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The use of neural network parametrizations to represent the ground state in variational Monte Carlo (VMC)

calculations has generated intense interest in recent years. However, as we demonstrate in the context of the

periodic Heisenberg spin chain, this approach can produce unreliable wave function approximations. One of the

most obvious signs of failure is the occurrence of random, persistent spikes in the energy estimate during training.

These energy spikes are caused by regions of configuration space that are over-represented by the wave function

density, which are called “spurious modes” in the machine learning literature. After exploring these spurious

modes in detail, we demonstrate that a collective-variable-based penalization yields a substantially more robust

training procedure, preventing the formation of spurious modes and improving the accuracy of energy estimates.

Because the penalization scheme is cheap to implement and is not specific to the particular model studied here,

it can be extended to other applications of VMC where a reasonable choice of collective variable is available.
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I. INTRODUCTION

Variational Monte Carlo (VMC) is an algorithm for

approximating the ground-state energy and wave function

of a quantum many-body system [1,2]. As a variational

method, VMC seeks the lowest-energy wave function ψθ (·)

by minimizing the energy with respect to a set of vari-

ational parameters θ. Building on a history of successful

VMC applications, researchers have recently introduced

neural-network-based families of wave functions that can be

evaluated and differentiated efficiently [3–6]. Although neu-

ral networks are sufficiently flexible to represent difficult

wave functions [7], neural network parameter optimization

can be slow or unstable, and parameters can converge to local

minima [8,9], limiting the accuracy that can be practically

attained.

Here, we identify the formation of spurious modes as a

problem that degrades the accuracy and robustness of neural

VMC wave functions. A spurious mode is defined in the

machine learning literature as a high-probability region that

is absent in the data distribution but present in the model

distribution (see, for example, Ref. [10], Secs. 18.1 and 18.2).
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Like machine learning for probability density estimation,

VMC needs to sample from the wave function probability

density ρθ ∝ |ψθ (·)|2 in order to estimate the energy and

energy gradient. In this work, we show that spurious modes

can occur in VMC, i.e., parameter updates yield a wave func-

tion probability density that is artificially large in regions far

away from the samples, as illustrated schematically in Fig. 1.

As can be seen in this figure and documented in detail in

this paper, the formation of spurious modes is only possible

because the variational wave function is unconstrained in un-

dersampled regions of configuration space. As a symptom,

the VMC energy estimator typically exhibits a large energy

spike when the sampler first encounters a spurious mode.

The energy spike can persist over thousands of optimization

steps, making it difficult to extract a usable energy estimate

from VMC.

This work can be viewed as a constructive approach for

diagnosing and mitigating generalization error from lim-

ited Monte Carlo sampling, which is already recognized as

a challenge for VMC [11]. Indeed, it is important to ad-

dress the problem of spurious modes as neural VMC rapidly

grows in popularity and finds applications to systems of

ever increasing complexity [1–10]. We might hope that en-

hanced sampling techniques such as parallel tempering and

umbrella sampling [12–14] could remedy the issue of spu-

rious modes, as has been suggested in the machine learning

literature [15]. However, in the context of VMC, we demon-

strate that enhanced sampling methods do not solve the

problem.

We introduce collective-variable-informed VMC (CV-

VMC) as a new, effective strategy for addressing spurious
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FIG. 1. A spurious mode is a high-probability region that is ab-

sent in the empirical sample distribution but present in the model

distribution.

modes in VMC. To our knowledge we are the first to link the

spurious modes in VMC to the appearance of energy spikes

and also the first to offer a satisfactory resolution. The main

idea of our CV-VMC framework is to exploit a well-chosen

one-dimensional collective variable (CV) that distinguishes

physically reasonable configurations from physically unrea-

sonable configurations. More specifically, we generate a pool

of samples across a range of CV values, and we use the sam-

ples to penalize large wave function densities in physically

unreasonable regions of configuration space.

CV-VMC is simple and cheap to implement, and it lever-

ages physical intuition to accelerate and improve VMC

optimization. This strategy is inspired by the use of CVs in

guiding free energy calculations [16,17]. While the design of

appropriate CVs must be calibrated based on the type of prob-

lem, this work advances a general and modular framework for

incorporating a priori intuitions about the wave function into

the optimization procedure itself.

The paper is structured as follows. Section II presents the

model problem of interest as well, as well as the traditional

VMC optimization approach. In Sec. III, we study the ap-

pearance of energy spikes in VMC, connect the spikes to

the existence of spurious modes, and show the inadequacy

of generic enhanced sampling techniques for addressing

this problem. Section IV introduces and tests the CV-VMC

approach for eradicating the spurious modes. Section V con-

cludes.

II. PRELIMINARIES

Throughout this work, we apply VMC to the antiferro-

magnetic Heisenberg model for N spin-1/2 particles in a

one-dimensional periodic chain, defined by the Hamiltonian

Ĥ =

N
∑

i=1

(

σ̂ x
i σ̂ x

i+1 + σ̂
y

i σ̂
y

i+1 + σ̂ z
i σ̂ z

i+1

)

, (1)

where σ̂ x
i , σ̂

y

i , and σ̂ z
i are the Pauli operators for the ith

spin. Here and throughout, periodic boundary conditions are

implied via the identification σ̂N+1 = σ̂1. For our variational

wave function, we use the neural quantum state ansatz [3] in-

spired by the restricted Boltzmann machine (RBM) [18]. This

ansatz is a two-layer (or one-hidden-layer) neural network that

has been widely used in VMC in recent years [19]. We refer to

our ansatz as the RBM throughout. Working in the many-body

basis of spin configurations σ defined as simultaneous eigen-

states of the operators {σ̂ z
i } with eigenvalues {σi} (dropping the

z indicator for notational simplicity), an RBM wave function

can be written as

ψθ (σ) =
∑

{hk}

exp

(

N
∑

i=1

aiσi +

M
∑

k=1

bkhk +
∑

ik

Wkihkσi

)

, (2)

where σi ∈ {−1,+1} are the spin variables, hk ∈ {−1,+1}

are an additional set of M hidden spin variables, and θ =

{a, b,W } are the variational parameters. Summing over the

hidden spins hk and enforcing the translational symmetry that

is exhibited by the exact ground state gives the modified RBM

ansatz,

ψθ (σ) =

M
∏

k=1

N
∏

j=1

cosh

(

bk +

N
∑

i=1

Wkiσi+ j

)

, (3)

which reduces the set of variational parameters to θ = {b,W },

and, again, periodic boundary conditions are implied.

For fixed parameters θ, the energy can be calculated as

E =
〈ψθ, Hψθ〉

〈ψθ, ψθ〉
=

∑

{σi}

Eloc(σ)ρθ (σ), (4)

where Eloc(σ) = (Hψθ )(σ)/ψθ (σ) is the local energy,

ρθ (σ) ∝ |ψθ (σ)|2 is the normalized probability density, and

we have adopted the inner product notation

〈ψ, φ〉 =
∑

{σi}

ψ (σ)φ(σ). (5)

It remains to optimize the parameters θ in the RBM ansatz

to minimize the energy functional E . Here, we use the stochas-

tic reconfiguration (SR) [2] algorithm. In the SR method,

the parameter update δ can be derived by minimizing a cost

function

〈ψθ+δ, Hψθ+δ〉

〈ψθ+δ, ψθ+δ〉
−

1

ǫ

(

|〈ψθ, ψθ+δ〉|

‖ψθ‖‖ψθ+δ‖

)2

, (6)

which contains the usual energy expression (4) and an ad-

ditional penalization term that prevents large wave function

updates. After differentiating the cost function (6) and per-

forming algebraic manipulations (see Ref. [19]), this approach

leads to the following algorithmic approach to VMC.

Algorithm 1 (VMC via SR). Choose the parameter update

δ to solve

(S + ηI)δ = −ǫg. (7)

Here, η � 0 is a nonnegative parameter chosen to make S +

ηI positive definite. The energy E , gradient vector g, and

overlap matrix S are defined by

E = Eρθ
[Eloc(σ)], (8a)

gi = Covρθ

[

∂θi
ψθ (σ)

ψθ (σ)
,

Hψθ (σ)

ψθ (σ)

]

, (8b)

Si j = Covρθ

[

∂θi
ψθ (σ)

ψθ (σ)
,
∂θ j

ψθ (σ)

ψθ (σ)

]

, (8c)
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where Eρθ
and Covρθ

indicate the expectation value and co-

variance with respect to the current probability distribution

ρθ (σ).

Because of the high dimensionality, the averages appearing

above are estimated stochastically. With SR, this leads to the

following iterative VMC strategy.

(1) Draw samples from the probability distribution

ρθ (σ) ∝ |ψθ (σ)|2. (9)

(2) Use the samples to provide an energy estimate Ê ,

gradient estimate ĝ, and overlap estimate Ŝ by Eqs. (8).

(3) Update θ by solving the regularized linear system

(Ŝ + ηI)δ = −ǫĝ (10)

and setting θ ← θ + δ.

In this paper, we generate samples from the wave function

density ρθ (σ) ∝ |ψθ (σ)|2 using a Metropolis-type Markov

chain Monte Carlo (MCMC) sampler. Because the Hamilto-

nian (1) conserves the total magnetization, we focus on the

sector with
∑

i σi = 0. Our sampler starts from a uniformly

distributed configuration within the subspace and attempts to

swap a randomly chosen +1 spin with a randomly chosen

−1 spin. During each iteration (defined as one parameter

update), we generate data by running each MCMC chain for

2000 Metropolis steps, and we subsample the data once every

100 steps to reduce the storage and computation costs. We

typically run n = 100 independent MCMC walkers of this

type and pool together the resulting data to calculate param-

eter updates. We initialize the MCMC chains at each new

parameter value using the final configurations from the previ-

ous iteration. However, as enhanced sampling alternatives, we

also experiment with the parallel tempering [12] and umbrella

sampling [13] methods described in Sec. III C.

Throughout this work, we use M = 5N hidden spins. The

results are similar when we use M = 3N hidden spins or

M = 4N hidden spins; however, with fewer than M = 3N

hidden spins, the ansatz is less flexible and the energy esti-

mates are less accurate. We choose optimization parameter

that ensure numerical stability, while also allowing for large

updates whenever possible. Following the procedure in [19],

we initialize our neural network wave function parameters as

independent complex-valued N (0, 0.001) random variables.

We increase the step size parameter ǫ from ǫ = 0.001 to ǫ =

0.01 at a geometric rate over first 500 iterations, after which

it is held constant, and we use η = 0.001 for all iterations.

When a large parameter update occurs, we restore ǫ to its

initial value and restart the geometric progression.

III. A STUDY OF SPURIOUS MODE FORMATION

A. Energy spikes and spurious modes

When we optimize our VMC wave function for 5000 it-

erations, we obtain the results depicted in Fig. 2. The VMC

energy error decreases over the initial 1800 iterations and

begins to exhibit high-frequency fluctuations on the scale of

10−4. Then, during iterations 1800–5000, large sustained en-

ergy spikes occur in 9 out of 20 independent VMC training

runs. In several training runs, the energy spikes appear more

than once.

FIG. 2. Per-site error in VMC energy estimates obtained over 20

independent runs for a chain of N = 100 spins. The exact energy is

computed using the Bethe ansatz [20].

The occurrence of the energy spikes is concerning for two

reasons. First, the repeated spikes make it difficult to decide

when the VMC statistics converge and when to stop training.

Second, spikes may arise unexpectedly when an apparently

converged VMC wave function is used for downstream in-

vestigations, including the computation of other observables

besides the energy [21] and the refinement of the energy

estimate by diffusion Monte Carlo [22]. We explore this pos-

sibility in more detail in Sec. III B.

The frequency of the spikes depends on the number N

of sites in the chain and the amount of sampling performed

at each training iteration. In Table I, we report the number

of energy spikes observed in 20 training runs for various

chain lengths N and numbers n of parallel MCMC walkers.

When N is small (N � 50), there are fewer spikes. When the

number of walkers is small (n � 20), the energy spikes rarely

if ever occur, but in this case the VMC energy estimates are

inaccurate, with variance 10 times higher than in the n = 100

case. If infinitely many MCMC steps were performed between

parameter updates and ǫ were sufficiently small, energy spikes

could not occur [19]. In practice, however, VMC is carried

out far from this limit. With n = 500 parallel walkers, we still

observe many training runs with energy spikes.

We can zoom in on an energy spike to understand the

phenomenon better. Figure 3 presents a typical VMC training

run exhibiting energy spikes. The first spike occurs at iteration

2236, which is marked by the orange dot in the upper panel.

The lower panel shows the cause of the energy spike. During

TABLE I. The number of training runs (out of 20) exhibiting en-

ergy spikes. Energy spikes are identified by per-site energy estimates

with error �10−3.

N = 50 N = 100 N = 200

n = 20 0 0 0

n = 50 1 8 6

n = 100 0 9 9

n = 200 1 8 14

n = 500 0 5 12
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FIG. 3. (Top) Per-site energy error, with an orange dot marking

iteration 2236 in which the first energy spike occurs. (Bottom) States

of walker 1 during steps 900–1400 of iteration 2236, with black

indicating up spins and white indicating down spins.

the sampling stage of iteration 2236, a single MCMC chain

(“walker 1”) transitions suddenly from an antiferromagnetic

state (characteristic of the ground state of the antiferromag-

netic Heisenberg model studied here) to a ferromagnetic state

with two domain walls.

The statistics of walker 1 are presented in more detail in

Fig. 4. We notice that walker 1 experiences an abrupt increase

in its estimated probability density ρθ (consistent with a spu-

rious mode), as well as a large increase in its local energy,

yielding the spike in the energy estimate. Motivated by the

trajectory in Fig. 3, we characterize this transition with a CV

that captures the local magnetic ordering,

s(σ) ≡
1

N

N
∑

i=1

σiσi+1. (11)

The collective variable s ranges from −1 (antiferromagnetic),

to 0 (nonmagnetic), to +1 (ferromagnetic). For the antiferro-

magnetic Heisenberg Hamiltonian (1), we expect the ground

state to be predominantly supported by configurations with

s < 0. We see in Fig. 4 that the value of s for walker 1 sharply

increases exactly when the energy spike occurs.

For comparison, we also plot data for one of the MCMC

chains (“walker 2”) that shows no abrupt change in either the

wave function magnitude or local energy. Most of the n = 100

MCMC walkers have profiles similar to walker 2. Apart from

walker 1, only two other MCMC chains ever enter the s > 0

region and contribute to the energy spike, starting at iterations

2241 and 2332.

We loosely define a spurious mode as a collection of con-

figurations σ for which the wave function probability density

ρθ (σ) is large and s(σ) > 0, the latter of which implies that

FIG. 4. Values of ln |ψ |2 (top), local energy (middle), and s (bot-

tom) for walker 1 and walker 2.

the local energy will be large for this Hamiltonian. As seen

in Fig. 4, the energy spike begins when walker 1 suddenly

encounters a configuration in a spurious mode.

Figure 5 charts the emergence of a spurious mode over

thousands of optimization steps. The orange line indicates the

marginal probability density for s,

P(s′) =
∑

σ

δs′,s(σ ) ρθ (σ), (12)

where δs1,s2
indicates the Kronecker delta, and P(s) is esti-

mated using the procedure in Appendix B. At time t = 0, the

MCMC walkers are randomly initialized with a symmetric

distribution of s values. However, by time t = 400, all the

walkers have moved into the s < 0 region that is physically

relevant for the antiferromagneic Heisenberg model. Next,

the marginal probability density P(s) in the undersampled

s > 0 region starts to increase, forming a spurious mode.

Starting at iteration t = 2236, several of the walkers find

their way across the energy barrier to the spurious mode, and

they become stuck due the high wave function density there.

The local energies in the s > 0 region are far higher than

the ground state energy, leading to a dramatic energy spike.

The bottom row of Fig. 5 demonstrates the spurious mode

disappearing. Eventually, the spurious mode disappears and

walkers return to the s < 0 region. In the final panel, the spu-

rious mode has reappeared, which will lead to another energy

spike.

As has been well established, the single-layer RBM ansatz

is flexible enough to accurately approximate the physical

wavefunction. What we see in Fig. 5 is that it is also flexible

enough to form a spurious mode in regions where it is not

constrained by samples, and it will typically do so. Restricting

samples to the region of high probability would only exac-

erbate the problem of spurious mode formation. In contrast,
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FIG. 5. Empirical histogram of CV samples (purple) and the marginal probability density P(s) of the CV (orange).

the mitigation strategies explored in this paper all involve

introducing additional samples in the low probability region.

B. Robustness testing identifies spurious modes

With a view toward downstream tasks, we assess the relia-

bility of the optimized wave function (i.e., the possibility of a

spurious mode) at a given VMC iteration using the following

robustness test.

(i) With the parameters θ held fixed to their value at the

current iteration, we choose 100 configurations from the final

states of the MCMC chains used to train the optimized wave

function. Starting from these states, we generate an additional

2×106 Metropolis steps, saving samples every 105 steps.

(ii) We compute an energy estimate using the resulting

2×103 sample configurations.

(iii) We repeat steps (i) and (ii) 10 times and compare the

resulting 10 energy estimates.

The mean and variance calculated from steps (ii) and (iii)

are indicative of the global quality of the current wave func-

tion and the existence of spurious modes. Figure 6 presents

results from three independent VMC optimizations, showing

the instantaneous energy error (red) and the statistics of the

energy errors calculated as described above (box-and-whisker

plots, black).

There are several possible outcomes: the VMC training

shows no spikes and the robustness testing shows no spikes

(top panel), the VMC training shows no spikes but the ro-

bustness testing shows spikes (middle panel), or both training

and robustness testing show spikes (bottom panel). We infer

that the optimized wave function in the top panel has no

spurious modes, the optimized wave function in the middle

panel develops a spurious mode around iteration 2500 that is

unobserved during training even after 5000 iterations, and the

optimized wave function in the third panel develops multiple

spurious modes that are also evident in training.

These results highlight the fact that accurate energies dur-

ing training do not guarantee accurate energies during testing.

Indeed, we tested the robustness of the 20 VMC wave func-

tions obtained via the 20 independent VMC runs shown in

Fig. 2. Although 11 of the 20 VMC runs did not show any en-

ergy spikes during training, 5 of these 11 VMC runs exhibited

energy spikes in testing, with an energy spike here defined as

a per-site energy estimate with error �10−3.

C. Enhanced sampling does not prevent spurious

mode formation

We have demonstrated that undersampled regions are

prone to the formation of spurious modes in the VMC wave

FIG. 6. Per-site energy errors during training (red) and during ro-

bustness testing (box-and-whisker plots, black) for three independent

VMC training runs.
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FIG. 7. VMC with parallel tempering (orange) leads to shorter,

more frequent spikes than VMC with direct MCMC sampling

(purple).

function. Enhanced sampling methods, which have been de-

veloped specifically to increase sampling in low-probability

regions without sacrificing the in-principle exactness of

Monte Carlo estimation, seem to offer a straightforward rem-

edy. We explore two of the most commonly used enhanced

sampling methods, parallel tempering and umbrella sampling,

but find that in fact they do not prevent the formation of

spurious modes.

Parallel tempering is a popular enhanced sampling method

across a wide range of applications [23], including in RBM

training [15]. The previous paper [19] applied parallel tem-

pering to improve sampling in VMC. In parallel tempering,

multiple MCMC chains indexed by k are simulated, each

sampling from a density proportional to ρ
βk

θ
, with the values

of the βk spaced to cover the interval [0,1]. The states of

these chains are exchanged when appropriate, ideally allowing

the chain sampling ρθ itself to escape local maxima of the

density [23]. Only data from the chain sampling ρθ are used

to compute averages.

In our tests, parallel tempering causes the spikes to occur

more frequently but subside more rapidly, as shown in Fig. 7.

(See Appendix A for more details.) Once the spurious mode is

fully formed, parallel tempering can transport the chain there

promptly, and subsequent parameter updates can partially cor-

rect the wave function within the spurious mode. However,

before the spurious mode is fully formed, samples from ρθ are

concentrated in the s < 0 region, and the emerging spurious

mode has no effect on training. In short, parallel tempering

does nothing to prevent the emergence of the spurious modes

in the first place.

We also consider the umbrella sampling method, which

has been used in free energy calcuations for decades [24,25].

Umbrella sampling in the form used here is a stratified sam-

pling method for general averages, as suggested and explored

in Ref. [13]. In umbrella sampling, each MCMC sampler is

restricted to remain within a range, or “window,” of possible

s values. By covering the range of all possible s values with

such windows (16 windows in our tests), sampling resolution

is increased in the s > 0 region relative to unbiased MCMC

FIG. 8. (Top) Per-site energy errors during the training (orange)

and during the testing (box-and-whisker plots, black). (Bottom)

Weights assigned to each of the restrained umbrella sampling

MCMC samplers (purple), along with the marginal probability den-

sity P(s) of the CV (orange).

sampling. Statistical weights are then assigned to samples to

correct for the biased sampling distribution. See Appendix B

or Ref. [13] for further details of the method.

While umbrella sampling does eliminate visible energy

spikes during training, we find that, like parallel tempering,

it does not prevent the formation of spurious modes. A typ-

ical training run and the results of our robustness test are

shown Fig. 8 (top panel). Because the proposal distribution

used in our Metropolis sampling scheme favors moves to-

ward s = 0, the MCMC samplers restrained to regions of

higher s suffer from very low acceptance rates (0.01–0.05)

and tend to discover the spurious mode well after it has

formed. Having not discovered the region of artificially high

probability, umbrella sampling assigns very small statistical

weight to samples in the higher s region, and the emerging

spurious mode has no impact on parameter updates. In Fig. 8

(bottom panel), for a representative choice of parameters,

we validate this claim by comparing the average statistical

weight assigned to samples at each value of s to the marginal

density P(s) of ρθ . Details of this calculation can be found in

Appendix B.

Robustness tests for the parallel tempering trained wave

function approximation are carried out exactly as described

in Sec. III B. Robustness tests for the umbrella sampling-

trained wave function approximation require an additional

resampling of the final states of the MCMC chains used

in training because of the statistical weights assigned

to samples in umbrella sampling. For more details see

Appendix D.
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IV. COLLECTIVE-VARIABLE-INFORMED VMC

In this section, we introduce a new term into the objec-

tive function of VMC meant to penalize the formation of

spurious modes. The new term, which we call the “spurious

mode functional,” eliminates spurious modes by confining the

wave function to the physically reasonable region of s values.

Moreover it is quick to evaluate and differentiate. In the next

section, we mathematically motivate our method, which we

call collective-variable-informed VMC (CV-VMC). The new

objective that defines CV-VMC is optimized via SR. Results

from numerical experiments are presented in the following

section.

A. Mathematical motivation

Define the spurious mode functional LCV by

LCV(θ) = −�Covσ∼p[ln |ψθ (σ)|2, 1s(σ )<c], (13)

where we have used the symbol 1I to indicate the function

that is 1 when σ ∈ I and 0 otherwise. This expression involves

a reference density p, which is fixed in advance. Unlike the

wave function density |ψθ|
2, the reference density p is not

adjusted during training. Samples can therefore be drawn from

p once, prior to training.

The choice of p is crucial and, perhaps, counterintuitive.

Instead of increasing sampling in the physical {σ : s(σ) < c}

region, p ideally generates a large number of samples in the

unphysical {σ : s(σ) � c} region in which |ψθ|
2 is meant to

be small. An appropriate density p allows the spurious mode

functional LCV (13) to detect and penalize an emerging spuri-

ous mode. We describe the particular choice of p used in our

experiments in Appendix C.

The spurious mode functional (13) can be viewed as

rewarding the concentration of wave function mass in the

physical region {σ : s(σ) < c}, or equivalently as penalizing

the accumulation of mass outside of this region. The CV-VMC

objective function is the sum of the ordinary energy functional

and the new spurious mode functional, and the optimization

problem becomes

arg min
θ

{

〈ψθ, Hψθ〉

〈ψθ, ψθ〉
+ LCV(θ)

}

. (14)

We optimize this new objective via SR in which the param-

eter update δ is derived by minimizing the cost function

〈ψθ+δ, Hψθ+δ〉

〈ψθ+δ, ψθ+δ〉
+ LCV(θ + δ) −

1

ǫ

(

|〈ψθ, ψθ+δ〉|

‖ψθ‖‖ψθ+δ‖

)2

. (15)

The Wirtinger derivative [26] of LCV(θ) is

∂

∂θ
LCV(θ) = −�Covσ∼p

[

∂θi
ψθ (σ)

ψθ (σ)
,1s(σ )<c

]

, (16)

which yields the following algorithm.

Algorithm 2 (CV-VMC via SR). Choose the parameter up-

date δ to solve

(S + ηI)δ = ǫ(�g̃ − g). (17)

Here, η � 0 is a nonnegative parameter chosen to make S +

ηI positive definite. The gradients g̃ and g and overlap matrix

FIG. 9. (Top) Per-site energy functional error (purple) and per-

site spurious mode functional (orange) during the same VMC

training run depicted in Fig. 5. The iterations associated with panels

in Fig. 5 are indicated by vertical dashed lines. (Bottom) Same

quantities during CV-VMC training with the same random seed.

S are defined by

g̃i = Covσ∼p

[

∂θi
ψθ (σ)

ψθ (σ)
,1s(σ )<c

]

,

gi = Covσ∼|ψ |2

[

∂θi
ψθ (σ)

ψθ (σ)
,

Hψθ (σ)

ψθ (σ)

]

,

Si j = Covσ∼|ψ |2

[

∂θi
ψθ (σ)

ψθ (σ)
,
∂θ j

ψθ (σ)

ψθ (σ)

]

. (18)

Relative to the SR implementation of ordinary VMC, the

only difference is the replacement of the gradient g←g−�g̃.

To validate the success of the spurious mode functional in

detecting spurious modes, in the top panel of Fig. 9, we plot

both the energy functional and the spurious mode functional

over the course of the same VMC (not CV-VMC) training

run depicted in Fig. 5. Evidently the spurious mode func-

tional tracks the formation of a spurious mode even before

the energy spikes appear in the energy estimate. In the bottom

panel of Fig. 9, we plot the same quantities over the course

of a CV-VMC run, noting that CV-VMC controls the spurious

mode functional throughout the training.

B. Numerical results

Until commented otherwise, the results of this sec-

tion concern Heisenberg spin chains with N = 100 spins, and

estimates are computed with n = 100 independent walkers.

Figure 10 presents results comparing VMC and CV-VMC.

The energy errors are nearly the same for the two optimization

approaches except that VMC exhibits a large spike during

iterations 4100–4500 (top panel). Additionally, even before

VMC exhibits an energy spike, there is a spurious mode in
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FIG. 10. (Top) Per-site energy errors for VMC and CV-VMC.

(Bottom) Marginal density P(s) of CV for the VMC and CV-VMC

wave functions at iteration 3000.

the VMC wave function (bottom panel). In contrast, CV-VMC

does not lead to any energy spikes, and the CV-VMC wave

function is physically reasonable, quickly losing probability

mass as s increases.

To produce the data in Fig. 10, we have chosen the refer-

ence density p to be stratified across a wide range of s values

(see Appendix C) so that the spurious modes can be readily

identified from data. To speed up the computations, we have

prepared a large pool of 5×105 samples before beginning

the VMC optimization and then subsampled 2000 randomly

chosen configurations to determine each parameter update.

Although in principle VMC with perfect sampling con-

verges to a local minimum of the energy, CV-VMC converges

to a different fixed point, due to the additional gradient term

�g̃. To evaluate the impact of this change, we show en-

ergy errors for different choices of � and c in Table II. For

comparison, the average energy error for 11 cherry-picked

standard VMC runs that happen to avoid energy spikes is

6.7×10−6.

Let us discuss the impact of varying c. We first observe that

the penalization becomes ineffective for the extreme parame-

ter choices c = −1 and c = 1. Indeed, we can rewrite �g̃ as

�g̃ = �Eσ∼p[1s(σ )<c](Eσ∼p[∂θ ln ψθ | s(σ) < c]

− Eσ∼p[∂θ ln ψθ]). (19)

When c → −1, Eσ∼p[1s(σ )<c] → 0 because the CV cannot

take values less than −1. Meanwhile, when c → 1, we have

Eσ∼p[∂θ ln ψθ | s(σ) < c] − Eσ∼p[∂θ ln ψθ] → 0 (20)

because the CV cannot take values greater than 1. In both

cases, Eq. (19) implies that g̃ → 0.

TABLE II. Mean per-site energy error of 20 independent runs for

different � and c. For each run, the energy is estimated by taking the

average of sampled local energies of all walkers in iterations 1000–

5000. In the left table, � ≡ 5.0×10−6. In the right table, c ≡ 0.

c Energy error

−0.2 8.1×10−6

0.0 7.9×10−6

0.2 1.0×10−5

0.4 8.8×10−6

� Energy error

2.5×10−6 7.5×10−6

5.0×10−6 7.9×10−6

1.0×10−5 1.2×10−5

2.0×10−5 3.8×10−5

In our numerical experiments, we tested the values c =

−0.8,−0.6, ..., 0.8, fixing � = 5×10−6 throughout. For val-

ues c � −0.4 and c � 0.8, we observe the formation of

spurious modes. When c = −0.6, for example, we find that

one in 20 independent runs develops a spurious mode and

exhibits energy spikes. In contrast, when −0.2 � c � 0.4, we

plot the marginal density P(s) of the CV in Fig. 11, and there

is no evidence of a spurious mode developing. Meanwhile,

Table II confirms that the energy error of CV-VMC is ro-

bust to the choice of c for c = −0.2, 0.0, 0.2, 0.4, i.e., in the

range where spurious modes are avoided. From this com-

parison, we find that CV-VMC is effective for a range of c

values, and we can set c as an approximate threshold beyond

which the true ground state assigns a negligible amount of

probability mass.

FIG. 11. CV-VMC results with � = 5×10−6 and different cutoff

values c as indicated by black vertical lines.
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FIG. 12. The CV-VMC scheme with c = 0 and increasing pe-

nalization strengths �. The colored lines shows the marginal density

P(s) at different times during the training.

Next, we discuss the impact of varying � for fixed

c = 0. In Table II, none of the parameter choices � =

2.5×10−6, 5.0×10−6, 1.0×10−5, and 2.0×10−5 happens to

lead to energy spikes, though we find that for the smallest

value � = 2.5×10−6, an unexplored spurious mode does de-

velop. For this smallest value of �, the energy estimate is

close to that of the reference VMC energy, but the penalty

is too weak to eliminate the spurious mode, as shown in

Fig. 12. As the penalization parameter � increases, the energy

estimate error increases (see Table II) and the spurious mode

is eliminated. In our tests, we find that � = 5×10−6 is large

enough to reliably eliminate spurious modes but still small

enough to preserve the quality of the energy estimate. In gen-

eral we recommend choosing � sufficiently large to eliminate

energy spikes in both training and testing, but no larger to

avoid degrading the energy estimate. A general strategy is

to select � so that the update terms ‖(S + ηI)−1�g̃‖ and

‖(S + ηI)−1g‖ in (17) are balanced.

In Table III, we demonstrate that CV-VMC outperforms

VMC if we do not allow for cherry-picking of spike-free runs.

This conclusion holds even when we consider a larger system,

consisting of N = 200 spins. The table shows energy esti-

mate errors for both methods in the cases N = 100 and 200,

averaged over several independent runs. Energy spikes con-

TABLE III. VMC and CV-VMC per-site energy errors. Each

number is obtained by averaged over 20 independent runs.

N = 100 N = 200

VMC 4.970×10−3 3.282×10−3

CV-VMC 7.950×10−6 1.390×10−5

taminate the results for standard VMC, yielding results with

per-site energy error on the order ∼10−3.

Last, we comment on the computational cost. In VMC,

there are three main contributions to the computational cost:

querying ψθ (σ) at each Metropolis-Hastings step and query-

ing (Hψθ )(σ)/ψθ (σ) and ∂θψθ (σ)/ψθ (σ) at each subsampled

data point. In CV-VMC, there are two additional costs:

querying ∂θψθ (σ)/ψθ (σ) and s(σ) at each recorded sample.

Considering the complexity of the Hamiltonian (which often

requires many wavefunction queries), we expect that in most

cases the additional cost to evaluate g̃ will be small compared

to the computation of S and g. In our training, CV-VMC

increases the computational cost relative to VMC by less

than 2%.

V. CONCLUSION

Variational Monte Carlo is a powerful framework for cal-

culating ground state wave functions of many-body systems,

but it is limited by the potentially long autocorrelation time of

Markov chain Monte Carlo sampling. Incomplete sampling

of the configuration space can result in incorrect gradient

estimation, local overfitting, and large, random energy spikes.

These issues cannot always be addressed by simply increasing

the length of the Markov chains used for estimation [8,9,19],

or even by applying enhanced sampling approaches.

Modifying the objective function is a more promising

strategy for improving VMC robustness. Here, we have

proposed collective-variable-informed VMC (CV-VMC) as

a specific approach for modifying the objective function

to incoporate a priori intuitions about the wave function,

particularly knowledge of order parameters. The CV-VMC

approach has a negligible added cost relative to standard

VMC and is applicable to any ground-state estimation prob-

lem in which an appropriate choice of collective variable is

available.

The single-layer RBM ansatz has been widely applied

and has enjoyed remarkable success when modeling complex

wave functions in many-body problems [3,27,28]. Careful

attention to its training robustness is therefore warranted. The

success of CV-VMC in our tests indicates that the RBM is

flexible enough to accurately approximate the wave function

of the periodic Heisenberg spin chain with 100–200 spins.

However, in the absence of any mitigation strategy, the flexi-

bility of the RBM leads to the formation of a spurious mode

in regions that are not constrained by data.

In the future, there should be further studies of the train-

ing robustness of other, potentially more flexible ansatzes

that have appeared recently in VMC applications, such as

the multi-layer RBM [29] and convolutional neural networks

[30]. Any of these ansatzes can potentially lead to the for-

mation of spurious modes, since they are targeting a physical

wave function which is concentrated in a narrow region of

configuration space. Outside of that region, the ansatzes will

not be contrained by samples. When evaluating different

ansatzes, we emphasize that a decrease in overfitting can

either result from slow, incomplete optimization of the wave

function or from the genuine elimination of spurious modes,

and these phenomena need to be carefully distinguished. For

help with eliminating the spurious modes, CV-VMC is a
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general approach which can be built into any VMC optimiza-

tion of any ansatz.
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APPENDIX A: PARALLEL TEMPERING

In parallel tempering (or replica exchange), one generates

samples using several MCMC simulations, each targeting a

distribution of the form πi ∝ |ψθ|
2/Ti . The constants Ti are

commonly referred to as temperatures and the chain targeting

Ti = 1 samples from ρθ . Periodically an exchange of states

is proposed between samplers targeting neighboring tempera-

tures and accepted or rejected according to the METROPOLIS

criterion [23]. In Sec. III C, we use 9 temperatures 1, 1.4,

2, 3, 5, 10, 30, 500, and 20000, with 100 samplers targeting

each of these temperatures. For a more complete discussion

of parallel tempering in the current context, see Ref. [19]. The

temperatures are set to maintain the swapping rate between

neighboring temperatures between 30%–40% [31] (but the

swapping rate between the last two ones are above 50%). Our

conclusions are robust to the choice and number of tempera-

tures used.

APPENDIX B: UMBRELLA SAMPLING

The eigenvector method for umbrella sampling (EMUS,

[13]) is an enhanced sampling approach using a sequence

of biasing functions U1, . . . ,UL to produce low variance

estimates of averages with respect to a given probability den-

sity π (σ), i.e., estimate π [g] := �{σi}g(σ)π (σ). The steps of

EMUS are as follows.

Algorithm 3 (EMUS). (1) Sample from the distribution

πi(σ) ∝ π (σ)Ui(σ), (B1)

for i = 1, . . . , L.

(2) Initialize u = ( 1
L

· · · 1
L

) and repeat the following

steps until the vector u converges.

(a) Form the matrix F = F(u) via

Fi j = πi

[

U j (σ)/u j
∑L

k=1 Uk (σ)/uk

]

. (B2)

(b) Solve the eigenvalue problem

w
T = w

T F(u),

L
∑

i=1

wi = 1. (B3)

(c) Set

ui =
wiui

∑L
j=1 w ju j

(B4)

for i = 1, . . . , L.

(3) Compute averages π [g] as

π [g] =

L
∑

i=1

wiπi

[

g(σ )
∑

Uk (σ)/uk

]

L
∑

i=1

wiπi

[

1
∑

Uk (σ)/uk

] . (B5)

We have used the symbol πi[·] to denote averages with

respect to the biased distributions πi. In this paper, we apply

the EMUS algorithm both (1) as one of the enhanced sampling

methods of Sec. III C and (2) as a tool for analyzing the VMC

wave function, specifically the marginal density P(s).

We now discuss the details of applications (1) and (2).

(1) Enhancing sampling. In Sec. III C, we implement um-

brella sampling with target distribution π (σ) ∝ |ψθ (σ)|2. We

introduce L = 16 Gaussian biasing functions, defined by

Ui(σ) = exp

(

−
1

2

(

s(σ) − mi

κ

)2)

(B6)

for i = 2, . . . , 15,

U1(σ) =

{

1, s(σ) � m1

exp
(

− 1
2

(

s(σ )−m1

κ

)2)

, s(σ) > m1

and

U16(σ) =

{

exp
(

− 1
2

(

s(σ )−m16

κ

)2)

, s(σ) < m16

1, s(σ) � m16

with width parameter κ = 0.1 and centers mi given by −0.5,

−0.35, −0.15, 0.05, 0.25, 0.45, 0.65, 0.85, 1.05, 1.3, 1.6, 1.9,

2.3, 2.7, 3.1, and 3.5 for i = 1, . . . , 16, respectively. The cen-

ters are chosen to spread the MCMC samples across a broad

range of s values, while ensuring overlap between the MCMC

samples in neighboring windows. Replica exchange moves

between samples in neighboring windows are proposed every

2×103 Metropolis steps [32]. The swapping rates for these

moves are 30%–40%, indicating sufficient overlap between

windows.

(2) Computing the marginal density P(s). Taking

gi(σ) = |ψθ (σ)|21s(σ )∈Ii
(B7)

for an interval of CV values Ii and π to be the uniform

distribution on spin configurations σ with an equal number

of +1 and −1 spins, we use EMUS to estimate

π [gi] =

s(σ )∈Ii
∑

{σ j}

|ψθ (σ)|2 (B8)

The CV marginal probability densities plotted in Fig. 5 in

Sec. III A, Fig. 8 in Sec. III C, and Figs. 10–12 in Sec. IV B are

estimated using this approach, where we define the intervals

Ii for i = 1, . . . , 17 via

Ii = (−1.14 + 0.12i,−1.02 + 0.12i]. (B9)
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For these experiments, we use L = 26 Gaussian biasing func-

tions of the same form as Eq. (B6) but with width κ = 0.04

and centers

mi = −1.08 + 0.08i, i = 1, . . . , 26. (B10)

APPENDIX C: CV-VMC SAMPLING

We use Gaussian biasing functions of the same form as

Eq. (B6) when preparing the pool of samples for the CV-VMC

scheme in Sec. IV B. To spread the samples to roughly evenly

cover the range of possible CV values, we use a greater num-

ber (L = 52) of Gaussian biasing functions, defined by width

κ = 0.04 and centers

mi = −1.06 + 0.04i, i = 1, . . . , 52. (C1)

These closely spaced biasing functions ensure that MCMC

samples are evenly distributed across all values of s, as ver-

ified in Fig. 13. The reference probability density is chosen to

be

p(σ) =
1

∑

i,σ ′ Ui(σ ′)

∑

i

Ui(σ). (C2)

In each window, 10 samplers start from uniformly distributed

configurations within the subspace. We run 2×106 Metropolis

steps and collect one sample every 2×103 steps. In this way,

we build a pool consisting of 5.2×105 samples from p.

APPENDIX D: ROBUSTNESS TEST INITIALIZATION

When training is carried out using standard METROPOLIS

sampling or parallel tempering, the samples generated are dis-

FIG. 13. (Top) Histogram of samples used in the CV-VMC

scheme. (Bottom) Histograms of MCMC samples in 14 represen-

tative windows (out of 52 total).

tributed (approximately) according to ρθ ∝ |ψθ|
2. However,

when umbrella sampling is used to estimate averages with

respect to π = ρθ , Eq. (B5) in Appendix B shows that a

sample at state σ drawn from the restrained distribution πi

weighted by

wi
∑

k Uk (σ)/uk

.

Because of these weights, the samples used in training must

be resampled to generate an unweighted set of samples for ro-

bustness test initialization (Sec. III B). Specifically, we select

100 of the final states of the MCMC samplers with replace-

ment with probabilities proportional to wi/
∑

k (Uk (σ)/uk ),

where σ is a state from the ith umbrella sampling window.
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