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ABSTRACT

Many sampling strategies commonly used in molecular dynamics, such as umbrella sampling and alchemical free energy methods, involve
sampling frommultiple states. TheMultistate Bennett Acceptance Ratio (MBAR) formalism is a widely used way of recombining the resulting
data. However, the error of the MBAR estimator is not well-understood: previous error analyses of MBAR assumed independent samples. In
this work, we derive a central limit theorem for MBAR estimates in the presence of correlated data, further justifying the use of MBAR in
practical applications. Moreover, our central limit theorem yields an estimate of the error that can be decomposed into contributions from
the individual Markov chains used to sample the states. This gives additional insight into how sampling in each state affects the overall error.
We demonstrate our error estimator on an umbrella sampling calculation of the free energy of isomerization of the alanine dipeptide and
an alchemical calculation of the hydration free energy of methane. Our numerical results demonstrate that the time required for the Markov
chain to decorrelate in individual states can contribute considerably to the total MBAR error, highlighting the importance of accurately
addressing the effect of sample correlation.
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I. INTRODUCTION

Molecular dynamics simulations provide a means to com-
pute key quantities in statistical mechanics, typically in the form
of ensemble averages of certain observables. In principle, it is pos-
sible to estimate ensemble averages by running a long, unbiased
simulation of a system and averaging over the resulting trajectory.
However, in practice, this can be inefficient. To estimate many
ensemble averages, the simulation must explore multiple, well-
separated regions of a system’s configuration space. For instance,
estimates of the free energy difference between two states are
notoriously slow to converge.1,2

A common strategy for addressing this problem is to sample
from multiple states. The resulting data are then combined with
appropriate weights. This approach is the basis of multiple simula-
tion strategies, such as umbrella sampling, parallel tempering, and
alchemical free energy simulation. Umbrella sampling ensures that a
broad range of molecular conformations is seen by running a series
of independent simulations, each biased to sample a different region
of a physical system’s phase space.3,4 Parallel tempering simulates

several replicas of a system with the same Hamiltonian but at differ-
ent temperatures to allow the system to cross energetic barriers.5,6

Alchemical free energy calculations of molecular systems estimate
the free energy difference between two molecular states by inter-
polating between their Hamiltonians.7±9 In all of these cases, data
sampled from multiple states must be combined to estimate the
averages of interest.

A popular algorithm for performing the reweighting is the
Multistate Bennett Acceptance Ratio (MBAR). Popularized in
Ref. 10, the algorithm has been independently derived in multi-
ple contexts11,12 and is closely related to the weighted histogram
method (WHAM).13,14 For statistically independent samples, MBAR
combines the data across multiple states in a statistically optimal
manner. Although molecular dynamics simulations are correlated,
MBAR nevertheless achieves good results in practice. However, solv-
ing for the MBAR estimate involves solving a nonlinear fixed point
problem, which complicates error analysis. Previous attempts to
construct error estimates have explicitly assumed that samples are
statistically independent.10,15 Again, we stress that this is typically
not true for molecular dynamics data.
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In this paper, we build on Refs. 16 and 17 to derive a for-
mal expression for the asymptotic variance of the MBAR estimator
that explicitly accounts for correlation in sampled data. As such, it
helps theoretically justify the use of MBAR in practical situations.
Our work also leads to an asymptotic error estimator that can be
decomposed into error contributions from individual states. This
can potentially give practitioners insight into how sampling in indi-
vidual states affects global error and may lead to adaptive sampling
strategies to accelerate convergence. As such, it helps theoretically
justify the use of MBAR in practical situations. Our work also
leads to an asymptotic error estimator that can be decomposed into
error contributions from individual states. This can potentially give
practitioners insight into how sampling in individual states affects
error and may lead to adaptive sampling strategies to accelerate
convergence.

II. BACKGROUND ON MONTE CARLO
AND ASYMPTOTIC ERROR

Many fundamental quantities in statistical mechanics take the
form of high-dimensional integrals. Physical theories often require
estimating averages over a physical system’s Boltzmann distribution,

⟨g⟩ ≙ ∫ g(x)e−H(x)/kBTdx
∫ e−H(x)/kBTdx

, (1)

where H is the system’s Hamiltonian and x is its configuration in
R

n. Alternatively, they may require estimates of the free energy
difference between two regions of phase space,

ΔGA→B ≙ −kBT log ∫ 𝟙B(x)e−H(x)/kBTdx
∫ 𝟙A(x)e−H(x)/kBTdx , (2)

≙ −kBT log
⟨𝟙B⟩⟨𝟙A⟩ , (3)

where 𝟙D(x) is 1 if the configuration x is in a region labeled D and
0 otherwise. Similar equations are used to estimate free energy sur-
faces. Letting σ be a function that maps a configuration to the value
of a collective variable, the free energy surface along the collective
variable obeys

G(s) ≙ −kBT log∫ δ(s − σ(x))e−H(x)/kBTdx + C, (4)

where C is an unknown constant. In practice, the free energy at each
value of s is approximated by the free energy of a small histogram
bin centered at s. If all histogram bins used are of the same size, we
can approximate

G(s) ≈ −kBT log∫ 𝟙S(x)e−H(x)/kBT + C′, (5)

where we have defined S to be the set of configurations that map to
the histogram bin centered at s in collective variable space.

Alternatively, rather than estimating free energy differences
between conformations, we may wish to estimate the free energy
difference between two Hamiltonians, which is given by

ΔGα→β ≙ −kBT log ∫ e−Hβ(x)/kBTdx

∫ e−Hα(x)/kBTdx
. (6)

For most systems, these integrals are too complex to be evaluated
analytically, and the dimension of x is too high to use quadrature.
Instead, they are typically treated by Monte Carlo methods.

A. Markov chain Monte Carlo

Assume that we are given a probability distribution with an
unnormalized density q over the Lebesgue measure on R

n. We
can then write the average of a function g : Rn

→ R over this
distribution as

⟨g⟩ ≙ ∫ g(x)q(x)dx
c

, c ≙ ∫ q(x)dx. (7)

Particular choices of g allow us to rewrite key quantities in statisti-
cal mechanics as such ensemble averages. For instance, in statistical
mechanics, q is typically the Boltzmann factor,

q(x) ≙ e−H(x)/kBT , (8)

and substituting into our expression for an average recovers (1).
The free energy difference between regions of phase space in (3)
is merely the ratio between two averages. Similarly, to estimate the
free energy difference between two Hamiltonians, we can set q to
exp (−Hα/kBT) and rewrite (6) as

e
−ΔGα→β/kBT

≙ ⟨e−(Hβ(x)−Hα(x))/kBT⟩. (9)

Monte Carlo methods approximate ensemble averages by
drawing a sequence of N samples {Xt} from the probability distri-
bution and averaging over them. If the sampling procedure is chosen
appropriately, we expect sample averages to converge to the true
(ensemble) average over the distribution associated with q,

Åg ≙
1

N

N−1

∑
t=0

g(Xt) a.s.
ÐÐ→ ⟨g⟩. (10)

Here, a.s. denotes almost sure convergence, a strong form of proba-
bilistic convergence (specifically, the probability of Åg not converging
to ⟨g⟩ is zero). If the samples are statistically independent, we say
that our samples are independent and identically distributed (IID),
and (10) is guaranteed to hold by the Law of Large Numbers.2 How-
ever, in practice, it is often impossible to generate IID samples, and
we must instead generate samples by running a Markov chain that
has q as the density associated with its stationary distribution: a prac-
tice known as Markov chain Monte Carlo (MCMC). Then, (10) still
holds if the Markov chain is ergodic.2

B. Asymptotic variance of Monte Carlo estimates

While (10) guarantees that the error goes to zero as the number
of samples increases, it says nothing about how quickly this happens.
A common method to quantify how the sampling error decreases
as the sample size increases is to use a central limit theorem (CLT):
a theorem showing that a sequence of random variables converges
to a known normal distribution.2 Specifically, assume that we wish
to evaluate the ensemble average of several functions, each denoted
gi. Concatenating our sample means and ensemble averages into
vectors that we denote by Åg and ⟨g⟩, respectively, we can often show
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that the error between the two converges to a multivariate normal
(Gaussian) distribution when appropriately scaled

√
N(Åg − ⟨g⟩) d

Ð→ N(0,Σ). (11)

Here, N denotes a normal (Gaussian) random variable with mean
vector μ and covariance matrix Σ, known as the asymptotic

covariance. The symbol
d
Ð→ denotes convergence in distribution

(a weaker form of probabilistic convergence than almost sure con-
vergence). For IID samples, (11) holds for all functions with finite
variance, and Σij is simply the covariance between gi and g j over the

distribution associated with q. If samples are instead gathered from
a Markov chain Xt , proving a CLT requires more technical condi-
tions on the nature of the Markov Chain and g.18±21 However, for
most commonly used Markov chains and most reasonable applica-
tions, we can expect (11) to hold. In this case, if the Markov chain
is time-homogeneous (i.e., the rule for updating the Markov chain is
the same at all times) and stationary (i.e., at each time the Markov
chain has the same distribution), and has the distribution associated
with q as its ergodic distribution, the asymptotic covariance matrix
is given by

Σi j ≙ cov{gi(Xt), g j(Xt)}
+ 2

∞

∑
k=1

cov{gi(Xt), g j(Xt+k)}. (12)

The CLT and the asymptotic covariance help diagnose the error
and convergence of a Markov chain Monte Carlo simulation. For
example, under mild technical conditions (specifically geometric
ergodicity and bounded g), Σii/N is asymptotic to var{Ågi}.21 Con-
sequently, we can treat

√
Σii/N as a rough estimate for the error

associated with using Ågi to estimate ⟨gi⟩. The sampling efficiency
of the Markov chain relative to IID sampling from the distribution
associated with q can be quantified by the autocorrelation time,

τgi ≙
Σii

var{gi} . (13)

Since var{gi}/N is the variance for IID sampling, we can interpret
the autocorrelation time as how many MCMC samples are required
to achieve the same reduction in error as a single IID sample.2,8

III. THE MBAR EQUATIONS

In Sec. II B, we considered sampling from a single distribu-
tion. However, we may often have samples collected from multiple,
related probability distributions. For concreteness, assume we have
L probability distributions, each with an unnormalized probability
density qi. We refer to these distributions as states. The ensemble
average of an observable g(x) in each state is given by

⟨g⟩i ≙ ∫ g(x)qi(x)dx
ci

, ci ≙ ∫ qi(x)dx. (14)

Here, the constant ci is the normalization constant for qi. If qi is
a Boltzmann distribution, then ci is the corresponding partition
function. Next, we assume that for every state, we have collected a

set of N i samples, denoted {Xi
t}. We can then approximate ⟨g⟩i by

the sample average,

⟨g⟩i ≈ 1

Ni

Ni

∑
t=1

g(Xi
t).

However, if the states have shared regions with high probability,
we can construct improved estimates of (14) by using data from all
states, not just state i. This is the aim of the MBAR algorithm.10,11

Following the treatment in Refs. 22 and 23, we observe that we can
view the union of the samples from the states as samples from a
combined distribution known as amixture distribution. Let

N ≙
L

∑
i=1

Ni

be the total sample size, and let

κi ≙
Ni

N

be the fraction of sample points collected in state i. To simplify the
presentation, we assume that κi is constant and always greater than
zero (a version of our main result that relaxes this assumption
is given in the supplementary material). We define the mixture
distribution to be

πmix(x) ≙ L

∑
i=1

κiqi(x)/ci. (15)

We can then write

⟨g⟩i ≙ ∫ g(x)qi(x)/ci
πmix(x) πmix(x)dx

≙ ∫ g(x)qi(x)/ci
∑L

k=1 κkqk(x)/ck
L

∑
j=1

κ jq j(x)/c jdx, (16)

≙

L

∑
j=1

κ j⟨ gqi/ci
∑L

k=1 κkqk/ck ⟩ j. (17)

In general, the normalization constants for the states are not known.
We, therefore, rewrite (17) in terms of the states’ relative free ener-
gies, which we denote by fi. We arbitrarily set the average free energy
to be zero, so

1

L

L

∑
i=1

fi ≙ 0, (18)

and, therefore, the free energies are defined by

fi ≙ − log ci +
1

L

L

∑
j=1

log c j. (19)

Here and subsequently, we give the free energy as a ratio to kBT so
that it is dimensionless.

Dividing both the numerator and denominator of (17) by
exp (−(1/L)∑L

i=1 fi), after a few manipulations we have

⟨g⟩i ≙ L

∑
j=1

κ j⟨ gqie
fi

∑L
k=1 κkqke

fk
⟩
j

. (20)
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This equation can be used to estimate ⟨g⟩i if we are given an estimate

of the free energies, Åf . Replacing each ensemble average on the right-
hand side with a Monte Carlo estimate, we have

Ågi ≙
L

∑
j=1

κ j

N j

N j

∑
t=1

g(X j
t )qi(X j

t )e Åf i

∑L
k=1 κkqk(X j

t )e Åf k

. (21)

This estimator uses data from every state, not just state i. Moreover,
we can also use (20) to estimate the free energies themselves. Since
the ensemble average of the function g(x) ≙ 1 is always 1,

1 ≙
L

∑
j=1

κ j⟨ qie
fi

∑L
k=1 κkqke

fk
⟩
j

, (22)

⇒ fi ≙ − log
L

∑
j=1

κ j⟨ qi

∑L
k=1 κkqke

fk
⟩
j

. (23)

One can thus estimate the free energy by defining Åf to be the
solution to

Åf i ≙ − log
⎛
⎝

L

∑
j=1

κ j

N j

N j

∑
t=1

qi(X j
t )

∑L
k=1 κkqk(X j

t )e Åf k

⎞
⎠. (24)

Not only can this equation be solved using standard root-
finding methods, such as Newton±Raphson and gradient descent,10

but also there exist algorithms for solving it through a suc-
cession of estimation tasks.16,17,24 Equations (21) and (24) are
the MBAR estimates of the ensemble average and the free
energies, respectively.10 With sufficient overlap between the
samples from different states, (23) uniquely determines f .
Specifically, if the matrix Mi j ≙ ⟨qi⟩j is irreducible, then by

Theorem 1 in Ref. 22 or Proposition 1.1 in Ref. 25, the
fi is uniquely specified by (23). An analogous statement holds for
Åf . When M is irreducible, Theorem 1.1 in Ref. 25 implies that
Eq. (24) almost surely has a unique solution Åf when the total sam-
ple size N is sufficiently large. Moreover, the estimates of the free
energies and the ensemble averages converge to fi and ⟨g⟩i as

N increases. To be precise, Åf i
a.s.
ÐÐ→ fi and Ågi

a.s.
ÐÐ→ ⟨g⟩i by Theorem 1

in Ref. 22.

A. Estimating chemical quantities using MBAR

Specificmanipulations of state free energies and ensemble aver-
ages allow us to reconstruct quantities of interest in a broad range of
contexts. Here, we discuss the analysis of data from three common
algorithms: parallel tempering, alchemical free energy simulations,
and umbrella sampling.

In parallel tempering, we seek to estimate ensemble averages for
a system with unnormalized probability density,

e
−H(x)/kBT. (25)

However, this density may be highly multimodal, making the prob-
ability distribution difficult to sample. Parallel tempering addresses
this by running multiple copies of the system with the same Hamil-
tonian but different temperatures.5,6 We write their distributions as

qi(x) ≙ e−H(x)/kB(T+δTi). (26)

One copy, here arbitrarily chosen to have index 1, is set to be at
the original temperature (i.e., δT1 ≙ 0), and all other copies have

δTi ≠ 0. The copies then periodically swap molecular configurations
via Monte Carlo moves on the space of copies. In principle, one can
estimate averages over (25) using only configurations drawn from
q1. However, using the MBAR estimator (21) allows one to use data
from all states, giving a more accurate answer.

In alchemical free energy simulations, we seek to estimate the
free energy difference between two Hamiltonians as in (6).7±9 How-
ever, rather than sampling only the state with Hα, we sample a set of
L states that interpolate between Hα and Hβ. A simple choice would
be to set

− kBT log qi ≙ Hα + λ( i − 1
L − 1

)(Hβ −Hα), (27)

where λ : ∥0, 1∥→ ∥0, 1∥ is a monotonic function such that λ(0) ≙ 0
and λ(1) ≙ 1, although, in practice, more complex interpolations are
often required.26±28 With this set of state definitions, the (unitless)
free energy difference between the two Hamiltonians is simply the
difference between the free energies of the first and last states,

− log ∫ e−Hβ(x)/kBTdx

∫ e−Hα(x)/kBTdx
≙ fL − f1. (28)

Consequently, we can solve (24) and estimate the free energy
difference as Åf L − Åf 1.

In umbrella sampling,3,4 we construct a collection of states,

qi(x) ≙ ψi(x)q(x), (29)

bymultiplying an unnormalized density qwith a biasing function ψi.
We then aim to estimate averages of observables over the distribu-
tion associated with q, such as those in (1) and (3). To estimate these
averages using MBAR by steps similar to those used to derive (17),
we write

∫ g(x)q(x)dx
∫ q(x)dx ≙

∫ g(x)q(x)(πmix(x)/πmix(x))dx
∫ q(x)(πmix(x)/πmix(x))dx

≙

∫ g(x)q(x)∑ j κ jq j(x)e
f j

∑l κlql(x)e
fl
dx

∫ q(x) ∑k κkqk(x)e
fk

∑m κmqm(x)e
fm
dx

≙

∑L
j=1 κ j⟨gq/(∑L

l=1 κlqle
fl)⟩

j

∑L
k=1 κk⟨q/(∑L

m=1 κmqme
fm)⟩

k

≙

∑L
j=1 κ j⟨g/(∑L

l=1 κlψle
fl)⟩

j

∑L
k=1 κk⟨1/(∑L

m=1 κmψme
fm)⟩

k

. (30)

We can also use umbrella sampling to estimate the difference in free
energy between two states. Comparing to (3) and setting q to be the
Boltzmann factor, we have

ΔGA→B ≙ −kBT log ∫ 𝟙B(x)e−H(x)/kBTdx
∫ 𝟙A(x)e−H(x)/kBTdx

≙ −kBT log
∑L

j=1 κ j⟨𝟙Bq/(∑L
l=1 κlqle

fl)⟩
j

∑L
k=1 κk⟨𝟙Aq/(∑L

m=1 κmqme
fm)⟩

k

≙ −kBT log
∑L

j=1 κ j⟨𝟙B/(∑L
l=1 κlψle

fl)⟩
j

∑L
k=1 κk⟨𝟙A/(∑L

m=1 κmψme
fm)⟩

k

, (31)

by steps similar to those for (30).
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These examples show howMBAR can be used to construct esti-
mates from algorithms that collect data in multiple states. When
IID samples are collected from each state, then MBAR gives the
maximum likelihood estimate11 and achieves the best possible
mean-squared error in the large-sample limit.10 As such, MBAR is
commonly treated as an algorithm that operates on statistically inde-
pendent samples, and practitioners often subsample trajectories to
attempt to construct a dataset of statistically independent samples.
However, evaluating the criteria used for independence typically
involves estimating one or more autocorrelation times, a notori-
ously difficult statistical task.29 Moreover, subsampling runs the risk
of discarding too much data, decreasing the statistical power of the
method. Consequently, once the burn-in period has been removed
from the trajectory, we believe it preferable to apply the MBAR esti-
mator without subsampling the data. While MBAR does not give
the maximum likelihood estimate for correlated samples, it is still a
consistent estimator as shown in Ref. 22. Moreover, applyingMBAR
to correlated data has been observed to give good results in prac-
tice.22 Indeed, in Sec. V, we find that applying the MBAR estimator
without subsampling the data performs as well or better than with
subsampling.

IV. ASYMPTOTIC VARIANCE FOR THE MBAR
EQUATIONS

However, quantifying the uncertainty in MBAR estimates has
proved challenging. In previous work, Kong et al. constructed an
estimator for the asymptotic covariance using the Cramer±Rao
lower bound of the variance.15 When samples are uncorrelated,
MBAR achieves this lower bound, but, when samples are corre-
lated, this estimator underestimates the asymptotic error. Moreover,
while it gives an estimate of the total error, it does not give imme-
diate insight into how sampling in the individual states affects
the overall error. This makes it difficult to determine how one
should tune simulation hyperparameters and/or allocate additional
simulations.

In this work, we pursue an alternate approach by constructing
a CLT for MBAR estimates. As discussed in Sec. II B, CLTs are able
to capture the effect of the dynamics on sampling error. Moreover,
previous work on closely related algorithms for recombining data
from multiple states16,17 showed that CLTs can be used to connect
the sampling of individual states to the total error of the estimate.
Our CLT gives detailed insight into how the parameters of multistate
simulations contribute to the total error.

The approach taken in this section builds upon the work of
Geyer.22 Our contribution is essential to fill in missing details and
to correct errors. Most importantly, the formula for the asymptotic
variance of observable averages Åg is not correct in Ref. 22.

Our discussion has two parts. In the first part, we note that all
of the estimates described in Sec. III are functions of estimated state
free energies and ensemble averages. Consequently, we show that a
CLT holds for these quantities. In the second part, we show that this
CLT can then be extended to error estimates for arbitrary functions
of ensemble averages.

A. CLTs for the raw output of MBAR

MBAR estimates of observables require calculating the values
of Åf as well as one or more empirical averages of the form,

Åω ≙
L

∑
j=1

κ j

N j

N j

∑
t=1

w(X j
t )

∑L
k=1 κkqk(X j

t )e Åf k

, (32)

for some function w : Rn
→ R. For instance, in (21), we set

w ≙ qig and subsequently multiply by e
Åf i . The presence of Åf in

(30) means that errors in estimated state free energies can prop-
agate to averages of observables. Consequently, we must consider
the asymptotic covariance of the free energies and our observables
jointly.

To do so, we rewrite (24) and (32) as a single root finding
problem. We concatenate the vector of estimated free energies and
empirical averages into a single vector,

Åv ≙ (Åf 1, . . . , Åf L, Åω1, . . . , ÅωM). (33)

Under the assumptions discussed in Sec. II, we expect Åv to converge
to

v ≙ ( f1, . . . , fL,ω1, . . . ,ωM), (34)

where we have defined

ωi ≙

L

∑
j=1

κ j⟨ wi

∑L
k=1 κkqke

fk
⟩
j

. (35)

Concatenating the free energies and empirical averages together
allows us to derive a CLT for both the free energies and empiri-
cal averages with a single proof. Rearranging (24) and (32), we see
that the vector Åv is the root of the function ÅF : RL+M

→ R
L+M , where

if i ≤ L,

ÅFi(y) ≙ κi − L

∑
j=1

κ j
1

N j

N j

∑
t=1

κiqi(X j
t )eyi

∑L
k=1 κkqk(X j

t )eyk , (36)

and if i > L,

ÅFi(y) ≙ yi − L

∑
j=1

κ j
1

N j

N j

∑
t=1

wi−L(X j
t )

∑L
k=1 κkqk(X j

t )eyk . (37)

We remind the reader that the first L entries in Åv correspond to the
MBAR estimates of the L states’ relative free energies and that sub-
sequent entries of Åv correspond to estimates of ensemble averages.
Writing the MBAR estimates as the roots of ÅF suggests a strategy
for proving a CLT. For any fixed y, each element in ÅF(y) is a sum of
sample averages over our states. It is, therefore, reasonable to assume
the existence of a CLT for each of the sample averages. If we can then
convert a CLT for each average into a CLT for the roots of ÅF, then we
have proven a CLT for MBAR estimates. Indeed, this is precisely the
strategy we pursue. A full proof of the CLT is given in Sec. I of the
supplementary material. Here, we introduce the key quantities and
state our results.

We first discuss the asymptotic covariance structure of each of
the averages in (36) and (37). For convenience, we define

ξi(x, y) ≙ κiqi(x)eyi
∑L

k=1 κkqk(x)eyk (38)

for i ≤ L and

ξi(x, y) ≙ wi−L(x)
∑L

k=1 κkqk(x)eyk (39)
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for i > L. We can then write ÅFi(y) using a κj-weighted sum of sample
averages of the form

Åξ
j
i (y) ≙ 1

N j

N j

∑
t=1

ξi(X j
t , y).

In the limit as N →∞, Åξ
j
i (y) converges to ⟨ξi(⋅, y)⟩ j and ÅF

converges to

Fi(y) ≙ κi − L

∑
j=1

κ j⟨ξi(⋅, yi)⟩ j (40)

for i ≤ L, and to

Fi(y) ≙ yi − L

∑
j=1

κ j⟨ξi(⋅, yi)⟩ j. (41)

for i > L.
We assume that a central limit theorem holds for the sample

averages Åξ
j
i (y). This assumption is likely to hold in practice: One

could use, for example, the results in Chapter 17 of Ref. 30 to verify
our CLT assumption (42). See Ref. 2 for a more detailed discussion
of the CLT in the context of molecular dynamics.

To phrase our assumption precisely, we assume that for any
fixed y,

√
N(Åξ(y) − ⟨ξ(⋅, y)⟩) d

Ð→ N(0,Ξ(y)). (42)

Here, we have written all our sample averages as a single vector,

Åξ(y) ≙ (Åξ11(y), . . . , Åξ1L+M(y), Åξ21(y), . . . , ÅξLL+M(y)).
The vector Åξ has L × (L +M) elements: the first L +M elements cor-
respond to all of the sample averages required by MBAR that are
estimated in the first state, the second L +M elements correspond to
all of the sample averages that are estimated in the second state, and
so forth. The covariance matrix Ξ(y) can be written in block form as

(43)

Here, we have written the covariance matrix using a block struc-

ture consisting of L2 blocks. Each block Ξlm is the covariance matrix
between the averages in state l and those in statem and is thus a real
matrix of size (L +M) × (L +M).

Given a fixed value of y, the matrix Ξ gives us the asymptotic
covariance of ÅF. We now convert this into an expression for the
asymptotic covariance of the roots of ÅF.

Theorem 4.1. Assume that when y ≙ v, the central limit

theorem in (42) holds. Let A ∈ R(L+M)×(L+M) be the matrix with
entries,

A jl ≙

L

∑
m=1

L

∑
n=1

κmκn Ξ
mn
jl (v). (44)

Under some technical assumptions (given in Sec. I of the
supplementary material),

√
N(Åv − v) d

Ð→ N(0, ΓAΓT), (45)

where Γ ∈ R(L+M)×(L+M) is a matrix that can be expressed in block
form as

Γ ≙

⎡⎢⎢⎢⎢⎢⎣
H

#
0

βH#
I

⎤⎥⎥⎥⎥⎥⎦
, (46)

where I is the L × L identity matrix and the matrices H ∈ RM×M and
β ∈ RL×M are given by

Hi j ≙ κi(δi j − ⟨ κ jq j(x)e f j
∑k κkqk(x)e fk ⟩i),

βi j ≙ κ j⟨ wi

∑k κkqk(x)/zk ⟩ j ,
and H# is the group inverse of H.

In (45), we have used the group inverse, a type of matrix pseu-
doinverse. A numerical recipe for estimating the group inverse can
be found in Ref. 31.

A proof of 4.1 is given in the supplementary material; here, we
give the result and a quick informal sketch of the proof. The core
concept is that, since both Åv and ÅF(v) converge to v and F(v) ≙ 0
with an increasing number of samples, with enough samples, we
only need to consider small deviations from v and F(v). In this case,
we can employ a Taylor expansion of F around v and truncate to
obtain a linear relationship between their deviations (the matrix Γ).
Consequently, for small deviations, Åv converges to a linear function
of a Gaussian random variable. We can, therefore, scale the asymp-
totic covariance matrix of ÅF(v) by Γ to get the asymptotic covariance
of Åv.

For many applications, the asymptotic variance in (45) can be
further simplified by observing that the structure ofΞ(y) depends on
precisely how the states are sampled. We are interested primarily in

two particular cases: (1) TheX
j
t are independentMarkov chains, and

the sample fractions κj may differ but do not vary with N. (2) The

sample fractions κj ≙ 1/L are equal, and (X1
t , . . . ,X

L
t ) is a Markov

process. The first case covers umbrella sampling or alchemical calcu-
lations performed without replica exchange. The second case covers
parallel tempering and replica-exchange umbrella sampling.

In the first case, since the processes sampling the different
states are independent, all off-diagonal blocks of Ξ(y) are zero. The
diagonal blocks can be expressed as

Ξ
ll
i j(y) ≙ 1

κl
(cov{ξi(Xl

t , y), ξ j(Xl
t , y)}

+ 2
∞

∑
k=1

cov{ξi(Xl
t , y), ξ j(Xl

t+k, y)}), (47)

where, here, we assume that the process Xl
t is stationary as in (12).

The factor of 1/κl arises since in (42), we scale by
√
N ≙
√
Nl/κl

instead of
√
Nl.
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In the second case, the processes sampling the states are cor-
related, so off-diagonal blocks may be nonzero. In this case, we
have

Ξ
lm
i j (y) ≙ L(cov{ξi(Xl

t , y), ξ j(Xm
t , y)}

× 2
∞

∑
k=1

cov{ξi(Xl
t , y), ξ j(Xm

t+k, y)}), (48)

where, here, we assume that the joint process (X1
t , . . . ,X

L
t ) is sta-

tionary. The factor of L arises since in (42), we scale by
√
N ≙
√
LNl

instead of
√
Nl.

B. CLTs and the delta method

For most applications, practitioners are not interested in the
values of Åv directly but instead wish to evaluate nonlinear combina-
tions of these terms. To construct a CLT for these combinations, we
employ the Delta method.

Lemma 4.2 (The Delta method; Proposition 6.2 in Bilodeau and
Brenner32). Let θN be a sequence of random variables taking values

in R
d. Assume that a central limit theorem holds for θN with mean

μ ∈ Rd and an asymptotic covariance matrix Σ ∈ Rd×d, i.e.,

√
N(θN − μ) D

Ð→ N(0,Σ). (49)

Let Φ : Rd
→ R be a function that is differentiable at μ. We then have

the central limit theorem,

√
N(Φ(θN) −Φ(μ)) D

Ð→ N(0,∇Φ(μ)TΣ∇Φ(μ)), (50)

for the sequence of random variables Φ(θN).
If we have a CLT for a certain variable, we can use the Delta

method to derive a CLT for any differentiable function of that
variable. For our particular case, we set μ and θN to be v and Åv,
respectively, and set Φ to be the function taking v to our quantity
of interest. For instance, to construct a CLT for an estimate of the
free energy between two alchemical states ΔGα→β, as defined in (28),
we set Φ(y) ≙ yL − y1, and∇Φ(μ) is given by

∇Φ(μ) ≙ (−1, 0, . . . , 0, 1, 0, . . . )T. (51)

Here, the non-zero entries correspond to the first and Lth elements
in the vector. These are the only entries in μ that contribute to the
free energy and correspond to states α and β, respectively. We then
substitute into (50) to get the asymptotic variance of our estimate
of ΔGα→β. Similarly, for the ensemble average in (30), we set
wL+1 ≙ gq and wL+2 ≙ q, and (30) is recovered by setting
Φ(y) ≙ yL+1/yL+2. Then, ∇Φ(μ) is zero apart from the (L + 1)th
and (L + 2)th entries, which are given by

∇Φ(μ)L+1 ≙ 1/ωL+2,

∇Φ(μ)L+2 ≙ −ωL+1/ω2
L+2,

(52)

respectively. As a final example, we consider the construction
of error estimates of free energy differences estimated using
umbrella sampling. We set wL+1 ≙ 𝟙Aq and wL+2 ≙ 𝟙Bq, and

Φ(μ) ≙ −log(wL+2) + log(wL+1). Then, ∇Φ(μ) is again zero apart
from the (L + 1)th and (L + 2)th entries, which are

∇Φ(μ)L+1 ≙ −1/ωL+1,

∇Φ(μ)L+2 ≙ 1/ωL+2.
(53)

Consequently, we can combine Lemma 4.2 with Theorem 4.1
to have a CLT for MBAR estimates.

Theorem 4.3. Let 𝒢 be an observable whose MBAR estimate
Å𝒢 is constructed by applying a function Φ : RL+M

→ R to the vector Åv
and assume that Φ is differentiable at v. The estimate Å𝒢 then obeys

√
N( Å𝒢−𝒢) D

Ð→ N(0,𝒜), (54)

where the asymptotic covariance matrix𝒜 is given by

𝒜≙ ∇Φ
T(v)ΓAΓT∇Φ(v). (55)

Proof. The proof follows immediately by applying 4.2 to
Theorem 4.1. ◻

C. Computationally estimating
the asymptotic variance

In principle, one could directly estimate asymptotic variances
for observables by individually estimating each of the matrices
and vectors in (54). However, directly evaluating A would require
first populating the covariance matrix Ξ, which would, in turn,
require evaluating as many as L2(L +M)2 correlation functions.
Consequently, we provide simplified formulas for evaluating the
asymptotic variance of observables in the specific case where sam-
pling is performed independently in every state. In Sec. II of the
supplementary material, we give analogous formulas for schemes,
such as parallel tempering and replica exchange umbrella sampling
that sample all states jointly using a single Markov chain.

If each state is sampled independently, then Ξ
lm is zero for

l ≠ m, eliminating one of the sums in (44). In Sec. II of the
supplementarymaterial, we show that bymoving the remaining sum
to the outside and bringing the remaining terms inside the expecta-
tion, we can rewrite each term in the integrated covariance matrix in
(54) as

𝒜i j ≙

L

∑
k=1

cov{χi(Xk
t ), χ j(Xk

t )}
+

L

∑
k=1

2
∞

∑
τ=1

cov{χi(Xk
t ), χ j(Xk

t+τ)}, (56)

where

χ j(x) ≙ L+M

∑
i=1

√
κiξi(x, v)(ΓT∇Φ)

i j
(v). (57)

To construct an estimate of the asymptotic variance, we first replace
ν in (57) with the MBAR estimate Åν from sampled data and then
estimate the integrated autocovariance of the resulting trajectory. In
this work, we employ the ACOR algorithm to estimate the integrated
autocovariance.33 Moreover, since each summand in (56) depends
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only on the sampling in state i, we can interpret the integrated auto-
covariance of χi as accounting for how much state i contributes
to the total error. A Python code implementing this algorithm for
estimating asymptotic error can be found in the EMUS repository.34

V. APPLICATION OF THE ERROR ESTIMATOR

We demonstrate our error estimator on two test cases: an
alchemical free energy calculation and an umbrella sampling
calculation.

A. Alchemical calculation of the free energy
of solvating methane in water

The solvation free energy of methane can be determined via
an alchemical simulation process in which the interaction between
methane and surrounding water molecules is introduced gradually.
We interpolate between the two states using (27), setting Hα (the
Hamiltonian of the first state) to theHamiltonianwhere themethane
molecule and the water do not interact, and Hβ (the Hamiltonian of
the second state) to the Hamiltonian where they interact fully. We
then estimate the free energy difference between the two states using
(28) and estimate the asymptotic variance as described in Sec. IV C.

We performed 20 independent alchemical simulations at 298 K
using GROMACS version 2019.4,35 the OPLS-AA force field,36 and
the TIP3P water model.37 A total of 21 equidistant λ values from 0 to
1 (endpoints included) were chosen. Each state was equilibrated at
constant volume and then at a constant pressure of 1 bar for 100 ps
using the Parinello±Rahman barostat with a time constant of 1 ps.
The state was then further sampled at constant pressure for 1 ns to
generate 1000 data points. The P-LINCS algorithm was used to con-
strain bonds to hydrogen atoms.38,39 In all simulations, a stochastic
Langevin dynamics integrator with a time step of 2 fs and a time con-
stant of 1 ps was used to maintain a constant temperature of 300 K.
In Fig. 1, we plot the cumulative free energy change between states
as well as the free energy difference between successive states.

The total asymptotic standard deviation in the solvation free
energy is estimated to be 0.0221 ± 0.0007 kcal/mol using (56) with
∇Φ given by (51). This is close to the standard deviation over all 20
replicate simulations, which we estimate to be 0.0250 kcal/mol.

Often, practitioners subsample the trajectory into a collection
of uncorrelated samples. This runs the risk of introducing additional
error to an MBAR estimate: if the subsampling frequency is chosen
to be too large, useful data may be discarded. However, subsam-
pling has the advantage that it reduces the dataset’s size. Moreover,
it allows error estimates to be constructed using the asymptotic error
estimator from Refs. 10 and 15, which requires statistically indepen-
dent samples in each state. When subsampling is performed well,
this error estimator gives results of comparable quality to the estima-
tor presented in this work. For example, subsampling each trajectory
with a period equal to the autocorrelation time of the state’s potential
energy divided by kBT, the error estimator given in Refs. 10 and 15
gives an asymptotic standard deviation of 0.0212 ± 0.0006 kcal/mol.
We note, however, that ensuring the subsampling is performed well
is crucial. As an extreme example, when no subsampling is per-
formed, this approach estimates the asymptotic standard deviation
to be 0.003 91 ± 0.000 02 kcal/mol, nearly an order of magnitude too
low.

FIG. 1. The free energy of solvating methane in water as computed from alchem-
ical simulations. The free energy difference was estimated using the MBAR
estimator (28). The blue line indicates free energy differences between neighbor-
ing states, and the gray line is the cumulative free energy changes. The total
free energy of solvation, i.e., the cumulative ΔG at λ = 1, is estimated to be
2.13 kcal/mol.

In Fig. 2(a), we give the error contributions from all states. As
the error contributions for different states can vary by more than
two orders of magnitude, we depict them on a logarithmic scale.
Moreover, comparing with Fig. 1, we see that the error contribu-
tions correlate with the magnitudes of the free energy differences
between neighboring states. The fact that different states’ error con-
tributions differed by orders of magnitudes suggests that the error
in alchemical free energy simulations may be dominated by a few
states. However, authoritatively establishing this hypothesis would
require further investigation over many alchemical simulations in a
variety of settings, with schedules typical of practical applications.

To further examine the source of the errors in our simulation,
we attempt to disentangle the effect of the dynamics used to sample
the state from the choice of λ values. Recalling the definition of the
integrated autocorrelation time in (13) and combining it with (56),
we can write the integrated autocovariance of each state as a product
of the integrated autocorrelation time and a sampler-independent
factor, namely, var{χ} [c.f. (57)]. In Fig. 2(b), we plot both of the
error components on a logarithmic scale: the logarithm of a state’s
total contribution is a sum of the two curves. Our results show
that both the sampler-independent component of the error and the
integrated autocorrelation time are important for the total error.

The fact that a small number of alchemical states dominate the
contributions to the error suggests that it may be possible to use the
error estimates provided here to help tune simulation parameters
to achieve dramatic reductions in the error of MBAR estimates.
Indeed, finding better simulation parameters and design principles
for free energy methods has been the subject of considerable prior
work,40±46 which has shown that better allocation of computational
resources can substantially reduce the error in alchemical free energy
simulations. However, most of this work has focused purely on the
static properties of the states, omitting the dynamic effects that arise
from correlation within the states. For instance, Refs. 43 and 44 used
information-geometric distances between states. Our results suggest
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FIG. 2. Analysis of the estimated error in the free energy of solvation for methane. (a) State contributions to the asymptotic variance of the free energy difference between
the initial (λ = 0) and final states (λ = 1). The contributions were estimated according to (56), with∇Φ given by (51). (b) Decomposition of the error contributions into the
integrated autocorrelation times and the variance of χ

i
, the trajectory encoding the state’s contribution to the error. Each state’s total contribution to the error is the product of

these two quantities. For ease of comparison, quantities are plotted on a logarithmic scale.

that to fully capture all sources of error, such approaches must also
take into account kinetic effects from the specific choice of sam-
pler used. This corroborates previous work,42,45 which attempted
to optimize the choice of alchemical states by minimizing objective
functions that measured the error that would arise from sampling
states IID. In both works, it was observed that alchemical states that
minimized these objective functions might not be optimal, in prac-
tice, due to the resulting states having exceedingly large correlation
times. We hope that our analysis, which more fully incorporates the
effect of time correlation, will help overcome these difficulties.

B. Umbrella sampling simulation
of the alanine dipeptide

We also applied the error estimator to a two-dimensional
umbrella sampling simulation of the alanine dipeptide (N-acetyl-
alanyl-N′-methylamide) in vacuum.We performed ten independent
umbrella sampling calculations for the free energy as a function
of the ϕ and ψ dihedral angles. Simulations were run at 300 K
using OpenMM version 7.647 with harmonic restraints applied to
ϕ and ψ. The molecule was represented by the AMBER force
field with bonds to hydrogen atoms constrained by the SHAKE
algorithm.48 The force constant for the harmonic restraints was
0.007 605 kcal mol−1 degree−2, which corresponds to a Gaussian
bias function with a standard deviation of ∼9○ in the absence of
the molecular potential. We partitioned each dihedral angle into 30
intervals and placed the centers of the harmonic restraints at the cen-
ters of the cells of the resulting 30 × 30 grid; the resulting grid ranged
from (−174○,−174○) to (174○, 174○). Each state was sampled inde-
pendently using the BAOAB integrator for Langevin dynamics49,50

with a time step of 1 fs and a time constant of 0.1 ps. Each state was
equilibrated for 10 ps and then sampled for 100 ps, with ϕ and ψ
values output every 0.1 ps.

In Fig. 3, we show the free energy surface over the ϕ and ψ dihe-
dral angles. To construct the free energy surface, we constructed an
evenly spaced grid of 50 × 50 histogram bins and evaluated MBAR
estimates of (5).We then estimate the free energy difference between

the C7ax and C7eq basins.We define the C7ax basin as the region in the
ϕψ-space enclosed by a circle of radius 10○ centered at (65○,−40○)
and the C7eq basin as the space enclosed by the circle of radius 10○

centered at (−75○, 50○). The free energy between the basins can then
be obtained by estimating the logarithm of the ratio of averages of
two indicator functions as in (3). Note that the precise definition of
the sets can affect the value of the free energy and the corresponding
asymptotic variance of its estimate.

In Table I, we give our estimate of the error in the free energy
difference evaluated as the asymptotic standard deviation (square
root of the asymptotic error), as evaluated by (56), with ∇Φ given
by (53). We compare the estimated error with an estimate of the
standard deviation calculated over 10 identical replicates. Our error
estimator gives results that are about 2.6 times smaller than the

FIG. 3. Free energy surface over the ϕ and ψ dihedral angles (measured in
degrees) of the alanine dipeptide. The scale bar indicates free energy values in
kcal/mol, and the contour spacing is 2 kcal/mol. Structures are representative of
configurations at free energy maxima that are sterically strained and complicated
sampling.
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TABLE I. Asymptotic standard deviation of the free energy between the C7ax and
C7eq basins of the alanine dipeptide compared with the standard deviation over 10
independent simulations. The top row uses all states in the dataset, while the bottom
row uses only states whose relative free energies are within 20 kBT of the lowest free
energy state.

Estimated asymptotic SD over replicates
States used SD (kcal/mol) (kcal/mol)

All 0.049 ± 0.007 0.126
Low-FE 0.054 ± 0.007 0.054

standard deviation of the free energy estimate calculated over sta-
tistical replicates. While this constitutes reasonable agreement, we
show below that the discrepancy comes from a few states, which,
if removed, improve the quality of a free energy estimate and its
uncertainty.

In Figs. 4(a) and 4(b), we give each state’s contribution to the
total asymptotic variance on linear and logarithmic scales. To fur-
ther understand the source of each state’s contribution, in Figs. 4(c)
and 4(d), we depict the autocorrelation time and the variance of
χ for each state. We see that states with large contributions to the
error estimator can be divided into two categories. The first category
includes states that are located on the transition pathway connect-
ing the two C7ax and C7eq basins. While these states do not have
large autocorrelation times, they have comparatively large values for
the variance of χ. Our interpretation is that while these states are
important for getting a good estimate of the free energy, they are
not intrinsically difficult to sample. The second category includes
states located in high free energy regions, such as the free energy
peaks near (0○, 180○) and (135○, 90○). While these states have large

autocorrelation times, they have small values for the variance of
χ. Indeed, we were surprised to find that these high-energy states
contributed so much to the total error despite being far from the
minimum energy path connecting the metastable basins. Our belief
is that because these states are bifurcated by a peak in free energy,
converging their statistics requires observing slow barrier-crossing
events. This makes them act as ªbad applesº that spoil the accu-
racy of the scheme. For instance, crossing the peak near (0○, 180○)
requires moving two carbonyl oxygens that are undergoing a steric
clash past each other. Similarly, moving across the peak (120○, 50○)
requires moving two oxygens through a clash with themethyl group.
In Fig. 3, we show representative configurations for these states.

Our analysis suggests that we should be able to remove these
high free-energy states that give large contributions to the error esti-
mate without reducing the quality of the estimated free energy. To
validate this hypothesis, we remove all states from our dataset where
the state’s unitless free energy is at least 20 kBT larger than the lowest
free energy state. We repeat this process for each statistical repli-
cate of the umbrella sampling calculation; the precise locations of
the removed windows are shown in Sec. III of the supplementary
material. For each replicate, we then recalculate the estimate of the
free energy as well as the corresponding error estimate. The standard
deviation of our free energy estimate, as well as the average esti-
mated asymptotic standard deviation, is given in Table I in the row
titled ªLow-FE.º Despite using less data, our curated dataset has a
lower standard deviation by more than a factor of two. Additionally,
our estimate of the asymptotic standard deviation now agrees with
the empirically calculated standard deviation. This suggests that the
previously observed discrepancy between the predicted asymptotic
standard deviation and the empirically observed standard deviation
is due to the difficulty in estimating the autocorrelation time for
these slowly decorrelating states.

FIG. 4. Analysis of the estimated error
in the free energy difference between
the C7ax and C7eq states of the alanine
dipeptide. For each state in the 20 × 20
grid of states, we give (a) the state
contributions to the asymptotic variance
of the free energy calculated using all
states, depicted on a linear scale, (b)
the state contributions to the asymptotic
variance of the free energy calculated
using all states, depicted on a logarithmic
scale, (c) the integrated autocorrelation
times of χ

i
for the free energy estimate

using every state, and (d) the variance
of χ

i
for the free energy estimate using

every state. In each plot, we give the
underlying free energy surface on the ϕ
and ψ dihedral angles in light gray for
reference.
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To conclude our analysis, we compare the error estimator pre-
sented in our work with the error estimator presented in Refs. 10
and 15. As this error estimator requires statistically independent
samples, we subsample each trajectory by either the autocorrelation
time of the ϕ or the ψ dihedral angle, whichever is larger. Apply-
ing this error estimator gives an asymptotic standard deviation of
0.049 ± 0.006 when using all states, and 0.054 ± 0.007 when using
only the low free energy states. In contrast to the alchemical example,
we see a much smaller difference between the two error estimators.
However, this is expected: for the majority of states considered here,
the autocorrelation time is already close to the period at which the
data are recorded. Consequently, subsampling the trajectory has a
much smaller effect than in the alchemical example.

We leave a systematic procedure for using the error estimator
to refine the sampling for future work. However, our preliminary
results, along with our earlier work on the Eigenvector Method for
Umbrella Sampling and its application,16,17,51 demonstrate that our
error estimator has the potential to improve the error of umbrella
sampling and other multistate methods.

VI. CONCLUSIONS

We derive a central limit theorem for estimates of both the
normalization constants and function averages of the MBAR esti-
mator. In contrast to previous work, our treatment directly accounts
for the effect of correlation in sampled trajectories, further justify-
ing the use of MBAR when samples are not drawn independently.
The central limit theorem allows us to devise a computational pro-
cedure for estimating the asymptotic error for arbitrary observables
calculated through MBAR. In particular, it allows us to estimate
the asymptotic error in free energy calculations. Notably, if states
are sampled independently, the analytical expression of the total
asymptotic error takes the form of a sum of contributions from all
states. This enables us to trace how the errors in sampling each state
contribute to the total error. For both of the examples we study,
we observe that the autocorrelation times of the states contribute
strongly to the total asymptotic error. These results highlight the
importance of error analysis that explicitly accounts for correla-
tion in a sampled trajectory when attempting to tune free energy
calculations.

We demonstrate the error estimator for an alchemical calcula-
tion of the solvation free energy of methane and a two-dimensional
umbrella sampling calculation of the free energy of isomerization
of the alanine dipeptide. In both cases, the asymptotic error esti-
mates agree reasonably well with the standard deviation over all
replicates, giving results that are equally good or better than com-
peting approaches. Moreover, the fact that we can decompose the
error estimate into contributions from each state allows us to probe
which states contribute most to the overall error. Analyzing these
contributions for our umbrella sampling calculation, we observe
that a substantial fraction of the error comes from high free-energy
states that decorrelate slowly. We find that removing these states
gives a more precise error free energy estimate, despite using less
data overall. This initial analysis suggests that our error estima-
tor could be the basis for adaptive strategies for tuning free energy
simulations. We hope to investigate adaptive sampling strategies
based on our error estimates in future work.

SUPPLEMENTARY MATERIAL

In the supplementary material, we give a detailed derivation of
the asymptotic variance for the MBAR estimator and discuss how
to estimate it from data. Additionally, we depict the precise loca-
tions of the states pruned during the umbrella sampling calculation
performed in Sec. V B.
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