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Abstract

We introduce a commutator method with multiplier to prove aver-
aging lemmas, the regularizing effect for the velocity average of solu-
tions for kinetic equations. Our method requires only elementary tech-
niques in Fourier analysis and highlights a new range of assumptions
that are sufficient for the velocity average to be in L?([0, T, H. = 2). Our
result provides a direct proof (without interpolation) and improves the
regularizing result for the measure-valued solutions to scalar conser-
vation laws in space dimension one.

Keywords— velocity averaging lemma, kinetic transport equation, disper-
sion, singular integral, multiplier, scalar conservation law, measure-valued
solution.

1 Introduction

1.1 Brief overview for averaging lemmas

Our goal in this paper is to introduce a commutator method for the kinetic
transport equations in the following form:

Eatf + CL(’U) : vxf = <_Av>a/2.g> (1>
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where e > 0, @« > 0, a : R} — R"” and ¢ : R, x R} x R? — R are given
functions. ¢ is the macroscopic scale often introduced when a hydrodynamic
limit is considered. The nonlinear coefficient a(v) in our setting appears for
instance in the relativistic, quantum kinetic models [I7, 24] or the kinetic
formulation of scalar conservation laws [37].

We shall utilize a commutator method as a new approach to derive aver-
aging lemmas, which state that the velocity average p, of f in , defined
by

polt ) = / fta o) de e C,

has a better regularity than f and g in the x variable.

There is a vast literature of averaging lemmas and we only mention few of
them that are relatively closer to our discussion here. Averaging lemmas are
famous for getting the compactness for kinetic models, such as the Vlasov-
Maxwell system [12], the renormalized solutions [I3] and the hydrodynamic
limits for the Boltzmann equation [20], and the renormalized solutions to
the semiconductor Boltzmann-Poisson system [39]. Averaging lemmas also
contribute to the regularizing effect of solutions when kinetic formulations
exist. They were applied for this purpose to for instance the isentropic gas
dynamics [38], Ginzburg-Landau model [29], and scalar conservation laws
[31].

The classical averaging lemma in the L? framework was first introduced
independently by [I] and [22]. The derivation in [22] involves the decompo-
sition in the Fourier space according to the order of a(v) - £ and the singular
part |a(v) - §| < ¢ are controlled by the non-degeneracy conditions for all
¢ > 0. Combining with interpolation arguments, the averaging lemma was
later extended to the general LP spaces with 1 < p < oo by [6] and [15].
The optimal Besov result was then proved in [10] with wavelet decomposi-
tion. More recently, the regularity result for the L” spaces has been further
improved in the one-dimensional case, precisely from 117 to1l— % when p > 2
by [4] with the dispersive property of the kinetic transport operator.

The averaging lemmas under different assumptions on f and g were fur-
ther investigated. For example, in [46] the author considered f and g in the
same Besov space in x but can have different integrability in v. The results
for general mixed norm assumptions were obtained in [32] [33]. Their work
inspired the work in [3] to consider the case when f and g have less inte-
grability in x than v. Besides the explorations in the direction of general



conditions, averaging results for a larger class of operators in the form of
a(v) - V, — Vi . b(v)V, were acquired by [45], where several applications
for their results were presented. Especially, they improved the regularity of
solutions to scalar conservation laws with general non-degeneracy conditions.

The limiting L! case for classical averaging lemmas in general is not true
and a counterexample was given in [22]. However, the L' compactness can
be shown when assuming the equi-integrability condition in the v variable
[25] and this type of results has been extended to the transport equations in
more general forms in [5] and [27].

1.2 Commutator method with multipliers

We use a commutator method with multipliers to transform the dispersion
of transport operator in Fourier space into a gain of regularity in the x
variable. Let us introduce the commutator method in a general setting and
narrow down to our case shortly. Assume

0, f + Bf = g, (2)

where B is a skew-adjoint operator, ¢ < 1 and ¢ are given. For a time-
independent operator (), we consider

e@t/fQ_fdxdv:/[B,Q]ffdxvar/gQ_fdxvar/fQ_gda:dv

By the fundamental theorem of calculus, we have

T - _
Re/ [B,Q)] ffdxdvdt < sup +‘/9Qfdxdvdt‘
0

t=0,T

/fQ_fdxdv

+ ‘/f@dxdvdt‘. o

The idea is to find an operator () which is bounded in some LP spaces such
that the commutator [B, Q] of B and () is positive-definite and gains extra
derivatives. Hence by applying these conditions on , we get a desired
bound on f.

This method has been utilized for example for the local smoothing prop-
erty of the Schrodinger equations when B is taking to be of Schrodinger
type, when commutators appear naturally from some Hamilton vector field.



Frequently, it involves constructing a proper symbol such that the Poisson
bracket implies a spacetime bound on f by the Garding’s inequality; See for
example [§], [16], [34] and [43].

The operator B of our interest is the kinetic transport operator and () is
a bounded multiplier operator. That is, we consider

e0if +a(v) Vof =g, (4)

and

blackFe (Qf) = m(&, Q) Fec(f),

where m is a bounded function and F¢. is the Fourier transform in the x
and v variables, with the Fourier dual variables ¢ and ( respectively. The
subscripts indicate the target variables.

As m is bounded, there is a tempered distribution K(z,v) such that
Qf = K %4, f with F¢ ((K) = m. The commutator then can be written as

/[a(v) Vo, K5yl f f dx dv
— /(a(v) —a(w)) - Vo K(z —y,v —w)f(y,w)dy dwf(z,v) dz dv.

When a(v) = v, it is simply the quadratic form with the multiplier £ - V.m.
We shall take advantage of this simple formula and show that the velocity
average of f would gain regularity 1/2 in  when a(v) = v and g is in some
LP space.

The multiplier we select for this purpose is

S S
N N O ?

Notice that our multiplier corresponds to the inner product of Riesz trans-
form in x and the convolution with the gradient of Bessel potential of order
1 in v in physical space. Let us recall that the Riesz transform in dimension
n can be defined weakly as a convolution operator with

1 T

) s D

(6)



where I' is the gamma function. On the other hand, the Bessel potential G
of order S in dimension n is defined as follows:

Gh(z) = % /0 h exp(—|z|?/6 + §/4m)s A2 g5, (7)

With these notations, the corresponding kernel K in physical space for myg
is
KO - R : VUG?
From the results in Calderon-Zygmund theory (see for example [44]), the
convolution operator with K is bounded on LP spaces for all 1 < p <
00. Therefore, the right hand side of is bounded as long as f is in
L> ([0, T], L*(R™ x R")) and the dual space of g.
Moreover, by the Plancherel identity

Jlo Ve orsis s dvit = [ ¢ Voml P deaca
¢ 2
_ ! 6 :
o // (14 [¢?)1/2 N (1+[C[2)3/2 SN Fec ()7 dCdS di

€]
> [ [ e e NP A = 112, sy sy

For convenience, the conjugate index of p is denoted by p’ (1/p+1/p' = 1).
From the discussion above, we have shown:

Theorem 1. Let ¢ < 1. If f € L>([0,T], (L* N LP)(R? x R™)) solves
with a(v) = v for some g € L* ([0, T], L¥ (R? x R?)), where 1 < p < oo, then
for all ¢ € H¥*(RY), p, € L* ([0,T], H/*(R2)) . Moreover,

—||f|!L2H1/2 o S W igere, + 1 ez, + N9l -

Remark 1. By the Wigner transform, this result with p = 2 connects to the
local smoothing effect for the Schrodinger equation.

Remark 2. The exchange of reqularity between x and v variables is visible
through the calculation of commutator, which shares its similarity with the
hypoellipticity phenomenon. Roughly speaking, it is a phenomenon that the
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degenerate directions can be recovered by commutators and has been developed
systematically by Hormander [28] for the Fokker-Planck type of operators.
For the hypoellipticity of kinetic transport equations, we refer to [7)].

The difference here is that we introduced a homogeneous zero multiplier
mg as a buffer, which takes on the direct impact from the transport operator.
Therefore, the request for extra reqularity in v goes to the test function ¢,
unlike the results in [7], where an extra regularity in v was required for f.

Our setting is reminiscent of the multiplier method in [20], where the
moment and trace lemmas for kinetic equations were proven. Their results
were derived employing the dispersive nature of solutions acquired by inte-
grating along the characteristics in physical space. Here we utilize a similar
technique in the frequency space and hence instead of moments, it results in
a gain of regularity.

For the rest of this paper, we shall extend this commutator method to
(1) with the variable coefficient a(v) and the singular source term (—A,,)*/?g,
which introduce nontrivial technical issues. The advantage of this approach
is that the integrability of f and g can be of assistance to each other. This
feature distinguishes our results from the others in the previous literature and
provides averaging results for a new type of mixed integrability assumptions,
which fits nicely for the conditions that the kinetic formulation of scalar
conservation law naturally attains.

Let us conclude with a brief introduction on our ideas for the extension.
To include variable coefficients in this method, the idea is to make an ap-
propriate change of variables. Different change of variables gives distinct
conditions on a(v). Our main result will require conditions on the Jacobian
matrix of a~!. With the same procedure but a different change of variables,
we also recover the averaging results for the non-degeneracy condition when
v =1 (see Definition [12)) in the L? setting.

On the other hand, we make this approach compatible with the singular
term (—A,)*/%g with a regularization for . Our regularization contains a
rescaling in v variable and is inspired by the regularization process utilized
in [I4], where the scaling is a constant going to zero in a limiting process.
Differently, our scaling depends on the frequency |¢|. Because of this depen-
dence, the order « of singularity contributes to the resulting gain of regularity
of the velocity average pg.

This paper is organized as follows: We shall present our main theorems
in Section [2| and an example of application to scalar conservation laws in



Section [3] Finally, the proofs of theorems are provided in Section [4]

Our focus in this article is on dealing at a broad range of LP exponents
and fluxes a(v). We will further elaborate in a coming work by considering
non-homogeneous fluxes a(x, v) that also depend on the position. A summary
of our results on the commutator method can be found in [30], announced in
the Séminaire Laurent Schwartz on March 2020. Related interesting results,
derived by a different energy method approach, were later announced in [2].

2 Main results

2.1 Notation and functional framework

Our work relates to various topics in the classical Fourier theory, including
the Calderon-Zygmund operators, the Littlewood-Paley decomposition and
the Besov spaces. This subsection briefly recalls some result and definitions
that will be used in our later discussion.

The Littlewood-Paley decomposition of f is described as follows:
Consider a smooth radial bump function x(§) with support on % < |¢] <
2 such that xo(§) + D pen x(277¢) = 1 for all £ # 0. We denote P the

convolution operator defined by
Pof =2"%0(2%) « f,  Pof = o f,

where y and yq are the Fourier transforms of ¥ and W, respectively. Then we
have f =372, Pxf. Note that this is a decomposition in the Fourier space,
and each Py restricts f to the places where its frequency is of order 2*.

One way to define the Besov spaces is through the above decomposition.
The norm of the Besov spaces B; , of a function f is defined by

00 1/q
B;, = (Z z’fsqnpkfn%p) .

k=0

/]

There are many excellent references for these classical materials. We refer to
for instance [35] and [44].

2.2 Our main velocity averaging result

Our results make use of the dispersion of kinetic transport operator a(v) -V,
in the Fourier space. In order to have the dispersive property, one needs con-
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ditions on the variable coefficient a(v). Indeed, there is no gain of regularity
if a is only constant for example.
In this section, we assume a(v) € Lip(R"™) with the following conditions:

a(v) is one-to-one, and J,-1 € L7, (8)

where J,-1 = det(Da™'). quantifies the nonlinearity of a(v) with the
index v and allow us to control the integrability of functions after the change
of variables v — w = a(v). Note that will be utilized locally due to the
compactly supported test functions ¢.

Our proof involves a regularization of through various embeddings.
The interaction between the embedding and the singular term (—A,)*/2g
will affect the resulting gain of regularity. This process introduces several
exponents and indices in the formulas. To simplify the notation, we denote
max{C,0} by C; for all C' € R. The exponents and indices are collected
below:

11 2 —2
D2 q2 + D2 + 7_1

1 1 2
dgzn(——l———l) and d4:n<——1> : (10)
P @ + P1 +

We denote the ball with center xy and radius R by B(zg, R). Our result
is as follows:

Theorem 2. Given o« > 0, T'> 0 and 0 < ¢ < 1. Assume a € Lip(R")
satisfy (@ with v > 2. Let

fe L=([0,T], L™ (R}, L™ (Ry)))
solve for some
g € L([0,T], L" (R}, L®(R}))),

with 1 < pq, p2, 1, @2 < 00 and % > 0, then for any B(xzo, R) C R?

and ¢ € C°(R?), one has that

ps(t, ) € L*([0,T], H*(B(xo, R)))

8



a+l+(d1—d2) )

for all s < S =3 [(1—dy)0 — dy], where 0 = [min{M 1H , and d;
are defined in (@ and @ fori=1,2,3,4. Moreover,

||P<z>||2L2([0,T],Hs(3(x0,3))) SC(HJCH%W([O,T],LIH (R7, LP2(R™)))
+ ”9”%1([0,T},Lq1(R;,qu(Rr;))))7

where C' only depends on R, ||@||so |Ja-1||v, and Lip(a).

Remark 3. The restriction for v can be relaxed to v > 1, but the formula of
S for 1 < v < 2 would be changed to {[1—71(%—1—%—1)} 9—d4} with

2
gzmm{MJ

a+1+n(éfé>

Remark 4. The end point s = S can be included, when
f € LOO([Oa T]v 321,2(R:7 LP> (RZ))), g € Ll([Oa T]v B81,2(R;Lv Lq2(RZ))> and1 <
P1,P2,4q1,q2 < 0.

Remark 5. Because of the quadratic form in our method, our result bounds
the velocity average in L? and the upper bound always has the same weight
on the norms of f and g, independent of p1,pa, q1, Go.

When a(v) = v, one has that v = oco. In this case, we have a simpler
formula for Theorem [2 when f and ¢ are in the dual space of each other:

Corollary 1. Given a >0, T >0 and 0 < e < 1. If f belongs to the space
L> ([0, T], LP*(RZ, LP?(R?))) and solves with a(v) = v for some

g € L*([0,T], LPr(R?, LP2(R™))), where 2 < pi,ps < oo. Then for any
B(zg, R) C R? and ¢ € CX(RY), py € L*([0,T], H*(B(xo, R))) for all

1
5 < 3D

2.3 Comparison with previous literature

There is already a huge literature on averaging lemmas and under some
situations the existed results have been proven optimal. In order to provide
the readers an idea on when our method becomes effective and what are the
potential advantages of our method, a comparison of the regularity in x shall
be presented between our result and the theorems in [4], [15] and [46].



Because our resulting space has a different integrability from the previous
results except for the L? case, our method may render a more appropriate
tool under certain circumstances. We will point out the regions where one
theorem can imply the other through embedding or interpolation. The in-
terpolation is applied between the resulting space of py and the assumption
space of f, because p, has the same integrability in = as f when ¢ € C2°.

Notice that some theorems we quote here apply to more general conditions
in the original papers, but for simplicity we will only state the parts that
concern our discussion and restrict to the special case a(v) = v. We also
assume for convenience that f and g are compactly supported in both x and
v variables and ¢ € CZ° for this entire discussion.

Let us begin with the classical averaging result in [15], where the case
with different integrabilities for f and g and o > 0 are available.

Theorem 3. [15] If f € LP(R; x R} x R") and g € LY(R; x R? x R?) satisfy
1

with a(v) = v, then py € By (Ry X R}) where s = % (a + % + %)7 , D=
max {p,p'}, ¢ = min{q,q'}, and % =2+ %. Moreover, if p = q € (1,00),
po € B; (R, x RY) where t = max {p, 2} .

Under the assumption of Theorem [3| ([I5]), we start our discussions for
the cases when p = q.

e Whenp = q =2, both Theorem[3 and[3 ([15])reach the same regularity
1
H2(+a) |

o When p=q € (1,2), the result by Theorem@ ([15]) implies Theorem
2:
. 1
Indeed, Theorem 3| reaches B, 57 while Theorem [2| gives H* for all

s< 9= m [1 —n(2+ «) <123 — 1)] . By the embedding theorem for

1
T(+a P - . .
Besov spaces, Byy' ™ C H® with 5 = m +n (% — %), which is

larger than or equal to S for all n > 1.

o Whenp=q € (2,00), the result by Theorem@ has more differentiability
but less integrability than Theorem[3 ([15]). Furthermore, when n =1
and a = 0, Theorem[d implies Theorem [ ([15]):
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1
Theoremreaehes By Whiie Theorernlhas H 7w . By embedding
1 ~
H3*=e) C Bj,, where s = R < ) And 5 <

when n =1 and o = 0.

except

2(1+ (1+ )

Because of the quadratic form in our method, the rnore favorable type
of conditions for our method is when p > 2 and 1 + = 1. We therefore

compare Theorem |2 I and |3 I 15]) under this assurnptlon

e Under the assumption of Theorem@ ([15]) with 213 + é =1andp €
(2,00), the result by Theorem |4 has more differentiability but less in-
tegrability in x. Moreover, Theorem[d implies Theorem[3 ([15]), when
a = 0 by winterpolation or when 0 < a < % and 2 < p < # by
embedding:

Under these conditions Theorem I results in H20 (]R”) while The-
(1 — —) + 1. By the in-

p(1+&) n 1
orem (3 reaches Bt (R2), where 1 o +a)

terpolation between H 2(i+e) e and LP, we derive py € WP<1+0¢>27 Hence
when a = 0, Theorem [ implies Theorem [3

1 ~
On the other hand, by embedding H?*0+% C B;,, where 5 = m +
n (; — %) Even with the dimension dependence, there are regions that
embedding gives a better regularity than interpolation. For example
when n = 1, 5 > PTEE a2 when p < 2 4 —. We compare s with the
regularlty obtalned Sb Theorem [3] In general for each fixed n, 5 >

when p < 7, which is compatible with p > 2 only when

(1+a (1+a)
a < % Hence Theorern I implies Theorern I when 0 < a < % and
2<p<

(1+a)

We now compare our result with [4] and [46], where mixed norm con-
ditions in general dimensions were considered for the stationary transport
equation

v-V.f=g. (11)

We shall take € = 0, in order to compare our theorem with results for (11)).

Theorem 4. [{6] For 1 < p < 25, if f € B) (R, LP*(R})) and g €

n—1’

B) (R%, L% (Rg)_)l satisfy , then pibl € B}, (RY), where S = —n 4+ 1+
il -t anap=[tont]

p2 p n
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Theorem 5. [f] When 2 < p < 2, if f,g € LP(R?, L*(R?)) satisfy 7

3 =

then p, € WP(R™) for all s < S, where S = % when n = 1,2, and S =
% (3 — %) + 4(7{11) (% — 2) when n > 3.

For the comparison with Theorem | ([46]), we take ¢ = 2 for an easier
discussion with our H*® result. And since Theorem [ ([46]) allows general
integrabilities in v, let us consider ps = ¢4 > 2, which is the most favorable
condition for our method.

e Under the assumption of Theorem || (J46]) with n = 1, ¢ = 2 and
p2 = ¢4 > 2. Both Theorem @ and reach the same reqularity when
p = 2. Theorem ]| ([46]) implies Theorem |2 when p # 2:

Here Theorem {4 reaches 3;7/22’ while Theorem [2{ has H'/?" when p < 2
and H'/? when p > 2, as it was mentioned in Remark When p = 2,
the two results are exactly the same. When p < 2, Bp7/22 c HY" by

embedding and for p > 2, 3;7/22 C H'Y? locally.

Notice for n > 2, Theorem W] ([46]) no longer applies to p > 2. The
restriction p < 2 is not ideal for our method, but the comparison is still
interesting under these mixed norm conditions.

e Under the assumption of Theorem |4 ([40]) with n > 2 (which forces
1 <p<2),q=2andp = ¢y > 2, our result implies Theorem [{]

(H0)):
-1
In this case, Theorem W reaches B;’D{;_n with P = [l — n_—lg and
i
2

D n
our method reaches H as it was stated in Remark Our
result has more differentiability but less integrability. Moreover, by the

—n

n 3
embedding a5 Bi, .

-z

e Under the assumption of Theorem [5 ([{)]), the result by Theorem [g
has more integrability but less differentiability than Theorem @ ([4]).
Furthermore, Theorem [ ([4)]) implies Theorem [] when n = 1 and 2,
but the implication does not hold for n > 3:

Under this assumption, we again have H?® with s < % [1 — 2?" + n}

{1220

For both n = 1 and 2, W2/*P ¢ H? by Sobolev embedding.

12



P 4(n—1)

AsfornZS,Waf’pCijhereSZ%(?)—é)—i- ” <%—2 and
5=1(3-1) + 25 (2-2) +n (1) Hence Theorem ff ()

p p
cannot imply Theorem [2] in this case.

In addition to the new regularity results, our method also renders the
following properties:

e Our velocity averaging result is independent of small . This could
have applications to the compactness of solutions for rescaled kinetic
equations, which frequently appear in the discussions of hydrodynamic
limits. We refer to for example [21] and [42] for more details in this
direction.

e Our argument does not perform the Fourier transform in time variable.
Therefore, this method has possible extensions to time-discretized and
stochastic kinetic equations.

2.4 On the non-degeneracy conditions

The assumption (8) we imposed on a(v) is different from the classical condi-
tions in the previous literature, which are called the non-degeneracy condi-
tions:

Definition 1. a € Lip(R™",R™) satisfies the non-degeneracy condition
of order v € (0,1], if there exists ¢y > 0 such that for every compact set
DcCcR'ocecS"™andT €R

L'{veD:|a(v) -o—71| <a/2}) < cpa, (12)
where L™ is the Lebesgue measure in R™.

Our assumption is stronger than with v =1 — % Indeed, when
n = m, the assumption J,-1 € L] implies with v =1 — %, but the
other direction holds only when n = v = 1. When n > 1, only gives
restrictions on the pre-images of bands and when v < 1, one can construct a
Lipschitz function a, on R satisfying , and a sequence of measurable sets

O' such that '“'72)5‘3")' — 00 as ¢ — 00, which shows J,-1 ¢ L7. An example

of construction can be found in the Appendix.
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The dimension of interests is n < m for applications, especially when
n = 1 for scalar conservation laws. In an attempt to weaken our assumption
to the non-degeneracy conditions with general n < m cases, a different change
of variables v — X = a(v) - £/|¢| is performed and the traditional result in L?
setting for v = 1 is recovered with our method.

Theorem 6. Givenn < m, a > 0, T > 0 and 0 < ¢ < 1. Assume a €
Lip(R™,R™) satisfies the non-degeneracy condition (@ withv =1. Let f €
L>=([0,T], L*(R™ x R™)) solve (1]) for some g € L'([0,T], L*(R™ x R™?)), then
for any ¢ € C°(R™), one has py(t,z) € L? ([O, T], H 7@ (R;”)) and

Hp(bHi?([o,T},Hm(Rm) <C (”fH%OO([O,T},LQ(IR{glng)) + \|9H%1([0,T],L2(Rgzxmg))) )

where C' only depends on ¢y, ||¢|| and Lip(a).

This L? theorem recovers the same regularity H Tt in 7 as in [12] and
[15]. Even though this regularity result is not new, we provide a different
approach for proving this theorem. As we mentioned in the discussion after
Corollary [I} some interesting features which are also inherited by Theorem
[3 include:

e Due to the independence of ¢, our results have potential applications
to the hydrodynamic limit type of problems.

e The absence of the Fourier transform in time variable enables poten-
tial extensions of our method to time-discretized or stochastic kinetic
equations.

Remark 6. We were unable to obtain a LP statement as we did in Theorem
13, because our natural choice of multiplier for the alternate proof is not a
Calderon-Zygmund operator and we lose the bounds in general LP spaces. In
fact when a(v) = v, due to the change of variables X — v - /||, our natural
multiplier would be in the form of S (¢ - £/|€]), where S is a smooth function
and ¢ is the Fourier dual variable of v. Its inverse Fourier transform in
U‘.TJ_

\

dimension 2 is in the form of ﬁé’ <|T> , which 1s not bounded on L% .

Remark 7. Our proof is not directly applicable when v < 1. The non-
degeneracy condition in our proof is employed as a constraint on the deter-
minant of Jacobian matrices. We were not able to derive this connection for
v < 1 and so the same proof was not extended immediately.
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3 An example of future perspective: Reg-
ularizing effects for measure-valued solu-
tions to scalar conservation law

Among several potential applications of the new method for averaging lem-
mas presented here, this section focuses on the regularity of so-called measure-
valued solutions to conservation laws and in particular scalar conservation
laws.

Scalar conservation laws can be viewed as a simplified model of hyperbolic
systems which still captures some of the basic singular structure. They read

O+ 320 Oz Ai(u) =0,
{u(t =0,7) = up(z), )

where u(t,z) : RT x R® — R is the scalar unknown and A : R — R" is a
given flux.

The concept of measure-valued solutions to hyperbolic systems such as
had already been introduced in [II]. It has recently seen a significant
revival of interest as measure-valued solutions offer a more statistical descrip-
tion of the dynamics, see in particular I8, [19].

It is convenient to define measure-valued solution through the kinetic
formulation of , which also allows for a straightforward application of
our results. A scalar function u(t,z) € L>°(R,, L'(R™)) corresponds to a
measure-valued solution if there exists f(t,z,v) € L*(Ry x R™ x R) with
the constraint

u(t, x) :/f(t,:lr,v) dv, —-1<f<1, (14)
R
and if f solves the kinetic equation

Ouf +a(v) - Vof = dym, (15)

for a(v) = A’(v) and any finite Radon measure m. If u is obtained as a weak-
limit of a sequence u,, then f includes some information on the oscillations
of w, since it can directly be obtained from the Young measure p of the
sequence

f(t,a:,v):/o p(t, x,dz).
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The system — is hence immediately connected to the notion of kinetic
formulation for scalar conservation laws introduced in the seminal article [37]
and extended to isentropic gas dynamics in [38]. If u is an entropy solution
to , then one may define

1 if0<wv<u(t ),
flt,z,0)=¢ —1 ifu(t,z) <v <0, (16)

0 otherwise,

and f solves the kinetic equation with the additional constraint that
m > 0 which corresponds to the entropy inequality.

We refer for example to [41] for a thorough discussion of kinetic formula-
tions and their usefulness, such as recovering the uniqueness of the entropy
solution first obtained in [36].

The use of kinetic formulations has proved effective in particular in ob-
taining regularizing effects for scalar conservation laws. In one dimension and
for strictly convex flux, Oleinik [40] proved early that entropy solutions are
regularized in BV. In more than one dimension and for more complex flux
that are still non-linear in the sense of with v = 1, a first regularizing
effect had been obtained in [37] yielding u € W*? for all s < 1/3 and some
p>1.

Such regularizing effects actually do not use the sign of m and for this
reason hold for any weak solution to with bounded entropy production.
Among that wider class a counterexample constructed in [9] proves that
solutions cannot in general be expected to have more than 1/3 derivative.
The optimal space (B{j;;)z10c Was eventually derived in [23]. Whether a
higher regularity actually holds for entropy solutions (instead of only bounded
entropy production) remains a major open problem though.

It had been observed in [3I] that the regularizing effect for the kinetic
formulation relies in part in the regularity of the function f defined by :
For example such an f belongs to L*(R, x R", BV(R)). Unfortunately
such additional regularity is lost for measure-valued solutions since we only
have f € L' N L™ by (14).

A priori, one may hence only apply the standard averaging result from
[15] directly on ([15)). Assuming non-degeneracy of the flux, i.e. with
v = 1, we may apply Theorem [3| for any o > 1, g € L' and f € L? (the
optimal space for this theorem). One then deduces that if u corresponds to

16



a measure-valued solution with f compactly supported in v then u € B; 13,00

for any s < 1/5.
However we are then making no use of the additional integrability of f.
Instead one may also apply our new result Theorem [2| to with

Theorem 7. Let f satisfy and solve for some finite Radon measure
m and some a : R — R™ with for v = oco. Assume moreover that
ferL>(o, T, L*(R™ x R™)) and is compactly supported in velocity. Then
for any B(zy, R) CR", u € L*([0, T), H*(B(xo, R))) for any s < 1/4.

In dimension 1, Theorem [7] directly applies to measure-valued solutions
and improve the regularity from almost B;;;OO in z to almost H'/4. 1In
higher dimensions, as we observed, we cannot directly replace with .
Therefore a better understanding of the regularity of measure-valued solu-

tions is directly connected to further investigations of what should replace
ifa:Rm%R”Withm<n.

4 Proofs

4.1 Proof of Theorem 2
4.1.1 Main proof

The Fourier transform of f in z will be denoted by }” for simplification in
this proof as it appears quit often.
The proof contains mainly three steps as follows:
Step 1: Preparations: localization, reqularization and change of variables.
Without loss of generality, assume supp(f) C B(0,1) in z and fix ¢ € C°
with supp(¢) C B(0,1) in v.
Take another smooth function ®(v) with supp(®) C B(0,1). Consider

F@ - (jc¢> *y (I)rescale7
where

2mR0 P (12R0)  when 271 < |¢| < 28! for all k € N,

®(v) when [¢] <1 (17)

q)rescale (U> - {

and 6 > 0 will be decided later.
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Notice that
supp(£p) S supp(¢) + supp(Prescare) € B(0,2)
for all £ and Fj satisfies
€0 Fy +ia(v) - EFy = ((—A0)*"*§6) *u Prescate + Com, (18)

where

~

Com() =1 [ (alv) = aw) - £F(1)6(w) el — w) v
By change of variables v — w = a(v), can be rewritten as
e0ih +iw - Eh = k' + k2 (19)

in the sense of distribution, where h, k' and k? are defined as follows:

/ () (w) duw — / Fy(w)ib(a(v)) dv.
/kl (w)w(w) dw = / [((—Av)a/2§¢) *u cI)rescale} (U)w<a(v)) dU,

/k:2 dw—/Com (v)) dv.

Step 2: Commutator method with mg. Consider a smooth radial bump func-
tion x (&) with support on § < |£| < 2 such that Y, , x(27%¢) = 1 for all

¢ # 0. Denote xo(£) = > ez x(27%¢) and Y (&) = x(27%¢) for all k € N.

For each k € NU {O} , we apply the commutator method with the multi-
plier mq defined in (5 to h(w)xx(§). With the same structure as the proof
of Theorem []

/ / [ RO ) dndi e

< / [ € Vmate.n |fn<h>!2 \(€)dE dipdit

= [ (g -v i) dvraie) it (20)

+Re/ // |§| VG *y (k' + k) dw x5, (€) d€ dt

and

18



Recall that G is the Bessel potential of order 1 defined in (7). A, is estimated
as follows:

Lemma 1. Let 1 < py,p2,q1,q2 < 0o. For each fized k € NU {0} and any
small & > 0,

‘Ak‘ 5 2k(d4+9d2)|’f”i£1L€2 iitor
T
+ 2k(d3+9d1+a9+5) / HfHLgl P2 HgHLil L2 dt (21)
0

T
+ gk(da+8da+1-6) / Hf“iglﬁ? dt.
0

p2

d4:n<l—1> with { = =2

pP1 -1

_ 1 1 _ 2 1 1
where dy = n( +q—2—€)+ dg—n(p—2—€>+ d3_n(p1+q_1_1)+ and

2

To minimize the highest order of £ in (21)), we choose

) 1 —(d3 —dy)
- 1
f mm{a+1+(d1—d2)’ }

and the highest order becomes 1 — S, where S = 0(1 — dy) — dy.
Divide the whole inequality with 2805429 e attain

g ) [
//O /|]:77(h)| dedtxk(f)dﬁ

T T
S29 I ot + [ Wil ot [ 1 e ]
0 0
)

for all k € NU {0} .

Notice that the additional 2° is added in case any of the pair (p;, q;) =
(1,00) or (00, 1), 7 = 1,2, and the additional logarithm growth appears from
the weak boundedness of Calderon-Zygmund operators.

Sum over all k € NU {0} and we obtain

/OT // [€1°h(v)G5 (v — w)h(w) dw dv dg dt

~ ||f||200(0T] LPILPQ) + ||g||L1<[0T quLq2>

19



with s < S = (1 — dy) mm{% 1} —d,.

Step 3: Derive result back to f.

The last step is to translate the quadratic form of h back to a norm of
velocity average of f.

By the change of variables again,

//’/Fg ol el dedr //‘/
< / // € R ()G (0 — w)h(w) duw dv dE dt

S |’fH2°°([O,TLL£1L£2) + Hg“il([o,T],LilLZ?)’

(23)

for all ¢ € H3/? and s < S.
By the assumptions that ¢ and ® are compactly supported in v, we show
that

Lemma 2. There exists © € H3? such that

/OT/ ‘/ﬂbdv | sracdars /oT/ ‘/F‘)(“W(a(v))dv :

With (23] @ and the Poincaré inequality, we attain

Fdedt.  (24)

de)HLQ ([0,7], HS/Q( B(0,1))) ™~ Hf”200<[OT] LPILPZ) + ”g”Ll(OT] quLq2)

for all s < S, which concludes our proof.
O

Remark 8. Note that m(&,() to be homogeneous zero in ( is essential for
the commutator to be positive-definite after interacting with the transport
operator. In fact, if consider m(&, () = % . W with 6> 1,

el [+ 1) - I - <P
A+ PP

When ¢ is parallel to & and || is large, £ - Vem becomes negative and our
argument does not work.

f-VCm:

Remark 9. Our regularization recollects the regularization process in [17)].
Here the interaction between ®j¢-o and (—A,)%g shows explicitly the ex-
change of reqularity between x and v.
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4.1.2 Proof of Lemma [1]
Our estimation of A; will use the following proposition:

Lemma 3. Let a € Lip(R"™). If J,-1 € L7, the change of variables is bounded
from LP to LW Precisely, if [{(w)y(w)dw = [ L(v)y(a(v))do,

1l Loy S AL o

Proof of Lemma [3] By the Holder’s inequality,

1y
[t do = [ s >dwanalum(/ |¢<w>|ﬁ’v’dw) |

Hence

||€||L(P/"//)/ = sup
il =1

[ i) | - o [ropaw)a

< sup [ Lf|zel[e(a(v)]]

1] pryr =1

< | ar o lIZ ]

]

We shall estimate Ay term by term for the case when p; > ¢;, v > 2 and
d; > 0 foralli =1,2 and j = 1,2,3,4. All the results for the other cases
can be derived by the same calculations and hence are omitted here.

e For the first term: By the Cauchy-Schwarz inequality and that R-V,G}
is a Calderon-Zygmund operator:

K (é—, VG, h) o e (€) €8 )

< |17 (hxw(€)IIZz, 1o -

Denote the inverse Fourier transform F,'(x) in ¢ of x by S. For
notation simplification, we further denote the rescaled functions Sj :=
2"k S (22F) and @y, 9 := 2"*P(v2k%). By Lemma ,

175 (Pxe(€)llzz,, S 1Sk *a f %o ool 260
L2L (v=2)

< 2GR0 32) £ e
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Hence

/ / P (é—‘ VG h) duw X (€)dE] =T

< )W) e, e

| Fll 3o 2120 -

e For the second term:

/OT //h (%-VG‘? o k;l) dw i (€)dE dt

T
< [log 2*| [1og 2V /0 1Sk % £ 40 Brgll g

(v—db)

LillLv
125979y, % g Ky ((—A)2®)1gll  wae-n dt,

L Lv('vfrm)

T
—2
< an(pll-}-qll—1)+k0n(plz+;2—:’/l>+ko¢0+k6/ ||f||L§1L$2 ||9HL§1L32 dt

for any § > 0. In fact, it is only necessary to have ‘log 2’“‘ when ¢; =1

and ‘log 2’“9} when % = 1, due to the weak boundedness of R and
VG? respectively.

e For the last term:

/OT /T/h (%-VG? o k2) dw i (€)dE dt

N / ISk *2 f %o Proll  20-1)
0

20,07%
| Sk %2 Com %, Prp|l  20-1) dt.

L%LU(’Y_2)

Because ® is compactly supported, ®¢(v — w) forces |[v — w| < 274,
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As a is Lipschitz, we have |a(v) — a(w)] < 27%. So

Dpg(v —w) dw )
L%LU(’Y*”
N 2k_k0”|f*x (VeS| %o [Prpll]  20-1)
L2L,7"

< 22 ) G ) 0 gy

Therefore,

/OT //h (%-VG’; o k2> dw v, (€)dE dt

_ T
< zkn(;—1)+ken(zfz—3f)+k(1—9)/ ||f||%£1L52 dt.
0

Combining all estimates,

1A 7o o =0

T
1,1 1,1 =2
+ 2’“”(m+q11)+’“"”<m+qz31)%&9%6/ 11 s 22 gl Lo oo dit
0

|Ak| S, 2kn<%71)+k9n<%7%)
T
! 2’“"(,311)%9”(;23_?)%(19)/0 £ 11301 o2 dt.

4.1.3 Proof of Lemma 2

Choose two smooth functions ¢» and ¢ such that 1(a(v)) = 1 and ¢(v) = 1 on
v € B(0,3). ¢ serves as an auxiliary function and can replace ¢ (a(v)) since
both their values are 1 on the support of ¢. Recall that ¢ is the compact
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function used for localization in v. Then

IvIES
_ /0 / / Fy(0)d(v) dv

_ / / / Fe(F ) Q) Fe(Drescare) (OFc ()(€) dC

= /0 ' / / (f0)(Prescale %o ©) dv 2

|€]° d€ dt.
Because 1) = 1 on B(0,3) and supp(®) C B(0, 1),

2

|17 dg di

2

|17 de dt

(rescate o D) (1) — / 20 (12 ) (0 — w) du

= /2”k9<b(w2k9) dw = ||®|,r for all £ and |v| < 1.
Therefore,

/ /’/FG ) dv |5| dg dt = ||<1>||L1/ /‘/fgbdv

4.2 Proof of Theorem

This proof is essentially the same as Theorem [2] but with a different change
of Varlable After the Step 1, instead of v w=a(v), we make v — \ =
a(v) - o €| for each fixed £. Parallel to , we have

|17 dE d.

]

e0ih + iME|h = k' + K2 (26)

in the sense of distribution, where h, k' and k2 are defined as follows:

/ Fy(v)y (a(v) é‘) dv = / BO)E(A) dA.

/ ') Y(N) dh = / [(—A0)*"2§¢) >y Prescate] (V)1 (a(v) : é—|) dv,
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and

/ ROV dA = / Com ()i (a(v) . é—‘) dv.

Owning to the non-degeneracy condition with v = 1, this change of vari-
ables preserves LP norms:

Proposition 1. Let a be Lipschitz and satisfy (@ withv =1 and ¢ : R —
R. Then for allc € S™ ! and 1 < p < o0,

lo(a) - o)l < @19y,
and hence if [ L(v)y (a(v) - o) dv = [£7(X)p(X) dA,
1670 e S 1L e

Proof of Proposition (1 When p = oo, the result is straightforward. For
1 <p< oo, (12) with v = 1 implies that for any interval I,

m({v € B(0,1) : a(v) -0 € I}) < com(I).

By the standard approximation from intervals to measurable sets, we have
that for any measurable set A,

m({v € B(0,1) : a(v) -0 € A}) < com(A).
Therefore,

dy(aw)o)(s) =m({v € B :a(v)-o € {\:|[p(\)| > s}})
< com({A 1 [P(N)] > s}) = cody(s)

and hence

[e'e) pd 1/p
Iota(e) ooz = ([ [t 73] )
/
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By the duality of L spaces,

17|z = sup /Ww d)\’ = sup L(v)Y (a(v) - o) dv
ol =1 =1
A A
< sup |[Lfgz [l (alv) - o)l]
1ol

1
<" . ﬁup LD eglllly = e IL ] ox,

where the first inequality is by the Holder’s inequality and the second by
(27)). This concludes our proof for Proposition
O

Let us come back to the proof of Theorem [6] by considering

// 6AG1 A — a)h(a) dadA.

The similar procedures as the Step 2 lead us to

/T // E]Y@HDR(N)GE(N — a)h(a) dad) dE dt < co.
0

We can then conclude the proof of Theorem [6] from here by following the
computation in the Step 3.

[
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Appendix: Example for the non-degeneracy
condition

We say a(v) € Lip(R) satisfies with v € (0,1] on intervals if

|[{v:a(v) e I}| < C|I]”, for all intervals I, (28)
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And a(v) satisfies the non-degeneracy condition on open sets with v € (0, 1]:
[ {v:a(v) € O} < C|OJ", for all open set O. (29)

Here we give an example to show cannot imply with the same v
when v = 1/2. In fact the construction can be adapted to produce examples
for all v < 1. Notice and are equivalent when v = 1.

Define a : [0, ] — [0, >0 55] C R as follows:

on [0,1] = Dy, a(v) = a;(v) =1— (1 —v)?

on {1, 1+ %] =Dy, a(v)=asy(v)=1+ %al((v - 1)3)

97 81

1142
ety 11
3 I+3tg

Figure 1: graph of a(v)

The general formula is

n—2 1 n—2 1
n—1
o ;3_2 e ((“_._05)3 )

n—2 n—1
1 1
— — :il)n.
on [ L Bz]




We shall prove that a satisfies condition with v = 1/2; but it fails
(29) with the same v.

Proposition 2. There exists C' > 0 such that for any interval I,
™ (1)] = [{v: a(v) € I}| < ClIJV2. (30)

Proof. Consider an interval [ = [Z?:_ol 5 — D2, Z:‘:ol 5 — p1] = [c, d] inside
some a(D,,), where 0 < p; < p2 < zzr. So |I| = pa—p1. Denote the pre-image

of ¢ and d by vy and v; respectively. Then we have for each k =1, 2,

n—2 1 n—2 1 n—1 1
i T 1((%—4 §)3n 1>:Zﬁ_pk-

=0

We therefore have

la™ (Dl = VP2 = V1 < V2 =1 = 1],

If I = [c,d C a(Ui2, D;), separate I into three sub-intervals: I = I; U
I, U I, where I} = |c, St o], I = [Z?ilo’l 5, D 2 = and Iy =
[Sor272 L d] . The above case applies to I; and Iy, so |a~}(I})| < |I]'/?
and o' (I3)| < |I3|'/2.

For I, we have

o
And
mo—2 2 ma—mg—1 2
o (L) = (231) - iom [1_(1) ]
9 n; 1\t el
= 13m [ ‘2(5) *(5) ]
= 2|1
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So
o (L)] < 22| L',

Notice that this inequality is still true when msy goes to infinity, so there
are no issues near the right end point.
Combining the three inequalities we get

3 3 3 1/2
0= Y <23 6 () -
i=1 i=1 i=1
]
Proposition 3. There exists a sequence of set O™ such that
‘a—l(—@m” — 00  asm — 00
RREE :
Proof. Let
o =ur,I,,
where [, = [Z;:ol ﬁ — ﬁ, Z?:_ol %} forall 1 <n < m.
So .
|I,| = 30mT) forall 1 <n <m,
and 1
la™N(I,)| = |I,|"/* = o= forall 1 <n <m.
Therefore,
a (O™ TmoT
’|O151’1/2)’: 3 1/2:\/E—>oo as m — 00.
(o)
]
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