Check for
Updates

Fairness-Aware Continuous Predictions of Multiple Analytics
Targets in Dynamic Networks

Ruifeng Liu*
University of Massachusetts, Lowell
Lowell, Massachusetts, USA
rliu@cs.uml.edu

ABSTRACT

We study a novel problem of continuously predicting a number of
user-subscribed continuous analytics targets (CATs) in dynamic
networks. Our architecture includes any dynamic graph neural
network model as the back end applied over the network data, and
per CAT front end models that return results with their confidence
to users. We devise a data filtering algorithm that feeds a provably
optimal subset of data in the embedding space from back end model
to front end models. Secondly, to ensure fairness in terms of query
result accuracy for different CATs and users, we propose a fairness
metric and a fairness-aware training scheduling algorithm, along
with accuracy guarantees on fairness estimation. Our experiments
over five real-world datasets show that our proposed solution is
effective, efficient, fair, extensible, and adaptive.

CCS CONCEPTS

« Computing methodologies — Machine learning approaches;
Online learning settings.

KEYWORDS

dynamic networks, continuous analytics targets, representation
learning, fairness

ACM Reference Format:

Ruifeng Liu, Qu Liu, and Tingjian Ge. 2023. Fairness-Aware Continuous
Predictions of Multiple Analytics Targets in Dynamic Networks. In Proceed-
ings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD °23), August 6-10, 2023, Long Beach, CA, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3580305.3599341

1 INTRODUCTION

In dynamic networks, attribute values and/or links/nodes constantly
change over time. As a powerful and general way to model data en-
tities and their diverse interactions, dynamic networks are common
in a large number of applications today. We list but a few examples:
(1) messaging and social network interactions as graph edges, (2)
clickstreams of users to products and purchase actions/edges from

“These authors contributed equally to the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD °23, August 6-10, 2023, Long Beach, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08....$15.00
https://doi.org/10.1145/3580305.3599341

Qu Liu
University of Massachusetts, Lowell
Lowell, Massachusetts, USA
qliu@cs.uml.edu

1512

Tingjian Ge
University of Massachusetts, Lowell
Lowell, Massachusetts, USA
ge@cs.uml.edu

users to products in e-commerce, (3) user-product edges for reviews
and feedback in e-commerce, (4) web requests and file transfers
among parties on the Web such as Internet service providers and
data centers, (5) cloud data systems such as cloud electronic health
record (EHR) systems [13, 33, 41], and (6) real time traffic data
where road segments are edges [17]. Importantly, the graph model
has a flexible data schema, and hence has the inherent advantage
of easier data fusion from multiple heterogeneous sources [1].

ExamPpLE 1. Figure 1 illustrates a dynamic network about patients
in an intensive care unit (ICU) from a dataset [19]. There are many
types of entities including patients, diagnoses, procedures, lab events,
input events, and prescription drugs. They are shown as nodes of
different colors. The edges represent the relations and interactions
such as those between patients and diagnosis nodes, between patients
and lab events, and so on. Interaction edges have timestamps and
nodes may have attributes. Learning from such heterogeneous data
sources is instrumental for inference and reasoning.

-20s- Aniongap ™

/\Platelet count

\

Patient D

h
Patient CC.” N
*~._ % Propofol

Tromethamine.,
\

Alteplase
@ Diagnosis O Procedure © Lab event @ Input event O Drug

Figure 1: A dynamic network in the healthcare domain.

Continuous Analytics Targets (CATs). Dynamic networks re-
semble data streams [3] and graph streams [28], where data is also
continuously changing, and a major type of analytics workload
is user-subscribed monitoring tasks [4], which we call continuous
analytics targets (CATs). In this paper, we focus on predictive targets,
i.e., continuously predicting events/information at a later time. For
instance, in Example 1, a hospital manager may subscribe to the
following CAT:

Notify me when it is predicted that, in the next hour, grouped
by the medical procedure, the number of patients tested with
abnormal results is above a certain threshold.

https://doi.org/10.1145/3580305.3599341
https://doi.org/10.1145/3580305.3599341
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599341&domain=pdf&date_stamp=2023-08-04

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

This is so that sufficient resources can be allocated in time to provide
urgent care to those ICU patients. In addition, one-time ad hoc tasks
may also be issued at any time.

Model and Challenges. Graph neural networks have become
the state-of-the-art deep learning model for data represented as
graphs [7, 22, 45]. In recent years, there has been a number of
proposals of dynamic graph neural networks (DGNN) [21, 40] that
become the dominant approach for dynamic networks. Thus, DGNN
is the basic model for our problem.

Figure 2 shows the overall architecture. There is a back end (BE)
model that is applied to the dynamic network; this is a typical DGNN
model mentioned above, which typically consists of a conventional
graph neural network (GNN) model to capture message-passing
at the graph-structure level and a sequence model for temporal
correlations. Then there is a front end (FE), which has a separate
layer of neural network (e.g., MLP) for each continuous analytics
target, and which presents the result of each CAT in the form of
(result;, confidence;) to the user.

Continuous Analytics Target
Attribute/Node Changes t

N\ DGNN e
Edge Changes . | "H_’ ry, confy
|:> seq.
\\\‘H_’ r,, conf,
Dynamic Network Back End Front End

Figure 2: The overall model architecture.

As data constantly changes, the model needs to be continuously
trained and updated [35]. The main challenges here have to do
with the multiple continuous analytics targets (CATs). Each CAT
is an analytical query as in the example above, and it is not clear
the embeddings of which nodes of the dynamic network (from the
DGNN at BE) should be fed as input to the model at the FE for
that CAT. As there can be a large number of nodes in the network,
simply aggregating the embeddings of all nodes may be too much
and carry unneeded signals.

Secondly, since online continuous training is computational-
resource demanding, as observed in our experiments (Section 5), it
significantly affects the result accuracy and confidence of different
CATs as to how much weight we give to each CAT or how to
schedule their training. In summary, we aim to answer the following
questions:

What is the best way to select latent messages/embeddings
to route from the back end model to front end model for
each CAT? In the online training of n CATs that may be
from different users, how do we ensure a fair schedule/weight
assignment of the n CATs?

Our Contributions. To our knowledge, we are the first to work
on the challenging online continuous training problem for multiple
continuous analytical targets in dynamic networks.

For the problem of selecting latent messages/embeddings to
route from the back end model to front end model for each CAT, we

1513

Ruifeng Liu, Qu Liu, and Tingjian Ge

devise a randomized algorithm that adaptively over time determines
an optimal subset of nodes in a tree resulted from a community
detection algorithm. The embeddings of this subset of nodes will be
fed into the front end model of a CAT. We prove that our randomized
algorithm has a desired property that its selection of nodes follows
a Markov chain and converges to a stationary distribution where
the probability of the selection is proportional to its utility (defined
as the accuracy of the CAT prediction). In addition, this selection is
adaptive to data/pattern drifts.

For the problem of ensuring a fair schedule in training n CATs
potentially from different users, we leverage the individual fair-
ness [12] notion studied in machine learning and define the Lips-
chitz bias for our problem. Then we propose an algorithm that is
fairness-aware and that adapts to the actual data while schedul-
ing the training of n CATs. Importantly, we are able to estimate
the Lipschitz bias and prove the theoretical guarantees of the esti-
mation using martingales and Azuma-Hoeffding inequality [2]. We
perform a comprehensive empirical evaluation using five real-world
datasets that demonstrate the feasibility, scalability, accuracy, and
extensibility of our approach.

2 PROBLEM STATEMENT AND
PRELIMINARIES

A dynamic network G = (N, E) can be considered as an infinite
sequence of snapshots Gi1, G, ..., Gt, .., where each snapshot G;
corresponds to a time step t, N is the set of nodes, and E is the set of
edges (either directed or undirected). Each snapshot G; = (N, E;)
satisfies N; C N and E; C E. Each node v € N may have a set of
attributes X = Xj, ..., X, that may bear different values in different
snapshots. In addition, each edge e € E may be of one of the r types.

G has n continuous analytics targets (CATs), each of which is to
continuously predict, at every time ¢, a function of the data in G;, s,
where § > 0. That is, each CAT is to keep predicting, at every step ¢,
avalue that is a function of the data in a future snapshot. In addition,
for each prediction of a CAT, we also return the corresponding
confidence value 0 < conf < 1, which is the (estimated) probability
that the returned result is correct [14, 37, 42].

For such a continuous analytics workload, there is a body of pre-
vious models called dynamic graph neural networks (DGNN) [21, 40]
that can be used to perform the tasks. The overall model architec-
ture is shown in Figure 2. The dynamic network contains constant
attribute/node updates as well as edge updates. The back end (BE)
model is a DGNN applied to this data, and is connected to the front
end (FE), which contains one neural network model (e.g., multi-
layer perceptron or MLP) per CAT. FE continuously returns to the
users, for each CAT i (1 < i < n), the prediction result r; along
with the confidence conf;.

Under this model architecture, in this paper, we focus on two
related problems in the online continuous training for the n CATs:
(P1) What is the best way (in particular, what node embeddings/la-
tent messages) to select from the output/result of the back end
DGNN model as the input to the FE model of each CAT? (P2) As
the online training is resource demanding, and the n CATs may
even be from different users, what is a fairness-aware way to train
the CATs, and how to quantify the fairness?

Fairness-Aware Continuous Predictions of Multiple Analytics Targets in Dynamic Networks

3 SELECTION OF BACK END OUTPUT FOR A
FRONT END CAT

In this section, we first study (P1) above. The back end DGNN model
produces an embedding vector for each node in G. For a particular
continuous analytics target g;, we aim to select an optimal set of
nodes whose embeddings are fed into the FE model for g; to produce
the result with best accuracy/confidence. Intuitively, having too
large a set of data items may be sub-optimal as some of them may
be irrelevant and would weaken the useful signal to the prediction
of g;. In addition, some nodes/attributes may not be observed (i.e.,
missing) in the data, and some other nodes’ embeddings may be
better used for the prediction.

One intuition is that, for a cluster of nodes in G, if we decide to
select them to feed into FE, we can use their pooled (i.e., aggregate)
embedding. This motivates us to first use a community detection
algorithm (e.g., Leiden [43]) to compute a hierarchical tree 7 of
communities offline, based on a static version G’ of G from its edge
statistics (e.g., an edge (u,v) exists in G’ if the frequency of (u,v)’s
appearance in G is above a threshold). Each internal node of 7
encompasses the cluster of nodes in the level below (i.e., its direct
children); thus we use pooling to get the embedding of an internal
node (e.g., average pooling). We assume that the optimal set we are
seeking to feed to FE is from no more than § nodes of 7, where &
is a small constant (which we empirically study in Section 5.2). We
call this a data filter from BE to FE, as illustrated in Figure 3.

Figure 3: Illustrating a data filter from BE to FE. The solid vertices
at the bottom level and the edges connecting them are from G, which
are partitioned into a hierarchical tree 7 of communities, as indi-
cated by the hollow vertices at upper levels. The red-circled ones are
the 5 nodes (5 = 3) selected to feed to a CAT’s model in FE.

The basic idea of our filtering algorithm is to adaptively sample
6 nodes from 7. Sequentially, each time we make a small local
change to the sample and evaluate the utility, which can be flexibly
defined, such as the accuracy or confidence of predicting the CAT.
Based on the utility, we probabilistically either accept or reject the
sample change. We will prove that this online adaptive algorithm
has desired behavior. The algorithm is shown in FILTERBE2FE.

In line 1, we first randomly choose § leaf nodes from the embed-
ding tree 7 based on the nodes referenced in g;. This is a starting
point of the node set S, with which we get the utility u(S) in pre-
dicting g; (line 2). The loop from line 3 iteratively adjusts the node
set S until it follows a distribution that we desire. Specifically, we
first choose a node v uniformly at random from S (line 4). Then
with probability p, we perform a one-step random walk from v (line
5), in which o’ is set to either a neighbor of v, each with probability
5 (where d is the maximum degree of a node in 7) or v itself. With
probability 1 — p, we just choose v’ uniformly at random from 7~
(line 6)—which we call teleport.

In lines 7-8, the set S’ is the tentative new version of S where
node v is replaced by v’, and we get its utility in predicting g;. Line

1514

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Algorithm 1: FILTERBE2FE

Input:7: a tree of dynamic embeddings of G from BE
Output: § nodes of 7~ to feed to FE for CAT g;
1 S « random ¢ leaves of 7~ among those referenced in g;

2 feed S to FE when evaluating ¢; and get the utility u(S)
3 while true do

4 choose a node v uniformly at random from S

5 with probability p, v’ < one step random walk from o

6 otherwise v’ « a node chosen uniformly at random in
T

7 S — S\ {o}uU{v'}

8 feed §” to FE when evaluating g; and get the utility u(S”)
u(S’)

)), S S

return S upon request as the current selection

9 with probability min(1,

10

9 probabilistically updates S to be $’—if S” has a higher utility, S
is always updated; otherwise the update probability is the utility
ratio. We now analyze FILTERBE2FE and show that the execution
follows a Markov chain with a desired stationary distribution.

THEOREM 1. The execution of FILTERBEZFE follows a Markov chain
that has a unique stationary distribution, in which the probability of
choosing a set of § nodes is proportional to the utility of the set.

Proor. We define the state of the execution of FILTERBE2FE as
the set of nodes in S. It follows a Markov chain because the current
content of S only depends on its content in the previous time step,
i.e., the previous iteration of the loop in line 3. The chain has a
finite number of states. It is irreducible [30] because any two states
of the chain (i.e., two multisets of nodes S; and S») can reach each
other through a number of steps (iterations of the loop from line 3).
Moreover, the chain is aperiodic because at any state i with set S,
there is a positive probability that the next step will be in the same
state with the same node set (e.g., the teleport happens to select the
same node v). Thus, this finite, irreducible, and aperiodic Markov
chain must be an ergodic chain, and in turn, it must have a unique
stationary distribution [30].

We next show that in its unique stationary distribution, the
probability of having a set of § nodes is proportional to the utility
of the set. Precisely, we prove that the unique stationary distribution
must be 7 = (%, %, e ”7’"), where m is the number of states of
the Markov chain, u;(1 < i < m) is the utility of state i, i.e., u(S;),
and Z is a normalization constant Z = 3,7, u; . Let 7; be % for
1 < i < m. We show that

(1)

where P;; is the transition probability from state i to state j fol-
lowing FILTERBE2FE. When states i and j differ by more than one
node, then clearly P;; = Pj; = 0 according to FILTERBE2FE, and
Eq. 1 is true. When states i and j differ by only one node, there are
two cases: (i) the nodes they differ on are neighbors in 77, or (ii) the
nodes they differ on are not neighbors. Without loss of generality,
we assume u; < uj.

In case (i), according to FILTERBEZ2FE (in particular line 9), we
Ui
uj

miPij = mjPj;i

. u;j u; u;
have 7;P;j = m;p, min(1, u_J,) = Tipn = #pn = 7Jpn . = 7jPj;,

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

where p, = %(p% + qﬁ) is the probability of picking these two
nodes in case (i) for the proposed transition, g = 1 — p, and |7 | is
the number of nodes in 7°. Thus Eq. 1 holds. Similarly, in case (ii),
Eq. 1 holds too by only replacing p, by %q‘—,}.l Then from Eq. 1, 7

must be the unique stationary distribution [31]. O

There are some additional details on the mapping between the
chosen § nodes and the positions of input to the FE model for a
CAT, which are discussed in Appendix A.1.

4 FAIRNESS-AWARE TRAINING SCHEDULING

We now study the second problem (P2), i.e., how to schedule the
training of the n continuous targets (CATs), which may be sub-
scribed by different users, in a fair manner.

4.1 Fairness

We study the notion of fairness for the n CATs qy, ..., qn. Bias and
fairness have been an issue of intense study in machine learning
lately. There have been various proposals to define fairness for
machine learning algorithms [29]. For our problem, the most rel-
evant definition is the so-called “fairness through awareness” or
“individual fairness” [12]. Intuitively, it requires that “similar indi-
viduals are treated similarly”. In our context, informally, similar
CATs should get results with similar accuracy. A CAT query may
not get sufficient accuracy if it is not trained enough given the dy-
namic data updates. Here, we measure CAT similarity conveniently
using their embeddings (to be discussed in Section 4.2). Formally,
the fairness is defined as achieving the Lipschitz property:

DEFINITION 1 ([12]). A mapping M : V — Y satisfies the (D, d)-
Lipschitz property if for every x,y € V we have

D(Mx, My) < d(x,y)

Here, M maps an input (i.e., “individual” x or y) to an algorithm’s
output, and the outputs’ distance as measured by D should not be
greater than the difference of the individuals x and y as measured
by d, conformant to the intuition of individual fairness as stated
above. We extend this notion to a system that predicts n CATs

q1, - - - qn, and define the bias as:
DEFINITION 2. The Lipschitz bias of predicting n CATs qu, ..., qn
is
2
—n(n) Z max (0, |cl~ - Cj| —-d(qi, qj)) 2)

1<i<j<n
where c; (resp. cj) is the confidence of the result of q; (resp. q;), and
d(qi,qj) is the distance between q; and q; in [0, 1].

For example, d(q;, qj) may be the cosine distance of their em-
beddings. Definition 2 performs the average over the (}) pairs of
CAT queries g; and q;. Each pair satisfies the Lipschitz property in
Definition 1 if |ci —-c]l < d(qi, q;); otherwise, the difference is the
bias of this CAT pair, and the average over all pairs is the Lipschitz
bias of the n CAT queries.

4.2 CAT Language and Embedding

Recall that the Lipschitz bias in Definition 2 requires the distance
d(qi, qj) between two CAT queries g; and g;. In the meantime, it is
also necessary to define a CAT query language for users. Analogous

1515

Ruifeng Liu, Qu Liu, and Tingjian Ge

to work in data streams [3], it is common to use a variant of SQL as
the user interface language. Moreover, a CAT query expressed in
SQL corresponds to a query tree graph, for which we can perform
graph embedding and treat it as the embedding of the CAT query.
We use the cosine distance between the two CAT embeddings as
d(gi, qj) needed in Definition 2. The following CAT query Q1 is
similar to what is discussed earlier in Example 1 (Figure 1).

SELECT CASE WHEN COUNT(*)>0 THEN ‘True’ ELSE ‘False’
FROM (SELECT 1 FROM lab_events
WHERE flag = ‘abnormal’ AND time BETWEEN #; AND i
GROUP BY pid
HAVING COUNT (%) > 7)

END

Q1 is to predict and notify the user if, in a future time interval
[t1,t2] (relative to now), there will be at least one patient in the
lab_events subgraph/stream who has more than 7 abnormal test
results. A general query template is in Appendix A.2. Figure 4
illustrates a query tree template for CATs like Q1.

name properties op value

value

name properties op
Figure 4: A query tree graph for a CAT used for embedding.
We then apply Graph Attention Networks (GAT) [45]:
Z aijW(l)hj(l) +B(1)hi(l)
JEN(i)
where 0 < I < L — 1 and L is the level (#hops) of neighborhood
message passing. a;; is based on an attention mechanism. The

hi(1+1) _ 3)

boundary condition is hi(()) = x;, the attribute values at vertex i,

and hi<L) is the final embedding of vertex i.

We set L to be the height of the query tree, so that the root node
will have latent information originated from all nodes in the tree.
We use the embedding of the root (SELECT) node as the final query
embedding. Thus, the root serves as the anchor node of the query
graph. For a node that does not have any attributes (e.g., most of
the internal nodes), we treat it as having one attribute with a fixed
value 1. Moreover, we have multiple versions of B(O), one for each
node type (e.g., “select” or “stream” in Figure 4), i.e., Bt(o) for a
node of type t, which is a d X A matrix where A is the number of
attributes of the node type and d is the embedding dimensionality.
For a node without attributes, the d x 1 Bt(o) essentially represents
the embedding vector of the node type itself.

CAT Embedding Training. We perform self-supervised training of
the CAT query tree graph using node types. Specifically, given the
current embedding hi(L) of node i, we use a cross-entropy loss func-

tion over softmax(thi(L)) to perform the node type classification,
where Wy, is a T x d parameter matrix and T is the number of node

Fairness-Aware Continuous Predictions of Multiple Analytics Targets in Dynamic Networks

types. All the parameter matrices are shared among the CATs. Thus,
the embedding can easily generalize to a new CAT query using the
learned parameters. Moreover, the similarity of different CATs can
be gauged using the embedding vectors of their anchor nodes (i.e.,
roots), which will be used in fairness-aware training in Section 4.3.

4.3 Training Scheduling and Fairness
Estimation

We devise a novel algorithm to train the whole network, both the FE
and BE models, based on the notion of Lipschitz bias/fairness of the
n CATs in Definition 2. In addition, we can efficiently estimate the
Lipschitz bias of predicting the n CATs with provable guarantees.

4.3.1 The Algorithm. We are now ready to present the algorithm
for training. The basic idea is to use the fairness notion as defined in
Definition 2 as a guide to iteratively schedule the training of a pair of
CATs each time. The algorithm will also attend to several training
details such as logging data updates for delayed training, class
imbalance, and learning confidence as discussed in Appendix A.3.
We present the algorithm in FAIRNESSAWARETRAINING.

Algorithm 2: FAIRNESSAWARETRAINING

Input:a dynamic network G
embeddings of CATs q1,...,qn
Output: notifications whenever g; returns true, and
confidence; estimated Lipschitz bias

1 D « sliding window of data updates in G for the last At
2 while true do
3 pick 2 pairs of CATs (qi, q;),(qk, q;) uniformly at
random
4 predict these CATs using corresponding data in 9 and
let the confidence be c;, cj, ¢k, ¢;
5 for q € {qi,qj, gk, qi} that returns true do
6 L return notification with confidence
7

add q and its data context to Sy (q)
8 if | ci —cj | —d(qi,qj) <| ckx —¢; | — d(qk,q;) then
9 L i—kjje1 /1(qi, q;) will be trained
Swe—SwU {Qi, Qj}

while positive sample fraction in S, is below 7, do
L randomly pick g € Sy,

do batch SGD using loss function detailed in
Appendix A.3
report current Lipschitz bias based on Sec. 4.3.2

10
11
12
13

add random sample from S;(q) to S,, //replay

14

15

Line 1 of the algorithm maintains a sliding window of data up-
dates within the past Aty time period, which will be used for train-
ing (details in Appendix A.3). The continuous training and CAT
evaluation are in the loop in lines 2-15. We first randomly pick
and evaluate two pairs of CATs in lines 3-4. If any of these 4 CATs
returns true, we report it with the confidence (Appendix A.3), and
add it to the positive instance set Sy(q) in lines 5-7. Lines 8-10
compare the two pairs of queries and the one with greater bias
(Definition 2) is added to the sample set S,, to be trained. Lines

1516

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

11-13 handles minority class (positive sample) replays for the class
imbalance issue, adding positive instances of queries to S,,.

Batched stochastic gradient descent (SGD) training is performed
in line 14. The SGD training will revise the parameters in both
the FE and BE models. Finally, we use the average bias of sample
pairs in the current time window to continuously estimate the
Lipschitz bias of the whole set of n CATs with provable guarantees
(Theorem 2), as detailed next.

4.3.2 Estimating the Bias. Let us now analyze the actual fairness
achieved by FAIRNESSAWARETRAINING, which is quantified by mea-
suring the Lipschitz bias—Equation 2 as discussed in Section 4.1.
The less the Lipschitz bias, the more fairness we have. However,
Equation 2 requires a quadratic number of pairs of CATs in a short
time interval, as the bias is dynamic (with data) and sensitive to
the measurement time window. Thus, we use a sample of pairs of
CATs in a short, sliding time window to continuously estimate the
current Lipschitz bias. The main challenge is how to analyze the
sample size needed and the provided accuracy guarantees, since the
biases of different query pairs are not independent. This renders the
concentration inequalities such as Chernoff bound and Hoeffding
inequality [31] inapplicable—it is harder to analyze when the vari-
ables are correlated. We perform a novel analysis using the theory
of martingales and the associated bounded-difference inequality [2].

Preliminaries: Martingales and Concentration Inequalities.
A martingale is a sequence of random variables for which, at a
particular time, the conditional expectation of the next value in the
sequence is equal to the present value, regardless of all prior values.
More generally, a sequence Zy, Z1, ... is a martingale w.r.t. the se-
quence Xy, X1, ... if E [Zy41 | Xo, ..., Xn] = Zp. A simple example
is a gambler who plays a sequence of fair games, where X; is the
amount she wins on the ith game (negative if a loss), and Z; is her
total winnings at the end of the ith game. A particular easy (and use-
ful) construction of a martingale is called the Doob martingale [11],
as follows. Let Y be a random variable that depends on X, ..., Xp.
Then it can be shown that the sequence Z; = E[Y | Xo,...,X;] isa
martingale w.r.t. Xp, ..., Xp. As can be seen here, the notion of mar-
tingale may capture a sequence of arbitrarily correlated variables.

A particular form of concentration inequality under martingales
is the Azuma-Hoeffding inequality [2], a general form of which is
as follows. Let Zy, ..., Z, be a martingale such that

By < Zy —Zp_q < By +dy (4)

for some constants di. and random variables By that may be func-
tions of Zy, ..., Zj_1. Then for all t > 0 and A > 0,

—222

Pr(1Zs — Zo| > A) < 2¢ Tkt

Q)

Analysis of Lipschitz Bias Estimates. In our problem, we have a
set of m = (;;) CAT pairs from which the Lipschitz bias is obtained
(Definition 2). We use the biases of a sample of r CAT pairs to
estimate the average bias of all pairs. What is challenging here is
that the biases of the CAT pairs are obviously not independent. For
example, if both (g1, g2) and (q2, g3) have small biases, then very
likely (g1, g3) has a small bias too. We treat the m CAT-pairs as a
sequence, defining a sequence of random variables X, ..., X;;, as the

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

biases calculated from each pair respectively (i.e., max(0, |c,~ -c j| -
d(gi,45)))-

Let the sample of r CAT-pairs’ biases that are revealed to us
as the first ones X3, ..., X;; i.e., we find that X; = b; (a constant),
for 1 < i < r. Rename X;41,...,Xm to Y1,..., Yim—r, and define
Zi =E|[B| Yp,...,Y;i],for 0 < i < m—r, where B is the random
variable for the overall Lipschitz bias as in Definition 2. The Z;
sequence is the expected Lipschitz biases when the remaining bias

variables Y7, ..., Y; are revealed one by one. Thus, Z, ..., Z,—, is a
Doob martingale w.r.t. Yo, ..., Y—p, with
T b;
Zy = h, Zm-r=B (6)
r

as Zo is only based on the sample, and Z,,— is the true Lipschitz
bias when all Y;’s are known.

To bound the difference between Z and Zj._; as in Inequality 4,
we observe that Z = %, where S_; = er:{‘_l b;. Since

0<b g < % (as any CAT satisfies % < ¢; < 1from Appendix A.3),

Sk-1 Sk-110.5 : Sk-1 _
we have 252 < Zp < ===, or equivalently, vy Zp_1 <
Zp = Zx—y < B=05 74 | Letting By be Sk2L — Z;_, we get

dy = % in Inequality 4. This, together with Equation 6 and Azuma-
Hoeffding Inequality 5, gives us

—s)2
T b; mr 1
Pr(B- h > 1)< 2e Tk=1 (2 @)
r

To simplify the above upper bound and get a closed form, we notice

= 1 m-r 1 m-—r 1 1
kz:; (r+k)? = ;; r+k)(r+k-1)];(r+k—1 -7

1 1

rom
Incorporating this into Inequality 7, we have proven the following:

THEOREM 2. Using the average bias of a sample of query-pairs of
size r to estimate the Lipschitz bias of in-total m = () query-pairs

has the following accuracy guarantees: the probability that the error
-8)?
is greater than or equal to A is at most 2e P

Theorem 2 gives us strong theoretical guarantees on the accuracy
of our estimation of fairness. For example, for n = 50 CATs (i.e.,
m = 1225), using a sample of only r = 36 CAT-pairs, we can achieve
a Lipschitz bias upper bound of A = 0.1 with probability at least 0.9.

5 EXPERIMENTAL EVALUATION

We have performed a systematic experimental evaluation using five
real-world datasets. Through the experiments, We aim to answer
the following research questions (RQ):

o RQ1: Regarding scalability, what is the throughput of processing
high-rate data-update dynamic networks under our continuous
training and predicting CATs?

e RQ2: How accurate is our model for predicting CATs?

RQ3: Regarding extensibility, if we replace our BE model by
different DGNN models, how does it function?

RQ4: How are accuracy and throughput affected as we vary some
model parameters?

RQ5: How effective is our FILTERBE2FE algorithm?

1517

Ruifeng Liu, Qu Liu, and Tingjian Ge
e RQ6: How effective is our fairness-aware training scheduling?

5.1 Datasets, Baselines, and CAT Queries

We use five datasets MIMIC [19], GDELT [25], ICEWS18 [6],
ICEWS14 [44], and WIKI [23]. Their details and our setup are in
Appendix A.4. Our default back end DGNN model is TGCN [48] but
replacing its GRU sequence model by LSTM (resulting in slightly
better accuracy). We compare against five baselines: (1) linkGS [49]
for continuous link prediction (which is a restricted set of simple
CATs) in graph streams, (2) predictive relation queries (RQ) in
dynamic graphs [27], (3) our model’s BE replaced by TransE [5], (4)
our model’s BE replaced by EvolveGCN [34], and (5) our model’s
BE replaced by Continual GNN [46]. Note that none of the above
is a whole baseline, as no previous work can replace our front end
model as well as the FILTERBE2FE and FAIRNESSAWARETRAINING
algorithms. The point is that we can plug in any DGNN model as
the back-end model.

For each of the five datasets, we generate random continuous
analytics targets based on the one in Section 4.2. In particular, for
MIMIC data, the generated CATs are similar to Q1 in Section 4.2.
For the GDELT dataset, the generated CATs select from country
nodes (induced subgraph) with group-by attribute country ID. The
ICEWS18 dataset is similar. For ICEWS14 and WIKI datasets, the
CATs select from name nodes. The number of CATs that are gener-
ated for a dataset depends on the specific experiment, as detailed
below.

5.2 RQ1: Throughput and Scalability

We perform the continuous training involving both BE and FE
models. The FILTERBE2FE has a parameter §, the number of nodes
fed to FE. The choice should be dynamic, as a larger network has
significantly more leaves in 77, while the network size does not
affect as much the height or internal-node number of 7. Thus,
we impose a maximum number of internal nodes—empirically we
find that a number between 3 and 5 gives a good tradeoff between
training cost and accuracy; hence we use 4 by default.

First, for scalability, we examine the processing throughput un-
der two modes: (1) the models are being trained continuously and
the CAT queries are also being evaluated (i.e., predicted) continu-
ously (shown as “training” lines in Figures 5 and 6); (2) only the
CATs are evaluated continuously using a trained model from (1)
(shown as “eval” lines in Figures 5 and 6). The throughput results
are shown in Figure 5 for the MIMIC data and in Figure 6 for the
GDELT data (the results for other datasets show a similar trend and
are omitted).

We compare among several models: our default back end model,
the relational query work (“RQ” in the figures) in [27], and replacing
the back end of our model by EvolveGCN [34] (“EG” in the figures).
Finally, we also compare against the lightweight link-prediction for
graph streams work [49] (“linkGS” in the figures). We will further
compare the query result accuracy with these baselines in RQ2
(Section 5.3) and RQ3 (Section 5.4). We vary the number of contin-
uous CAT queries between 7 and 105. From Figures 5 and 6, we
can see that mode 2 mentioned above (“eval” only) is much faster
than mode 1 (continuous training). This is because the training
involves repeated backpropagation through time while the CAT

Fairness-Aware Continuous Predictions of Multiple Analytics Targets in Dynamic Networks

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

10° 100 0.115 1
i 041 0.95
—— Default training —3— Default training : 09
—B— Default eval — —H— Defauteval .
T and N 5 RQU
& 10 —6—RQ training g1o —O— Ravaning Lotos oo
% RQeval i EG training > -
z —-A—EG training z —7— EGeval S 0.1 o 08
o —7—EG eval 4 linkGS z 2o
- H s E
=10° keS 1 Zqef 5 0.095 $0.75
=] =1 e E
e £ = £Loo7
2 4 @ 0.09 -
g 2 3 0.65
. 5 a3 .
£ 10 2= 10 0.085
0.6
0.08 0.55
10’ 102 0.075 05 L

20 40 60 80 100
Number of continuous predictive queries

S}

20 40 60 80 100
Number of continuous predictive queries

Fig 5 Throughput (MIMIC) Fig 6 Throughput (GDELT)

10 20 30
Number of epochs

MIMIC GDELT ICEWS18ICEWS14 WIKI
Dataset

Fig 7 Loss function (ICEWS18) Fig 8 Accuracy vs. dimensionality

10

=)
o

S

o

03

=)
.

)

=)
o

01

=)

Throughput w/ continuous training (events/sec)

Throughput w/ cont. query evaluation (events/sec)

=)
©

10°

ICEWS18 ICEW§4 WIKI -

Dataset

MIMIC GDELT MIMIC GDELT ICEWS

Fig 9 Throughput w/ continuous training

evaluation only involves a forward pass of the model. As expected,
more continuous CAT queries subscribed in the system entail a
higher burden of continuous training and query evaluation, and
hence a smaller throughput. Arguably, for most applications, such
throughputs are able to keep up with the actual event rates (even
with a single machine). The ContinualGNN baseline, however, is
one to two orders of magnitude slower than our model in both
modes; hence we omit it to avoid cluttering the figures. The RQ and
EG baselines have higher throughput than using our default back
end model. The linkGS method extends classical link prediction to
graph streams without neural network training, and is 1-2 orders
of magnitude faster. However, these methods are less accurate as
shown in RQ2 and RQ3 next.

5.3 RQ2: Learning Embedding and Accuracy

For RQ2, we examine the effectiveness of our model training, and
compare the CAT query result accuracy with two closest methods
from previous work, relational query (RQ) and linkGS. Figure 7
shows that the loss function value over epochs for the ICEWS18
data (other datasets are similar). The loss drops precipitously in
the first few epochs and then flattens. Observe that there are slight
fluctuations of the loss between adjacent epochs because FAIRNES-
SAWARETRAINING iteratively picks two pairs of CATs to train based
on the biases, and the loss values differ among the CATs.

We then compare the CAT result accuracy with two closest
approaches in previous work, namely linkGS [49] and RQ (contin-
uous relational queries) [27]. Neither 1linkGS nor RQ can handle

1518

Dataset

Fig 10 Throughput with eval only

1 T
Focal loss
[No focal loss |+

0.95

F-measure
o
3

o
=2}
o

0.6

0.55

MIMIC

GDELT ICEWS18 ICEWS14

Dataset

18 ICEWS14 WIKI WIKI

Fig 11 Accuracy w/ and w/o focal loss

continuous analytics targets as complex as we do. To enable the
comparison, we let all three methods run the same continuous
link/relation predictive queries over all five datasets, with the ac-
curacy results shown in Table 1, where we measure the precision,
recall, and F-measure (shown as prec., rec., and F-m in Table 1, re-
spectively). We can see that, even though linkGS has a much greater
throughput as shown in Figures 5 and 6, our model is significantly
more accurate than it (F-m is the overall accuracy). This is because
linkGS is based on simple and efficient classical methods (it contains
several methods, and we take the best accuracy among them), and
is not a representation learning method. RQ has a slightly higher
throughput, but our model is much more accurate.

5.4 RQ3: Extensibility

In answering RQ3, we examine the extensibility of our architec-
ture by replacing the back end model by alternative representation
learning methods of temporal networks. We use three such baseline
models: an efficient incremental variant of knowledge graph em-
bedding method TansE, as well as two recent ones EvolveGCN [34]
and ContinualGNN [46]. The accuracy result is shown in Table 2.
From the results in Table 2 we can see that our default back end
model is in general more accurate than the other three baseline
back-end models, even though TansE and EvolveGCN give slightly
higher throughput as shown in Figures 5 and 6 (TransE has a sim-
ilar throughout to RQ which is a variant of it). TransE does not
have an explicit sequence model as the other models and has the
worst accuracy. Nevertheless, all alternative back-end models are

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Ruifeng Liu, Qu Liu, and Tingjian Ge

Table 1: Accuracy of continuous link/relation predictive queries compared to two methods in previous work.

MIMIC GDELT ICEWS18 ICEWS14 WIKI
prec. rec. F-m. | prec. rec. F-m. | prec. rec. F-m. | prec. rec. F-m. | prec. rec. F-m.
linkGS 0.302 | 0.901 | 0.453 | 0.543 | 0.914 | 0.681 0.53 0.878 | 0.661 0.507 | 0.99 | 0.671 | 0.657 | 0.794 | 0.719
RQ 0.441 0.559 | 0.493 | 0.574 | 0.545 | 0.559 | 0.613 | 0.657 | 0.634 | 0.533 | 0.371 | 0.437 | 0.737 | 0.424 | 0.538
Ours 0.734 | 0.816 | 0.773 | 0.598 | 0.891 | 0.716 | 0.658 | 0.86 0.746 | 0.567 | 0.99 | 0.721 0.66 0.859 | 0.746

Table 2: Accuracy comparison with three alternative back end models.

MIMIC GDELT ICEWS18 ICEWS14 WIKI
prec. rec. F-m. | prec. rec. F-m. | prec. rec. F-m. | prec. rec. F-m. | prec. rec. F-m.
Default 0.644 | 0.608 | 0.625 | 0.876 | 0.969 | 0.92 | 0.992 | 0.815 | 0.895 | 0.705 | 0.836 | 0.765 | 0.845 | 0.772 | 0.807
TransE 0.617 | 0.579 | 0.598 | 0.683 | 0.639 | 0.66 | 0.832 | 0.668 | 0.741 | 0.171 | 0.158 | 0.164 | 0.329 | 0.319 | 0.324
EvolveGCN 0.44 | 0.694 | 0.539 | 0.721 | 0.651 | 0.684 | 0.789 | 0.753 | 0.771 | 0.507 | 0.754 | 0.606 | 0.414 | 0.653 | 0.507
ContinualGNN || 0.579 | 0.612 | 0.595 | 0.767 | 0.823 | 0.794 | 0.941 | 0.769 | 0.846 | 0.637 | 0.841 | 0.725 | 0.729 | 0.506 | 0.597

functioning to be able to answer CAT queries. This demonstrates
the extensibility of our framework in that it can accommodate other
temporal network representation learning models.

5.5 RQ4: Varying Model Parameters

We now move on to RQ4. We first look into the effect of changing
the dimensionality of embedding vectors. We compare the cases
when the embedding dimensionality is 32, 64, and 128, respectively,
and examine the impact on accuracy when predicting CAT queries,
the throughput when our model is being trained continuously while
answering CAT queries, and the throughput when it is only an-
swering CAT queries using a trained model.

Figure 8 shows the result on the average query accuracy (F-
measure) for all five datasets. We can see that, for 3 out of the 5
datasets, namely GDELT, ICWS14, and WIK], it is clear that the
accuracy increases as the embedding dimensionality increases from
32 to 64 to 128. This is not the case with the MIMIC and ICEWS18
datasets. The reason may be that 32 dimensions already capture the
needed latent features. Figure 9 shows the throughput with the five
datasets when the system is under continuous training and CAT
query evaluation, while Figure 10 shows the throughput when it is
only continuously evaluating CAT queries with a trained model. In
both cases, the throughput slightly decreases as the dimensionality
increases. This is due to the greater computational overhead with a
higher dimensionality.

We next examine the impact of the focal loss [26] (to improve
accuracy with imbalanced classes, Appendix A.3) in our system. The
results are shown in Figure 11 for CAT result accuracy and in Figure
12 for throughout under continuous training and query evaluation.
Figure 11 shows that average CAT result accuracy improves when
using focal loss for all five datasets, with ICEWS14 and WIKI being
more significant. This may be due to more class imbalance with
these two datasets. On the other hand, Figure 12 shows that focal
loss in general has minimal impact on throughput. This is because
the focal loss only adds a regularization term to the loss function
and does not significantly affect the loss convergence.

1519

5.6 RQ5: Effectiveness of FILTERBE2FE

InRQ5, we look into the effectiveness of our FILTERBE2FE algorithm,
which continuously selects the data aggregation nodes based on the
community structure to feed to a front end model. For comparison,
without the FILTERBE2FE optimization, naturally we just feed all
the nodes in the back end network explicitly referenced/needed by
the CAT queries to the front end model. We compare the average
query accuracy in Table 3. It is clear that, overall, FILTERBEZ2FE is
very effective and considerably improves the accuracy over all five
datasets. As discussed in Section 3, FILTERBE2FE adjusts and learns
the best data items to feed to the front end model in a data-driven
manner, and hence performs better.

We also examine the impact of FILTERBE2FE to throughput when
the system is under continuous training and CAT evaluation (Figure
13) and CAT query evaluation only using a trained model (Figure
14). Figure 13 shows that there is a small overhead associated with
FILTERBE2FE, and Figure 14 shows that there is virtually no over-
head to CAT query evaluation. This is because FILTERBE2FE only
makes small incremental changes at each continuous training step,
while it does not make any changes at the forward inference pass
for CAT evaluation.

5.7 RQ6: Impact of Fairness-Aware Scheduling

Finally, for RQ6, we investigate the effectiveness and overhead of
FAIRNESSAWARETRAINING. For comparison, without the fairness-
aware training scheduling for training, a natural alternative is to
do a round-robin scheduling of each CAT for training. Specifically,
we examine the Lipschitz bias, the average CAT result accuracy,
and throughput under continuous training with and without the
fairness-aware scheduling in Figures 15, 16, and 17, respectively.
From Figure 15, we can see that FAIRNESSAWARETRAINING signif-
icantly reduces the Lipschitz bias, often by one to two orders of
magnitude in four out of the five datasets, which achieves the main
purpose of our fairness-aware scheduling.

Figure 16 shows that, as a side effect, FAIRNESSAWARETRAINING
also improves the average CAT result accuracy, quite significantly in
some datasets such as MIMIC, ICEWS14, and WIKI. This is because,
by allocating more training time to those “hard” (less accurate and

Fairness-Aware Continuous Predictions of Multiple Analytics Targets in Dynamic Networks

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

107

10 10 _10°
_ — b _ I H B o seare .
% % S 10*
S 10° s 10° %
8) % 102
£ £ g £
g 102 g 102 :T %
s s 38 10°
i;m‘ i;m‘ ;
8 8 210’
100 MIMIC GDELT ICEWS18 ICEWS14 WIKI 10° MIMIC GDELT ICEWS18 ICEWS14 WIKI 10 MIMIC GDELT ICEWS18 ICEWS14 WIKI w0 MIMIC GDELT ICEWS18ICEWS14 WIKI
Dataset Dataset Dataset Dataset
Fig 12 Throughput vs. focal loss Fig 13 Throughput w/ training Fig 14 Throughput w/ query eval. Fig 15 Bias vs. scheduling
Table 3: Accuracy comparison with and without BE2FE optimization.
MIMIC GDELT ICEWS18 ICEWS14 WIKI
prec. | rec. | F-m. | prec. | rec. | Fm. | prec. | rec. | F-m. | prec. | rec. | F-m. | prec. | rec. | Fm.
BE2FE 0.812 | 0.631 | 0.71 | 0.896 | 0.956 | 0.925 | 0.89 1 0.942 | 0.643 | 0.999 | 0.782 | 0.714 | 0.798 | 0.754
No BE2FE || 0.586 | 0.567 | 0.576 | 0.863 | 0.927 | 0.894 | 0.992 | 0.832 | 0.905 | 0.727 | 0.709 | 0.718 | 0.597 | 0.705 | 0.647

3

I Fairness

I Faimess-aware I No Faimess

[No Faimess-aware

2 2%

F-measure
°
S
3

Throughput w/ cont. training (events/sec)
3,

>

MIMIC

GDELT ICEWS18 ICEWS14
Dataset

WIKI

MIMIC

GDELT ICEWS18 ICEWS14
Dataset

WIKI

Fig 16 Accuracy comparison Fig 17 Throughput comparison

requiring more training) CATs, FAIRNESSAWARETRAINING effec-
tively improves the overall result accuracy. In addition, Figure 17
shows that FATRNESSAWARETRAINING has nearly the same through-
put for continuous training and CAT evaluation as the round-robin
scheduling. This is because there is little overhead in the extra logic
of deciding which query to train next.

6 OTHER RELATED WORK

Most closely related work has been discussed in previous sections.
We survey other related work here.

Online Learning. Online machine learning in general has a long
history. It learns to update models from data streams sequentially [8,
15, 16]. The proposed algorithms include Perceptron [36], Online
Gradient Descent [51], and Passive Aggressive [9], which are all
for learning linear models. The work on online learning with ker-
nels includes [38]. More recently, online learning has been studied
for deep learning [24, 39, 50]. However, none of them studies on-
line continuous learning in dynamic networks where a number of
analytics tasks need to be continuously trained and predicted.

Dynamic Graph Neural Networks. There has recently been some
work on DGNN. We refer the readers to two excellent surveys [21,
40]. As shown in our experiments in Section 5, our back end has

great extensibility and can plug in any of these DGNN models,
including [18, 27, 34, 46, 48]. We focus on the problems of how to
filter data between the BE and FE models for specific CATs and
how to schedule their training in a fair manner.

Multi-Task Learning and Fairness in Machine Learning. Our
architecture contains multiple continuous analytics targets, which
bears some resemblance to multi-task learning (MTL). MTL has
been studied for deep neural networks [10], mostly under computer
vision and NLP. However, none of the previous work solves the
problems of determining the selection of back end shared model’s
embeddings for front end task specific models, as well as fairness-
aware training of multiple tasks. Finally, bias and fairness have been
an issue of intense study in machine learning lately. There have
been various proposals to define fairness for machine learning al-
gorithms [29]; yet we are the first to study the notion of fairness in
scheduling multiple prediction targets during online training, espe-
cially when multiple users are in the system. Our experiments also
indicate that fairness-aware scheduling improves overall prediction
accuracy.

7 CONCLUSIONS

We study a novel problem of continuously predicting a number of
continuous analytics targets (CATs) in dynamic networks. We focus
on two problems. One is to adaptively determine the best set of net-
work nodes whose embeddings from the back end DGNN should
be passed to a front end model for predicting a CAT. The other
is to devise a fairness-aware training scheduling algorithm and
to estimate the fairness with accuracy guarantees. Our extensive
experiments using five real-world datasets demonstrate the effec-
tiveness, accuracy, scalability, and extensibility of our approach.

Acknowledgments. This work is supported by NSF grants IIS-
2124704, OAC-2106740, and New England Transportation Consor-
tium project 20-2.

1520

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

REFERENCES

(1]

[10]

[11

[12]

[13]

[14]

[15]
[16]

[17

[18]

[19

[20]

[21]

[22

[23]
[24]

[25

[26]

J. Ahmed and M. Ahmed. 2018. Semantic web approach of integrating big data —
A review. International Journal of Computer Sciences and Engineering (2018).

N. Alon and J. Spencer. 1992. The Probabilistic Method. New York: Wiley.

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. 2002. Models and Issues in Data Stream Systems. In Proceedings of the
Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS ’02). 1-16.

Shivnath Babu and Jennifer Widom. 2001. Continuous queries over data streams.
ACM SIGMOD Record 30, 3 (2001), 109-120.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In Advances in Neural Information Processing Systems 26. Curran Associates,
Inc.

Elizabeth Boschee, Jennifer Lautenschlager, Sean O’Brien, Steve Shellman, James
Starz, and Michael Ward. 2015. ICEWS coded event data. Harvard Dataverse 12
(2015).

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovié. 2021.
Geometric Deep Learning: Grids, Groups, Graphs Geodesics and Gauges.
arXiv:2104.13478 (2021).

N Cesa-Bianchi and G Lugosi. 2006. Prediction, learning, and games. Cambridge
University Press.

K Crammer, O Dekel, J Keshet, S Shalev-Shwartz, and Y Singer. 2006. Online
passive-aggressive algorithms. JMLR (2006).

Michael Crawshaw. 2020. Multi-Task Learning with Deep Neural Networks: A
Survey. arXiv preprint arXiv:2009.09796 (2020).

Devdatt P. Dubhashi and Alessandro Panconesi. 2009. Concentration of Measure
for the Analysis of Randomized Algorithms. Cambridge University Press.
Cynthia Dwork, Moritz Hardty, Toniann Pitassiz, Omer Reingold, and Richard
Zemel. 2012. Fairness Through Awareness. In The 3rd Innovations in Theoretical
Computer Science.

R. S. Evans. 2016. Electronic Health Records: Then, Now, and in the Future. IMIA
Yearbook of Medical Informatics Suppl 1 (2016).

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. 2017. On Calibration
of Modern Neural Networks. In Proceedings of the 34th International Conference
on Machine Learning (ICML 2017).

S.C.H. Hoi,] Wang, and P Zhao. 2014. Libol: A library for online learning
algorithms. Journal of Machine (2014).

S. C. H. Hoi, D. Sahoo, J. Lu, and P. Zhao. 2018. Online learning: A comprehensive
survey. arXiv preprint arXiv:1802.02871 (2018).

INRIX 2022. INRIX IQ. Available at https://inrix.com/products/ig-location-
intelligence-solutions/..

Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. 2020. Recurrent Event
Network: Autoregressive Structure Inference over Temporal Knowledge Graphs.
In EMNLP.

AEW Johnson, TJ Pollard, L Shen, L Lehman, M Feng, M Ghassemi, B Moody, P
Szolovits, LA Celi, and RG Mark. 2016. MIMIC-IIL, a freely accessible critical care
database. Scientific Data (2016).

Justin M. Johnson and Taghi M. Khoshgoftaar. 2019. Survey on deep learning
with class imbalance. Journal of Big Data 6, 27 (2019).

M. Seyed Kazemi. 2022. Dynamic Graph Neural Networks. In Graph Neural
Networks: Foundations, Frontiers, and Applications, Lingfei Wu, Peng Cui, Jian Pei,
and Liang Zhao (Eds.). Springer Singapore, Singapore, 323-349.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. IEEE Transactions on Neural Networks 5,1 (2016), 61-80.
Julien Leblay and Melisachew Wudage Chekol. 2018. Deriving validity time in
knowledge graph. In The Web Conference.

J Lee, J Yun, S Hwang, and E Yang. 2017. Lifelong learning with dynamically
expandable networks. arXiv:1708.01547 (2017).

Kalev Leetaru and Philip A Schrodt. 2013. GDELT: Global data on events, location,
and tone, 1979-2012. ISA annual convention 2 (2013), 1-49.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. 2017.
Focal Loss for Dense Object Detection. In ICCV.

1521

&
22

[35

(36]

[37

(38]

@
20,

[40

(41

[42

[43]

=
&

[45

[46

[47

[48

[49

o
S

[51

Ruifeng Liu, Qu Liu, and Tingjian Ge

Xuanming Liu and Tingjian Ge. 2020. Mining Dynamic Graph Streams for
Predictive Queries Under Resource Constraints. In PAKDD.

Andrew McGregor. 2014. Graph stream algorithms: A survey. ACM SIGMOD
Record 43, 1 (2014), 9-20.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram
Galstyan. 2022. A Survey on Bias and Fairness in Machine Learning. Comput.
Surveys 54, 6 (2022), 1-35.

S.P.Meyn and R L. Tweedie. 2012. Markov Chains and Stochastic Stability. Springer
London.

M. Mitzenmacher and E.Upfal. 2005. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press.

Jooyoung Moon, Jihyo Kim, Younghak Shin, and Sangheum Hwang. 2020.

Confidence-Aware Learning for Deep Neural Networks. In ICML.
Faisal Mushtaq and Matt E. Moore. 2020. Cloud-based interoperability will

accelerate clinical outcomes. Physicians Practice (2020).

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2020.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. In
AAAL

German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan
Wermter. 2019. Continual lifelong learning with neural networks: A review.
Neural Networks 113 (2019), 54-71.

Frank Rosenblatt. 1958. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review 65, 6 (1958).

Tara Safavi, Danai Koutra, and Edgar Meij. 2020. Evaluating the Calibration of
Knowledge Graph Embeddings for Trustworthy Link Prediction. In The 2020
Conference on Empirical Methods in Natural Language Processing.

D Sahoo, S. C. H. Hoi, and P Zhao. 2016. Cost sensitive online multiple kernel
classification. ACML (2016).

Doyen Sahoo, Quang Pham, Jing Lu, and Steven C. H. Hoi. 2018. Online Deep
Learning: Learning Deep Neural Networks on the Fly. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18.
International Joint Conferences on Artificial Intelligence Organization, 2660—
2666.

J. Skarding, B. Gabrys, and K. Musial. 2021. Foundations and modelling of dynamic
networks using Dynamic Graph Neural Networks: A survey. IEEE Acces 9 (2021).
Naisha Sultanal, Gandikota Ramu, and B. Eswara Reddy. 2014. Cloud-based De-
velopment of Smart and Connected Data in Healthcare Application. International
Journal of Distributed and Parallel Systems 5, 6 (2014).

Pedro Tabacof and Luca Costabello. 2020. Probability Calibration for Knowl-
edge Graph Embedding Models. In The International Conference on Learning
Representations (ICLR).

V. A. Traag, L. Waltman, and N. J. van Eck. 2019. From Louvain to Leiden:
guaranteeing well-connected communities. Scientific Reports 9, 5233 (2019).
Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. 2017. Know-evolve:
Deep temporal reasoning for dynamic knowledge graphs. In ICML.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. ICLR (2018).
Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. 2020. Streaming Graph
Neural Networks via Continual Learning. In CIKM.

Rex Ying, Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes Canedo, and
Jure Leskovec. 2020. Neural Subgraph Matching. In CoRR abs/2007.03092.

Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and
Haifeng Li. 2020. T-GCN: A Temporal Graph Convolutional Network for Traffic
Prediction. IEEE Transactions on Intelligent Transportation Systems 21, 9 (2020),
3848-3858.

Peixiang Zhao, Charu Aggarwal, and Gewen He. 2016. Link Prediction in Graph
Streams. In ICDE.

G Zhou, K Sohn, and H Lee. 2012. Online incremental feature learning with
denoising autoencoders. AISTATS (2012).

M Zinkevich. 2003. Online convex programming and generalized infinitesimal
gradient ascent. In ICML.

https://inrix.com/products/iq-location-intelligence-solutions/.
https://inrix.com/products/iq-location-intelligence-solutions/.

Fairness-Aware Continuous Predictions of Multiple Analytics Targets in Dynamic Networks

A APPENDIX
A.1 Connection to FE

We now consider the mapping between the chosen § nodes (let
the set be 1) and the input positions to a model at FE for a CAT
(e.g., MLP). The idea is that when FILTERBEZ2FE slightly changes
the membership of 7 to I’ (e.g., they differ by only one node), the
nodes 7 N I’ should not change their input positions at the FE
model—this would make the training more stable (as the “wiring”
of the neurons is mostly unchanged).

To achieve this goal, we randomly hash each node in 7~ to one
of the §’ > § input positions at the FE model. We use a parameter
8" > & so that the chance that a chosen node in I happens to collide
with another node in 7 can be made arbitrarily small. In the event
that more than one node maps to the same position, we can perform
average pooling (or max pooling) between them.

LEMMA 1. The probability that a particular node in I does not

collide with another node in I at the input of the front end model is
S-1
e o .

Proor. The probability that a node v does not collide with any

of the § — 1 nodes in I \ {0} is exactly (1 — %)5’1 ~ e_%, O

From Lemma 1, the probability of no collision increases (ap-
proaching 1) as 8’ increases. We use null (all 0’s) for an input posi-
tion that does not correspond to any node in 7.

A.2 Query Template
In this paper, we consider a general template of CATs as

SELECT CASE WHEN COUNT(%)>0 THEN ‘True’ ELSE ‘False’ END
FROM (SELECT 1

FROM <node-selector>

[GROUP BY <attribute>]

HAVING <condition>)

The CAT query returns “True” if at least one group satisfies the
condition. The node selector selects a set of nodes and the subgraph
induced by them. The GROUP BY and HAVING refer to node or edge
attributes. This form is expressive enough to characterize a broad
range of CATs. In dynamic networks, very often a query is targeted
towards each substream that corresponds to an individual object
or person. This is the reason for the optional GROUP BY clause
above, while the HAVING clause specifies the condition within
each group/substream (or a single group if there is no GROUP BY).
Our representation-learning framework has potential to process an
even broader range of CATs including reachability and subgraph
pattern matching, which is beyond the scope of this paper and is left
as future work (e.g., neural subgraph matching is studied in [47]).

A.3 Training Details and Loss Function

Logging Data Updates. A CAT is about the state of data in the
dynamic graph G at time At from now. Thus, we need to delay the
training for At because only then do we have the ground truth label
to supervise the training. Consequently, for all CATs qx, ..., qn, we

need to log the data updates in the last Aty;, denoting the maximum
At among all queries. In this way, we will be able to use the needed

version of data to train over each query.

1522

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Class Imbalance. Sample class imbalance is a common problem in
machine learning [20]. It is a potential issue in our context because
the selectivity of a CAT query can be small, i.e., most of the time
its result is false, and our training uses a small fraction of true
samples. The vast number of “easy” negatives would overwhelm
the training, causing it to under-perform for the minority positive
class. To deal with this problem, we perform the following: (1) Log
the data contexts of the instances of the minority class (typically
the positive class). During training, with a certain frequency, we
randomly pick one of the instances to “replay” the minority class
backpropagation training. (2) Inspired by Lin et al’s work on a
computer vision problem [26], we replace the cross-entropy loss
function of MLP QNet by the following focal loss function:

—a(1=pi)¥logpi, (yi=1)
~(1-a)p]log(1-p), (y:=0)
where y > 0, and 0 < a < 1 is a weighting factor balancing the
importance of positive/negative examples. We use y = 2 by default.
Intuitively, for example, for “easy negatives” (i.e., y; = 0 and p; is
small), the piy factor makes the loss much smaller than the original
cross-entropy loss. On the other hand, if this is a misclassification,
e.g., y; = 1 and p; is close to 0, then the loss is close to the original
cross-entropy loss. We set & = 1—p., where p, is the fraction of pos-
itive examples (after replays)—hence, the fewer positive examples
we use, the greater weight their loss has.

Le(piyi) = { 3)

Confidence. It is important for FE to also return an accurate con-
fidence value c; associated with the returned result of query g;.
One way to assign the confidence c; is to use the maximum class
probability at the output layer of an FE model. In Equation 8, this
corresponds to
ci = max(p;, 1 - pi))
That is, if p; > 0.5, the model will report true and ¢; = p;; otherwise
it will report false and ¢; = 1 — p;. However, it is well known in the
machine learning literature that the reported probability p; is quite
inaccurate and uncalibrated for deep neural networks [14, 37, 42].
Most of the existing approaches of probability calibration rely
on post-processing, i.e., learning a model to adjust the maximum
class probability after the original model has made the predic-
tion. One problem with this approach, e.g., Isotonic regression
or Platt scaling [14], is that the extra training of the post-processing
model causes some overhead. One way is to use a regularization
approach [32] that further enhances the focal loss function in Equa-
tion 8 with a confidence-order loss as follows:

Le(xi,xj) =max(0,—sgn(fi — fj)(ci—c)) +|fi= fi)) (10)
where sgn(f; — fj) is the sign of f; — fj (i.e.,, 1,0, or -1), and f; is the
frequency that the QNet predicts a result that is the same as what
it returns in the end during the SGD training of the sample of g;.
Intuitively, for an “easy” sample, during the iterations of SGD, the
model already gives mostly consistent prediction answers, while
for a “hard” sample, the model may go back and forth and take a
longer time to get to the final returned answer. Thus, the relative
order on frequency (f; vs. f;) should be consistent with the relative
order on the returned confidence (c; vs. c;); otherwise, Equation 10
will penalize it with a loss. For instance, if f; > f; but¢; < cj,

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

then there is a positive loss ¢j — ¢; + f; — f;. Finally, the total loss
function is a weighted sum of the focal loss L in Equation 8 and
the confidence-order loss £, in Equation 10:

-y >

(x1,Y:) €S (xi,X;) €SPy

Le(piyi) + 1 Le(xix;) (11)
where A is a weight constant, S,y is the set of samples from the
current stream window, and SP,, is a set of sample pairs in the

current window.

A.4 Details of Datasets and Setup
We use five real-world datasets as follows.

e MIMIC. The MIMIC-III (Medical Information Mart for Inten-
sive Care III) dataset [19] is a large, freely-available database
comprising deidentified health data associated with over 40,000
patients. It includes high temporal resolution data such as vital
sign measurements, laboratory test results, procedures, medica-
tions, caregiver notes, imaging reports, demographics, etc. The
total size is 27GB.

o GDELT. The GDELT (Global Database of Events, Language, and
Tone) is an event-based social media dynamic graph [25]. It mon-
itors print, broadcast, and web news media in over 100 languages
from across every country to keep continually updated on break-
ing developments anywhere on the planet. It contains real-time
measurements of 2,300 emotions and themes. The part that we

1523

Ruifeng Liu, Qu Liu, and Tingjian Ge

use consists of 2,278,405 events with 240 temporal relationship
types.

o ICEWS18. The ICEWS18 (Integrated Crisis Early Warning Sys-
tem in 2018) [6] contains social-media event data, which is coded
interactions between socio-political actors (i.e., cooperative or
hostile actions between individuals, groups, sectors and nation
states). Events are automatically identified and extracted from
news articles by the BBN ACCENT event coder. The part that we
use contains 468,558 dynamic graph events in 256 relationship
types.

ICEWS14. The ICEWS14 data is similar to ICEWS18, but the data

was collected in 2014 [44]. These events are triples consisting of a

source actor, an event type (according to the CAMEO taxonomy

of events), and a target actor. The part of the dataset that we use
contains 665,304 temporal events in 260 relationship types.

o WIKI. Wikidata is a free and open knowledge base that can be
read and edited by both humans and machines [23]. It has struc-
tured data of its Wikimedia sister projects including Wikipedia,
Wikivoyage, Wiktionary, Wikisource, and others. The portion
of data that we use consists of 669,934 temporal events in 24
relationship types.

All the algorithms described in this paper are implemented in
Python. All the experiments are run on a machine with Intel i7-
8750H CPU and GeForce RTX 2080 GPU.

	Abstract
	1 Introduction
	2 Problem Statement and Preliminaries
	3 Selection of Back End Output for a Front End CAT
	4 Fairness-aware Training Scheduling
	4.1 Fairness
	4.2 CAT Language and Embedding
	4.3 Training Scheduling and Fairness Estimation

	5 Experimental Evaluation
	5.1 Datasets, Baselines, and CAT Queries
	5.2 RQ1: Throughput and Scalability
	5.3 RQ2: Learning Embedding and Accuracy
	5.4 RQ3: Extensibility
	5.5 RQ4: Varying Model Parameters
	5.6 RQ5: Effectiveness of FilterBE2FE
	5.7 RQ6: Impact of Fairness-Aware Scheduling

	6 Other Related Work
	7 Conclusions
	References
	A Appendix
	A.1 Connection to FE
	A.2 Query Template
	A.3 Training Details and Loss Function
	A.4 Details of Datasets and Setup

