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The identification of light sources represents a task of utmost importance for the development of
multiple photonic technologies. Over the last decades, the identification of light sources as diverse as
sunlight, laser radiation and molecule fluorescence has relied on the collection of photon statistics or
the implementation of quantum state tomography. In general, this task requires an extensive num-
ber of measurements to unveil the characteristic statistical fluctuations and correlation properties of
light, particularly in the low-photon flux regime. In this article, we exploit the self-learning features
of artificial neural networks and naive Bayes classifier to dramatically reduce the number of mea-
surements required to discriminate thermal light from coherent light at the single-photon level. We
demonstrate robust light identification with tens of measurements at mean photon numbers below
one. Our work demonstrates an improvement in terms of the number of measurements of several
orders of magnitude with respect to conventional schemes for characterization of light sources. Our
work has important implications for multiple photonic technologies such as LIDAR and microscopy.

INTRODUCTION

The underlying statistical fluctuations of the electro-
magnetic field have been widely utilized to identify di-
verse sources of light [1, 2]. In this regard, the Mandel
parameter constitutes an important metric to character-
ize the excitation mode of the electromagnetic field and
consequently to classify light sources [3]. Similarly, the
degree of optical coherence has also been extensively uti-
lized to identify light sources [3-6]. Despite the funda-
mental importance of these quantities, they require large
amounts of data which impose practical limitations [6—

]. This problem has been partially alleviated by in-
corporating statistical methods, such as bootstrapping,
to predict unlikely events that are hard to measure ex-
perimentally [6, 8-10]. Unfortunately, the constraints of
these methods severely impact the realistic implemen-
tation of photonic technologies for metrology, imaging,
remote sensing and microscopy [10-15].

The potential of machine learning has motivated novel
families of technologies that exploit self-learning and self-
evolving features of artificial neural networks to solve a
large variety of problems in different branches of science
[16, 17]. Conversely, quantum mechanical systems have
provided new mechanisms to achieve quantum speedup in
machine learning [17, 18]. In the context of quantum op-
tics, there has been an enormous interest in utilizing ma-
chine learning to optimize quantum resources in optical
systems [19-21]. As a tool to characterize quantum sys-
tems, machine learning has been successfully employed to
reduce the number of measurements required to perform
quantum state discrimination, quantum separability and
quantum state tomography [22-24].

In this article, we demonstrate the potential of ma-

chine learning to perform discrimination of light sources
at extremely low-light levels. This is achieved by training
single artificial neurons with the statistical fluctuations
that characterize coherent and thermal states of light.
The self-learning features of artificial neurons enable the
dramatic reduction in the number of measurements and
the number of photons required to perform identifica-
tion of light sources. For the first time, our experimental
results demonstrate the possibility of using less than ten
measurements to identify light sources with mean photon
numbers below one. In addition, we demonstrate simi-
lar experimental results using the naive Bayes classifier,
which are outperformed by our single neuron approach.
Finally, we present a discussion on how a single artificial
neuron based on an ADAptive LINear Element (ADA-
LINE) model can dramatically reduce, by several orders
of magnitude, the number of measurements required to
discriminate signal photons from ambient photons. This
possibility has strong implications for realistic implemen-
tation of LIDAR, remote sensing and microscopy.

EXPERIMENTAL SETUP AND MODEL

As shown in Fig. 1 (a), we utilize a continuous-wave
(CW) laser beam that is divided by a 50:50 beam splitter.
The transmitted beam is focused onto a rotating ground
glass which is used to generate pseudo-thermal light with
super-Poissonian statistics. The beam emerging from the
ground glass is collimated using a lens and attenuated
by neutral-density (ND) filters to mean photon num-
bers below one. The attenuated beam is then coupled
into a single-mode fiber (SMF). The fiber directs pho-
tons to a superconducting nanowire single-photon detec-
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FIG. 1. (a) Schematic representation of the experimental setup. A laser beam is divided by a beam splitter (BS); the two
replicas of the beam are used to generate light with Poissonian (coherent) and super-Poissonian (thermal) statistics. The
thermal beam of light is generated by a rotating ground glass. Neutral density (ND) filters are utilized to attenuate light to
the single-photon level. Coherent and thermal light beams are measured by superconducting nanowire single-photon detectors
(SNSPDs). (b) Flow diagram of the ADALINE neuron used for demonstration of light source identification. Additional details

are discussed in the body of the article.

tor (SNSPD). The beam reflected by the beam splitter is
used as a source of coherent light. This beam, character-
ized by Poissonian statistics, is also attenuated, coupled
into a SMF and detected by a SNSPD. The brightness
of the coherent beam is matched to that of the pseudo-
thermal beam of light.

In order to perform photon counting from our SNSPDs,
we use the surjective photon counting method described
in ref. [25]. The TTL pulses produced by our SNSPDs
were detected and recorded by an oscilloscope. The data
was divided in time bins of 1 ps, which corresponds to
the coherence time of our CW laser. Voltage peaks above
70.5 V were considered as one photon event. The number
of photons (voltage peaks) in each time bin was counted
to retrieve photon statistics. These events were then used
for training and testing our ADALINE neuron and naive
Bayes classifier.

The probability of finding n photons in coherent light
is given by Peon(n) = e~ ™(n"/n!), where n denotes the
mean photon number of the beam. Furthermore, the
photon statistics of thermal light is given by P, (n) =
" /(n+1)"*1 Tt is worth noting that the photon statis-
tics of thermal light is characterized by random inten-
sity fluctuations with a variance greater than the mean
number of photons in the mode. For coherent light, the
maximum photon-number probability sits around 7. For
thermal light, the maximum is always at vacuum. How-
ever, when the mean photon number is low, the photon
number distribution for both kinds of light becomes sim-
ilar. Consequently, it becomes extremely difficult to dis-
criminate one source from the other. The conventional
approach to discriminate light sources makes use of his-
tograms generated through the collection of millions of
measurements [7, 9, 26, 27]. Unfortunately, this method

is not only time consuming, but also imposes practical
limitations.

In order to dramatically reduce the number of mea-
surements required to identify light sources, we make
use of an ADALINE neuron. ADALINE is a single neu-
ral network model based on a linear processing element,
proposed by Bernard Widrow [28], for binary classifica-
tion. In general, the neural networks undergo two stages:
training and test. In the training stage, ADALINE is ca-
pable of learning the correct outputs (named as output
labels or classes) from a set of inputs, so-called features,
by using a supervised learning algorithm. In the test
stage, this neuron produces the outputs of a set of inputs
that were not in the training data, taking as reference the
acquired experience in the training stage. Although we
tested architectures far more complex than a single neu-
ron for the identification of light sources, we found that a
simple ADALINE offers a perfect balance between accu-
racy and simplicity (for more details, see the Supplemen-
tary Information). The structure of the ADALINE model
is shown in Fig. 1(b). The neuron input features are de-
noted by P(n), which corresponds to the probability of
detecting n photons, in a single measurement event, for a
given light source, namely coherent or thermal. Further-
more, the parameters w; are the synaptic weights and b is
a bias term. In the training period, these parameters are
optimized through the learning rule by using the error
between the target output and neuron’s output as refer-
ence. For the binary classification (coherent or thermal),
the neuron’s output is fed into the identity activation
function, and subsequently to the threshold function.

To train the ADALINE, we make use of the so-
called delta learning rule [29], in combination with a
database of experimentally measured photon-number dis-
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FIG. 2. A set of histograms displaying theoretical and exper-
imental photon number probability distributions for coherent
and thermal light beams with different mean photon numbers.
Our experimental results are in excellent agreement with the-
ory. The photon number distributions illustrate the difficulty
in discriminating light sources at low-light levels even when
large sets of data are available.

tributions, considering different mean photon numbers:
n = 044, 0.53, 0.67, 0.77. The database for each
mean photon number was divided into subsets comprising
10, 20, ..., 150,160 data points. The ADALINE neurons
are thus prepared by using one thousand of those subsets,
where 70% are devoted to training and 30% to testing.
In all cases, the training was stopped after 50 epochs.
We have established the baseline performance for
our ADALINE neuron by using naive Bayes classi-
fier. This is a simple classifier based on Bayes’ the-
orem [31]. Throughout this article, we assume that
each measurement is independent. Moreover, we repre-
sent the measurement of the photon number sequence
as a vector x = (x1,...,xx). Then, the probability
of this sequence generated from coherent or thermal
light is given by p(Cj|z1, ..., zx), where C; could denote
either coherent or thermal light. Using Bayes’ theo-
rem, the conditional probability can be decomposed as
p(Cjlx) = p(C;)p(x|C;)/p(x). By using the chain rule
for conditional probability, we have p(Ckl|xi,...,zx) =
p(Cy) Hle p(x;|C;). Since our light source is either co-
herent or thermal, we assume p(C;) = 0.5. Thus, it
is easy to construct a naive Bayes classifier, where one
picks the hypothesis with the highest conditional proba-
bility p(C;|x). We used theoretically generated photon-
number probability distributions as the prior probability
p(z;|C;), and used the experimental data as the test data.

RESULTS

In Fig. 2, we compare the histograms for the the-
oretical and experimental photon number distributions
for different mean photon numbers 7 = 0.40, 0.53, 0.67
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FIG. 3. Probability distributions of coherent and thermal
light, for varying dataset sizes (10, 20, 50, 100, 10k). Data
used here is randomly selected from of the measurement pre-
sented in Fig. 2 (a).

and 0.77. The bar plots are generated by experimen-
tal data with one million measurements for each source;
the curves in each of the panels represent the expected
theoretical photon number distributions for the corre-
sponding mean photon numbers. Fig. 2 shows excellent
agreement between theory and experiment which demon-
strates the accuracy of our surjective photon counting
method. Furthermore, from Fig. 2 (a)-(d), we can also
observe the effect of the mean photon number on the
photon number probability distributions. As shown in
Fig. 2 (a), it is evident that millions of measurements
enable one to discriminate light sources. On the other
hand, Fig. 2 (d) shows a situation in which the source
mean-photon number is low. In this case, the discrimi-
nation of light sources becomes cumbersome, even with
millions of measurements. In order to illustrate the dif-
ficulty of using limited sets of data to discriminate light
sources at low mean photon numbers, we restrict the size
of our dataset to 10, 20, 50, 100 and 100000. As shown
in Fig. 3, the photon number distributions obtained with
limited number of measurements do not resemble those
in the histograms shown in Fig. 2 (a), for both coherent
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FIG. 4. Overall accuracy of light discrimination versus the
number of data points used in naive Bayes classifier. The
curves represent the accuracy of light discrimination for n =
0.40 (red line), i = 0.53 (blue line), 7 = 0.67 (green line)
and 2 = 0.77 (orange line). The error bars are generated by
dividing the data into ten subsets.

and thermal light beams.

In Fig. 4, we show the overall accuracy for light dis-
crimination using naive Bayes classifier. The accuracy
increases with the number of data points. For example,
when 7 = 0.40, the accuracy of discrimination increases
from approximately 72% to 88% as we increase the num-
ber of data points from 10 to 160. It is worth noting that
even with small increase in number of measurements, the
naive Bayes classifier starts to capture the characteristic
feature of different light sources, given by distinct se-
quences of photon number events. This is obvious since
larger sets of data contain more information pertaining to
the probability distribution. Furthermore, mean photon
number of the light field significantly changes the discrim-
ination accuracy profile. As the mean photon number
increases, the overall accuracy converges faster towards
100% as expected. This is due to the fact that the photon
number probability distributions become more distinct at
higher mean photon number.

The overall accuracy of light-source discrimination
with respect to the number of data points is shown in Fig.
5. Using only 10 data points, ADALINE leads to an aver-
age accuracy between 61%-65% for n = 0.40; whereas for
160 data points, the accuracy is greater than 90%. The
comparison of Fig. 4 and Fig. 5 reveals that ADALINE
and naive Bayes classifier exhibit similar accuracy levels.
However, ADALINE requires far less computational re-
sources than naive Bayes classifier. As one might expect,
in both cases, the accuracy increases with the number
of data points and mean photon numbers. Interestingly,
the convergence rate for naive Bayes is slightly higher
than that of ADALINE classifier. For low mean photon
numbers, such as n = 0.40, the improvement in accu-
racy scales linearly for naive Bayes classifier, as opposed
to almost logistic growth that has our ADALINE. This
implies that at low mean photon numbers ADALINEs
outperform naive Bayes classifier in the sense that the
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FIG. 5. Overall accuracy of light discrimination versus the
number of data points used in ADALINE. The curves rep-
resent the accuracy of light discrimination for 7 = 0.40 (red
line), 7 = 0.53 (blue line), 7 = 0.67 (green line) and 7 = 0.77
(orange line). The error bars represent the standard deviation
of the training stages.
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FIG. 6. Projection of the feature space on the plane (P(0),
P(1), P(2)) for different mean photon numbers: (a) 7 = 0.4,
(b) » =0.53, (c) 7 = 0.67, and (d) 7 = 0.77. The blue points
correspond to photon statistics of coherent light, whereas the
red stars describe photon statistics of thermal light. In all
cases the number of data points is fixed at M = 60.

former require much less computational resources than
the latter.

To understand why a single ADALINE neuron is
enough for light discrimination, we first realize that
ADALINE is a linear classifier; therefore the decision
surface is expressed by a seven-dimensional hyper-plane,
defined by the seven P(n) (with n =0,1,...,6) features.
Interestingly, one can find that the datasets at the space
of probability-distribution values are linearly separable.
This can be seen from Fig. 6, where we plot the projec-
tion of the feature space on a three-dimensional sub-space
defined by (P(0), P(1), P(2)) considering different mean
photon numbers 7 = 0.4,0.53,0.67 and 0.77. In all cases,
the number of data points is fixed at M = 60. Within
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FIG. 7. Projection of the feature space on the plane (P(0),
P(1), P(2)) for different number of data points: (a) M = 10,
(b) M =60, (c) M =160, and (d) M = 600. The blue points
correspond to photon statistics of coherent light, whereas the
red stars describe photon statistics of thermal light. In all
cases, the mean photon number is set to 7 = 0.77

this subspace, the datasets corresponding to the pho-
ton statistics of thermal (red stars) and coherent (blue
points) lights separate each other as 7 increases. This
effect is more evident when the number of data points is
increased, and the mean photon number remains fixed at
7 = 0.77 [see Fig. 7]. Evidently, the fact that both, ther-
mal and coherent light form two well linearly separated
classes makes ADALINE the optimum classifier for light
identification.

CONCLUSION

For more than twenty years, there has been an enor-
mous interest in reducing the number of photons and
measurements required to perform imaging, remote sens-
ing and metrology at extremely low-light levels [11, 32].
In this regard, photonic technologies operating at low-
photon levels utilize weak photon signals that make them
vulnerable against detection of environmental photons
emitted from natural sources of light. Indeed, this limi-
tation has made unfeasible the realistic implementation
of this family of technologies [6, 10, 12]. So far, this
vulnerability has been tackled through conventional ap-
proaches that rely on the measurement of coherence func-
tions, the implementation of thresholding and quantum
state tomography [6, 10, 12, 33]. Unfortunately, these ap-
proaches to characterize photon-fluctuations rely on the
acquisition of large number of measurements that impose
constraints on the identification of light sources. Here, for

the first time, we have demonstrated a smart protocol for
discrimination of light sources at mean photon numbers
below one. Our work demonstrates a dramatic improve-
ment of several orders of magnitude in both the number
of photons and measurements required to identify light
sources [6, 10, 12, 33]. Furthermore, our results indicate
that a single artificial neuron outperforms naive Bayes
classifier at low-light levels. Interestingly, this neuron
has simple analytical and computational properties that
enable low-complexity and low-cost implementations of
our technique. We are certain that our work has impor-
tant implications for multiple photonic technologies, such
as LIDAR and microscopy of biological materials.
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Supplementary material:
Identification of Light Sources using using Machine Learning

In this supplemental material, we evaluate two additional machine-learning algorithms, namely a one-dimensional
convolutional neural network (1D CNN) and a multilayer neural network (MNN). Despite both algorithms are effective
to identify light sources, they are analytically and computationally more sophisticated than the simple ADALINE
model, but their recognition rates do not present substantial differences. Figures 8(a) and 8(b) show the structure of
the 1D-CNN and MNN, respectively.

(a) (b)
1D Conv layers ®" ®°

Pooling “Flatten” -

Pooling
/ layer / layer layer
/ “A\ P(1)
207
AR
Fully Ié
/ connected layer P(6) T

1D Conv layer

\ Coherent

S ) o

Thermal

Photon number
sequence

Input Layer Hidden Layer Output Layer

FIG. 8. Schematic representations: (a) one-dimensional convolutional neural network and (b) multilayer neural network used
for demonstration of light source identication.

A convolutional neural network is a deep learning algorithm that extracts automatically relevant features of the
input [1]. Here, our one-dimensional convolutional neural network is composed by two 1D-convolutional layers that
extract the low and high-level features of the input. Outcomes from these two layers are subsequently fed into a convo-
lutional layer sandwiched between two max-pooling layers. The pooling layers downsample the input representation,
and therefore its dimensionality, leading to a computational simplification by removing redundant and unnecessary
information. The activation function, implemented in all layers, is the rectified linear unit function (ReLU). Finally,
a fully connected and a flattening layer precedes the output layer consisting of two softmax functions, whose outputs
are the probability distributions over labels.

On the other hand, the multilayer neural network belongs to a classical machine learning algorithm, where the
feature vector should be manually determined [2]. In our case, this vector is given by the probabilities of the photon
number distribution, P(n). As depicted in Fig. 8(b), the model corresponds to a two-layer feed-forward network:
the hidden layer contains ten sigmoid neurons and the output layer consists of a softmax function. To determine a
suitable neuron number in the hidden layer of the MNN, we trained different MNNs by changing the neuron number
in the hidden layer and followed the accuracy values for each net. Figs. 9(a) and 9(b) show the overall accuracy for
light discrimination versus the number of neurons in the hidden layer for different mean photon numbers, 7 = 0.4 and
0.77, respectively. Note that in both cases, the accuracy becomes lower as the number of neurons increases. This is
because many neurons lead to over-parameterization, causing poor generalization of the test-stage data. Additionally,
as the number of neurons increases, the training becomes computationally more intensive. All the MNNs were trained
by using the scaled conjugate gradient backpropagation method where the cross-entropy was employed as the cost
function. Since the output of sigmoid neurons is ranged in the interval [0,1], the cross-entropy function is ideal for
the classification task. The network training was stopped after 200 epochs.

1D-CNNs and MNNs were trained using the same training set described in the main manuscript. Despite that deep
neural network should be trained with a larger amount of data, we use 70% of the dataset for the training and the
rest for testing both networks. Note that the same procedure was used for the ADALINE model. Figures 10(a) and
10(b) show the overall light-discrimination accuracy for increasingly larger number of data points for (a) 1D-CNNs
and (b) MNNs. In both cases, the accuracy increases with the number of data points, because larger sets of data
contain more information about the probability distribution. Interestingly, the accuracy of 1D-CNNs for 7 = 0.67 and
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FIG. 9. Overall accuracy of light discrimination versus the number of neurons in the hidden layer of the MNN by considering
two different mean photon numbers: (a) 7 = 0.4 and (b) 7 = 0.77. The error bars represent the standard deviation of the

training stages.

n = 0.77 are almost the same; this indicates that in the low mean photon-number regime, the peak performance for
1D-CNN saturates much faster than the MNN classifier. As one might expect, this fast accuracy convergence carries
the cost of a much complex computation as compared to the one needed for the MNN classifier.
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FIG. 10. Overall accuracy of light discrimination versus the number of data points used in (a) 1D-CNN and (b) MNN. The
curves represent the accuracy of light discrimination for 7 = 0.40 (red line), 7 = 0.53 (blue line), 7 = 0.67 (green line) and
7 = 0.77 (orage line). The error bars represent the standard deviation of the training epochs for 1D-CNN and training stages

for MNN.
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