
Fairness-Aware Continuous Predictions of Multiple Analytics
Targets in Dynamic Networks

Ruifeng Liu∗
University of Massachusetts, Lowell

Lowell, Massachusetts, USA
rliu@cs.uml.edu

Qu Liu∗
University of Massachusetts, Lowell

Lowell, Massachusetts, USA
qliu@cs.uml.edu

Tingjian Ge
University of Massachusetts, Lowell

Lowell, Massachusetts, USA
ge@cs.uml.edu

ABSTRACT
We study a novel problem of continuously predicting a number of
user-subscribed continuous analytics targets (CATs) in dynamic
networks. Our architecture includes any dynamic graph neural
network model as the back end applied over the network data, and
per CAT front end models that return results with their con�dence
to users. We devise a data �ltering algorithm that feeds a provably
optimal subset of data in the embedding space from back end model
to front end models. Secondly, to ensure fairness in terms of query
result accuracy for di�erent CATs and users, we propose a fairness
metric and a fairness-aware training scheduling algorithm, along
with accuracy guarantees on fairness estimation. Our experiments
over �ve real-world datasets show that our proposed solution is
e�ective, e�cient, fair, extensible, and adaptive.

CCS CONCEPTS
•Computingmethodologies!Machine learning approaches;
Online learning settings.

KEYWORDS
dynamic networks, continuous analytics targets, representation
learning, fairness

ACM Reference Format:
Ruifeng Liu, Qu Liu, and Tingjian Ge. 2023. Fairness-Aware Continuous
Predictions of Multiple Analytics Targets in Dynamic Networks. In Proceed-
ings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD ’23), August 6–10, 2023, Long Beach, CA, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3580305.3599341

1 INTRODUCTION
In dynamic networks, attribute values and/or links/nodes constantly
change over time. As a powerful and general way to model data en-
tities and their diverse interactions, dynamic networks are common
in a large number of applications today. We list but a few examples:
(1) messaging and social network interactions as graph edges, (2)
clickstreams of users to products and purchase actions/edges from

∗These authors contributed equally to the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00
https://doi.org/10.1145/3580305.3599341

users to products in e-commerce, (3) user-product edges for reviews
and feedback in e-commerce, (4) web requests and �le transfers
among parties on the Web such as Internet service providers and
data centers, (5) cloud data systems such as cloud electronic health
record (EHR) systems [13, 33, 41], and (6) real time tra�c data
where road segments are edges [17]. Importantly, the graph model
has a �exible data schema, and hence has the inherent advantage
of easier data fusion from multiple heterogeneous sources [1].

E������ 1. Figure 1 illustrates a dynamic network about patients
in an intensive care unit (ICU) from a dataset [19]. There are many
types of entities including patients, diagnoses, procedures, lab events,
input events, and prescription drugs. They are shown as nodes of
di�erent colors. The edges represent the relations and interactions
such as those between patients and diagnosis nodes, between patients
and lab events, and so on. Interaction edges have timestamps and
nodes may have attributes. Learning from such heterogeneous data
sources is instrumental for inference and reasoning.

Patient A

Patient B

Patient C

Patient D

Septic shock
Atrial flutter

Vascular cath irrigation

Anion gap
Platelet count

Nutren 2.0

Propofol

Tromethamine

Alteplase

Diagnosis Procedure Lab event Input event Drug

Figure 1: A dynamic network in the healthcare domain.

Continuous Analytics Targets (CATs). Dynamic networks re-
semble data streams [3] and graph streams [28], where data is also
continuously changing, and a major type of analytics workload
is user-subscribed monitoring tasks [4], which we call continuous
analytics targets (CATs). In this paper, we focus on predictive targets,
i.e., continuously predicting events/information at a later time. For
instance, in Example 1, a hospital manager may subscribe to the
following CAT:

Notify me when it is predicted that, in the next hour, grouped
by the medical procedure, the number of patients tested with
abnormal results is above a certain threshold.

1512

https://doi.org/10.1145/3580305.3599341
https://doi.org/10.1145/3580305.3599341
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599341&domain=pdf&date_stamp=2023-08-04

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ruifeng Liu,� Liu, and Tingjian Ge

This is so that su�cient resources can be allocated in time to provide
urgent care to those ICU patients. In addition, one-time ad hoc tasks
may also be issued at any time.

Model and Challenges. Graph neural networks have become
the state-of-the-art deep learning model for data represented as
graphs [7, 22, 45]. In recent years, there has been a number of
proposals of dynamic graph neural networks (DGNN) [21, 40] that
become the dominant approach for dynamic networks. Thus, DGNN
is the basic model for our problem.

Figure 2 shows the overall architecture. There is a back end (BE)
model that is applied to the dynamic network; this is a typical DGNN
model mentioned above, which typically consists of a conventional
graph neural network (GNN) model to capture message-passing
at the graph-structure level and a sequence model for temporal
correlations. Then there is a front end (FE), which has a separate
layer of neural network (e.g., MLP) for each continuous analytics
target, and which presents the result of each CAT in the form of
(A4BD;C8 , 2>=5 834=248) to the user.

DGNN
GNN

seq.

MLP
r1, conf1

.

.

.

Dynamic Network Back End Front End

rn, confn

Continuous Analytics Target
Attribute/Node Changes

Edge Changes

Figure 2: The overall model architecture.

As data constantly changes, the model needs to be continuously
trained and updated [35]. The main challenges here have to do
with the multiple continuous analytics targets (CATs). Each CAT
is an analytical query as in the example above, and it is not clear
the embeddings of which nodes of the dynamic network (from the
DGNN at BE) should be fed as input to the model at the FE for
that CAT. As there can be a large number of nodes in the network,
simply aggregating the embeddings of all nodes may be too much
and carry unneeded signals.

Secondly, since online continuous training is computational-
resource demanding, as observed in our experiments (Section 5), it
signi�cantly a�ects the result accuracy and con�dence of di�erent
CATs as to how much weight we give to each CAT or how to
schedule their training. In summary, we aim to answer the following
questions:

What is the best way to select latent messages/embeddings
to route from the back end model to front end model for
each CAT? In the online training of = CATs that may be
from di�erent users, how do we ensure a fair schedule/weight
assignment of the = CATs?

Our Contributions. To our knowledge, we are the �rst to work
on the challenging online continuous training problem for multiple
continuous analytical targets in dynamic networks.

For the problem of selecting latent messages/embeddings to
route from the back end model to front end model for each CAT, we

devise a randomized algorithm that adaptively over time determines
an optimal subset of nodes in a tree resulted from a community
detection algorithm. The embeddings of this subset of nodes will be
fed into the front endmodel of a CAT.We prove that our randomized
algorithm has a desired property that its selection of nodes follows
a Markov chain and converges to a stationary distribution where
the probability of the selection is proportional to its utility (de�ned
as the accuracy of the CAT prediction). In addition, this selection is
adaptive to data/pattern drifts.

For the problem of ensuring a fair schedule in training = CATs
potentially from di�erent users, we leverage the individual fair-
ness [12] notion studied in machine learning and de�ne the Lips-
chitz bias for our problem. Then we propose an algorithm that is
fairness-aware and that adapts to the actual data while schedul-
ing the training of = CATs. Importantly, we are able to estimate
the Lipschitz bias and prove the theoretical guarantees of the esti-
mation using martingales and Azuma-Hoe�ding inequality [2]. We
perform a comprehensive empirical evaluation using �ve real-world
datasets that demonstrate the feasibility, scalability, accuracy, and
extensibility of our approach.

2 PROBLEM STATEMENT AND
PRELIMINARIES

A dynamic network G = (# , ⇢) can be considered as an in�nite
sequence of snapshots G1,G2, ...,GC , ..., where each snapshot GC
corresponds to a time step C , # is the set of nodes, and ⇢ is the set of
edges (either directed or undirected). Each snapshot GC = (#C , ⇢C)
satis�es #C ✓ # and ⇢C ✓ ⇢. Each node E 2 # may have a set of
attributes - = -1, ...,-0 that may bear di�erent values in di�erent
snapshots. In addition, each edge 4 2 ⇢ may be of one of the A types.

G has = continuous analytics targets (CATs), each of which is to
continuously predict, at every time C , a function of the data in GC+X ,
where X > 0. That is, each CAT is to keep predicting, at every step C ,
a value that is a function of the data in a future snapshot. In addition,
for each prediction of a CAT, we also return the corresponding
con�dence value 0 < 2>=5 6 1, which is the (estimated) probability
that the returned result is correct [14, 37, 42].

For such a continuous analytics workload, there is a body of pre-
vious models called dynamic graph neural networks (DGNN) [21, 40]
that can be used to perform the tasks. The overall model architec-
ture is shown in Figure 2. The dynamic network contains constant
attribute/node updates as well as edge updates. The back end (BE)
model is a DGNN applied to this data, and is connected to the front
end (FE), which contains one neural network model (e.g., multi-
layer perceptron or MLP) per CAT. FE continuously returns to the
users, for each CAT 8 (1 6 8 6 =), the prediction result A8 along
with the con�dence 2>=58 .

Under this model architecture, in this paper, we focus on two
related problems in the online continuous training for the = CATs:
(P1) What is the best way (in particular, what node embeddings/la-
tent messages) to select from the output/result of the back end
DGNN model as the input to the FE model of each CAT? (P2) As
the online training is resource demanding, and the = CATs may
even be from di�erent users, what is a fairness-aware way to train
the CATs, and how to quantify the fairness?

1513

Fairness-Aware Continuous Predictions of Multiple Analytics Targets in Dynamic Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

3 SELECTION OF BACK END OUTPUT FOR A
FRONT END CAT

In this section, we �rst study (P1) above. The back end DGNNmodel
produces an embedding vector for each node in G. For a particular
continuous analytics target @8 , we aim to select an optimal set of
nodes whose embeddings are fed into the FEmodel for@8 to produce
the result with best accuracy/con�dence. Intuitively, having too
large a set of data items may be sub-optimal as some of them may
be irrelevant and would weaken the useful signal to the prediction
of @8 . In addition, some nodes/attributes may not be observed (i.e.,
missing) in the data, and some other nodes’ embeddings may be
better used for the prediction.

One intuition is that, for a cluster of nodes in G, if we decide to
select them to feed into FE, we can use their pooled (i.e., aggregate)
embedding. This motivates us to �rst use a community detection
algorithm (e.g., Leiden [43]) to compute a hierarchical tree T of
communities o�ine, based on a static version G0 of G from its edge
statistics (e.g., an edge (D, E) exists in G0 if the frequency of (D, E)’s
appearance in G is above a threshold). Each internal node of T
encompasses the cluster of nodes in the level below (i.e., its direct
children); thus we use pooling to get the embedding of an internal
node (e.g., average pooling). We assume that the optimal set we are
seeking to feed to FE is from no more than X nodes of T , where X
is a small constant (which we empirically study in Section 5.2). We
call this a data �lter from BE to FE, as illustrated in Figure 3.

Figure 3: Illustrating a data �lter from BE to FE. The solid vertices
at the bottom level and the edges connecting them are from G, which
are partitioned into a hierarchical tree T of communities, as indi-
cated by the hollow vertices at upper levels. The red-circled ones are
the X nodes (X = 3) selected to feed to a CAT’s model in FE.

The basic idea of our �ltering algorithm is to adaptively sample
X nodes from T . Sequentially, each time we make a small local
change to the sample and evaluate the utility, which can be �exibly
de�ned, such as the accuracy or con�dence of predicting the CAT.
Based on the utility, we probabilistically either accept or reject the
sample change. We will prove that this online adaptive algorithm
has desired behavior. The algorithm is shown in F�����BE2FE.

In line 1, we �rst randomly choose X leaf nodes from the embed-
ding tree T based on the nodes referenced in @8 . This is a starting
point of the node set (, with which we get the utility D (() in pre-
dicting @8 (line 2). The loop from line 3 iteratively adjusts the node
set (until it follows a distribution that we desire. Speci�cally, we
�rst choose a node E uniformly at random from ((line 4). Then
with probability ? , we perform a one-step random walk from E (line
5), in which E 0 is set to either a neighbor of E , each with probability
1
3 (where 3 is the maximum degree of a node in T) or E itself. With
probability 1 � ? , we just choose E 0 uniformly at random from T
(line 6)—which we call teleport.

In lines 7-8, the set (0 is the tentative new version of (where
node E is replaced by E 0, and we get its utility in predicting @8 . Line

Algorithm 1: F�����BE2FE
Input :T : a tree of dynamic embeddings of G from BE
Output: X nodes of T to feed to FE for CAT @8

1 (random X leaves of T among those referenced in @8
2 feed (to FE when evaluating @8 and get the utility D (()
3 while CAD4 do
4 choose a node E uniformly at random from (
5 with probability ?, E 0 one step random walk from E
6 otherwise E 0 a node chosen uniformly at random in

T
7 (0 (\ {E} [{E 0}
8 feed (0 to FE when evaluating @8 and get the utility D ((0)
9 with probability<8=(1, D ((

0)
D (()), ((0

10 return (upon request as the current selection

9 probabilistically updates (to be (0—if (0 has a higher utility, (
is always updated; otherwise the update probability is the utility
ratio. We now analyze F�����BE2FE and show that the execution
follows a Markov chain with a desired stationary distribution.

T������ 1. The execution of F�����BE2FE follows a Markov chain
that has a unique stationary distribution, in which the probability of
choosing a set of X nodes is proportional to the utility of the set.

P����. We de�ne the state of the execution of F�����BE2FE as
the set of nodes in (. It follows a Markov chain because the current
content of (only depends on its content in the previous time step,
i.e., the previous iteration of the loop in line 3. The chain has a
�nite number of states. It is irreducible [30] because any two states
of the chain (i.e., two multisets of nodes (1 and (2) can reach each
other through a number of steps (iterations of the loop from line 3).
Moreover, the chain is aperiodic because at any state 8 with set (,
there is a positive probability that the next step will be in the same
state with the same node set (e.g., the teleport happens to select the
same node E). Thus, this �nite, irreducible, and aperiodic Markov
chain must be an ergodic chain, and in turn, it must have a unique
stationary distribution [30].

We next show that in its unique stationary distribution, the
probability of having a set of X nodes is proportional to the utility
of the set. Precisely, we prove that the unique stationary distribution
must be c = (D1

/ , D2
/ , . . . , D</), where< is the number of states of

the Markov chain, D8 (1  8  <) is the utility of state 8 , i.e., D ((8),
and / is a normalization constant / =

Õ<
8=1 D8 . Let c8 be

D8
/ , for

1  8  <. We show that

c8%8 9 = c 9% 98 (1)

where %8 9 is the transition probability from state 8 to state 9 fol-
lowing F�����BE2FE. When states 8 and 9 di�er by more than one
node, then clearly %8 9 = % 98 = 0 according to F�����BE2FE, and
Eq. 1 is true. When states 8 and 9 di�er by only one node, there are
two cases: (i) the nodes they di�er on are neighbors in T , or (ii) the
nodes they di�er on are not neighbors. Without loss of generality,
we assume D8  D 9 .

In case (i), according to F�����BE2FE (in particular line 9), we
have c8%8 9 = c8?= min(1, D 9

D8
) = c8?= = D8

/ ?= = D 9
/ ?= · D8D 9

= c 9% 98 ,

1514

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ruifeng Liu,� Liu, and Tingjian Ge

where ?= = 1
X (?

1
3 + @ 1

| T |) is the probability of picking these two
nodes in case (i) for the proposed transition, @ = 1 � ? , and |T | is
the number of nodes in T . Thus Eq. 1 holds. Similarly, in case (ii),
Eq. 1 holds too by only replacing ?= by 1

X @
1
| T | . Then from Eq. 1, c

must be the unique stationary distribution [31]. ⇤

There are some additional details on the mapping between the
chosen X nodes and the positions of input to the FE model for a
CAT, which are discussed in Appendix A.1.

4 FAIRNESS-AWARE TRAINING SCHEDULING
We now study the second problem (P2), i.e., how to schedule the
training of the = continuous targets (CATs), which may be sub-
scribed by di�erent users, in a fair manner.

4.1 Fairness
We study the notion of fairness for the = CATs @1, . . . ,@= . Bias and
fairness have been an issue of intense study in machine learning
lately. There have been various proposals to de�ne fairness for
machine learning algorithms [29]. For our problem, the most rel-
evant de�nition is the so-called “fairness through awareness” or
“individual fairness” [12]. Intuitively, it requires that “similar indi-
viduals are treated similarly”. In our context, informally, similar
CATs should get results with similar accuracy. A CAT query may
not get su�cient accuracy if it is not trained enough given the dy-
namic data updates. Here, we measure CAT similarity conveniently
using their embeddings (to be discussed in Section 4.2). Formally,
the fairness is de�ned as achieving the Lipschitz property:

D��������� 1 ([12]). Amapping" : + ! . satis�es the (⇡,3)-
Lipschitz property if for every G,~ 2 + we have

⇡ ("G,"~)  3 (G,~)
Here," maps an input (i.e., “individual” G or~) to an algorithm’s

output, and the outputs’ distance as measured by ⇡ should not be
greater than the di�erence of the individuals G and ~ as measured
by 3 , conformant to the intuition of individual fairness as stated
above. We extend this notion to a system that predicts = CATs
@1, . . . ,@= , and de�ne the bias as:

D��������� 2. The Lipschitz bias of predicting = CATs @1, . . . ,@=
is

2
=(= � 1)

’
18< 9=

max(0,
��28 � 2 9 �� � 3 (@8 ,@ 9)) (2)

where 28 (resp. 2 9) is the con�dence of the result of @8 (resp. @ 9), and
3 (@8 ,@ 9) is the distance between @8 and @ 9 in [0, 1].

For example, 3 (@8 ,@ 9) may be the cosine distance of their em-
beddings. De�nition 2 performs the average over the

�=
2
�
pairs of

CAT queries @8 and @ 9 . Each pair satis�es the Lipschitz property in
De�nition 1 if

��28 � 2 9 ��  3 (@8 ,@ 9); otherwise, the di�erence is the
bias of this CAT pair, and the average over all pairs is the Lipschitz
bias of the = CAT queries.

4.2 CAT Language and Embedding
Recall that the Lipschitz bias in De�nition 2 requires the distance
3 (@8 ,@ 9) between two CAT queries @8 and @ 9 . In the meantime, it is
also necessary to de�ne a CAT query language for users. Analogous

to work in data streams [3], it is common to use a variant of SQL as
the user interface language. Moreover, a CAT query expressed in
SQL corresponds to a query tree graph, for which we can perform
graph embedding and treat it as the embedding of the CAT query.
We use the cosine distance between the two CAT embeddings as
3 (@8 ,@ 9) needed in De�nition 2. The following CAT query Q1 is
similar to what is discussed earlier in Example 1 (Figure 1).

SELECT CASE WHEN COUNT(*)>0 THEN ‘True’ ELSE ‘False’ END

FROM (SELECT 1 FROM lab_events

WHERE flag = ‘abnormal’ AND time BETWEEN C1 AND C2
GROUP BY pid

HAVING COUNT(*) > g)

Q1 is to predict and notify the user if, in a future time interval
[C1, C2] (relative to now), there will be at least one patient in the
lab_events subgraph/stream who has more than g abnormal test
results. A general query template is in Appendix A.2. Figure 4
illustrates a query tree template for CATs like Q1.

select

op-constattribute

from

stream
name properties

where

and

name properties op value

group by

attribute
name properties

having

op-constattribute

predicate

name properties op value
predicate predicate

Figure 4: A query tree graph for a CAT used for embedding.

We then apply Graph Attention Networks (GAT) [45]:

h(l+1)i =
’

92# (8)
U8 9W(l)h(l)j + B(l)h(l)i (3)

where 0  ;  ! � 1 and ! is the level (#hops) of neighborhood
message passing. U8 9 is based on an attention mechanism. The
boundary condition is h(0)i = xi, the attribute values at vertex 8 ,
and h(L)i is the �nal embedding of vertex 8 .

We set ! to be the height of the query tree, so that the root node
will have latent information originated from all nodes in the tree.
We use the embedding of the root (SELECT) node as the �nal query
embedding. Thus, the root serves as the anchor node of the query
graph. For a node that does not have any attributes (e.g., most of
the internal nodes), we treat it as having one attribute with a �xed
value 1. Moreover, we have multiple versions of B(0) , one for each
node type (e.g., “select” or “stream” in Figure 4), i.e., B(0)

t for a
node of type C , which is a 3 ⇥� matrix where � is the number of
attributes of the node type and 3 is the embedding dimensionality.
For a node without attributes, the 3 ⇥ 1 B(0)

t essentially represents
the embedding vector of the node type itself.

CAT Embedding Training. We perform self-supervised training of
the CAT query tree graph using node types. Speci�cally, given the
current embedding h(L)i of node 8 , we use a cross-entropy loss func-
tion over so�max (Wnh

(L)
i) to perform the node type classi�cation,

whereWn is a) × 3 parameter matrix and) is the number of node

1515

Fairness-Aware Continuous Predictions of Multiple Analytics Targets in Dynamic Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

types. All the parameter matrices are shared among the CATs. Thus,
the embedding can easily generalize to a new CAT query using the
learned parameters. Moreover, the similarity of di�erent CATs can
be gauged using the embedding vectors of their anchor nodes (i.e.,
roots), which will be used in fairness-aware training in Section 4.3.

4.3 Training Scheduling and Fairness
Estimation

We devise a novel algorithm to train the whole network, both the FE
and BE models, based on the notion of Lipschitz bias/fairness of the
= CATs in De�nition 2. In addition, we can e�ciently estimate the
Lipschitz bias of predicting the = CATs with provable guarantees.

4.3.1 The Algorithm. We are now ready to present the algorithm
for training. The basic idea is to use the fairness notion as de�ned in
De�nition 2 as a guide to iteratively schedule the training of a pair of
CATs each time. The algorithm will also attend to several training
details such as logging data updates for delayed training, class
imbalance, and learning con�dence as discussed in Appendix A.3.
We present the algorithm in F�������A����T�������.

Algorithm 2: F�������A����T�������
Input :a dynamic network G

embeddings of CATs @1, . . . ,@=
Output: noti�cations whenever @8 returns CAD4 , and

con�dence; estimated Lipschitz bias
1 D sliding window of data updates in G for the last �C<
2 while CAD4 do
3 pick 2 pairs of CATs (@8 ,@ 9),(@: ,@;) uniformly at

random
4 predict these CATs using corresponding data in D and

let the con�dence be 28 , 2 9 , 2: , 2;
5 for @ 2 {@8 ,@ 9 ,@: ,@; } that returns CAD4 do
6 return noti�cation with con�dence
7 add @ and its data context to S+(@)
8 if | 28 � 2 9 | � 3 (@8 ,@ 9) < | 2: � 2; | � 3 (@: ,@;) then
9 8 : ; 9 ; //(@8 ,@ 9) will be trained

10 SF SF [{@8 ,@ 9 }
11 while positive sample fraction in SF is below g+ do
12 randomly pick @ 2 SF

13 add random sample from S+(@) to SF //replay
14 do batch SGD using loss function detailed in

Appendix A.3
15 report current Lipschitz bias based on Sec. 4.3.2

Line 1 of the algorithm maintains a sliding window of data up-
dates within the past �C< time period, which will be used for train-
ing (details in Appendix A.3). The continuous training and CAT
evaluation are in the loop in lines 2-15. We �rst randomly pick
and evaluate two pairs of CATs in lines 3-4. If any of these 4 CATs
returns true, we report it with the con�dence (Appendix A.3), and
add it to the positive instance set S+(@) in lines 5-7. Lines 8-10
compare the two pairs of queries and the one with greater bias
(De�nition 2) is added to the sample set SF to be trained. Lines

11-13 handles minority class (positive sample) replays for the class
imbalance issue, adding positive instances of queries to SF .

Batched stochastic gradient descent (SGD) training is performed
in line 14. The SGD training will revise the parameters in both
the FE and BE models. Finally, we use the average bias of sample
pairs in the current time window to continuously estimate the
Lipschitz bias of the whole set of = CATs with provable guarantees
(Theorem 2), as detailed next.

4.3.2 Estimating the Bias. Let us now analyze the actual fairness
achieved by F�������A����T�������, which is quanti�ed by mea-
suring the Lipschitz bias—Equation 2 as discussed in Section 4.1.
The less the Lipschitz bias, the more fairness we have. However,
Equation 2 requires a quadratic number of pairs of CATs in a short
time interval, as the bias is dynamic (with data) and sensitive to
the measurement time window. Thus, we use a sample of pairs of
CATs in a short, sliding time window to continuously estimate the
current Lipschitz bias. The main challenge is how to analyze the
sample size needed and the provided accuracy guarantees, since the
biases of di�erent query pairs are not independent. This renders the
concentration inequalities such as Cherno� bound and Hoe�ding
inequality [31] inapplicable—it is harder to analyze when the vari-
ables are correlated. We perform a novel analysis using the theory
ofmartingales and the associated bounded-di�erence inequality [2].

Preliminaries: Martingales and Concentration Inequalities.
A martingale is a sequence of random variables for which, at a
particular time, the conditional expectation of the next value in the
sequence is equal to the present value, regardless of all prior values.
More generally, a sequence /0,/1, . . . is a martingale w.r.t. the se-
quence -0,-1, . . . if E [/=+1 | -0, . . . ,-=] = /= . A simple example
is a gambler who plays a sequence of fair games, where -8 is the
amount she wins on the 8th game (negative if a loss), and /8 is her
total winnings at the end of the 8th game. A particular easy (and use-
ful) construction of a martingale is called the Doob martingale [11],
as follows. Let . be a random variable that depends on -0, . . . ,-= .
Then it can be shown that the sequence /8 = E [. | -0, . . . ,-8] is a
martingale w.r.t. -0, . . . ,-= . As can be seen here, the notion of mar-
tingale may capture a sequence of arbitrarily correlated variables.

A particular form of concentration inequality under martingales
is the Azuma-Hoe�ding inequality [2], a general form of which is
as follows. Let /0, . . . ,/= be a martingale such that

⌫:  /: � /:�1  ⌫: + 3: (4)

for some constants 3: and random variables ⌫: that may be func-
tions of /0, . . . ,/:�1. Then for all C � 0 and _ > 0,

%A (|/C � /0 | � _)  24
�2_2ÕC
:=1 3

2
: (5)

Analysis of Lipschitz Bias Estimates. In our problem, we have a
set of< =

�=
2
�
CAT pairs from which the Lipschitz bias is obtained

(De�nition 2). We use the biases of a sample of A CAT pairs to
estimate the average bias of all pairs. What is challenging here is
that the biases of the CAT pairs are obviously not independent. For
example, if both (@1,@2) and (@2,@3) have small biases, then very
likely (@1,@3) has a small bias too. We treat the< CAT-pairs as a
sequence, de�ning a sequence of random variables-1, . . . ,-< as the

1516

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ruifeng Liu,� Liu, and Tingjian Ge

biases calculated from each pair respectively (i.e., max(0,
��28 � 2 9 ���

3 (@8 ,@ 9))).
Let the sample of A CAT-pairs’ biases that are revealed to us

as the �rst ones -1, . . . ,-A ; i.e., we �nd that -8 = 18 (a constant),
for 1  8  A . Rename -A+1, . . . ,-< to .1, . . . ,.<�A , and de�ne
/8 = E [⌫ | .0, . . . ,.8], for 0  8  < � A , where ⌫ is the random
variable for the overall Lipschitz bias as in De�nition 2. The /8
sequence is the expected Lipschitz biases when the remaining bias
variables .1, . . . ,.8 are revealed one by one. Thus, /0, . . . ,/<�A is a
Doob martingale w.r.t. .0, . . . ,.<�A , with

/0 =

ÕA
8=1 18
A

, /<�A = ⌫ (6)

as /0 is only based on the sample, and /<�A is the true Lipschitz
bias when all .8 ’s are known.

To bound the di�erence between /: and /:�1 as in Inequality 4,
we observe that /: = (:�1+1A+:

A+: , where (:�1 =
ÕA+:�1
8=1 18 . Since

0  1A+:  1
2 (as any CAT satis�es 1

2  28  1 from Appendix A.3),
we have (:�1

A+:  /:  (:�1+0.5
A+: , or equivalently, (:�1

A+: � /:�1 
/: � /:�1  (:�1+0.5

A+: � /:�1. Letting ⌫: be (:�1
A+: � /:�1, we get

3: = 0.5
A+: in Inequality 4. This, together with Equation 6 and Azuma-

Hoe�ding Inequality 5, gives us

%A (
����⌫ �

ÕA
8=1 18
A

���� � _)  24
�8_2Õ<�A

:=1
1

(A+:)2 (7)

To simplify the above upper bound and get a closed form, we notice
<�A’
:=1

1
(A + :)2 

<�A’
:=1

1
(A + :) (A + : � 1) =

<�A’
:=1

(1
A + : � 1 �

1
A + :)

=
1
A
� 1
<

Incorporating this into Inequality 7, we have proven the following:

T������ 2. Using the average bias of a sample of query-pairs of
size A to estimate the Lipschitz bias of in-total< =

�=
2
�
query-pairs

has the following accuracy guarantees: the probability that the error

is greater than or equal to _ is at most 24
�8_2
1
A � 1

< .

Theorem 2 gives us strong theoretical guarantees on the accuracy
of our estimation of fairness. For example, for = = 50 CATs (i.e.,
< = 1225), using a sample of only A = 36 CAT-pairs, we can achieve
a Lipschitz bias upper bound of _ = 0.1 with probability at least 0.9.

5 EXPERIMENTAL EVALUATION
We have performed a systematic experimental evaluation using �ve
real-world datasets. Through the experiments, We aim to answer
the following research questions (RQ):
• RQ1: Regarding scalability, what is the throughput of processing
high-rate data-update dynamic networks under our continuous
training and predicting CATs?

• RQ2: How accurate is our model for predicting CATs?
• RQ3: Regarding extensibility, if we replace our BE model by
di�erent DGNN models, how does it function?

• RQ4:How are accuracy and throughput a�ected as we vary some
model parameters?

• RQ5: How e�ective is our F�����BE2FE algorithm?

• RQ6: How e�ective is our fairness-aware training scheduling?

5.1 Datasets, Baselines, and CAT Queries
We use �ve datasets MIMIC [19], GDELT [25], ICEWS18 [6],
ICEWS14 [44], and WIKI [23]. Their details and our setup are in
Appendix A.4. Our default back end DGNNmodel is TGCN [48] but
replacing its GRU sequence model by LSTM (resulting in slightly
better accuracy). We compare against �ve baselines: (1) linkGS [49]
for continuous link prediction (which is a restricted set of simple
CATs) in graph streams, (2) predictive relation queries (RQ) in
dynamic graphs [27], (3) our model’s BE replaced by TransE [5], (4)
our model’s BE replaced by EvolveGCN [34], and (5) our model’s
BE replaced by ContinualGNN [46]. Note that none of the above
is a whole baseline, as no previous work can replace our front end
model as well as the F�����BE2FE and F�������A����T�������
algorithms. The point is that we can plug in any DGNN model as
the back-end model.

For each of the �ve datasets, we generate random continuous
analytics targets based on the one in Section 4.2. In particular, for
MIMIC data, the generated CATs are similar to Q1 in Section 4.2.
For the GDELT dataset, the generated CATs select from country
nodes (induced subgraph) with group-by attribute country ID. The
ICEWS18 dataset is similar. For ICEWS14 and WIKI datasets, the
CATs select from name nodes. The number of CATs that are gener-
ated for a dataset depends on the speci�c experiment, as detailed
below.

5.2 RQ1: Throughput and Scalability
We perform the continuous training involving both BE and FE
models. The F�����BE2FE has a parameter X , the number of nodes
fed to FE. The choice should be dynamic, as a larger network has
signi�cantly more leaves in T , while the network size does not
a�ect as much the height or internal-node number of T . Thus,
we impose a maximum number of internal nodes—empirically we
�nd that a number between 3 and 5 gives a good tradeo� between
training cost and accuracy; hence we use 4 by default.

First, for scalability, we examine the processing throughput un-
der two modes: (1) the models are being trained continuously and
the CAT queries are also being evaluated (i.e., predicted) continu-
ously (shown as “training” lines in Figures 5 and 6); (2) only the
CATs are evaluated continuously using a trained model from (1)
(shown as “eval” lines in Figures 5 and 6). The throughput results
are shown in Figure 5 for the MIMIC data and in Figure 6 for the
GDELT data (the results for other datasets show a similar trend and
are omitted).

We compare among several models: our default back end model,
the relational query work (“RQ” in the �gures) in [27], and replacing
the back end of our model by EvolveGCN [34] (“EG” in the �gures).
Finally, we also compare against the lightweight link-prediction for
graph streams work [49] (“linkGS” in the �gures). We will further
compare the query result accuracy with these baselines in RQ2
(Section 5.3) and RQ3 (Section 5.4). We vary the number of contin-
uous CAT queries between 7 and 105. From Figures 5 and 6, we
can see that mode 2 mentioned above (“eval” only) is much faster
than mode 1 (continuous training). This is because the training
involves repeated backpropagation through time while the CAT

1517

Fairness-Aware Continuous Predictions of Multiple Analytics Targets in Dynamic Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

0 20 40 60 80 100

Number of continuous predictive queries

101

102

103

104

105

T
h

ro
u

g
h

p
u

t
(e

ve
n

ts
/s

e
c)

Default training
Default eval
RQ training
RQ eval
EG training
EG eval
linkGS

0 20 40 60 80 100 120

Number of continuous predictive queries

102

103

104

105

106

T
h

ro
u

g
h

p
u

t
(e

ve
n

ts
/s

e
c)

Default training

Default eval

RQ training

RQ eval

EG training

EG eval

linkGS

0 10 20 30 40

Number of epochs

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

L
o

ss
 f

u
n

ct
io

n
 v

a
lu

e

MIMIC GDELT ICEWS18ICEWS14 WIKI

Dataset

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

F
-m

e
a

su
re

dim = 32
dim = 64
dim = 128

Fig 5 Throughput (MIMIC) Fig 6 Throughput (GDELT) Fig 7 Loss function (ICEWS18) Fig 8 Accuracy vs. dimensionality

MIMIC GDELT ICEWS18 ICEWS14 WIKI

Dataset

100

101

102

103

104

T
h
ro

u
g
h
p
u
t
w

/
co

n
tin

u
o
u
s

tr
a
in

in
g
 (

e
ve

n
ts

/s
e
c) dim = 32

dim = 64
dim = 128

MIMIC GDELT ICEWS18 ICEWS14 WIKI

Dataset

100

101

102

103

104

105

T
h
ro

u
g
h
p
u
t
w

/
co

n
t.
 q

u
e
ry

 e
va

lu
a
tio

n
 (

e
ve

n
ts

/s
e
c)

dim = 32
dim = 64
dim = 128

MIMIC GDELT ICEWS18 ICEWS14 WIKI

Dataset

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

F
-m

e
a
su

re

Focal loss
No focal loss

Fig 9 Throughput w/ continuous training Fig 10 Throughput with eval only Fig 11 Accuracy w/ and w/o focal loss

evaluation only involves a forward pass of the model. As expected,
more continuous CAT queries subscribed in the system entail a
higher burden of continuous training and query evaluation, and
hence a smaller throughput. Arguably, for most applications, such
throughputs are able to keep up with the actual event rates (even
with a single machine). The ContinualGNN baseline, however, is
one to two orders of magnitude slower than our model in both
modes; hence we omit it to avoid cluttering the �gures. The RQ and
EG baselines have higher throughput than using our default back
end model. The linkGS method extends classical link prediction to
graph streams without neural network training, and is 1-2 orders
of magnitude faster. However, these methods are less accurate as
shown in RQ2 and RQ3 next.

5.3 RQ2: Learning Embedding and Accuracy
For RQ2, we examine the e�ectiveness of our model training, and
compare the CAT query result accuracy with two closest methods
from previous work, relational query (RQ) and linkGS. Figure 7
shows that the loss function value over epochs for the ICEWS18
data (other datasets are similar). The loss drops precipitously in
the �rst few epochs and then �attens. Observe that there are slight
�uctuations of the loss between adjacent epochs because F�������
�A����T������� iteratively picks two pairs of CATs to train based
on the biases, and the loss values di�er among the CATs.

We then compare the CAT result accuracy with two closest
approaches in previous work, namely linkGS [49] and RQ (contin-
uous relational queries) [27]. Neither linkGS nor RQ can handle

continuous analytics targets as complex as we do. To enable the
comparison, we let all three methods run the same continuous
link/relation predictive queries over all �ve datasets, with the ac-
curacy results shown in Table 1, where we measure the precision,
recall, and F-measure (shown as prec., rec., and F-m in Table 1, re-
spectively). We can see that, even though linkGS has a much greater
throughput as shown in Figures 5 and 6, our model is signi�cantly
more accurate than it (F-m is the overall accuracy). This is because
linkGS is based on simple and e�cient classical methods (it contains
several methods, and we take the best accuracy among them), and
is not a representation learning method. RQ has a slightly higher
throughput, but our model is much more accurate.

5.4 RQ3: Extensibility
In answering RQ3, we examine the extensibility of our architec-
ture by replacing the back end model by alternative representation
learning methods of temporal networks. We use three such baseline
models: an e�cient incremental variant of knowledge graph em-
bedding method TansE, as well as two recent ones EvolveGCN [34]
and ContinualGNN [46]. The accuracy result is shown in Table 2.

From the results in Table 2 we can see that our default back end
model is in general more accurate than the other three baseline
back-end models, even though TansE and EvolveGCN give slightly
higher throughput as shown in Figures 5 and 6 (TransE has a sim-
ilar throughout to RQ which is a variant of it). TransE does not
have an explicit sequence model as the other models and has the
worst accuracy. Nevertheless, all alternative back-end models are

1518

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ruifeng Liu,� Liu, and Tingjian Ge

Table 1: Accuracy of continuous link/relation predictive queries compared to two methods in previous work.

MIMIC GDELT ICEWS18 ICEWS14 WIKI
prec. rec. F-m. prec. rec. F-m. prec. rec. F-m. prec. rec. F-m. prec. rec. F-m.

linkGS 0.302 0.901 0.453 0.543 0.914 0.681 0.53 0.878 0.661 0.507 0.99 0.671 0.657 0.794 0.719
RQ 0.441 0.559 0.493 0.574 0.545 0.559 0.613 0.657 0.634 0.533 0.371 0.437 0.737 0.424 0.538
Ours 0.734 0.816 0.773 0.598 0.891 0.716 0.658 0.86 0.746 0.567 0.99 0.721 0.66 0.859 0.746

Table 2: Accuracy comparison with three alternative back end models.

MIMIC GDELT ICEWS18 ICEWS14 WIKI
prec. rec. F-m. prec. rec. F-m. prec. rec. F-m. prec. rec. F-m. prec. rec. F-m.

Default 0.644 0.608 0.625 0.876 0.969 0.92 0.992 0.815 0.895 0.705 0.836 0.765 0.845 0.772 0.807
TransE 0.617 0.579 0.598 0.683 0.639 0.66 0.832 0.668 0.741 0.171 0.158 0.164 0.329 0.319 0.324

EvolveGCN 0.44 0.694 0.539 0.721 0.651 0.684 0.789 0.753 0.771 0.507 0.754 0.606 0.414 0.653 0.507
ContinualGNN 0.579 0.612 0.595 0.767 0.823 0.794 0.941 0.769 0.846 0.637 0.841 0.725 0.729 0.506 0.597

functioning to be able to answer CAT queries. This demonstrates
the extensibility of our framework in that it can accommodate other
temporal network representation learning models.

5.5 RQ4: Varying Model Parameters
We now move on to RQ4. We �rst look into the e�ect of changing
the dimensionality of embedding vectors. We compare the cases
when the embedding dimensionality is 32, 64, and 128, respectively,
and examine the impact on accuracy when predicting CAT queries,
the throughput when our model is being trained continuously while
answering CAT queries, and the throughput when it is only an-
swering CAT queries using a trained model.

Figure 8 shows the result on the average query accuracy (F-
measure) for all �ve datasets. We can see that, for 3 out of the 5
datasets, namely GDELT, ICWS14, and WIKI, it is clear that the
accuracy increases as the embedding dimensionality increases from
32 to 64 to 128. This is not the case with the MIMIC and ICEWS18
datasets. The reason may be that 32 dimensions already capture the
needed latent features. Figure 9 shows the throughput with the �ve
datasets when the system is under continuous training and CAT
query evaluation, while Figure 10 shows the throughput when it is
only continuously evaluating CAT queries with a trained model. In
both cases, the throughput slightly decreases as the dimensionality
increases. This is due to the greater computational overhead with a
higher dimensionality.

We next examine the impact of the focal loss [26] (to improve
accuracy with imbalanced classes, Appendix A.3) in our system. The
results are shown in Figure 11 for CAT result accuracy and in Figure
12 for throughout under continuous training and query evaluation.
Figure 11 shows that average CAT result accuracy improves when
using focal loss for all �ve datasets, with ICEWS14 and WIKI being
more signi�cant. This may be due to more class imbalance with
these two datasets. On the other hand, Figure 12 shows that focal
loss in general has minimal impact on throughput. This is because
the focal loss only adds a regularization term to the loss function
and does not signi�cantly a�ect the loss convergence.

5.6 RQ5: E�ectiveness of F�����BE2FE
In RQ5, we look into the e�ectiveness of our F�����BE2FE algorithm,
which continuously selects the data aggregation nodes based on the
community structure to feed to a front end model. For comparison,
without the F�����BE2FE optimization, naturally we just feed all
the nodes in the back end network explicitly referenced/needed by
the CAT queries to the front end model. We compare the average
query accuracy in Table 3. It is clear that, overall, F�����BE2FE is
very e�ective and considerably improves the accuracy over all �ve
datasets. As discussed in Section 3, F�����BE2FE adjusts and learns
the best data items to feed to the front end model in a data-driven
manner, and hence performs better.

We also examine the impact of F�����BE2FE to throughput when
the system is under continuous training and CAT evaluation (Figure
13) and CAT query evaluation only using a trained model (Figure
14). Figure 13 shows that there is a small overhead associated with
F�����BE2FE, and Figure 14 shows that there is virtually no over-
head to CAT query evaluation. This is because F�����BE2FE only
makes small incremental changes at each continuous training step,
while it does not make any changes at the forward inference pass
for CAT evaluation.

5.7 RQ6: Impact of Fairness-Aware Scheduling
Finally, for RQ6, we investigate the e�ectiveness and overhead of
F�������A����T�������. For comparison, without the fairness-
aware training scheduling for training, a natural alternative is to
do a round-robin scheduling of each CAT for training. Speci�cally,
we examine the Lipschitz bias, the average CAT result accuracy,
and throughput under continuous training with and without the
fairness-aware scheduling in Figures 15, 16, and 17, respectively.
From Figure 15, we can see that F�������A����T������� signif-
icantly reduces the Lipschitz bias, often by one to two orders of
magnitude in four out of the �ve datasets, which achieves the main
purpose of our fairness-aware scheduling.

Figure 16 shows that, as a side e�ect, F�������A����T�������
also improves the average CAT result accuracy, quite signi�cantly in
some datasets such as MIMIC, ICEWS14, and WIKI. This is because,
by allocating more training time to those “hard” (less accurate and

1519

Fairness-Aware Continuous Predictions of Multiple Analytics Targets in Dynamic Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

MIMIC GDELT ICEWS18 ICEWS14 WIKI

Dataset

100

101

102

103

104

T
h
ro

u
g
h
p
u
t
w

/
co

n
t.
 t
ra

in
in

g
 (

e
ve

n
ts

/s
e
c)

Focal loss

No f. l.

MIMIC GDELT ICEWS18 ICEWS14 WIKI

Dataset

100

101

102

103

104

T
h
ro

u
g
h
p
u
t
w

/
co

n
t.
 t
ra

in
in

g
 (

e
ve

n
ts

/s
e
c)

BE2FE
No BE2FE

MIMIC GDELT ICEWS18 ICEWS14 WIKI

Dataset

100

101

102

103

104

105

T
h
ro

u
g
h
p
u
t
w

/
co

n
t.
 q

u
e
ry

 e
va

lu
a
tio

n
 (

e
ve

n
ts

/s
e
c) BE2FE

No BE2FE

MIMIC GDELT ICEWS18ICEWS14 WIKI

Dataset

10-4

10-3

10-2

10-1

L
ip

sc
h
itz

 b
ia

s

Fairness-aware
No Fairness-aware

Fig 12 Throughput vs. focal loss Fig 13 Throughput w/ training Fig 14 Throughput w/ query eval. Fig 15 Bias vs. scheduling

Table 3: Accuracy comparison with and without BE2FE optimization.

MIMIC GDELT ICEWS18 ICEWS14 WIKI
prec. rec. F-m. prec. rec. F-m. prec. rec. F-m. prec. rec. F-m. prec. rec. F-m.

BE2FE 0.812 0.631 0.71 0.896 0.956 0.925 0.89 1 0.942 0.643 0.999 0.782 0.714 0.798 0.754
No BE2FE 0.586 0.567 0.576 0.863 0.927 0.894 0.992 0.832 0.905 0.727 0.709 0.718 0.597 0.705 0.647

MIMIC GDELT ICEWS18 ICEWS14 WIKI

Dataset

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

F
-m

e
a
su

re

Fairness-aware
No Fairness-aware

MIMIC GDELT ICEWS18 ICEWS14 WIKI

Dataset

100

101

102

103

104

T
h
ro

u
g
h
p
u
t
w

/
co

n
t.
 t
ra

in
in

g
 (

e
ve

n
ts

/s
e
c)

Fairness
No Fairness

Fig 16 Accuracy comparison Fig 17 Throughput comparison

requiring more training) CATs, F�������A����T������� e�ec-
tively improves the overall result accuracy. In addition, Figure 17
shows that F�������A����T������� has nearly the same through-
put for continuous training and CAT evaluation as the round-robin
scheduling. This is because there is little overhead in the extra logic
of deciding which query to train next.

6 OTHER RELATEDWORK
Most closely related work has been discussed in previous sections.
We survey other related work here.

Online Learning. Online machine learning in general has a long
history. It learns to update models from data streams sequentially [8,
15, 16]. The proposed algorithms include Perceptron [36], Online
Gradient Descent [51], and Passive Aggressive [9], which are all
for learning linear models. The work on online learning with ker-
nels includes [38]. More recently, online learning has been studied
for deep learning [24, 39, 50]. However, none of them studies on-
line continuous learning in dynamic networks where a number of
analytics tasks need to be continuously trained and predicted.

Dynamic GraphNeural Networks. There has recently been some
work on DGNN. We refer the readers to two excellent surveys [21,
40]. As shown in our experiments in Section 5, our back end has

great extensibility and can plug in any of these DGNN models,
including [18, 27, 34, 46, 48]. We focus on the problems of how to
�lter data between the BE and FE models for speci�c CATs and
how to schedule their training in a fair manner.

Multi-Task Learning and Fairness in Machine Learning. Our
architecture contains multiple continuous analytics targets, which
bears some resemblance to multi-task learning (MTL). MTL has
been studied for deep neural networks [10], mostly under computer
vision and NLP. However, none of the previous work solves the
problems of determining the selection of back end shared model’s
embeddings for front end task speci�c models, as well as fairness-
aware training of multiple tasks. Finally, bias and fairness have been
an issue of intense study in machine learning lately. There have
been various proposals to de�ne fairness for machine learning al-
gorithms [29]; yet we are the �rst to study the notion of fairness in
scheduling multiple prediction targets during online training, espe-
cially when multiple users are in the system. Our experiments also
indicate that fairness-aware scheduling improves overall prediction
accuracy.

7 CONCLUSIONS
We study a novel problem of continuously predicting a number of
continuous analytics targets (CATs) in dynamic networks. We focus
on two problems. One is to adaptively determine the best set of net-
work nodes whose embeddings from the back end DGNN should
be passed to a front end model for predicting a CAT. The other
is to devise a fairness-aware training scheduling algorithm and
to estimate the fairness with accuracy guarantees. Our extensive
experiments using �ve real-world datasets demonstrate the e�ec-
tiveness, accuracy, scalability, and extensibility of our approach.
Acknowledgments. This work is supported by NSF grants IIS-
2124704, OAC-2106740, and New England Transportation Consor-
tium project 20-2.

1520

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ruifeng Liu,� Liu, and Tingjian Ge

REFERENCES
[1] J. Ahmed and M. Ahmed. 2018. Semantic web approach of integrating big data –

A review. International Journal of Computer Sciences and Engineering (2018).
[2] N. Alon and J. Spencer. 1992. The Probabilistic Method. New York: Wiley.
[3] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer

Widom. 2002. Models and Issues in Data Stream Systems. In Proceedings of the
Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS ’02). 1–16.

[4] Shivnath Babu and Jennifer Widom. 2001. Continuous queries over data streams.
ACM SIGMOD Record 30, 3 (2001), 109–120.

[5] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In Advances in Neural Information Processing Systems 26. Curran Associates,
Inc.

[6] Elizabeth Boschee, Jennifer Lautenschlager, Sean O’Brien, Steve Shellman, James
Starz, and Michael Ward. 2015. ICEWS coded event data. Harvard Dataverse 12
(2015).

[7] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. 2021.
Geometric Deep Learning: Grids, Groups, Graphs Geodesics and Gauges.
arXiv:2104.13478 (2021).

[8] N Cesa-Bianchi and G Lugosi. 2006. Prediction, learning, and games. Cambridge
University Press.

[9] K Crammer, O Dekel, J Keshet, S Shalev-Shwartz, and Y Singer. 2006. Online
passive-aggressive algorithms. JMLR (2006).

[10] Michael Crawshaw. 2020. Multi-Task Learning with Deep Neural Networks: A
Survey. arXiv preprint arXiv:2009.09796 (2020).

[11] Devdatt P. Dubhashi and Alessandro Panconesi. 2009. Concentration of Measure
for the Analysis of Randomized Algorithms. Cambridge University Press.

[12] Cynthia Dwork, Moritz Hardty, Toniann Pitassiz, Omer Reingold, and Richard
Zemel. 2012. Fairness Through Awareness. In The 3rd Innovations in Theoretical
Computer Science.

[13] R. S. Evans. 2016. Electronic Health Records: Then, Now, and in the Future. IMIA
Yearbook of Medical Informatics Suppl 1 (2016).

[14] Chuan Guo, Geo� Pleiss, Yu Sun, and Kilian Q. Weinberger. 2017. On Calibration
of Modern Neural Networks. In Proceedings of the 34th International Conference
on Machine Learning (ICML 2017).

[15] S.C.H. Hoi, J Wang, and P Zhao. 2014. Libol: A library for online learning
algorithms. Journal of Machine (2014).

[16] S. C. H. Hoi, D. Sahoo, J. Lu, and P. Zhao. 2018. Online learning: A comprehensive
survey. arXiv preprint arXiv:1802.02871 (2018).

[17] INRIX 2022. INRIX IQ. Available at https://inrix.com/products/iq-location-
intelligence-solutions/..

[18] Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. 2020. Recurrent Event
Network: Autoregressive Structure Inference over Temporal Knowledge Graphs.
In EMNLP.

[19] AEW Johnson, TJ Pollard, L Shen, L Lehman, M Feng, M Ghassemi, B Moody, P
Szolovits, LA Celi, and RG Mark. 2016. MIMIC-III, a freely accessible critical care
database. Scienti�c Data (2016).

[20] Justin M. Johnson and Taghi M. Khoshgoftaar. 2019. Survey on deep learning
with class imbalance. Journal of Big Data 6, 27 (2019).

[21] M. Seyed Kazemi. 2022. Dynamic Graph Neural Networks. In Graph Neural
Networks: Foundations, Frontiers, and Applications, Lingfei Wu, Peng Cui, Jian Pei,
and Liang Zhao (Eds.). Springer Singapore, Singapore, 323–349.

[22] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classi�cation with graph
convolutional networks. IEEE Transactions on Neural Networks 5, 1 (2016), 61–80.

[23] Julien Leblay and Melisachew Wudage Chekol. 2018. Deriving validity time in
knowledge graph. In The Web Conference.

[24] J Lee, J Yun, S Hwang, and E Yang. 2017. Lifelong learning with dynamically
expandable networks. arXiv:1708.01547 (2017).

[25] Kalev Leetaru and Philip A Schrodt. 2013. GDELT: Global data on events, location,
and tone, 1979–2012. ISA annual convention 2 (2013), 1–49.

[26] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. 2017.
Focal Loss for Dense Object Detection. In ICCV.

[27] Xuanming Liu and Tingjian Ge. 2020. Mining Dynamic Graph Streams for
Predictive Queries Under Resource Constraints. In PAKDD.

[28] Andrew McGregor. 2014. Graph stream algorithms: A survey. ACM SIGMOD
Record 43, 1 (2014), 9–20.

[29] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram
Galstyan. 2022. A Survey on Bias and Fairness in Machine Learning. Comput.
Surveys 54, 6 (2022), 1–35.

[30] S.P. Meyn and R.L. Tweedie. 2012.Markov Chains and Stochastic Stability. Springer
London.

[31] M. Mitzenmacher and E.Upfal. 2005. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press.

[32] Jooyoung Moon, Jihyo Kim, Younghak Shin, and Sangheum Hwang. 2020.
Con�dence-Aware Learning for Deep Neural Networks. In ICML.

[33] Faisal Mushtaq and Matt E. Moore. 2020. Cloud-based interoperability will
accelerate clinical outcomes. Physicians Practice (2020).

[34] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2020.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. In
AAAI.

[35] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan
Wermter. 2019. Continual lifelong learning with neural networks: A review.
Neural Networks 113 (2019), 54–71.

[36] Frank Rosenblatt. 1958. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review 65, 6 (1958).

[37] Tara Safavi, Danai Koutra, and Edgar Meij. 2020. Evaluating the Calibration of
Knowledge Graph Embeddings for Trustworthy Link Prediction. In The 2020
Conference on Empirical Methods in Natural Language Processing.

[38] D Sahoo, S. C. H. Hoi, and P Zhao. 2016. Cost sensitive online multiple kernel
classi�cation. ACML (2016).

[39] Doyen Sahoo, Quang Pham, Jing Lu, and Steven C. H. Hoi. 2018. Online Deep
Learning: Learning Deep Neural Networks on the Fly. In Proceedings of the
Twenty-Seventh International Joint Conference on Arti�cial Intelligence, IJCAI-18.
International Joint Conferences on Arti�cial Intelligence Organization, 2660–
2666.

[40] J. Skarding, B. Gabrys, and K.Musial. 2021. Foundations andmodelling of dynamic
networks using Dynamic Graph Neural Networks: A survey. IEEE Acces 9 (2021).

[41] Naisha Sultana1, Gandikota Ramu, and B. Eswara Reddy. 2014. Cloud-based De-
velopment of Smart and Connected Data in Healthcare Application. International
Journal of Distributed and Parallel Systems 5, 6 (2014).

[42] Pedro Tabacof and Luca Costabello. 2020. Probability Calibration for Knowl-
edge Graph Embedding Models. In The International Conference on Learning
Representations (ICLR).

[43] V. A. Traag, L. Waltman, and N. J. van Eck. 2019. From Louvain to Leiden:
guaranteeing well-connected communities. Scienti�c Reports 9, 5233 (2019).

[44] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. 2017. Know-evolve:
Deep temporal reasoning for dynamic knowledge graphs. In ICML.

[45] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. ICLR (2018).

[46] Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. 2020. Streaming Graph
Neural Networks via Continual Learning. In CIKM.

[47] Rex Ying, Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes Canedo, and
Jure Leskovec. 2020. Neural Subgraph Matching. In CoRR abs/2007.03092.

[48] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and
Haifeng Li. 2020. T-GCN: A Temporal Graph Convolutional Network for Tra�c
Prediction. IEEE Transactions on Intelligent Transportation Systems 21, 9 (2020),
3848–3858.

[49] Peixiang Zhao, Charu Aggarwal, and Gewen He. 2016. Link Prediction in Graph
Streams. In ICDE.

[50] G Zhou, K Sohn, and H Lee. 2012. Online incremental feature learning with
denoising autoencoders. AISTATS (2012).

[51] M Zinkevich. 2003. Online convex programming and generalized in�nitesimal
gradient ascent. In ICML.

1521

https://inrix.com/products/iq-location-intelligence-solutions/.
https://inrix.com/products/iq-location-intelligence-solutions/.

Fairness-Aware Continuous Predictions of Multiple Analytics Targets in Dynamic Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

A APPENDIX
A.1 Connection to FE
We now consider the mapping between the chosen X nodes (let
the set be I) and the input positions to a model at FE for a CAT
(e.g., MLP). The idea is that when F�����BE2FE slightly changes
the membership of I to I0 (e.g., they di�er by only one node), the
nodes I \ I0 should not change their input positions at the FE
model—this would make the training more stable (as the “wiring”
of the neurons is mostly unchanged).

To achieve this goal, we randomly hash each node in T to one
of the X 0 > X input positions at the FE model. We use a parameter
X 0 > X so that the chance that a chosen node in I happens to collide
with another node in I can be made arbitrarily small. In the event
that more than one node maps to the same position, we can perform
average pooling (or max pooling) between them.

L���� 1. The probability that a particular node in I does not
collide with another node in I at the input of the front end model is
4�

X�1
X0 .

P����. The probability that a node E does not collide with any
of the X � 1 nodes in I \ {E} is exactly (1 � 1

X 0)
X�1 ⇡ 4�

X�1
X0 . ⇤

From Lemma 1, the probability of no collision increases (ap-
proaching 1) as X 0 increases. We use null (all 0’s) for an input posi-
tion that does not correspond to any node in I.

A.2 Query Template
In this paper, we consider a general template of CATs as

SELECT CASE WHEN COUNT(*)>0 THEN ‘True’ ELSE ‘False’ END

FROM (SELECT 1

FROM <node−selector>
[GROUP BY <attribute>]

HAVING <condition>)

The CAT query returns “True” if at least one group satis�es the
condition. The node selector selects a set of nodes and the subgraph
induced by them. The GROUP BY andHAVING refer to node or edge
attributes. This form is expressive enough to characterize a broad
range of CATs. In dynamic networks, very often a query is targeted
towards each substream that corresponds to an individual object
or person. This is the reason for the optional GROUP BY clause
above, while the HAVING clause speci�es the condition within
each group/substream (or a single group if there is no GROUP BY).
Our representation-learning framework has potential to process an
even broader range of CATs including reachability and subgraph
pattern matching, which is beyond the scope of this paper and is left
as future work (e.g., neural subgraph matching is studied in [47]).

A.3 Training Details and Loss Function

Logging Data Updates. A CAT is about the state of data in the
dynamic graph G at time �C from now. Thus, we need to delay the
training for �C because only then do we have the ground truth label
to supervise the training. Consequently, for all CATs @1, . . . ,@= , we
need to log the data updates in the last �C< , denoting the maximum
�C among all queries. In this way, we will be able to use the needed
version of data to train over each query.

Class Imbalance. Sample class imbalance is a common problem in
machine learning [20]. It is a potential issue in our context because
the selectivity of a CAT query can be small, i.e., most of the time
its result is false, and our training uses a small fraction of true
samples. The vast number of “easy” negatives would overwhelm
the training, causing it to under-perform for the minority positive
class. To deal with this problem, we perform the following: (1) Log
the data contexts of the instances of the minority class (typically
the positive class). During training, with a certain frequency, we
randomly pick one of the instances to “replay” the minority class
backpropagation training. (2) Inspired by Lin et al.’s work on a
computer vision problem [26], we replace the cross-entropy loss
function of MLP QNet by the following focal loss function:

L5 (?8 ,~8) =
(
�U (1 � ?8)W log?8 , (~8 = 1)
�(1 � U)?W8 log (1 � ?8), (~8 = 0)

(8)

where W > 0, and 0 < U < 1 is a weighting factor balancing the
importance of positive/negative examples. We use W = 2 by default.
Intuitively, for example, for “easy negatives” (i.e., ~8 = 0 and ?8 is
small), the ?W8 factor makes the loss much smaller than the original
cross-entropy loss. On the other hand, if this is a misclassi�cation,
e.g., ~8 = 1 and ?8 is close to 0, then the loss is close to the original
cross-entropy loss. We set U = 1�?+, where ?+ is the fraction of pos-
itive examples (after replays)—hence, the fewer positive examples
we use, the greater weight their loss has.

Con�dence. It is important for FE to also return an accurate con-
�dence value 28 associated with the returned result of query @8 .
One way to assign the con�dence 28 is to use the maximum class
probability at the output layer of an FE model. In Equation 8, this
corresponds to

28 = max(?8 , 1 � ?8) (9)
That is, if ?8 � 0.5, the model will report true and 28 = ?8 ; otherwise
it will report false and 28 = 1 � ?8 . However, it is well known in the
machine learning literature that the reported probability ?8 is quite
inaccurate and uncalibrated for deep neural networks [14, 37, 42].

Most of the existing approaches of probability calibration rely
on post-processing, i.e., learning a model to adjust the maximum
class probability after the original model has made the predic-
tion. One problem with this approach, e.g., Isotonic regression
or Platt scaling [14], is that the extra training of the post-processing
model causes some overhead. One way is to use a regularization
approach [32] that further enhances the focal loss function in Equa-
tion 8 with a con�dence-order loss as follows:

L2 (G8 , G 9) = max(0,�B6=(58 � 59) (28 � 2 9) +
��58 � 59

��) (10)

where B6=(58 � 59) is the sign of 58 � 59 (i.e., 1, 0, or -1), and 58 is the
frequency that the QNet predicts a result that is the same as what
it returns in the end during the SGD training of the sample of @8 .
Intuitively, for an “easy” sample, during the iterations of SGD, the
model already gives mostly consistent prediction answers, while
for a “hard” sample, the model may go back and forth and take a
longer time to get to the �nal returned answer. Thus, the relative
order on frequency (58 vs. 59) should be consistent with the relative
order on the returned con�dence (28 vs. 2 9); otherwise, Equation 10
will penalize it with a loss. For instance, if 58 > 59 but 28 < 2 9 ,

1522

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Ruifeng Liu,� Liu, and Tingjian Ge

then there is a positive loss 2 9 � 28 + 58 � 59 . Finally, the total loss
function is a weighted sum of the focal loss L5 in Equation 8 and
the con�dence-order loss L2 in Equation 10:

L =
’

(G8 ,~8)2SF

L5 (?8 ,~8) + _
’

(G8 ,G 9)2SPF

L2 (G8 , G 9) (11)

where _ is a weight constant, SF is the set of samples from the
current stream window, and SPF is a set of sample pairs in the
current window.

A.4 Details of Datasets and Setup
We use �ve real-world datasets as follows.
• MIMIC. The MIMIC-III (Medical Information Mart for Inten-
sive Care III) dataset [19] is a large, freely-available database
comprising deidenti�ed health data associated with over 40,000
patients. It includes high temporal resolution data such as vital
sign measurements, laboratory test results, procedures, medica-
tions, caregiver notes, imaging reports, demographics, etc. The
total size is 27GB.

• GDELT. The GDELT (Global Database of Events, Language, and
Tone) is an event-based social media dynamic graph [25]. It mon-
itors print, broadcast, and web news media in over 100 languages
from across every country to keep continually updated on break-
ing developments anywhere on the planet. It contains real-time
measurements of 2,300 emotions and themes. The part that we

use consists of 2,278,405 events with 240 temporal relationship
types.

• ICEWS18. The ICEWS18 (Integrated Crisis Early Warning Sys-
tem in 2018) [6] contains social-media event data, which is coded
interactions between socio-political actors (i.e., cooperative or
hostile actions between individuals, groups, sectors and nation
states). Events are automatically identi�ed and extracted from
news articles by the BBN ACCENT event coder. The part that we
use contains 468,558 dynamic graph events in 256 relationship
types.

• ICEWS14. The ICEWS14 data is similar to ICEWS18, but the data
was collected in 2014 [44]. These events are triples consisting of a
source actor, an event type (according to the CAMEO taxonomy
of events), and a target actor. The part of the dataset that we use
contains 665,304 temporal events in 260 relationship types.

• WIKI. Wikidata is a free and open knowledge base that can be
read and edited by both humans and machines [23]. It has struc-
tured data of its Wikimedia sister projects including Wikipedia,
Wikivoyage, Wiktionary, Wikisource, and others. The portion
of data that we use consists of 669,934 temporal events in 24
relationship types.
All the algorithms described in this paper are implemented in

Python. All the experiments are run on a machine with Intel i7-
8750H CPU and GeForce RTX 2080 GPU.

1523

	Abstract
	1 Introduction
	2 Problem Statement and Preliminaries
	3 Selection of Back End Output for a Front End CAT
	4 Fairness-aware Training Scheduling
	4.1 Fairness
	4.2 CAT Language and Embedding
	4.3 Training Scheduling and Fairness Estimation

	5 Experimental Evaluation
	5.1 Datasets, Baselines, and CAT Queries
	5.2 RQ1: Throughput and Scalability
	5.3 RQ2: Learning Embedding and Accuracy
	5.4 RQ3: Extensibility
	5.5 RQ4: Varying Model Parameters
	5.6 RQ5: Effectiveness of FilterBE2FE
	5.7 RQ6: Impact of Fairness-Aware Scheduling

	6 Other Related Work
	7 Conclusions
	References
	A Appendix
	A.1 Connection to FE
	A.2 Query Template
	A.3 Training Details and Loss Function
	A.4 Details of Datasets and Setup

