degree £2(n), so the goal now is to use this fact to prove
a lower bound on the degree of p. To do so, we use the additional fact that the functions GT; can
each be approximated by a degree O(y/n) polynomial ¢; arising from, say, a variant of Grover search.
By making p “robust to noise” in its input without increasing its degree [BNRAWO07, Shel2al, we
get that the composed polynomial p(qo(x),...,qn_1(x)) = parity(x) and has degree O(dy/n). Now
the fact that the approximate degree of parity is (n) implies that d = Q(y/n).

In summary, the lower bound for OSy follows from the fact that we can express the function
parity(x) = OSn(GTo(z),...,GTn_1(z)), where we have a lower bound on the approximate degree
of parity and an upper bound on the approximate degree of GT. However, the lower bound gets
stuck at degree Q(y/n) because the functions GT; themselves require nontrivial degree O(y/n) to
approximate, and this is tight. B

To get an improved lower bound of ©(n) on the approximate degree of OSy, we introduce the
following idea to make GT behave as if it were easier to approximate by low degree polynomials,
while preserving the hardness of parity. Given an input = € {0,1}", we redundantly encode z as a
longer string Y(x) € {0,1}" for some m = poly(n). This encoding is chosen so that

e Access to Y(z) instead of just x itself makes each function GT;(z) approximable by a much
lower degree polynomial. That is, for every 7, there exists a polynomial ¢; of degree polylog(n)
such that ¢;(Y(z)) ~ GT;(z) for every .

e Even with access to )(x), the function parity(x) remains hard to approximate. That is, for
every polynomial p of degree at most n/ polylog(n), we have that p()(z)) fails to approximate

parity(x).



We can now obtain our improved lower bound by applying Buhrman and de Wolf’s argument to the
redundantly encoded inputs. Specifically, given a robust polynomial p : {0,1}"¥ — R of degree d
approximating OSy, we would have p(qo(Y(x)),...,qn-1(Y(x))) =~ OSN(GTo(x),...,GTn_1(x)) =
parity(z) for every . Our upper bound on the degrees of the ¢;’s, together with our lower bound on
the degree needed to approximate parity, imply that d polylogn > n/ polylog n, and hence d > Q(n).

All that remains is to construct the appropriate encoding . Our approach is inspired by Nisan’s
classic randomized communication protocol for computing the two-party greater-than function. The
most helpful way to think about this protocol for our purposes is as follows. Suppose Alice and Bob
hold strings a,b € {0,1}" and their goal is to determine whether the natural number represented
by a is at least that represented by b. They may do so by performing binary search to identify the
minimum index j for which a; # b;, at which point the answer is determined by which of a; or b; is
1. Each step of this binary search can be conducted by testing the equality of a substring of a with
a substring of b. Each equality test, in turn, may be performed (with high success probability) by
comparing the inner products of a and b with a shared random string. The protocol requires log n
steps of binary search, and each equality test should be repeated O(loglogn) times to achieve high
success probability, giving an overall communication cost of O(logn).

Now let us see how to turn this communication protocol into a polynomial approximating
GT;(z). Think of z as Bob’s input to the communication protocol, and of Bob’s role as passively
computing an encoding ) (z) that consists of many inner products of z with random strings. Now
thinking of i as Alice’s input, she can compute GT;(z) (with high probability) by repeatedly query-
ing Y(z) at the locations that correspond to the appropriate inner products from the protocol
described above. This results in a O(logn) randomized query algorithm for computing GT;(x)
from Y(z), the success probability of which is a degree-O(logn) polynomial in Y(x).

The final step is to argue that even given )(x), consisting of many inner products of random
strings with x, the parity function parity(z) remains hard to compute. To see why this is true, note
that a single inner product of x with a random bit string is itself a parity on a random subset of
indices. That is, Y(z) = (parity(x|s,), ..., parity(z|s,,)) for random subsets Si,...,S,, C [n]. The
key observation then, is that a degree-d polynomial of these random parities is able to approximate
the full parity(x) if and only if some degree-d polynomial of these random parities exactly computes
parity(z), which in turn happens if and only if a symmetric difference of at most d of the sets
Si,...,Sm yields the entire set of indices [n]. As a result, as long as neither the degree d nor the
number of random inner products m is too large, we obtain that parity(z) cannot be approximated
using Y(z).!

1.2 Our results in detail

Recall that we introduce a framework that allows us to prove lower bounds on approximate degree,
and hence quantum query complexity. It most naturally applies to decision versions of oracle
identification problems, and extends to the “weakly unbounded error” setting of error approaching
1/2. We summarize the results we prove using this framework in Table 1.

Ordered search. As mentioned, binary search yields a deterministic algorithm making n queries,
which in turn yields a polynomial of degree n that exactly computes OSgn. To compute this function

'In fact, this argument shows that it is impossible to approximate parity(z) to bounded error, but even to represent
it in sign. This corresponds to a threshold degree lower bound.



Problem | Model Error Previous work | This work
i O(n—lo ,
Approximate degree and. Unbounded ( g 5 ) Q- —logl)
quantum query complexity, Q(v/n — log ) log=n g
Ordered | decision version Constant O(n), Q(v/n ) Sl(log’é -) l
search Quantum query complexity, | Unbounded | ©(n — log = ) Q(logé ~ —log ;)
reconstruction version Constant O(n) Q=)
log“n
Approximate degree and n 1
quantum query complexity, Unbounded | O(n — log ) Q(log2 no log 5)
Hidden decision version Constant ggn) ) Q(log2 -)
. log ,
string Quantum query complexity, Unbounded Q( 1 ) Q(]Og’_g n log %)
. . og’n
reconstruction version Constant o) a—)
log“n

Table 1: Summary of our results and prior work.

with error probability % —~ for some parameter v > 0, there is an easy way to modify binary search
to obtain an O(n — log %)—query randomized algorithm (see Appendix A for details). This implies

an upper bound of O(n — log %) on the approximate degree of OSgn with error parameter 1/2 — .

Before this work, the best lower bound on approximate degree (for both bounded and unbounded
error) was obtained by [BAW99] and was Q(y/n — log %) for approximation to error 3 —~. We
significantly improve their result and obtain the following lower bound.

Theorem. For every natural number n and 0 < v < 1/2, every polynomial that approximates
OSyn pointwise to error % — 7 requires degree

0 (LQ —log 1) .
log“n Y

This result is restated as Theorem 12. It shows that it is hard to approximate the decision version
of the ordered search problem OSy» (with parity as the predicate converting from reconstruction to
decision problem) not only to constant error, but even to small advantage v over random guessing
For instance, approximating OSon with advantage v = 27" gtill requires degree Q( ) Our

lower bound is nearly tight in both the bounded and unbounded error regimes.

Query complexity of ordered search. Most previous work on the quantum query complexity
of ordered search addressed the bounded error regime and the reconstruction version of the problem,
where the goal is to output the entire string x, rather than a specific Boolean predicate applied to
x. To our knowledge, the best prior lower bound for the decision version of ordered search with
unbounded error follows from [BAW99]| as described above and is Q(y/n — log %) Note also that
the Q(n) lower bound of [Amb99], stated there for constant error, also generalizes to a tight lower
bound Q(n — log %) for unbounded error, but it appears to hold only for the reconstruction version
of ordered search.

Our application of the polynomial method implies a nearly tight quantum query lower bound
that applies to the decision version of the problem.



Corollary 1. Every quantum algorithm that computes OSgn (decision version with parity) with

probability of error at most % — 7y requires Q(log2 — — log %) queries.

Hidden string. The work of [SS95] yields a simple deterministic algorithm making O(n) queries,
which in turn yields a polynomial of degree O(n) that exactly computes HSon+1_1 (..., ¢s(z),...) :=
parity(z) where z € {0,1}" is the hidden string in question. Again, this algorithm can be modified
to get a O(n — log %)—query algorithm with error 1/2 —~ (see Appendix A for details). This implies

an upper bound O(n — log %) on the approximate degree of HSyn+1_5.
We give the first lower bound on the approximate degree of the hidden string problem:

Theorem. For every natural number n and 0 < v < 1/2, every polynomial that approximates

HSon+1_1 to error % — v requires degree

1
0 (Lz —log —> .
log“n Y

This result is restated as Corollary 21, and gives a nearly tight lower bound for approximating
the decision version of HSyn+1_1 to both constant and weakly unbounded error.

Query complexity of hidden string. Complementing the O(n)-query deterministic algorithm
of [SS95], it turns out that a constant-factor speedup is possible for quantum algorithms [CIG*12].
As for lower bounds, the latter work shows a lower bound Q(longn) on reconstruction by adversary
method. This lower bounds holds for bounded error, but does not generalize well to unbounded
error regime. (By [BSS01, HLS07b], the same proof implies a lower bound of Q(V2ﬁ2—n) for solving

the reconstruction version of hidden string with error % -7.)

Our approximate degree lower bound recovers their lower bound for bounded error, and gives
a significantly stronger lower bound for the weakly unbounded error regime, both for the decision
version of the problem.

Corollary 2. Every quantum algorithm that computes HSyn+1_; (decision version with parity)

with probability of error at most % —  requires Q(log@n — log %) queries.

1.3 Further discussion

One of our initial motivations for studying the approximate degree of ordered search came from
the preliminary version of Chattopadhyay et al. [CKLM17]. They showed that OSy o IPY has ran-
domized communication complexity Q(log N - m), where IP,, is a two-party inner product (mod 2)
gadget on m-bit inputs. This was done via an involved simulation argument, showing how a com-
munication protocol for OSy o IPY could be used to construct a randomized decision tree for OS .
The techniques were specialized to the both the outer function and the inner function. Subsequent
work [CFKT21] recovered this result using a generic simulation theorem. A direct application of
Sherstov’s pattern matrix method [Shell] to our result yields a quantum communication lower
bound of Q(log N/log?log N) on OSy o gV even for a constant-sized gadget g.

Hoza [Hozl7] used ideas conceptually related to ours to nearly recover the known quantum
query (but not approximate degree) lower bound for ordered search. Roughly, he used a Holevo-
information argument to show that if an oracle identification problem specified by functions a4, ...,an



can be solved with T" quantum queries, then Q*(A) - T = n, where A(i,z) = a;(x) and Q* is
the bounded-error two-party quantum communication complexity with shared entanglement. His
quantum query lower bound for ordered search follows directly from the fact that the quantum
communication complexity of the two-party greater-than function GT on n-bit inputs is O(logn).
However, without opening up the communication protocol for GT as we do, it is not clear how to
recover an approximate degree lower bound from his construction.

The idea of indirectly proving approximate degree lower bounds by combining a lower bound
for one problem with an upper bound for another also appears in [BBGK18]. They gave a tight
lower bound on the approximate degree of any function of the form f o ¢” where f is an n-input
symmetric function by combining a known lower bound for parity o g [Shel2b] with a quantum
query and approximate degree upper bound for the combinatorial group testing problem [Bell5].

We believe it should be possible to extend our techniques to prove new lower bounds for other
oracle identification problems. A family of special cases of oracle identification is captured by the
symmetric junta learning problem [AM14]. Here, there is a symmetric function h : {0,1}* —
{0,1} and each fg takes the form fg(z) = h(z|s). An important instance of this problem is the
combinatorial group testing problem, wherein one takes h = ORj. Belovs gave a tight upper bound
of O(vk) [Bell5] for this problem. He also determined the query complexity for h = EXACT —HALF
to be ©(k'/*) and gave an upper bound of O(k'/*) for h = MAJ. These upper bounds were
also (nearly) recovered algorithmically by Montanaro and Shao [MS20]. Despite its similarity to
EXACT — HALF, no polynomial lower bound is known for the majority function MAJ.

In the counterfeit coin problem, there is a hidden string z € {—1,1}" with Hamming weight
at most k. A query is parameterized by a balanced (i.e., having an equal number of 1’s and —1’s)
string y € {—1,0,1}", and indicates whether (x,y) is zero or non-zero. Iwama et al. [INRT12] gave
a quantum algorithm making O(k‘l/ 4) queries and conjectured this is tight, but no lower bound is
known. Note that the oracle here is quite similar to the EXACT — HALF oracle.

2 Technical ideas

2.1 Our lower bound framework

We begin with a somewhat more abstract description of our framework for proving approximate
degree lower bounds for oracle identification problems. The main idea is to provide additional
information about the hidden input to an oracle identification problem so as to selectively affect
the ability of quantum query algorithms and approximating polynomials to compute the functions
we wish to understand.

Recall that an oracle identification problem is specified by a family of functions aq,...,an.
Given query access to the values ai(z),...,an(x), the goal in our decision problems is to compute
the function parity(x). Suppose that we may identify parity(x) = f(ai(x),...,an(z)) for some
function f. If we can construct a function ) such that:

e Given Y(z), every function a;(x) can be computed by a low-degree polynomial, but
e Given )Y(z), computing the parity of = requires a high-degree polynomial,

Then by combining these two statements, we see that the function f(ai,...,ay) itself requires
a high-degree polynomial. We apply this framework taking f to be either the OS function or for



the “anchored hidden string” AHS function. The latter also implies a lower bound for the original
(decisional) hidden string function HS described in the introduction.

In the following sections, we describe the main technical ideas that go into the proofs of our
lower bounds. In order to provide more intuition about the structure of ), we describe the steps
of constructing it for OS in detail before returning to the generalized framework.

2.2 Ordered search lower bound

First, notice that OSy has the structure of an oracle identification problem since
OSN(GTon (), GTgn-11(x),...,GTin(x)) = parity(x)

where N = 2" and GT;(z) = 1 if and only if x < ¢ where i,z € {0,1}" if compared as numbers
written in binary notation.

We want to show that there exists a function ) of x that we think of as revealing partial
information about z such that:

e On one hand, for all i € {0,1}" there is an algorithm that makes a small number of queries
to Y and can identify the value of GT;(z) with constant probability of success. Note that a
query-efficient algorithm automatically gives rise to a low-degree approximating polynomial.

e On the other hand, approximating the value of parity(z) given ) with any probability of
success requires a lot of queries to ). Let us denote this auxiliary problem by PUR(Y) :=

parity(x).

It is helpful to think of ) itself as an oracle, whose output is given to a polynomial or to a query
algorithm, whose goal is then to compute some other function of . We describe how we construct
oracle ) through several attempts.

Let us first focus on constructing an oracle )’ that meets the first condition. To do so, we can use
the idea behind the O(log n log log n)-bit communication protocol? for the two-party communication
problem GT to obtain an efficient randomized query algorithm for every function GT;. In the GT
communication problem, Alice and Bob both get a string of n bits and the goal is to decide if the
number represented by Alice’s string is greater than the number represented by Bob’s string.

In this randomized communication protocol for GT, Alice checks if the first halves of the inputs
are equal and depending on the answer, she either recursively continues on the first halves of the
inputs or the second halves. By doing so, she finds the most significant bit where the inputs differ.
To perform each equality check, both Alice and Bob compute the inner products modulo 2 of each
of the inputs with the same set of some « (publicly) random strings, Bob sends his values to Alice,
and Alice compares these values to the values she obtained. If the original values were equal, then
the inner products will be always equal, and otherwise, at least one pair of inner products will be
unequal with high probability for sufficiently large o. This elementary operation (i.e., the ability
to compute inner products with random strings) will be exactly what we want our oracle ) to be
useful for.

2A more efficient O(log n)-bit communication protocol is known and underlies our sharpest result for ordered
search. We discuss it in Sections 2.4 and 3.



First attempt. We will eventually give a randomized construction of the oracle ), and to this
end, think of it as taking as input both the hidden string x and a random input r. Let Y(r, z) be a
function that takes a collection of m n-bit strings 7 € X[, ({0, 1}") and x € {0,1}", and outputs
m bits, each representing the inner product of r; with x: (Y(r,z)); = (r;, x).

Our first attempt, however, will make no use of randomness at all. Let us consider Y(r, x) where
r consists of all possible strings of length n. That is, the output of the oracle consists of (z,r;) for
every r; € {0,1}".

Let us now see how to construct a query algorithm C; that, given oracle access to Y(r,z),
computes GT;(x) with high probability. This algorithm emulates Alice’s side in the communication
protocol, fixing her input to ¢. It samples random strings used in the communication protocol, com-
putes the inner products of ¢ with these random strings on its own, and asks the oracle (emulating
Bob) for the inner products of  with the same random strings.

From the correctness of the communication protocol for GT we can conclude that for all x,7 €

{0, 13"

. I;’r [Ci(V(r,z)) # GTi(z)] <logn-27¢

wsTalogn

where r1...,7410gn are the strings that C; sampled during the run, and r is a collection of all n-bit
strings. The number of queries is alogn.

Thus we see that this oracle satisfies the first condition: it helps to compute the GT; efficiently
for every ¢ and x. But now there is a problem with the second condition: parity(x) = PUR(Y) can
be computed easily since parity(z) = PUR(Y(r,z)) = (z,1™). So there is a 1-query algorithm (and
hence a degree-1 polynomial) that exactly computes PUR()(r, x)), violating our second condition.

Second attempt. Our goal now is to reduce the efficacy of the oracle ) in terms of how well
it can be used by low-degree polynomials to approximate PUR. To do this, we instead consider a
distribution over the potential oracles defined by the collection of strings used in the protocol. Let
r denote a sequence of the random strings that could appear in one run of GT protocol described
earlier. Let R denote the set of all such sequences. This allows us to define a distribution of oracles
y[ﬁ](r,x), where 7 < R, and for us to consider a deterministic query algorithm. Let B, be

a deterministic algorithm that is given access to the Y[R](r,z) where r < R is chosen uniformly
at random, and which has the realization of r and ¢ hardcoded into it. This algorithm is able to
emulate the communication protocol (and the algorithm Cj;), but now each time it needs a random
string, it uses one provided in 7.

From the correctness of the communication protocol for GT we again can conclude that for all
x,i€{0,1}"

Pr [By,5(V[R](r,z)) # GTi(x)] < logn - 27,

r<R

So, with high probability, By, ;) computes GT;(x) over the choice of the oracle Y [7@] (r,x) for r + R.

A A~

Does this new oracle satisfy the second condition? Now an approximation to PUR[R](Y[R](r,z))
needs to approximate parity(z) when given a set of random parities from R. Indeed, we show this
requires high degree, as a consequence of the fact that high degree polynomial is necessary to
construct the full parity of x from random parities.



However, we need to add one more improvement to our structure. For every fixed ¢,z, the
algorithm B, ;) when run on Y [R](r,z) computes GT;(z) with high probability over r +— R. But
we need to switch quantifiers: we want an oracle that is “good” for all possible inputs for GT
simultaneously and, unfortunately, our current construction doesn’t give an algorithm computing
GT;(x) for all 4,2 € {0,1}" using the same 7 + R.

Third (and final) attempt. So, is there a way to fix the source of randomness so it works for
all possible inputs? Inspired by Newman’s theorem [New91] on simulating public randomness using
private randomness in communication complexity, we show that there is. We show that by taking
t = O(5z) copies of 7@, denoted Rq,Ro,...R:, we get a “good base” for the oracle. Consider a
randomized algorithm A, ;) that, given access to to Y[R'|(r,x) with r <~ R’ = xcyR;, does the
following:

e Sample j < [t] at random.

e Run By, ;) using the set R; as the source of randomness.

T,

Following the argument underlying Newman’s theorem, we show that this algorithm computes
GT;(z) with logn - 27% 4 § failure probability. It works for every ¢ and x and it still makes only
alogn queries to the oracle. If we put § = % and a = O(loglogn) then the probability of this
algorithm failing for some input pair is at most % with only alogn = O(log nloglogn) queries to

the oracle, i.e.,

Pr [Aps (VIR (r.2)) # GTi(x)] < ~.

r<R’ 6
This change also doesn’t increase the “size” of the oracle (i.e., the number of queries it can
answer) too much. This allows us to show that with high probability it is still impossible to
combine the given partial parities to create the full parity using a low-degree polynomial, so the
second condition is also satisfied. So there exists an oracle that allows computing the GT with low-
degree polynomials but requires a high-degree polynomial to compute parity(x) which is exactly

what allows us to prove the lower bound on the approximate degree of OS.

2.3 Technical ideas behind the parity lower bound

Our technique relies on a lower bound on the approximate degree of parity(x), or, more precisely,
on the “Parity Under Randomness R” function PUR[R|(V[R](r, z)) evaluates to parity(z) on input
Y[R](r,z). We, in fact, prove a more general statement lower bounding the approximate degree of
PUR[R] for a class of potential structures R.

Specifically, we show that the parity function is hard, even to sign-represent, and even given
access to Y[R] consisting of inner products of x with random strings r; where each bit of r; is either
fixed to zero or is an unbiased random bit. The only other restriction we need on Y[R] is that its
“size”, i.e., the number of inner products it provides, is small. The bigger this number is, the worse
our the lower bound becomes.

The proof idea is based on the hardness of sign-representing parity as described in [ABFR91],
combined with the following combinatorial observation: given a set of n-bit strings (corresponding
to samples from R, and in turn to random inner products) where in every string each bit is either
zero or is an unbiased random bit, with high probability no small subset of them adds up to the
all-ones string (which corresponds to the parity function).
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2.4 Improved ordered search and anchored hidden string lower bounds

Our generalized lower bound for approximating PUR[R] allows us to obtain other lower bounds
for oracle identification problems. For example, we give a slightly stronger lower bound for OS
than what is implied by the discussion above. There is, in fact, a more efficient randomized
communication protocol for GT that uses O(log n) bits of communication. It can be converted into
randomized query algorithm and thus into a polynomial of degree O(logn). At the same time,
this more efficient protocol is still based on computing equalities of substrings of inputs, and so
the appropriate ) has a very similar structure to the one described above while still satisfying the
conditions of the generalized lower bound for PUR. Moreover, the necessary “size” of ) barely
blows up at all. Putting everything together gives our improved lower bound of € (longn) on the
approximate degree of OS.

Using the same framework, we can also obtain a nearly tight lower bound on the approximate
degree of the anchored hidden string problem AHS. In the anchored hidden string problem, the
goal is to determine the parity of = given oracle access to y; s = ¢; s(z) for every index i and every
binary string s of length at most n, where ¢; s(z) = 1 iff the substring of x starting at index ¢
matches s. This oracle identification problem has the right form for our framework since

AHS N ((9i,5(2))icfn],se{0,1y<n—i+1) = parity(z).

Moreover, each function ¢; s(x) simply computes the equality function of s with a substring of = of
length |s| starting from position i. As we have already seen, we can compute the equality function
very efficiently given an oracle ) of the right random structure, and such a ) meets the conditions

of our generalized lower bound for PUR[Y]. This directly implies a lower bound of <1ogn> on the
approximate degree of AHS.

Finally, the last lower bound described in this work is on the approximate degree of HS. This
lower bound follows via a reduction from AHS. This reduction was first introduced in [CIGT12] in

the quantum query model, but it holds for polynomial approximation as well.

3 Ordered search and generalized lower bound

In this section we give the formal proof of our lower bound on the approximate degree of ordered
search. We show how our framework is used for this function and prove the generalized lower bound
on parity that we later reuse for the hidden string problem.

3.1 Preliminaries

Our lower bounds on the approximate degree of (a decision version) of ordered search and the
hidden string problem require the following definition of polynomial approximations for promise
problems.

Definition 3. Let f: D — {0,1} where D C {0,1}" for some n € N be a partial Boolean function.
For % > ¢ > 0, a polynomial p : {0,1}" — R is an e-approximation to f if [p(z) — f(z)| < ¢ for
every x € D and —e < p(x) < 14 ¢ for all x € {0,1}". The s-approximate degree of f, denoted
g\(\a/ge( f) is Lhe the least degree of a polynomial p that e-approximates f. We use the convention

deg(f) = degy /3(f) to refer to the “approximate degree of f” without qualification.
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That is, we require a polynomial approximation to a partial function defined on a domain D
to approximate the function on D and remain bounded outside of D. Note that this is the type of
approximation that arises from quantum query algorithms for promise problems.

We also formally define the ordered search function OS and the family of greater-than functions
GT.

Definition 4. For all i € {0,1}" define the function GT; : {0,1}" — {0,1} to be the indicator of
whether the value of the input is smaller than i: GT;(z) = 1 if and only if 2 < ¢ where i and x are
compared as numbers written in binary notation.

Definition 5. The ordered search function OSsn : {012"7% | k € [2"]} — {0,1} is a partial
function defined the following way: OSgn (0¥12"~%) = parity(x) where x € {0,1}" is the binary
representation of k.

3.2 The notion of a good base.

In order to formally define the oracle, i.e. the source of additional information about the input, we
introduce the notion of a “good base” for the oracle. A set R, consisting of tuples of strings, is a
good base if it’s constructed as follows.

Let R’ be a Cartesian product of m’ subsets of {0,1}" where each subset R7 is itself defined
by an n-bit string-template 7 = 175 ... 7, € {0,1}"

R™ =S4, 87,50, ... S,

where Sy = {0} and S; = {0, 1}.

For example, if 7 = 00100010 then R™ = S;,5+,57 ... Sr, = 5050515505051 50 =
{0}{0}{0,1}{0}{0}{0}{0,1}{0} = {00O0O00000,00000010,00100000,00100010}.

Let B = {11} x {13} x...x{1,} where 1; = 0°"710" 7 is the string that has the value 1 in j-th
position and has the value 0 everywhere else. Let R = B x R/, and thus R is a Cartesian product
of m = n + m/ subsets of {0,1}". Note that every r € R is a m-tuple of n-bit strings:

T = (7"1,7“2, . .T‘m) = (11, 12,. cey 1n—17 ln,rn+1,rn+2,. .. ,rn+m/)

where each r; is a string of length n, the first n strings are fixed for all r € R, and the last m/
strings are from some sets R” each for some template 7. If r + R is chosen u.a.r. then each
rj,n < j <m'is chosen u.a.r. from some R” and thus the subsequence of bits of r; corresponding
to ones in 7 is a uniformly random string, and the subsequence of bits of 7; corresponding to zeros
in 7 is the all-zero string.

Any set R with the above structure will be called a good base of size m. Such an R is helpful
for building our oracles as follows.

Let Y[R] : R x {0,1}" — {0,1}" be the following function: (V[R](r,z)); = (r;, ) where r; is
an n-bit string from the collection r» € R and the inner product is taken modulo 2. Note that V[R]
is parameterized by R, so for each good base R the function Y[R] will be different. We will omit
the parameter R later in places where it is clear from context.

Notice the following properties of this function Y[R](r, z) that hold whenever R is a good base:

e For every r € R, the values )(r,x) completely determine x. Since the first n strings of r are
1, 1o, ..., 1,1, 1,, the first n bits of Y(r, ) are exactly bits of .
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e Given Y(r,z) for r <= R and r itself, one can compute (with some probability of error)
whether a subsequence of x specified by some pattern 7 agrees with some fixed string s in
those indices. To be more specific, if given (Y(r,z)); = (rj, ) where r; is sampled from R”
uniformly at random, and r; itself, one can check whether the strings A 7 (where A denotes
bitwise AND) and s A 7 are equal for any s € {0,1}" with one-sided error probability %

So, Y[R](r, z) could be used as an equality oracle for a fixed set of subsequences of z (predefined
by R) when r is chosen uniformly at random from R. Thus, Y[R](r, z) might give more information
about x than z alone and might make some computations on & more efficient.

On the other hand, some functions of z remain “hard” even when given )(r,z). We will later
show that parity(x) remains hard to compute even with this additional information.

3.3 Approximating polynomials for GT;

We start our proof by showing that for some good base Ros the oracle Y[Ros| could be used to
make the computation of GT functions more efficient.

Claim 6. There exists a good base Ros of size m = O(n?loglogn) such that if r < Ros is sampled
uniformly at random, then with probability at least % over the choice of r there exists a family
of 2" polynomials {q.; : {0,1}™ — {0,1} | i € {0,1}"}, each of degree at most 2logn loglogn,
such that given V[Ros|(r, ) as the input, each polynomial g, ;(Y[Ros](r,z)) approximates the

corresponding GT;(z) with error at most . That is,

r<—P7£os Ji,x € {0,1}" : | g (V(r @) — GT4(x)| > % < %
Proof. This proof consists of two parts: constructing a good base Ros and showing that it actually
helps to compute every GT;.

Constructing the good base Rps. We are going to construct Rps based on what random
strings are useful in the communication protocol computing GT of two n-bit strings, x and i.
Intuitively, in this protocol, we first need to check if the first half of i and = are equal using a
randomized communication protocol for equality. To do that we need to compute and compare
(x,r) and (i,r), for some number « of random strings r to be determined later, where each r is
sampled from {0,1}2{0}2. If the computed values (i,r) = (z,r) for all 7 we have considered,
then we repeat this procedure on the second half of z and i, which corresponds to computing and
comparing (x,7) and (i,r) for a random strings r sampled from {0}2{0,1}7{0}7. If, on the other
hand, the values were not equal then we repeat this procedure on the first half of  and 4, which
corresponds to computing and comparing (x,r) and (i,r) for @ random strings r sampled from
{0,1}% {0}%. Since we want our oracle to be useful to emulate this procedure to compute GT;(z),
it should “contain” all the random strings used in this protocol.

oS n n n 3n n n n k__ in k+1 n k+1 n— i n k+1
Let R = R! /20 /2><<R1 /403n/4 % RO /21n/40 /4)><...><<><?:01RO2 /28t 2kt gn—((2i41)n/2 ))x
2 2i11an—(2i+1 . . .
S X (X?:/O RO LIOn )). See Figure 1 for an illustration.

This R describes all the strings used as the source of randomness in the O(lognloglogn)
communication protocol for GT, but each of the strings appears in the structure only once instead
of a times. So, we need to duplicate this structure « times to properly simulate the protocol.
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T RT Structure of R™
1203 {0,1}2{0}2 ISR 000 [0[0[0]0]0]

1505 {0,1}4{0}¥  |EEEEEIO[0[0]0[0[0[0[0]0[0[0[0]
81501 {0}5{0,1}%{0}¥  [0[0[o[o[0]0]0]0 [0[0]0[0]

130% {0,1}3{0}¥ BRI 0 [0 0 0[0[0]0]0[0[0[0[0]0]0]
0%150%  {0}1{0,1}5{0}%  [o[o[olom0[0[0[o[0]0[00[0]0]
08150%  {0}%{0,1}%{0}%¥  [0[0[o[0[o[o o]0 B 0[0[0[0[0]0]
071808 {0}%{0,1}8{0}%  [@[0[0T0[0[0[0T0T0]0 0 0 EE0]0]

Figure 1: Structure of R. Blue cells with * represent indices in which either a 0 or a 1 could appear.

To finish the structure, we are going to add two other steps to the structure. First, we are
going to have some number ¢ of individual “prepackaged” copies to be determined later for the
GT protocol. Let R = ... = Ry = ><a7i’,. Each of the copies has enough randomness and the
right structure of that randomness to simulate one full run of the GT protocol. Let R’ = X el R;
which allows us to handle ¢ runs. Secondly, we want to be able to obtain the value of any specific
index of x, so we add a set of “basis” strings to the structure: B = {1;} x {12} x ... x {1,} =
{10...0} x {010...0} x ... x {00...010} x {00...01}.

The final underlying structure of the oracle will be a Cartesian product of R’ and B: Ros =
Bx R =Bx (X..yRj). See Figure 2 for an illustration.

Jjel
B Rl RQ Rt—l Rt
« copies « copies « copies « copies

100000
010000
001000O0 . . . .
0001O00O0 X X X o X X
00001O0 II II II II
000O0O0T1

Figure 2: Structure of Ros. Each R; consist of o copies of R.

We also set the parameters to be a = 2log (logn),t = 250n1n 2. Notice that this set Ros is a
good base by construction and has size m = n + atn = n + cn?log (logn) for some constant c.

Constructing the family of approximating polynomials. In order to prove this claim,
we first describe a randomized query algorithm that computes GT;(x) correctly for all ¢ and x with
high probability given Y[Ros](r, z) as input. We then explain how to convert this query algorithm
into a polynomial. The algorithm construction itself consists of two parts. In the first part, for all
J € [t] we show the existence of a deterministic algorithm B, ; ;) that, given )(r,x), can compute
GT;(z) for every specific x,i € {0,1}" with good probability over the choice of r < Rops, and this
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algorithm is only going to use the parts of the input that correspond to R; and B. In the second
part, we show that the algorithm A, ;) that chooses a copy j to use randomly and runs B, ; ),
computes GT;(z) correctly for all i and = with high probability given Y(r,x) as input.

For all i € {0,1}",j € [t],r € Ros let By.; jy(Y(r,x)) be the following deterministic algorithm.

1. Set £ =0,u =n/2

2. While ¢ < w:

3. Set T = 0f1v v

4. For all indices v € [m] corresponding to n-bit strings drawn from R” within the j-th
copy R;:

5. Compute (i,7,) and compare it to (Y(r,x)), = (x,ry).

6. If for all such v the inner products are equal, i.e., (i,r,) = (J(r,x)),, then set

tmp = u,u =u+ (u—£)/2,¢ = tmp and go step 2.
7. Otherwise, set v = (u + ¢)/2 and go step 2

8. Compare iy = (i,17) and (Y(r,x))e = (z,1s) = xp. If 2y <y then accept. Otherwise, reject.

The last step is possible specifically because of B in the structure of Ros: rp = 1y for all £ < n
and for all » € Rps. Notice that this algorithm emulates the randomized communication protocol
for the GT communication problem.

In general, the algorithm emulates the randomized communication protocol for equality on the
first half of the segment [¢,u + (u — ¢)] in  and 4, and depending on the result it splits the inputs
into smaller segments and continues recursively. In the end, if all the runs of equality protocols
were correct, the algorithm finds and compares the most significant bit where x and 4 differ.

By [Nis93] we know that this algorithm computes GT;(z) with probability at least 1—(log n)2™* =
1 — (logn)22loellogn) — 1 _ _L_ > 1l 5, qufficiently large n independently of the choice of j € [t].

logn =— 12
That is, for all j € [t] and for all 7,2 € {0,1}",

P B V00) = 6Ti(@)] > 13-
This algorithm makes at most alogn = 2lognloglogn queries to the oracle Y(r,z). Note that
this algorithm needs access to the specific r needed to compute every (i,r,) and we enable this by
“hardcoding” this r into the algorithm and creating a separate algorithm for each possible r.

We have shown that for every fixed i,x € {0,1}" there are many r € Ros that if used as a
first input for the oracle ) allow B, ; j) to compute GT;(x). Unfortunately, this is not enough: our
algorithm should be universal, i.e., we want a single algorithm that with high probability over r
succeeds on all ¢ and z. On the other hand, By, ; ;) only uses one fixed “package” of random strings,
namely the j-th package.

Let W(i,z,r,j) be the indicator that the j-th package of random strings in r defines a set
of “bad” random strings for (i,x): W(i,x,r,j) = 1 if and only if B.;;(Y(r,x)) # GT;i(x). We
established that Bj,.; ;(Y(r,z)) works well if given a random 7 < Ros for every j € [t] and
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the probability of this algorithm outputting an incorrect answer is at most % So for all i,z €
{0,1}", j € [t], we have
. ‘ 1

TE%OS[W(ZPT?TJ) = 1] = EW—ROS [W(z T, T ])] ﬁ
We can’t immediately get a useful upper bound on the probability of r < R working out for all ¢
and x at the same time. To achieve this, we’ll design a new algorithm that uses all ¢ packages of
random strings. Its construction and analysis are inspired by Newman’s classic argument used for
simulating public randomness by private randomness in communication protocols.

For all i € {0,1}",7 € Ros let A, ;)(Y(r,z)) be the following randomized algorithm:

e Choose j < [t] uniformly at random.
e Run B(T7i7j)(y(r,x)).

Let us now analyse A, ;. The number of queries that A, ;) makes to the oracle is the same as
By,i,jy which is alogn = 2log nlog log n. We fix a pair (i, 7) and evaluate the following probability.

CDl’—‘

Pr ['Pr[ (ri.5) #GT()] é]_w—Ros ZWZij

r<TRos |j« [t}

We established that E,. g [W (i, z,7,7)] < % and so by Hoeffding’s inequality,

ZW P P T
Ghz,mg) > 5+ 5| = = '

T(—Ros
JElt]

By a union bound over all possible i,z € {0,1}",

1 20Un
Pr Ji,x € {0,1}" : = ZW@J;T] G <929~ < 97" <

r<—Ros Je[t

wl’—‘

Therefore, we have proven that

Wl

Pr [Eli,x e {0,1}" :jzl[nt][A(r’i) (V(r,x))) # GTi(z)] > l} <

r<TRos 6

The last step is to convert this family of query algorithms into a family of approximating polyno-
mials. Let g(.; denote the acceptance probability of A, ;. A standard argument (e.g., [BAWO02,
Theorem 15]) implies that this is a polynomial of degree at most 2lognloglogn such that

Pr [Eli,x e {0,1}": ‘q(r,i)(y(r,:n)) - GTi(aj)| > 1] < %,

r<R 6

which is exactly what we were looking for. O
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We successfully converted the most well-known communication protocol for GT that requires
O(log nloglogn) bits of communication into a family of polynomials of degree O(log n loglogn) that
approximates GT;. It’s known that there is a better communication protocol for GT that requires
only O(log n) bits of communication, as observed by Nisan [Nis93]. The next claim establishes that
this more efficient protocol can be converted into a family of polynomials as well.

Claim 7. There exists a good base Ros4 . of size m = O(n3logn) such that if r < Ros4 is sam-
pled uniformly at random, then with probability at least % over the choice of r there exists a family
of polynomials {q,; : {0,1}"™ — {0,1} | i € {0,1}"}, each of degree at most O(logn), such that
given Y(r, ) as the input, each polynomial q(,;y(Y[Ros++](r, ¥)) approximates the corresponding
GT;(z) with error at most %. That is,

1 1
Pr Ji,x € {0,1}": ‘q(m)(y(r,x)) - GTi(a:)‘ > < -

r<Ros++ 6 3

The proof of Claim 7 is similar to the proof of Claim 6 and can be found in Appendix B.

3.4 General lower bound

To complete the framework and to obtain the lower bound for Ordered Search we need to show
why computing the parity is hard even given Y[Ros] or Y[Ros++]|. We will show a stronger lower
bound that would allow us to reuse this lower bound for other applications. Specifically, we will
show that computing the parity of input z remains hard given Y[R] for any good base R of small
size.

3.4.1 Combinatorial claim

The hardness of parity in this model is based on the following statement. For every good base R of
small size with high probability over the sample r <— R for every set of n-bit strings taken from the
collection 7 of size at most O(@), the bitwise parity of these strings is not equal to the all-ones
string.

Claim 8. For every good base R of size m with probability at least % over the choice of r < R for
every set of elements T C [m] of size at most d = ﬁ — 1, the bitwise parity of n-bit strings r;,
1 € T from the collection 7 <— R is not equal to the all-ones string:

2
Pr |VT C T <d: A1 > =
e[S T < A1 2 5

Proof. Fix an arbitrary good base R of size m. Fix a set T' C [m] where |T| < d. We want to
bound the probability Pr, g [@,cr ri = 1"] that for this  and for this T' the strings corresponding
to the indices in T" sum up to the string of all ones. Fix a specific index k € [n]. We compute the
probability that index k is set to 1 in @,.4 7. To do this we need to understand how the candidate
strings r;,4 € T can influence this value.

There are three possible scenarios for each index k:

e (Type I) There is at least one string r; € {0,1}" with ¢ € T such that it is chosen from
R™ where 7, = 1. Then in each such string, the bit at index k is sampled independently at
random with probability 3. Thus Pr,« g[(@,cp i 1) = 1] = 5.
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e (Type II) There are no strings 7,7 € T such that r; is chosen from R”™ and 7, = 1, but there
is r;,4 € T that is chosen from B, such that r; = 1;. Then the value of (@,.p7:, 1x) is
one since there is exactly one string in this sum with the kth index value set to one. Thus

Prﬂ_n[(@ieT ri, 1) =1 = 1.

e (Type III) There are no strings 7;,7 € T such that r; is chosen from R” and 7, = 1, and there
is no 3,4 € T that is chosen from B, such that r; = 1. Then for all strings r; the index k is

0, so Prﬂ_n[(@ieT Ty 1k> = 1] =0.

Index k 1 2 3 4 5 6

Type I I I I I III I 111

P r[(@icrri 16)] 1/2 1/2 1/2 1/2 1 0 1/2 0

Figure 3: Example of index types, T = {i1, 12,13, 14, 15,6}

Notice that 7" fully defines the types of all indices and thus the values of (D, ri, 1x) for k of types
II and III don’t depend on the choice of r + R. On the other hand, the values of indices of type I
do depend on the choice of r «<— R. Each of them is either a parity of independent random bits or
the negation of a parity of independent random bits which is fixed by T' too. Thus they behave as
independent bits themselves and therefore the values (), 7i, 1x) are mutually independent for
all indices k.

Denote by ni, nir, nir the numbers of indices of each type. Notice that ny + ni + niip = n and
ni < d. Then in this notation

1\™
P s=1" = = 1R,
@] = (3)

€T
If there exists k € [n] of the third type, the probability Pr,. z[@;c, i = 1"] becomes 0, so to

upper bound the probability we may assume all the indices have one of the first two types. And,
since nip < d, to maximize the value we assume that ni; = d. Thus we have
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1 n—nir 4 1 n—d
— 17| = I < Z = —("—d).
T{_R[@ﬁ 1] <2> 1" <1 <2> 2

€T

Since d = — 1 and m > n, we have n — d > 5 for sufficiently large n. So for a fixed T,

P =1"| <272
P @n-r) <o

€T

_n
4logm

There are ( Z&) ways to choose the set T, so by a union bound over the choice of T', the probability

that for some set of size at most d the value @, r; is equal to the string of all ones is

d d
n . m —n d’ —2 d+1
Pr |37 C [m],|T] <d: @n_ll <<d>22_22§:<d,>§22§:m <27im

€T

n __n n ___n n n n
— 9 G Alogm — 9" 50TTgm 198 _ 9% —% _ o=} ~

3.4.2 Lower bound on the degree of PUR[R]

For every good base R and for every fixed r € R define the function PUR[R], : D[R], — {0,1}
where D[R], = {Y[R]|(r,x) | = € {0,1}"} is the subset of {0,1}"™ where each domain point
corresponds to one specific z € {0,1}" and is consistent with the fixed r. This function outputs
the parity of the string encoded by the input: PUR[R],.(Y(r,z)) = parity(z). It is well defined since
parity(z) = @B, ep(, i) = Djepny (Y (7, @))i- Note that both D[R], and PUR[R] are parameterized
by R and, as with Y[R], we will omit the parameter later in places where the parameter is clear
from the context.

Our goal is to show that PUR[R] is hard to approximate if R is a good base of small size. We
do this by showing that for every good base R of size m if r < R u.a.r. then every polynomial p of
degree at most d = O(1=2—) is completely uncorrelated with PUR[R],.(Y(r, z)) with high probability
over the choice of 7.

logm

Theorem 9. For every good base R of size m if r < R u.a.r. then with probability at least %
over the choice of r every polynomial p : {0,1}" — R of degree at most d = — 1 doesn’t
approximate PUR[R], :

_n_
4logm

Pr |Ve < 3, Vp,des(p) < d,3y € D[R}, < [p(y) — PURIR], ()] > <| >

Note that Theorem 9 rules out approximating polynomials that may be unbounded outside of
the domain of PUR[R],. That is, it asserts that there is no low-degree approximating polynomial
even when that polynomial is permitted to take values outside of [0,1] on points outside of the
domain of PUR,. Note also that since the lower bound applies for all ¢ < 1/2, it actually entails a
threshold degree lower bound on computing PUR[R].
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Proof. Fix an arbitrary good base R of size m.

For convenience in this proof, let us change notation to consider polynomials approximations
over {—1,1} instead of over {0,1}. Define }': R x {—1,1}" — {—1,1}"" to be (V'(r,2’)); =1 —
2(Y(r, (1_2“7/1 = 296,2 e 1_2:0;1 )))i = 1—2(z, r;) where ; is the vector corresponding to ith component
of Y(r,z) and x € {0,1}" is the vector that corresponds to 2’ € {—1,1}": z; = 1_;; for all i € [n].
Notice that this change of notation satisfies the following: if a € {0,1} and @’ is the corresponding
value in the new notation o’ € {—1,1} then o’ = (—1)°.

Let’s also rewrite PUR, in this new notation. Let D] represent the domain of PUR.: D! =
{Y'(r,2’) | 2/ € {~1,1}"} and the function PUR] : D, — {-1,1} be PUR.()V},)5,...,)..) =
1—2PUR, (4, 152% 10,

Note that every polynomial p’ : {—1,1}"* — R that approximates PUR/. to error ¢ can be
converted by a linear transformation into a polynomial p : {0,1}" — R of the same degree that
approximates PUR, to error £/2. So it suffices to prove that no polynomial p’ of degree at most d
approximates PUR/, to error £ < 1.

Assume toward a contradiction that there is a polynomial p’ of degree d that approximates
PUR!.. This means that there exists ¢ < 1 such that for all y € D/,

' (y") — PURL(y)| <e.

Consider the following expression:

3| 3 PURGNPURL) — 0| < 3 (may /) — ORI ) | X IPURLY)
y'eD). "

y'€D]

The last equality holds because )’ (r,-) is surjective, and hence |D..| = 2". On the other hand,
1
Z PURL(y)(PURL(y) = P'(4))| = 5 || D_ PURL(YIPURL(Y) | — | > PURL(Y ) (¥)
y'eD). y'eD]. y'eD!.

1
= o |01 = | D2 PURLW)p()

y'eD;,

(2)

We now show that with high probability the expression above is equal to |§,£ .

Claim 10. With probability at least % over the choice of r <— R, for every polynomial p’

{=1,1}" — R of degree at most d = gt — 1 we have
> PURLY )Y (v) =
y'eDy
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Proof. Fix a polynomial p’ of degree at most d = — 1. By linearity it suffices to consider the

n
4logm
case where p’ is a monomial, p'(y') = [[;cr y; for some 7' C [m], |T'| < d. So

S PR = > | TTeh] [ [Towa | = X (o) TTEne

y' €D, x’e{—1,1}" \i€[n] JeT z€{0,1}n JET
= > (DEMIEpzern) = 3T (e () E@iern) = 3T (e @er )
ze{0,1}" ze{0,1}7 ze{0,1}"

This expression is not zero if and only if @ jerr; =1". By Claim 8 the probability that such T’
exists is at most % So the probability over the choice of r for some polynomial p' : {—1,1} — R

of degree at most d = @ — 1 to have
> PURL(y)(y) #0
y'eD;
is at most % U

Combining expressions (1) and (2) and Claim 10, we have that with probability at least 2,

i "y "_”—i/_ //11_%_
> oy ZD PUR(5/)(PURL(y") —#'(4)))| = 5 || D! ZD PURL( /() || = 5 =1

And so & > 1 which contradicts our assumption. Thus PUR!.(Y(r,z)) cannot be approximated
by a polynomial of degree at most @ — 1 with probability at least % over the choice r <+ R
sampled uniformly at random. And therefore PUR,()(r,x)) cannot be e-approximated for every
constant € < % with a polynomial of degree less than @ with probability at least % over the

choice r +— R sampled uniformly at random for any good base R of size m. O

3.5 Lower bound for ordered search

Finally, we combine our general lower bound on the approximate degree of PUR with the upper
bound on approximating GT; to conclude our lower bound on the approximate degree of ordered
search. We will use the statement of Claim 7 with a lower degree of polynomials approximating
GT; since, even though its proof is more complicated than the proof of the weaker bound, as it
allows us to obtain a better lower bound on ordered search.

First, we apply Theorem 9 to obtain a lower bound on the approximate degree for PUR[Ros 4 ].

Corollary 11. If » < Rost+ u.a.r. then with probability at least % over the choice of r every

polynomial p : {0,1}" — R of degree at most d = W — 1 fails to approximate PUR[Ros+],:

1
Pr |Ve< 3 Vp,deg(p) < d,3y € D[Ros++]r : [p(y) — PUR[Ros++],(y)] > e| >

r<Ros++

[SSEIR )

21



Proof. The set Ros, 4 is a good base and has size m = O(n3logn). By Theorem 9, with probability
at least % over the choice of r every polynomial p : {0,1}"™ — R of degree at most @ — 1 fails
to approximate PUR[Ros+],. But since the size of Rost4 is m < n* for sufficiently large n then
every polynomial of degree at most d = % —1= ﬁ; —-1< @ — 1 fails to approximate

PUR[Ros++],- O
By combining Claim 7 and Corollary 11, we obtain the following.

Theorem 12. The approximate degree of ordered search is

— n 1
deg%_v(OSQn) =0 <10g—2n — log ;)

where ~ could depend on n, 0 < v < %

Proof. Suppose OSgn can be (% — 7)-approximated by a bounded polynomial of degree d for some
% > v > 0. By [Shel2a, Theorem 1.1], for every § > 0, this polynomial can be converted to a
polynomial p of degree O(d + log %) that (3 — v + &)-approximates OSg» and is robust to noise in

its inputs. That is,

1
|OSn(y) —ply+A)| < 5 Y To

forally € {0,1}V, all A € [—%, %]N, and N = 2". Ifweput § = 7, thenpisa (%—%)—approximating
polynomial for OSon with degree O <d + 10g<%>).

Note that OSan(GTon(x),GTgn-11(),...,GTin(z)) = PUR[Rost+],(V(r,x)) for every r €
Rosi+. So by Claim 7, there exists a constant ¢ such that the composed polynomial
P(a(r0m) (V(r,2)), G on—11) V(75 %)), - - - qr1m) (Y (1, ))) has degree at most deg(p) max;(deg(q(i))) =
c (d + log(%)) log n and approximates PUR[Ros++],.(Y(r,)) to error (3 — 1) with probability at

least % over the choice of r <— Rosy+. This holds because although the polynomials g(,; do not
compute the functions GT; exactly, but only approximate them with small error, the outer polyno-
mial p is robust to this small error in the inputs. Note also that while the composed polynomial is
bounded on the domain of PUR,, it may be arbitrarily unbounded on points outside its domain.

On the other hand, by Claim 11, with probability at least % over the choice of r, the func-
tion PUR[Ros++], cannot be approximated to any error (3 — 1) € (0,4) by a polynomial in
Y of degree less than m. By a union bound, with probability at least 1 — (1 — %) - (1 -
2) = % both conditions on r hold simultaneously. Thus there exists »r € Ropsy4+ such that
p(Q(T’,O”) (y(’f', :E))v 4(r,on—11) (y(T‘, l‘)), s Q(r,ln)(y(rv :E))) approximates PURT(y(T7 l‘)) and PUR?‘(y(Tv :E))
cannot be approximated by a polynomial of degree less than m. So

1 n
I — | > .
C(‘” Og<’v>> %" = T5logn

1 n
d+log<—> >_n_
y 16clog”n

And thus
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so we conclude that

d=1% <L2 —log<l>>.
log“n ¥

4 Anchored hidden string and hidden string

Now let us switch gears and consider the (anchored) hidden string problem, in which the goal is to
reconstruct a string given information about the presence of specific substrings. In the decisional
anchored hidden string (AHS) problem, the information given as input consists of whether each
string s is a substring of the hidden input x starting at position ¢, for all valid ¢ and s. The goal is
then to compute parity(x).

In order to prove a lower bound for AHS we will follow the same outline as for OS. That is, first
we will introduce a convenient set Rans of collections of n-bit strings and show that oracle Y[R ans]
providing the inner products of x with strings from the random sample from Rans are useful for
computing ¢; s(x) for all possible queries (i,s) where i € [n],s € {0,1}="7"! and ¢; 5(z) = 1 iff
s is a substring of x starting from position i. After that, we will show that it is hard to compute
PUR[RaHs], the parity of = using the oracle Y[Rans] with high probability. And finally, we will
conclude that computing AHS is hard since composing an approximating polynomial for AHS with
polynomials approximating ¢; s(x) would allow us to approximate the PUR[Rans] function.

4.1 Preliminaries

W define several functions in order to formalize the problem.
Throughout this section, we use the following notation {0,1}=" to denote the set of all bit
strings of size at most n: {0, 1}=" = (J7_,{0, 1}*.

Definition 13. For all s € {0,1}=" define the function y; : {0,1}" — {0,1} to be the indicator
of whether the input string = has s as a substring: that is, there exists an integer i such that
Titk—1 = s for all 1 <k <|s| then xs(z) = 1 and otherwise xs(x) = 0.

Definition 14. Define the “hidden string” function HSy : {0,1}" — {0, 1} be the partial function
that takes N = |[{0,1}="| = 2"*! — 1 inputs, each corresponding to a substring s € {0,1}=", and,
given a collection of xs(z) for some fixed z € {0,1}" as an input, outputs parity(x).

We will also consider a variation of this problem where the additional information is not only
whether a specific substring is present in the hidden string, but if this substring is present at a
specific location of the hidden string.

Definition 15. For all i € [n] and s € {0,1}<"7**! define the function ¢; 5 : {0,1}" — {0,1} to
be the indicator of whether the input string x has s as a substring starting from position ¢: that
is, if x;4 51 = s for all 1 <k <|s| then ¢; s(x) = 1 and otherwise ¢; s(x) = 0.

Definition 16. Let the “anchored hidden string” function AHSy : {0, 1}V — {0, 1} be the partial
function that takes N = |{(i,s) | i € [n],s € {0,1}S"~1}| = 2"*2 — n — 4 inputs, each corre-
sponding to a pair of i € [n] and s € {0,1}=""*1 and, given a collection of ¢; 5(z) for some fixed
x € {0,1}" as an input, outputs parity(z).

23



4.2 Approximating polynomials for ¢;

We start our proof by showing that for some good base Raps the oracle Y[Rans] could be used to
make the computation of the functions ¢; ; more efficient.

Claim 17. There exists a good base Rans of size m = O(n?) such that if r < Rans is sam-
pled uniformly at random, then with probability at least % over the choice of r there exists a
family of polynomials {q; 5 : {0,1}"™ — {0,1} | i € [n],s € {0,1}="7""1} of degree at most 4
such that given Y[Raps](r,z) as the input, each polynomial q(,.; o) (Y[Rans](r, ¥) approximates the
corresponding ¢; s(x) with error at most %. That is,

Pr |3ie[n],z e {0,1}",s e {0,1}=" 7, |@(ri,5) V[Rans](r; @) — dis(x)| > —] <

r<—TRAHS

Proof. The proof of this statement follows the same outline as the proof of Claim 6. First, we
will construct a good base Rans, and then we will show (in two stages) how to compute ¢; s given

V[Rans]-
Constructing the good base Rans. Our base for the oracle should contain all the strings

needed to check the equality with every substring of x, so let R =R x (R1n7101 X Rollnil) X
<R1n7202 « R011n7101 « R021n72> ‘% (X?:O RoiliJﬁkOnfifk) < x <><?:_01 R0i1i+10n7(i+1)). See
Figure 4 for an illustration.

T R™
1111 {0, 1}4

1110 {0,1}*{0}
0111 {0}{0,1}3

1100 {0,1}%{0}?
0110 {0}{0,1}%{0}
0011  {0}%{0,1}?

1000 {0,1}{0}3
0100 {0}{0,1}{0}?
0010 {0}2{0,1}{0}
0001  {0}3{0,1}

wn

=

=

o

=+

E E E =
=

@

EE E ]

&

Figure 4: Structure of R for n = 4. Blue cells with * represent places where either 0 or 1 values
could be.

On top of this, we are going to add two other steps to the structure. First, we are going
to have t individual “prepackaged” copies. Let R1 = ... = Ry = X4R, and R = Xje[t} R;.
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B Ri Ro Ri-1 R
«a copies «a copies a copies o copies

o= OO
= O O O

OO O =
o O = O

Figure 5: Structure of Raps for n = 4. Each R; consist of o copies of R.

Secondly, we add a set of “basis” strings to the structure: B = {1;} x {12} x ... x{1,1} x{1,} =
{10...0} x{010...0} x...x {00...010} x {00...01}. The final underlying structure of the oracle
will be a Cartesian product of all ¢ copies and B: R = B x R’ = B x (Xje[t] R;). See Figure 5 for
an illustration. We also set the parameters to be a = 4,n LET:I%OOOn In 2. Notice that this set Rans

is a good base by construction, and has size m = n + at =5~ = O(n?).

Constructing the family of approximating polynomials. For alli € [n],s € {0,1}="+1 j ¢

[t],7 € Rans let B, s 5)(V[Rans](r, 7)) be the following deterministic algorithm.

1. Set 7 = 0i1lslgn—lsl=
2. Set s’ = 050" 1517 50 & is an n-bit string

3. For all v € [m] such that v corresponds to n-bit strings drawn from R” within the jth copy
R;:

4. Compute (s, r,) and compare it to (Y(r,x)), = (x,r,).
5. If for some v the inner products don’t have the same value, (i,7,) # (Y(r,z)),, then reject.

6. Otherwise, accept.

This algorithm determines if s equal to the substring of x of length |s| that starts at the ith
position with probability at least 1 —27* =1 — 274 > % independently of the choice of j € [t].
That is, for all j € [t] and for all i € [n],s € {0,1}""%, x € {0,1}"

Pr [B(is)(V(r,x)) = ¢is(z)] > %

r<—TRAHS

This algorithm makes at most o« = 4 queries to the oracle Y(r, z).

We have shown that for every fixed i € [n],s € {0,1}="~"! and x € {0,1}" there are many
r € Rans that if used as the first input for the oracle ) allow B, ; , ;) to compute ¢; s().

Let W (i, s,x,r,j) be the indicator that the j-th “package” of random strings in r defines a set
of “bad” random strings for 4, s,x: W(i,s,z,r,j) = 1 if and only if B, ; s jy(V(r,x)) # ¢is(v). We
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established that B, ;s j)(Y(r,z)) works well if given a random r <- Rans for every j € [t] and the
probability of this algorithm outputting an incorrect answer is at most % So
Pr [W(i,5,2,7,5) = 1] = By rps[W(ir5,2,7,)] < =
I T = = 2 -
R ,8,T,7,] r<—RAHS S, %,T,] 12
Using the same transformation from before (described in detail in the proof of Claim 6), we
design a new family of algorithms that succeeds on all 7, s,z simultaneously. For all i € [n],s €
{0,1}="" r € Rosty let Ay (Y (r,x)) be the following randomized algorithm:

e Choose j < [t] uniformly at random.
e Run B(r,i,s,j)(y(r7x))‘

The number of queries that A, ; ;) makes to the oracle is the same as B, ; s ;) which is a = 4. We
fix arbitrary ¢, s,z and evaluate the following probability.

1 1 1
Pr |: Pr [B(r,z,s,y 7'é ¢z s( )] _:| = Pr Z Z W(i,s,x,r,j) > =
[t]

r<TRans |j+[¢] 6 r—RAHS

(@)

We established that E,. r,.[W(3,s,z,7,7)] < % and so by Hoeffding’s inequality,

Z[;Wzsxrj >1—12—1—1—12 <e” 2152 <2_2?(i(in,

T’<—RAHS

And by a union bound,

1 n 1

Pr Ji € [n],s € {0,1}=" 2 € {0,1}" : E W(i,s,z,mj) > =| <2%+22~ o < -,

r<TRans o 6 3
]

since the number of possible pairs of i € [n] and s € {0,1}="7 1 is Y7 | Zr‘ ZJlrl olsl < 9nt+2 go,
we proved that

Pr |:E]Z S [n]vs S {07 1}§n—i+17x S {07 1}n : jil[‘ﬂ[A(r,i,s)(y(rax))) 7é ¢z,s(‘7:)] > l:| <

T‘_RAHS 6

1
3
The last step is to convert this family of query algorithms into a family of approximating

polynomials. Let g(.;,) denote the acceptance probability of A.; ) which is a polynomial of
degree at most a = 4 such that

Pr [Hz‘ € [l,s € {0, 1157 1 € (0,1} ¢ |giruy(VIRaws) (1)) — dia(a)| > 1} < %

r<—TRAHS

which is exactly what we were looking for.
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4.3 Lower bounds for anchored hidden string and hidden string

Following the same framework, we can combine the general statement about the degree of PUR
proven earlier with the upper bound for approximating ¢; s to conclude our lower bound on the
approximate degree of anchored hidden string.

First, we apply Theorem 9 to obtain a lower bound on approximate degree for PUR[Rans].

Corollary 18. If r + Raps u.a.r. then with probability at least % over the choice of r every
polynomial p : {0,1}" — R of degree at most d = — 1 fails to approximate PUR[Rans],.:

_n_
16logn

1
Pr |Ve< 3 Vp,deg(p) < d,3y € D[Ranslr : [p(y) — PUR[Rans],.(v)| > ¢e| >

T<RaHs

Wil

Proof. The set Raps is a good base and has size m = O(n?). By Theorem 9, with probability at
least % over the choice of 7 every polynomial p : {0,1}" — R of degree at most ﬁ — 1 fails
to approximate PUR[Rans],. But since the size of Rans is m < n* for sufficiently large n then
every polynomial of degree at most d = % —1= @ —-1< @ — 1 fails to approximate

PUR[RAHs],- O
By combining Claim 17 and Corollary 18, we obtain the following.
Theorem 19. The approximate degree of AHSy is

AH =Q(—— —log —
deg%_,y( SN) <10gn ngy>

where N = 2"+2 — . — 4 and 7 could depend on n, 0 < v < %
Proof. Suppose AHSy can be (% — 7)-approximated by a bounded polynomial of degree d.

By the same argument as used in Theorem 12 we can conclude that there exists a polynomial
p of degree O(d + log 17) that (% — 3)-approximates AHSy and is robust to noise. That is,

7
2

DO =

|IAHS N (y) — p(y + A)| <

for all y € {0,1}" where A € [, 2]V.
Note that AHSN((¢i,s(%))icn),sc0,13<n—i+1) = PUR[Rans],.(V(r,z)) for every r € Rans. So
by Claim 17 the polynomial p(q(;«) (Y (r,x))) of degree at most deg(p) max;s(deg(qn;s))) =

4e(d + log %) for some constant ¢ approximates PUR[Rans], (V(r, z)) to error (3 — ) with proba-

bility at least % over the choice of r < Rans. This holds because although the polynomials g, ; )
do not compute the functions ¢; ; exactly, but only approximate them with small error, the outer
polynomial p is robust to this small error in the inputs. Note also that while the composed poly-
nomial is bounded on the domain of PUR,, it may be arbitrarily unbounded on points outside its
domain.

On the other hand, by Claim 18, with probability at least % over the choice of r, the function
PUR[RaHs], cannot be approximated by a polynomial in ) of degree less than %. By a union
bound, with probability at least (1 — (1 — %) —(1— %)) = % both conditions on 7 hold simulta-
neously. Thus there exists r € Raps such that p(q(,.; (Y (r,r))) approximates PUR,(Y(r,z)) and
PUR,(Y(r,z)) cannot be approximated by a polynomial of degree less than T6logn- SO
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n

1
4e(d +log —) > .
e(d+ Ogy)_ 16logn

sz( n —1og1>.
logn 0%

This lower bound on the approximate degree of AHS 5 entails a lower bound on the approximate
degree of HSy. In [CIG112] the authors gave a reduction between these two problems, showing
that if there exists a quantum query algorithm for HS then there exists a quantum query algorithm
for AHS with a small blow-up in the number of queries. Specifically, they showed how to compute
AHS by applying a query algorithm for HS with a slightly bigger input, where each bit of the
bigger input can be computed using a constant number of queries to the original AHS input. This
argument works just as well to relate the approximate degrees of HS and AHS, giving the following
statement.

And thus

O

Claim 20. If for every n’, there is a polynomial of degree d(n') approximating HS,,/;1_, to some
error, then for every n there is a polynomial of degree 2d(10nlogn) approximating AHSgn+2_,,_4
to the same error.

This allows us to prove a lower bound for HS as well.

Corollary 21. The approximate degree of HSy is

- n 1
0850 = (15 (5 )

where N = 2”1 — 1 and v could depend on n, 0 < v < %

Proof. By Claim 20 if there exists a polynomial of degree d(n’) approximating HS,,/.1_; then there
exists a polynomial of degree 2d(10nlogn) approximating AHS;n+2_,,_. On the other hand, by

cn
logn

Corollary 18 no polynomial of degree less than — clog(%) can approximate AHSgn+2_,,_ 5 to

error % — ~ for some constant c. Therefore,

1
2d(10nlogn) > o clog —.
logn v

Set n’ = 10nlogn. Then

cn 1 cn! 1 cn!

1
d(n’) > —clog—=——+— —clog— > —+5— —clog —.
( )_2logn g’y 201log?n g’y_2010g2n/ g’y

And thus
— n 1
deg%_V(HSQn/H_l) =0 (—2/ —clog —> .
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A Upper bounds for the unbounded error regime

We describe upper bounds on the randomized (and hence, quantum) query complexities of the
ordered search and hidden string problems in the setting of weakly unbounded error. Our algo-
rithms are simple modifications of the corresponding deterministic algorithms. They show that the
approximate degree and quantum query lower bounds we prove for these problems are nearly tight.

A.1 Ordered search

Reconstruction. We first describe a randomized query algorithm that computes ordered search
(reconstruction version) with probability at least v while making O(n — log %) queries.

To attempt to identify a hidden string x, the algorithm makes the first ¢ queries of binary search
and thus exactly identifies the first ¢ bits of . Then it samples the rest of the bits uniformly at
random and outputs the resulting n-bit string. It succeeds in sampling the correct sequence of the
last (n —t) bits with probability at least 2-(=1)_ The upper bound follows by setting ¢ = n — log %
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Decision. We now modify the algorithm above to compute the decision version of ordered search
with probability at least % + ~, while making O(n — log %) queries.

The algorithm makes the first ¢ queries of binary search to exactly identify the first ¢ bits of x.
Then it samples the rest of the bits uniformly at random, obtaining an n-bit candidate string x’. It
then queries the input twice, on indices 2’ — 1 and 2/, to check that z £ ' — 1 and = < 2. If both
conditions hold, then 2/ = z and the algorithm outputs outputs parity(z’) = parity(z). Otherwise,
it outputs a random bit.

This algorithm succeeds when either it succeeds at identifying x (which happens with probability
2_(”_t)) or when it fails to identify x, but correctly guesses its parity, which happens with probability
%(1 —2=(=1) Thus the algorithm succeeds with probability at least % +2-(=H=1 " The upper
bound follows by setting t =n + 1 — log %

A.2 Hidden string

Since our unbounded-error algorithm relies on the deterministic algorithm for the hidden string,
we provide a sketch of that algorithm here.

Theorem. ([SS95]) There exists a deterministic query algorithm that computes hidden string
(reconstruction version) using O(n) queries.

Here is the sketch of the algorithm:

1. Let s be the empty string.

2. While either sO or sl is present in x:

3. Update s to be either sO or s1, whichever is present
4. While either Os or 1s is present in x:

5. Update s to be either Os or 1s, whichever is present

This algorithm makes at most 2n + 2 queries to the input and outputs the hidden string x.

Reconstruction. We now describe a randomized query algorithm that computes hidden string
(reconstruction version) with probability at least v while making O(n — log %) queries.

The algorithm makes the first ¢ steps of the exact deterministic algorithm above and thus exactly
identifies ¢ bits of . Then it samples the rest of the bits uniformly at random, samples a location
among these n — t bits in which to insert the identified substring of x, and outputs the resulting
n-bit string. It succeeds in guessing the location for the substring with probability at least n+m
and it succeeds in guessing the correct values of the rest of the bits with probability at least 2~ (%),
The upper bound follows by setting ¢t = 2n — log %

Decision. We now describe a randomized query algorithm that computes hidden string (decision
version) with probability at least % + ~ while making O(n — log %) queries.

The algorithm makes the first ¢ steps of the exact deterministic algorithm above and thus exactly
identifies t bits of z. Then it samples the rest of the bits uniformly at random, samples where to
split this string of random bits to put the identified substring of x, thus getting an n-bit string z’.
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It then queries if 2 is a substring of z. Since |2/| = |x|, this is equivalent to checking if 2’ = z. If the
answer is “yes”, then the algorithm succeeded in identifying x and it outputs parity(z’) = parity(z).
Otherwise, it samples a random bit and outputs it.

This algorithm succeeds when either it successfully identifies = (which happens with probability
ﬁ2_("_t)) or when it fails to identify x but correctly guesses the value of its parity, which happens

with probability %(1 — ﬁZ_("_t)). Thus the algorithm succeeds with probability at least % +
1 9—(n—t)—1 . _ 1
2 (n=)=1_ The upper bound follows by taking t = 2n + 1 — log =F

B Proof of Claim 7

The communication protocol that we use to construct our polynomials itself is based on a result by
[FRPU94] on algorithms in a noisy comparison model. To understand the protocol and to convert
it to the family of polynomials later we need to open up the protocol and state their result.

The following is implicit in [FRPU94]:

Claim 22. Consider the following problem. There is an unknown “key” in [n]. Given the ability
to ask questions of the type “is the unknown key greater than a?” for every a € [n] and get the
correct answer with probability at least % independently for each question, the algorithm’s goal is
to find the correct location in (0, n| for the key while minimizing the number of questions it asks.

Then there exists an algorithm that finds the correct location in (0,n] for the key by asking at
most clog n questions for some constant ¢ with probability at least %

The algorithm basically performs a binary search for the correct location of the key with slight
modifications. We are not going to present the algorithm in detail, but we are going to describe
what questions the algorithm asks along the way. For each interval (a,b] where b — a > 1, the
algorithm seeks answers to the following questions: “is the key > a?”, “is the key > b?” and
“is the key > “TH’?”, each correct with probability % independently from all other questions, and
the algorithm needs to be able to ask each potential question of each type clogn times for some
constant ¢. For each interval (a,a + 1] the algorithm seeks answers to the following questions: “is
the key > a?” and “is the key > a + 17”7, each correct with probability at least % independently
from all other questions, and the algorithm needs to be able to ask each potential question of each
type 2¢?log? n times. Note that if the range for the key position is (0,n] then questions “is the key
> 077 and “is the key > n?” can be omitted by the algorithm since it already knows the correct
answer to them.

The efficient communication protocol for the GT heavily relies on the algorithm above. In the
communication protocol, both Alice and Bob run the algorithm to find the most significant bit
where their inputs differ. Each time the algorithm asks “is the position of the most significant bit
where the inputs differ greater than a?” (or “is the key greater than a?”), Alice and Bob compute
the equality of the first a bits of their inputs to error % by computing a = 2 inner products of their
inputs with random strings from R™ where 7 = 10"~ %. See Figure 6 for an illustration. If their
inner products are the same then the answer to the algorithm is “no, the key is not greater than a”
and otherwise, it’s “yes, the key is greater than ¢”. And at the end of the protocol, Alice and Bob
check who has a greater value in the most significant bit discovered during the procedure. Now we
are ready to prove the claim.

Constructing the good base Ros,+. The construction is similar to the construction of Ros.
Let R have the following structure.
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Interval Questions T Structure of R™
O] Sisthekey > 37 120 I 0T0[0[0]0[0]0]0)
(0,n] s the key > zor 12002 IR o [oo]oJo]o]o0]0

“is the key > 277 17/40%/4 oJoJoJoJoJoJoJo]oJoo]o

o Cistheley > 37 1720 R 010 [0 [0 0[0]0[0
? [0[0]0]0]

“is the key > %"?” 13n/4gn/4

“is the key > 277 140>/ Rl o[ooJoJo]o]oJoJo]o[0]0]
“is the key > 277 17/80™/8  [EJ@J0J0]0][0]0J0]0]0]0J0J0]0]0]0]

R 00 [00]0]0]0]0]0]0]0]0]
IR 0 [0[0[0]0]0]0]0]
SRR 0 [0 [o[o]0]o]o]o]0]0]

RN 0000 0]0]0]0]
[0]0]0]0]
I, 0 [0 0] o]o]0]

Figure 6: The structure of random strings used in the communication protocol.

“is the key > 377 17/403n/4
(%a %] “is the key > %?” 1n/20n/2
“is the key > 3277 13n/85n/8

“is the key > %?” 1n/2qn/2
(%7 %Tn] “is the key > %Tn??v 13n/40n/4
“is the key > %”?” 15n/8)3n/8

“is the key > %"?” 13n/4gn/4
“is the key > %”?” 17n/8qn/8

7@ o Rln/Zon/Z
% (Rln/20n/2 % 7_\)/171/40%/4) % (Rln/20n/2 % 7_\)/1371/40n/4)

X ...
(n—4)/2
% <R120"_2 % Rllon—l % X <R12a0n—2a % R12a+20n—2a—2 % R12a+10n—2a—1) % Rln—zoz % Rln—101>
a=1
n—2
% ( X (Rllon—l % >< (Rlaon—a % R1a+10n—a—1) % Rln—101>>
2clogn a=1

See Figure 7 for an illustration. This R describes all the strings as the source of randomness
needed for the O(logn) communication protocol for GT, but each of the strings appears in the
structure only once instead of aclogn times. So, we need to duplicate this structure aclogn times
to properly simulate the protocol.

As in the proof of Claim 6, we are going to add two other steps to the structure. First, we
are going to have t individual “prepackaged” copies for the GT protocol. Let Ry = ... = R; =
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Interval T Structure of R™

(0.4 11110000 0[]0
11000000 0[o]o0
(4.9 11110000 0[0[0]0
11111100 0]0
(0.2 11000000 o[ofofJoJoJo
’ 10000000 olojoJoJolofoO
11000000 0[]0 0
(2,4 11110000 0
11100000 0 0
11110000 0]0 0
(4,6] 11111100 0
11111000 0 0

(0, 8] 11110000

010
0100

11111100 0
STl
{ B ofofofofoJof0] }
(0,1] 10000000 .. repeat 2clogn times
B ofofofofoJof0]
{ B ofofofofoJofo0] }
10000000 . repeat 2clogn times
. B[00 0[0[0[0]
{ B 0[o[0]of0]0] }
11000000 e repeat 2clogn times
B 0[o[0Jof0]0]

(7,8] 11111110{ } repeat 2clogn times

Figure 7: Structure of R. Blue cells with x represent indices where either a 0 or 1 could appear.



X aclog nf% Each of the copies has enough randomness and the right structure of that randomness
to simulate one full run of the GT protocol. Let R’ = X i€l R, which allows us to handle ¢ runs.
Secondly, we add a set of “basis” strings to the structure: B = {11} x {12} x ... {1,—1} x {1,} =
{10...0} x {010...0} x ... x {00...010} x {00...01}.
The final underlying structure of the oracle will be a Cartesian product of R" and B: Rosi+ =
BxR =Bx (Xje[t} R;). See Figure 8 for an illustration.
B Rl RQ Rt
calogn copies calogn copies calogn copies

OO = O OO
o= OO oo
= O O O oo

OO OO O
(=N ool L=
S oo~ OO

Figure 8: Structure of Ros4+. Each R; consists of calogn copies of R.

We also set the parameters to be a = 2,¢t = 250n1In2. Notice that this set Rosy4 is a good
base by construction and has size m < n + 3at(cnlogn + 2cnlog® n) = O(n®log®n).

Constructing the family of approximating polynomials. The construction will follow the
same outline as the construction of polynomials for Ros++. We construct a family of deterministic
algorithms that work well for every fixed pair of inputs ¢,z € {0,1}", and then construct a family of
algorithms that work for all inputs with high probability at the same time, and then finally explain
how to convert it to a family of approximating polynomials.

For all i € {0,1}",5 € [t],r € Ros4+ let B(.; (Y (r,x)) be the following deterministic algo-
rithm.

1. Simulate the algorithm from Claim 22.
2. Each time the algorithm asks “is the key > a?”:
3. Set 7 = 120" "%,

4. For the « indices v € [m] corresponding to n-bit strings drawn from R™ within the jth

copy R; that were not already used prior to this step:
5. Compute (i, r,) and compare it to (Y(r,x)), = (x,7y).

6. If for all v indices v the inner products are the same then reply “yes, the key > a”.

Otherwise, reply “no, the key < a”.

7. Let k be the output of the algorithm.
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8. Compare iy, = (i,1x) and (Y(r,z))r = (x, 1) = xk. If 5 <ij then accept. Otherwise, reject.

Notice that this algorithm emulates the O(log n) randomized communication protocol for GT com-
munication problem.

This algorithm computes GT;(x) with probability at least % for all j € [t]. That is, for all
Jj € [t] and for all i,z € {0,1}"

11
=12
This algorithm makes at most 3aclog n = 6¢clogn queries to the oracle Y(r, x). Let W (i, z,r, j) be
the indicator that the j-th package of random strings in r defines a set of “bad” random strings for
(i,x): W(i,z,r,j) = 1if and only if B, ; ;)(Y(r,x)) # GT;(z). We established that By, ; ;(V(r,z))
works well if given a random r < Ros++ for every j € [t] and the probability of this algorithm
outputting an incorrect answer is at most 75. So for all i,2 € {0,1}",j € [t]

Pr (B ;) (V(rx)) = GTi(x)] >

T’(—ROS++

1

Pr [W(i,z,r,j) =1] = Ereres,  [W(i,z,7,5)] < T3

T’(—ROS++

For all i € {0,1}",7 € Rost+ let A, ;)(Y(r,z)) be the following randomized algorithm:
e Choose j < [t] uniformly at random.
e Run B.; ;)(V(r,z)).

The number of queries that A, ;) makes to the oracle is the same as By, ; ;) which is 3aclogn =
6clogn. We fix a pair (i,x) and evaluate the following probability.

1 1
Pr Pr [B(; GT; — W(i,x,r —
r<Ros++ [JY—M[ i) 7 @] > 6] N—Ros++ %; ) 6
We established that E.. ., . [W(i,z,7,5)] < 1—12 and so by Hoeffding’s inequality,

ZW >1+1 < 2T < 9T
2 i,x,r,7) TR <e” .

7‘<—Ros++

By a union bound over all possible i,z € {0,1}",

1
Pr |3,z e{0,1}": = Zwmr] S < 92n9- T <9 o

T’(—ROS++ ] c [t

C»Jl’—‘

Therefore, we have proven that

1

[Apiy V(1 2))) # GTi(x)] >

1
Pr Ji,xz € {0,1}": Pr < =.
[ {0.1} j 6 3

r<Ros++ [t

The last step is to convert this family of query algorithms into a family of approximating
polynomials. Let g(,; denote the acceptance probability of A, ;) which is a polynomial of degree
at most 6¢clogn such that
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Pr Ji,x € {0,1}": !q(m)(y(r,x)) — GT,-(:U)! >

r<Ros++

which is exactly what we were looking for.
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