
Reductions from Module Lattices to Free
Module Lattices, and Application

to Dequantizing Module-LLL

Gabrielle De Micheli1, Daniele Micciancio1, Alice Pellet-Mary2,
and Nam Tran3,4(B)

1 University of California, San Diego, USA
gdemicheli@ucsd.edu, daniele@cs.ucsd.edu

2 Univ. Bordeaux, CNRS, INRIA, Bordeaux INP, IMB, Talence, France
alice.pellet-mary@math.u-bordeaux.fr

3 Institute of Cybersecurity and Cryptology, School of Computing and
Information Technology, University of Wollongong, Wollongong, Australia

ndt141@uowmail.edu.au
4 CSIRO Data61, Eveleigh, Australia

Abstract. In this article, we give evidence that free modules (i.e., mod-
ules which admit a basis) are no weaker than arbitrary modules, when
it comes to solving cryptographic algorithmic problems (and when the
rank of the module is at least 2). More precisely, we show that for three
algorithmic problems used in cryptography, namely the shortest vector
problem, the Hermite shortest vector problem and a variant of the clos-
est vector problem, there is a reduction from solving the problem in any
module of rank n ≥ 2 to solving the problem in any free module of
the same rank n. As an application, we show that this can be used to
dequantize the LLL algorithm for module lattices presented by Lee et al.
(Asiacrypt 2019).

Keywords: lattices · module lattices · shortest vector problem

1 Introduction

Lattice-based algorithmic problems using algebraic lattices, such as the NTRU
problem [HPS06], the Ring LWE [SSTX09,LPR13] and Ring SIS [LM06,PR06]
problems, or the Module LWE and Module SIS problems [BGV14,LS15], have
been used as security foundation for many cryptographic primitives. As an exam-
ple of the importance of such problems, 3 out of 4 algorithms standardized by
NIST in July 2022 are based on one of these algebraic lattice problems.1 One
of the main advantages of using algebraic lattices compared to standard lat-
tices is that the extra structure added to the lattices allows for less resource

1 https://csrc.nist.gov/projects/post-quantum-cryptography.

c© International Association for Cryptologic Research 2023
H. Handschuh and A. Lysyanskaya (Eds.): CRYPTO 2023, LNCS 14085, pp. 836–865, 2023.
https://doi.org/10.1007/978-3-031-38554-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38554-4_27&domain=pdf
https://csrc.nist.gov/projects/post-quantum-cryptography
https://doi.org/10.1007/978-3-031-38554-4_27

Reductions from Module Lattices to Free Module Lattices 837

for storage and enables faster algorithms for computation, thus improving effi-
ciency. Another advantage of the algebraic structure is that it allows to multi-
ply elements, which can be useful for applications like homomorphic encryption
[Gen09a,Gen09b] or obfuscation [GGH+16].

All the five algorithmic problems mentioned above enjoy reductions from
(various) worst-case problems over algebraically structured lattices, called mod-
ule and ideal lattices (see [PS21,FPS22] for the reductions to the NTRU problem,
[LM06,PR06] for Ring SIS, [SSTX09,LPR13] for Ring LWE, and [LS15] for mod-
ule SIS and module LWE). These worst-case algorithmic problems over modules
and ideals provide lower bounds on the hardness of the NTRU, Ring/Module
SIS and Ring/Module LWE problems, and hence on the security of the schemes
based upon them. At a high level, a module can be seen as a lattice, but defined
over a ring which is not the ring Z. More formally, let K be a number field of
degree d. For simplicity in this introduction, we will focus on K = Q[X]/(Xd+1)
with d a power-of-two, which is a cyclotomic field. This field has a ring of inte-
gers OK , which in our example is equal to Z[X]/(Xd +1). An OK-module M in
Km (which we will simply call “a module” in the rest of this article) is a subset
of Km generated by a finite set of vectors v1, . . . ,vk ∈ Km, i.e.,

M := {α1v1 + . . . + αkvk : α1, . . . , αk ∈ OK} .

An ideal is a special case of the above definition, corresponding to the case
where the generating set is a finite subset of K (i.e., m = 1 in the definition
above). An important remark in this definition is that the vectors v1, . . . ,vk

are not required to be linearly independent: they generate the module, but they
might not be a basis of the module.

This remark actually highlights a key difference between modules over the
ring of integers OK and lattices over the ring Z. Indeed, the ring OK is usually
not a principal ideal domain (at least for our illustrating example where K is
cyclotomic). This means that module lattices do not always have bases over OK

(contrary to lattices which always have bases over Z). Instead, a module M
over OK admits pseudo-bases, which consist in n linearly independent vectors
b1, . . . ,bn of Km and n ideals I1, . . . , In such that M = {∑i xibi |xi ∈ Ii}. The
integer n is called the rank of the module M .

In some cases, a module M admits a basis, that is, a pseudo-basis where all
the coefficient ideals Ii are equal to OK . In this case, M is said to be a free
module. In the case of ideals (i.e., modules included in K), an ideal admitting a
basis is called a principal ideal. We note that, in our example rings, free modules
represent a very small portion of the set of all modules.2 Moreover, even when a
module M is free, computing a basis from a given generating set (or a pseudo-
basis) of M might be challenging. It can be performed in quantum polynomial
time, but only in subexponential classical time so far (more details can be found

2 In the case of ideals for instance, we know that the proportion of principal ideals
among all ideals is equal to 1/hK , where hK is a quantity called the class number of
the field K. When K is a cyclotomic field, it is known that hK grows more than expo-
nentially in the degree d of the number field (see, e.g., [Was97, Proposition 11.15]).

838 G. De Micheli et al.

in preliminaries). In this article, the main question we try to answer is the
following: if we restrict ourselves to free modules represented by a basis (and not
any pseudo-basis), are algorithmic problems like the shortest vector problem or
the closest vector problem easier to solve? (When compared to the problems
over arbitrary modules, represented by a pseudo-basis.)

So far, the answer to this question is not so clear. There have been some
algorithms exploiting the specific structure of free modules or principal ideals,
but most of these algorithms were later extended to all modules or all ideals. For
example, [CDPR16] introduced in 2016 an algorithm to compute relatively short
elements in principal ideals of a cyclotomic field, which was generalized to all
ideals one year later in [CDW17]. To the best of our knowledge, the only algo-
rithm which (still) behaves significantly better for free modules than for arbitrary
modules is the LLL algorithm for module lattices from [LPSW19] (referred to
as module-LLL below). This oracle-based algorithm runs in classical polynomial
time when given as input any free module (represented by a basis) but only in
quantum polynomial time when given as input an arbitrary module.

Contributions. In this article, we give evidence that free modules already cap-
ture all the hardness contained in arbitrary modules, for modules of rank ≥ 2.
More formally, we prove that it is possible to reduce three algorithmic problems
from their variant over module lattices to their variant over free-module lattices
(represented by a basis). The three problems we consider in this work are: the
shortest vector problem (SVP), the Hermite shortest vector problem (HSVP)
and a variant of the closest vector problem (CVPcov). In the variant of CVP
we consider, we want to find a lattice point s close to a target t, such that
‖t−s‖ ≤ γ ·cov(L), where γ ≥ 1 is some approximation factor and cov(L) is the
covering radius of the lattice L (in the standard CVP problem, we usually asks
that ‖t − s‖ ≤ γ · dist(t,L), where dist(t,L) is the minimal distance between t
and a point of L).

For an algorithmic problem P, let us write n-module-P the worst-case prob-
lem P restricted to module lattices of rank n included in Kn, and n-free-module-
P the worst-case problem P restricted to free-module lattices of rank n included
in Kn and represented by a basis. We prove the following theorem.

Theorem 1.1 (Informal, see Theorems 6.1, 6.2 and 6.3). Let n ≥ 2 be an
integer. Then, there exist probabilistic polynomial time reductions

– from n-module-SVP to n-free-module-SVP;
– from n-module-HSVP to n-free-module-HSVP;
– from n-module-CVPcov to n-free-module-CVPcov.

The approximation factors achieved by these reductions are polynomial in some
quantities depending on the number fields, in n, and in the approximation factor
of the oracle solving the problem in free modules (see Theorems 6.1, 6.2, 6.3 for
more details). Moreover, one can check that the reductions from the theorem
require only two calls to an oracle solving the free-module-P problem in order to
solve one instance of the module-P problem (where P ∈ {SVP,HSVP,CVPcov}).

Reductions from Module Lattices to Free Module Lattices 839

As an application, we show how the reduction from n-module-SVP to
n-free-module-SVP can be used to dequantize the module-LLL algorithm
from [LPSW19] for all modules.3 This closes the gap between free and arbitrary
module for this algorithm.

Techniques. The three reductions, for SVP, HSVP and CVPcov follow the same
framework. Let P be one of the three problems. We first reduce P in modules to
P is free modules and HSVP in ideals (Sect. 3). Then, we reduce HSVP in ideals
to P in free modules of rank 2 (Sect. 4). Finally, we reduce P in free modules
of rank 2 to P in free modules of rank n ≥ 2 (Sect. 5). Combining these three
reductions, we obtain a reduction from P in modules of rank n to P in free
modules of rank n for any n ≥ 2.

Let us focus a bit more on each of the three subreductions. For the reduction
from module-P to free-module-P and HSVP in ideal lattices, the main idea is to
use an almost-free representation of the input module M , that is, a pseudo-basis
of M of the form ((bi, Ii))1≤i≤n with Ii = OK for all i ≤ n − 1. Such a pseudo-
basis can be computed in probabilistic polynomial time from any pseudo-basis
of M . Then, we use the oracle solving HSVP in ideals to compute a short element
x ∈ In, and we consider the free module N given by the basis (ci)1≤i≤n, where
ci = bi for i ≤ n − 1 and cn = x · bn. One can check that N is a free module
included in M . It can also be checked that N is not much sparser than M . Both
properties imply that solving P in N also provides a solution to P in M , with
some controlled loss in the approximation factor.

In the second step of the reduction, we want to find a short element of an
ideal, given access to an oracle solving P in free modules of rank 2. Here, the main
idea is to consider a two-element representation of the input ideal, that is, two
elements of K that, together, generate the ideal. This two-element representation
can be computed in probabilistic polynomial time from any basis of the ideal
(see Theorem 2.2). We then show that, by solving a free-module-P instance in
a free module of rank 2 constructed from the two elements found before, it is
possible to find a short element of the input ideal. Similar techniques were used
in [DM22] in order to transform modules of rank 2 into free modules of rank 4.

Finally, the last part of the reduction is to reduce P from free modules of rank
2 to free modules of rank n ≥ 2. The strategy here is quite natural: we embed
the input module of rank 2 into a larger module of rank n. The naive strategy
is, for instance, to consider the direct orthogonal sum of the input module M
with the free module On−1

K of rank n − 2 (possibly scaled). This works well
for SVP and CVPcov, but surprisingly, this does not seem to work for HSVP.
Instead, for HSVP, we construct a module of rank n from M by gluing �n/2�
orthogonal copies of M together, and adding an extra orthogonal copy of OK

if n is odd. This provides a reduction for HSVP which has some significant loss
in the approximation factor when n is odd (whereas we had almost no loss for
SVP and CVPcov). We believe that it would be an interesting open problem to
reduce this loss in the HSVP case (or, on the contrary, show that this loss is
mandatory).

3 Recall that in this article, modules are always included in Km for some m > 0.

840 G. De Micheli et al.

The dequantization of the module-LLL algorithm from [LPSW19] is obtained
almost immediately as a corollary of the reduction from module-SVP to free-
module-SVP. Indeed, recall that the module-LLL algorithm from [LPSW19]
(solving SVP in module lattices) is by default a quantum algorithm (when given
as input a pseudo-basis of a module), but can be run by a classical computer
in the specific case where the input module is free and represented by a basis.
Combining this classical algorithm for free-module-SVP with the reduction from
module-SVP to free-module-SVP provides an algorithm for arbitrary modules.

Discussion. In this introduction, we focused on the special case of cyclotomic
number fields. However, our results are not restricted to cyclotomic number
fields, but can be used in any number field K. For example, our results might
be interesting even in number fields with class number one (i.e., whose ring of
integers OK is principal). In these special cases, all modules are free, but we
have seen that it is in general hard to compute a basis of a free module without
a quantum computer. Our reduction provides a way to transform classically a
problem over a free module represented by a pseudo-basis into two instances of
the same problem over free modules represented by a basis.

In this article, we restricted ourselves to prove reductions for three lattice
problems, namely SVP, HSVP and CVPcov, which we thought were somewhat
standard and representative of the variety of lattice problems. We did not try
to see if our reduction framework could be adapted to the large set of other
lattice problems (see, e.g., [Ste15, page 1] for a non-exhaustive list of problems).
However, we did try to use our framework to prove a reduction for the standard
CVP problem,4 instead of the variant CVPcov that we used, but did not succeed.
The issue with the standard formulation of CVP stems from the fact that if a
target is unexpectedly close to a lattice point, then we may have to find a lattice
point whose distance to the target is significantly smaller than the covering
radius of the lattice. Interestingly, it seems that our framework can be used in
the cases where the target is very close to the lattice (closer than the minimal
distance of the lattice) or relatively far away (at a distance of the order of the
covering radius of the lattice), but we do not know how to handle the cases in
between. We leave it as an open problem to obtain a reduction similar to ours,
for the standard CVP problem.

Finally, we remark that another way to obtain reductions from (non
free) module problems to free module problems could be to use the reduc-
tions from worst-case ideal/module problems to NTRU, Ring/Module LWE or
Ring/Module SIS. Indeed, the NTRU, Ring/Module LWE and Ring/Module SIS
problems can be reduced to problems over modules (either the shortest vector
problem or the bounded distance decoding problem), and the modules that are
produced by these reductions are often free and with an easily computable basis.
As an example, a Ring LWE instance with good parameters can be reduced to

4 Recall that the standard CVP problem asks, given as input a target t, to find a
point s of the lattice L such that ‖t − s‖ ≤ γ · dist(t, L), for some approximation
factor γ.

Reductions from Module Lattices to Free Module Lattices 841

a bounded distance decoding problem in a module M of rank 2 in O2
K spanned

by three vectors (a1, a2)T , (q, 0)T and (0, q)T . If a1 is coprime with q (which
should happen with relatively high probability), then there exists u, v ∈ OK

such that ua1 + vq = 1 and in this case the two vectors (1, ua2)T and (0, q)T

form a basis of the module M (which is then free). Even if this approach seems
a possible alternative way to obtain reductions from arbitrary modules to free
modules, we would like to highlight some advantages of the approach we chose
in this article. First of all, the reductions from worst-case ideal/module prob-
lems to Ring/Module LWE and Ring/Module SIS do not preserve the rank of
the modules, whereas our reductions transform modules into free modules of the
same rank (this is also a limitation for the reduction to NTRU from [PS21],
but not for the reduction from [FPS22], which preserves the rank). Another lim-
itation of the approach using Ring/Module LWE is that the reductions from
worst-case problem to Ring/Module LWE are quantum, whereas our reductions
are classical (this is a limitation only for Ring/Module LWE, not for NTRU or
Ring/Module SIS which enjoy classical reductions). Finally, one last advantage
of our reductions is that the framework is quite simple, and does not require
the heavy machinery of the worst-case to average-case reductions of NTRU,
Ring/Module LWE and Ring/Module SIS. In particular, our reduction could
be easily implemented, and should be quite efficient. Also, we believe that the
general framework we describe might be used to derive reductions for other
algorithmic problems, in case they are needed.

Previous Versions. This article is the result of a merge between [DM22]
and [PT23]. The first article showed how to dequantize the module-LLL algo-
rithm, by using the two-element representation of ideals in order to transform
arbitrary rank-2 modules into free rank-4 modules. The second article extended
the techniques to obtain reductions from problems over arbitrary modules to
problems over free modules of the same rank. The merged article mostly con-
tains material from [PT23], since it mostly subsumes [DM22].

2 Preliminaries

We let Z,Q,R,C denote the set of integers, rationals, real and complex numbers
respectively. For a positive real number x, we let log(x) denote the logarithm of
x in base 2. Throughout this article, we let bold lowercase letters denote vectors.
All vectors are column vectors with the coordinates denoted by normal lowercase
letter with subsripted index, for example

v =

⎛

⎜
⎝

v1
...

vd

⎞

⎟
⎠ ∈ R

d

is a column vectors with coordinates v1, . . . , vd ∈ R. We let vT denote the
transpose of v. We write ‖v‖2 =

√∑
i v2

i and ‖v‖∞ = maxi |vi| to denote the
�2-norm and the �∞-norm respectively. We mostly work with the �2-norm and
ignore the subscript index when there is no confusion.

842 G. De Micheli et al.

2.1 Lattices

A lattice L is a set of linear combinations with integer coefficients of R-linearly
independent vectors b1, . . . ,bn ∈ R

m

L = {a1b1 + . . . + anbn : a1, . . . , an ∈ Z} .

The (ordered) set of vectors {b1, . . . ,bn} forms a basis of L, and can be repre-
sented by a matrix B ∈ R

m×n whose columns are the vectors b1, . . . ,bn. The
integer n is the rank of the lattice L. When n = m, L is said to be full-rank.
Given a basis B ∈ R

m×n of L, the determinant (or volume) det(L) is defined
as det(BTB)1/2. The determinant of a lattice is invariant with respect to any
choice of its basis.

For a lattice L and i ∈ {2,∞}, we let λ
(i)
1 (L) = min {‖v‖i : v ∈ L\{0}} be

the length of a shortest non-zero vector of L with respect to the �i-norm. We
will also use λ

(i)
n (L), where n is the rank of L, which is the smallest radius r > 0

such that there exists n linearly independent vectors in L of �i-norm ≤ r. Again,
we mostly work with the �2-norm and we drop the superscript index when there
is no confusion.

Theorem 2.1 (Minkowski’s bound). For a rank-n lattice L, we have

λ
(∞)
1 (L) ≤ det(L)1/n;

λ
(2)
1 (L) ≤ √

n · det(L)1/n.

We write Span
R
(L) the real span of a lattice L (not necessarily full rank). The

covering radius cov(L) of a (not necessarily full rank) lattice L is defined as
cov(L) = maxt∈Span

R
(L) mins∈L ‖t− s‖. Equivalently, cov(L) is the minimal real

number r > 0 such that for all t ∈ Span
R
(L), there exists s ∈ L with ‖t−s‖ ≤ r.

The covering radius of a lattice is a priori hard to compute, but we can show
that for any rank-n lattice L, it holds that

cov(L) ≤ n · λ(2)
n (L). (1)

Indeed, let b1, · · · ,bn be linearly independent vectors of L satisfying ‖bi‖ ≤
λ
(2)
n (L) and let t =

∑
i tibi ∈ Span

R
(L). Then s =

∑
i�ti�bi ∈ L and satisfies

‖t − s‖ ≤ ∑
i ‖bi‖ ≤ n · λ

(2)
n (L).

On the other hand, we also know that cov(L) ≥ 1/2 · λ
(2)
1 (L). Indeed, if s is

a shortest nonzero vector of L, then 1/2 · s has to be at distance ≥ λ
(2)
1 (L)/2

from any lattice point, since otherwise we would have a nonzero vector in L of
euclidean norm < λ

(2)
1 (L).

2.2 Number Fields

Let K be a number field of degree d and OK be its ring of integers. The ring OK

is a free Z-module of rank d. There exists d embeddings from K to C, denoted
by σ1, . . . , σd. The canonical embedding σ is defined as

∀x ∈ K,σ(x) = (σ1(x), . . . , σd(x)) ∈ C
d.

Reductions from Module Lattices to Free Module Lattices 843

The number field K, embedded into C
d via the canonical embedding, has

a geometry induced by the geometry of C
d. For x ∈ K, the �2-norm of x,

denoted by ‖x‖, is defined as the (Hermitian) �2-norm of the vector σ(x) in
the space C

d, i.e., ‖x‖ := ‖σ(x)‖. A similar definition also applies for the �∞-
norm, i.e., ‖x‖∞ := ‖σ(x)‖∞ for x ∈ K. For x, y ∈ K, we have the following
bound

‖xy‖ ≤ ‖x‖∞ · ‖y‖ ≤ ‖x‖ · ‖y‖ .

The image σ(OK) is a rank-d lattice, living in C
d � R

2d (it is not a full rank
lattice in C

d). The volume of σ(OK) is equal to Δ
1/2
K , where ΔK is the absolute

discriminant of the number field K and is given by

ΔK =
∣
∣
∣det (σi(rj))1≤i,j≤d

∣
∣
∣
2

,

where r1, . . . , rd is a Z-basis of OK . The value of ΔK is invariant from the choice
of the basis r1, . . . , rd of OK . We will also consider the quantity λ∞

d (σ(OK)),
which we will write λ

(∞)
d (OK) to simplify notations. In the case of cyclotomic

fields, we know that λ
(∞)
d (OK) = 1 (since there is a basis of OK made of roots

of unity). For general number fields, the quantity λ
(∞)
d (OK) can be larger, but

it cannot be too large, as stated in the following lemma from [BST+20] (the
original result from [BST+20] only states that λ∞

d (OK) = O(Δ1/d
K), but the

constant in the big O can be worked out [Boe22, Theorem A.4]).

Lemma 2.1 ([Boe22, Theorem A.4], adapted from [BST+20, Theorem
3.1]). For any number field K, it holds that λ∞

d (OK) ≤ Δ
1/d
K .

Algorithms. In this article, when we say that an algorithm is probabilistic poly-
nomial time, we mean that the algorithm is a Las Vegas type algorithm,5 whose
expected running time is polynomial in the input size of the algorithm and in
log ΔK . We emphasize that even when ΔK is not part of the input of the algo-
rithm, we consider that log ΔK is a polynomial quantity.

2.3 Ideals

A fractional ideal I of K is an OK-submodule of K for which there exists a ∈
OK\{0} such that aI ⊂ OK . When I ⊂ OK , we say that I is an integral ideal.
The sum and product of two fractional ideals I and I ′, defined as,

I + I ′ := {x + y : x ∈ I, y ∈ I ′}

II ′ :=

{
n∑

i=1

xiyi : n ∈ Z>0, xi ∈ I, yi ∈ I ′
}

5 That is, an algorithm whose output is always correct, but whose running time is a
random variable.

844 G. De Micheli et al.

are also fractional ideals. Any non-zero fractional ideal I of K is invertible,
meaning that there exists some fractional ideal I−1 such that I · I−1 = OK .
An ideal p is said to be prime if the quotient ring OK/p is an integral domain.
For x ∈ K, we write 〈x〉 = xOK to denote the principal ideal generated by x.
We remark that OK is a Dedekind domain, in which nonzero proper ideals are
uniquely factorized into product of power of prime ideals (the uniqueness is up
to the order of the prime factors).

Ideal Lattices and Algebraic Norm. The image σ(I) of a fractional ideal I is a
rank-d lattice of Cd. We also refer to such lattices as ideal lattices. The algebraic
norm of a fractional ideal I, denoted by N (I), is defined to be the determinant
of the lattice σ(I) divided by Δ

1/2
K . Note that if I is integral, then N (I) is

the index [OK : I]. The ideal norm is multiplicative, i.e. N (IJ) = N (I) · N (J)
for fractional ideals I, J . For a principal ideal 〈x〉, we write N (x) to denote
the algebraic norm of 〈x〉. This corresponds to the absolute value of the usual
definition of the algebraic norm of an element, i.e., N (x) =

∣
∣ ∏d

i=1 σi(x)
∣
∣.

For any non-zero element x ∈ K, we have the following relation between the
algebraic norm and euclidean norm of x, which is obtained from the inequality
of arithmetic and geometric means applied to (|σi(x)|2)i.

√
d · N (x)1/d ≤ ‖x‖. (2)

This implies in particular that for any element x ∈ OK , we have ‖x‖ ≥ √
d.

For any fractional ideal I, it holds that λd(I) ≤ λ1(I) · λ(∞)
d (OK). Indeed, if

s ∈ I is a shortest nonzero element of I for the euclidean norm, and r1, . . . , rd

are d linearly independent elements of OK satisfying ‖ri‖∞ ≤ λ
(∞)
d (OK) for

all i’s, then the elements ri · s are d linearly independent elements of I and
satisfy ‖ri ·s‖ ≤ ‖ri‖∞ ·‖s‖ ≤ λ1(I)·λ(∞)

d (OK). Combining this with Minkowski’s
inequality and Eq. (1) yields

cov(I) ≤ d3/2 · λ
(∞)
d (OK) det(I)1/d. (3)

If I = xOK is principal, using (2) this can be rewritten

cov(xOK) ≤ d · λ
(∞)
d (OK) · Δ

1/2d
K · ‖x‖. (4)

Two Elements Representation. Every fractional ideal I in K admits a two-
element representation, which is a way to write I as a sum of two principal ideals
〈x〉 and 〈y〉. The following result states that the two-element representation of
an ideal can be computed in expected polynomial time.

Theorem 2.2 (Adapted from Lemma 2.6 of [PS21]). There exists a proba-
bilistic polynomial time algorithm taking a fractional ideal I ⊂ K and a nonzero
x ∈ I as inputs, and computing y ∈ I such that I = 〈x〉 + 〈y〉.

Reductions from Module Lattices to Free Module Lattices 845

Proof. The proof is nearly identical to that in [PS21], except that we repeat the
algorithm until it outputs a valid pair (x, y), instead of allowing the algorithm to
fail with small probability. Unwrapping the proof, one can see that the algorithm
in [PS21] is obtained by taking the algorithm from [FS10, Fig. 1], and setting the
element x1 to be the input x in Step 1. In [FS10], it is proven that the probability
p that the algorithm does not fail is at least 1/e. Hence, the expected number
of iterations of our algorithm is 1/p ≤ e. ��

2.4 Modules

Below, we recall the main results about modules that we will need in this article.
For more detailed references about the theoretical and computational aspects of
modules over Dedekind domain, we refer the reader to [Hop98, Chapter 4] and
[Coh12, Chapter 1].

Let M ⊂ Km be a finitely generated OK-module,6 then there exist K-linearly
independent vectors b1, . . . ,bn of Km and fractional ideals I1, . . . , In such that

M = I1b1 + . . . + Inbn.

The set of tuples ((Ii,bi))i≤n is called a pseudo-basis of M , the positive
integer n is called the rank of M . In particular, fractional ideals of K are rank-1
OK-modules. For any rank-n module M in Km, there exists a canonical pseudo-
basis, called the HNF basis of M , which can be computed in polynomial time
from any pseudo-basis of M (see, e.g., [Coh12]).

Free Modules. A free module is a module M which has a pseudo basis
((Ii,bi))i≤n with all the ideals Ii equal to OK . When this is the case, we say
that (b1, . . . ,bn) is a free basis of M .7 We emphasize here that even if the mod-
ule M is free, not all pseudo-bases of M are free bases. In particular, the HNF
basis of a free module has no reason to be a free basis. Moreover, computing
a free basis of a free module given as input an arbitrary pseudo-basis is not
known to be doable in classical polynomial time. Indeed, computing a free basis
of a free module amounts to computing generators of principal ideals, given as
input an arbitrary Z-basis of the ideals (since one can efficiently transform any
pseudo-basis of a free module into a new pseudo-basis where all the coefficient
ideals are principal, using, e.g., the almost free representation discussed in the
next section). This can be done in quantum polynomial time [BS16] but only in
sub-exponential classical time [BF14] so far.

Almost Free Representations. For any rank-n module M , there exist pseudo-
bases of the form ((bi, Ii))i, with Ii = OK for all i = 1 to n − 1 (i.e., only the
last ideal is non-trivial). Such pseudo-bases are called almost-free representations
6 In this article, when we say that M is a module, we always mean an OK-module

included in Km for some m > 0.
7 Those are usually simply called “bases”, by opposition to the pseudo-bases. But we

prefer to add the adjective “free” in this work, to make the distinction even clearer.

846 G. De Micheli et al.

of M (or Steinitz form). We denote this representation by (b1, . . . ,bn, I), where
I is the coefficient ideal corresponding to bn. Note that, contrary to the HNF
basis, the almost-free representation is not unique: for a given module M , there
are many pseudo-bases satisfying Ii = OK for all i = 1 to n − 1. Still, it is
efficiently computable, as stated in the following lemma.

Lemma 2.2 ([BHJ22, Corollary A.3]). There is a probabilistic polynomial
time algorithm that takes as input any pseudo-basis of a rank-n module M in Kn

for some n ≥ 1, and returns an almost-free representation of M .

Module Lattices. The canonical embedding can be extended to Km, by defining
σ(v) for v = (v1, . . . , vm)T ∈ Km to be the concatenation of σ(vi). Then σ(v) is
a vector of Cmd and σ(M) is a lattice of rank nd (i.e., non full rank). We refer to
such lattices as module lattices. We will again abuse notations and write ‖v‖2 :=
‖σ(v)‖2 and ‖v‖∞ := ‖σ(v)‖∞ for vectors v ∈ Km. Similarly, we use M instead
of σ(M) when we view M as a lattice (e.g., λ1(M), det(M), . . .). In the rest of
the article, we will use the observation that Span

Q
(σ(M)) = σ(SpanK(M)), and

we will again abuse notation and write SpanK(M) for both.
For a rank-n module M in Kn (i.e., a full rank module), we define the norm

of M to be
N (M) = N (detB) ·

∏

i

N (Ii),

where ((bi, Ii))i is a pseudo-basis of M and B is the n × n matrix with columns
bi’s (so det(B) is an element of K). This quantity does not depend on the choice
of the pseudo-basis. It is related to the volume of the lattice σ(M) by the formula
det(σ(M)) = Δ

n/2
K · N (M).

2.5 Algorithmic Problems over Module and Ideal Lattices

We will consider the following algorithmic problems over module and ideal lat-
tices. These problems are worst-case, which means that we want an algorithm
that succeeds on any possible input.

Definition 2.1 (module-SVP). For γ ≥ 1 and a positive integer n, the module
shortest vector problem (γ, n)-module-SVP asks, given as input any pseudo-basis
of any rank-n module M in Kn, to find a nonzero vector s of M such that
‖s‖ ≤ γ · λ1(M).

Definition 2.2 (free-module-SVP). For γ ≥ 1 and a positive integer n, the
free module shortest vector problem (γ, n)-free-module-SVP asks, given as input
any free basis of any rank-n free module M in Kn, to find a nonzero vector s of
M such that ‖s‖ ≤ γ · λ1(M).

Note that, for simplicity, we restricted our problems to full-rank modules, i.e.,
to modules of rank n living in Kn. Regarding the choice of the input pseudo-
basis, we note that for the module-SVP problem, we can always assume that

Reductions from Module Lattices to Free Module Lattices 847

the module is represented by its HNF pseudo-basis, since it can be computed
efficiently from any pseudo-basis. Doing so, we could define the problem as being
worst-case only on the choice of the module. In the case of free-module-SVP
however, we cannot do the same, since the module has to be represented by a
free basis (recall that HNF bases are in general not free, even for free modules).
In this definition, it is important that the algorithm succeeds for any free basis
of a module.

We also define Hermite analogues of these two problems, by replacing λ1(M)
by

√
nd · det(M)1/(nd) in the definitions above.

Definition 2.3 ((free)-module-HSVP). For γ ≥ 1 and a positive integer n,
the module Hermite shortest vector problem (γ, n)-module-HSVP asks, given as
input any pseudo-basis of any rank-n module M in Kn, to find a nonzero vector s
of M such that ‖s‖ ≤ γ · √nd · det(M)1/(nd).
The free-module Hermite shortest vector problem (γ, n)-free-module-HSVP is
defined analogously, by restricting the input module to being free and represented
by (any) free basis.

Note that by Minkowski’s bound, we have immediate reductions from
module-HSVP to module-SVP, and from free-module-HSVP to free-module-
SVP, which preserve the rank of the module and the approximation factor. When
n = 1, the modules are ideals and we use the terminology γ-ideal-HSVP instead
of (γ, 1)-module-HSVP.8

Finally, we define a variant of the CVP problem over modules, which we call
CVPcov. In the CVPcov problem, the approximation factor is usually defined by
comparing the distance between the target and the solution with the minimal
distance from the target to the lattice. In the variant of CVPcov we consider, we
instead compare this with the covering radius of the lattice. We believe that this
variant is quite natural: this covers the “standard situation”, where the target
vector t has no reason to be particularly close to a lattice vector. This is in a
sense similar to the Hermite variant of the shortest vector problem: we consider
the expected distance from the target to the lattice (or the expected length of
a shortest nonzero vector) instead of the actual distance to the lattice (or the
actual length of a shortest vector).

Definition 2.4 ((free-)module-CVPcov). For γ ≥ 1 and a positive integer
n, the module closest vector problem with respect to the covering radius (γ, n)-
module-CVPcov asks, given as input any pseudo-basis of any rank-n module M
in Kn and any target vector t ∈ SpanK(M), to find a vector s of M such that
‖t − s‖ ≤ γ · cov(M).
The free-module closest vector problem with respect to the covering radius (γ, n)-
free-module-CVPcov is defined analogously, by restricting the input module to
being free and represented by (any) free basis.

8 The other problems will not be used for ideal lattices, so we do not give them a
special name.

848 G. De Micheli et al.

3 From Module Problems to Free-Module Problems
and Ideal-HSVP

In this section, we show that solving SVP (respectively HSVP, CVPcov) in mod-
ules can be reduced to solving SVP (respectively HSVP, CVPcov) in free mod-
ules and solving HSVP in ideals. The three reductions have exactly the same
structure, hence we present the reductions in a unique algorithm, namely Algo-
rithm 3.1 below, making queries to an oracle that solves either SVP, HSVP or
CVPcov in free modules. We then present the analysis of the three different cases
in separate subsections, since these analyses differ.

The high level idea of the reductions is as follows. First, we compute an
almost free basis of our input module, namely (b1, . . . ,bn, I). Then, we solve
HSVP in the ideal I to obtain a short element α ∈ I. The reduction finally calls
the oracle solving SVP (respectively HSVP, CVPcov) in free modules on the free
module N with basis (b1, . . . , αbn). This free module is a submodule of M , and
so a solution to SVP (respectively HSVP, CVPcov) in N is in particular also a
solution in M . Analysing how much one loses during this reduction depends on
the choice of the problem (SVP, HSVP, CVPcov), and will be done in separate
propositions.

Let us first describe the reduction algorithm formally.

Algorithm 3.1: Reduction from module-SVP/HSVP/CVPcov to free-
module-SVP/HSVP/CVPcov

Oracles: Oid an oracle solving γid-ideal-HSVP and O an oracle solving
(γ, n)-free-module-SVP (or HSVP, or CVPcov)

Input: A pseudo-basis (ci, Ii)1≤i≤n of a rank-n module M ⊂ Kn;
optionally a target vector t ∈ SpanK(M) if O solves
free-module-CVPcov

Output: A vector s ∈ M
1 Compute an almost-free representation (b1, · · · ,bn, I) of M ;
2 Run Oid on I to obtain α ∈ I \ {0};
3 Let N be the free module spanned by b1, . . . ,bn−1, αbn;
4 Run O on N (and optionally t in the case of CVPcov) to obtain s ∈ N ;
5 return s.

Proposition 3.1. Let n ≥ 1 be an integer and γid, γ ≥ 1 be real numbers. Let
Oid be an oracle solving γid-ideal-HSVP and O be an oracle solving (γ, n)-free-
module-SVP (respectively (γ, n)-free-module-HSVP, (γ, n)-free-module-CVPcov).
Then given access to Oid and O, Algorithm 3.1 runs in probabilistic polynomial
time, and makes one call to Oid and one call to O.

Proof. The only step of the algorithm which does not consist in calling an oracle
is the computation of the almost-free pseudo-basis in the first step. This can be
done in expected polynomial time thanks to Lemma 2.2. ��
We will now analyze the correctness and the loss of the reductions.

Reductions from Module Lattices to Free Module Lattices 849

3.1 The Case of SVP

We start by an auxiliary lemma.

Lemma 3.1. Using the same notations as in Algorithm 3.1, we have λ1(N) ≤
γid · Δ

1/d
K · λ1(M).

Proof. Take v ∈ M\{0} such that ‖v‖ = λ1(M). We have v = α1b1+. . .+αnbn,
where α1, . . . , αn−1 ∈ OK and αn ∈ I. Note that since α ∈ I, there exists some
integral ideal J such that 〈α〉 = IJ . Since α is a solution to γid-HSVP in I, we
have ‖α‖ ≤ γid · √

d · Δ
1/(2d)
K · N (I)1/d, which implies

N (J) =
N (α)
N (I)

≤ ‖α‖d

√
d

d · N (I)d
≤ γd

id · Δ
1/2
K ,

where the first inequality is obtained from Eq. (2).
Let u ∈ J\{0} such that ‖u‖ = λ1(J), then u ∈ OK (recall that J is integral)

and αnu ∈ 〈α〉. This implies that

uv = α1ub1 + . . . + αnubn ∈ N.

From this and Minkowski’s bound for �∞-norm (Theorem 2.1) we finally obtain
that

λ1(N) ≤ ‖uv‖ ≤ ‖u‖∞ · ‖v‖ ≤ λ
(∞)
1 (J) · λ1(M)

≤ Δ
1/2d
K · N (J)1/d · λ1(M)

≤ γid · Δ
1/d
K · λ1(M).

��
Proposition 3.2. If O solves (γ, n)-free-module-SVP, then given as input a
pseudo-basis of a rank-n module M in Kn, Algorithm 3.1 outputs s ∈ M \ {0}
such that ‖s‖ ≤ γ · γid · Δ

1/d
K · λ1(M).

Proof. Observe first that N is a submodule of M , hence a non-zero vector of N
is also a non-zero vector of M , and s ∈ M \ {0} as desired. The upper bound
on ‖s‖ comes from the fact that s is a solution to (γ, n)-free-module-SVP in N ,
i.e., ‖s‖ ≤ γ · λ1(N), and the upper bound on λ1(N) from Lemma 3.1. ��

Combining Proposition 3.2 with Proposition 3.1, we obtain the following
corollary.

Corollary 3.1. Let γ, γid ≥ 1 and n ≥ 1 be an integer. For any γ′ ≥ γ ·γid·Δ1/d
K ,

there is a probabilistic, polynomial-time reduction from solving (γ′, n)-module-
SVP in Kn to solving (γ, n)-free-module-SVP in Kn and γid-ideal-HSVP.

850 G. De Micheli et al.

3.2 The Case of HSVP

As in the SVP case, we start by an auxiliary lemma.

Lemma 3.2. Using the same notations as in Algorithm 3.1, we have det(N) ≤
γd

id · Δ
1/2
K · det(M).

Proof. We know from preliminaries that

det N

det M
=

N (N)
N (M)

=
N (α)
N (I)

≤ γd
id · Δ

1/2
K ,

where the last inequality was proven in the proof of Lemma 3.1. ��
Proposition 3.3. If O solves (γ, n)-free-module-HSVP, then on input a pseudo-
basis of a rank-n module M , Algorithm 3.1 outputs s ∈ M \ {0} such that ‖s‖ ≤
γ
1/n
id · γ · Δ

1/2nd
K · √

nd · (det M)1/nd.

Proof. Let N be as in Algorithm 3.1. Observe that N is a submodule of M ,
hence a non-zero vector of N is also a non-zero vector of M , and s ∈ M \ {0} as
desired. From Lemma 3.2, we know that det(N) ≤ γd

id · Δ
1/2
K · det(M), hence it

follows that

‖s‖ ≤ γ ·
√

nd · (det N)1/nd

≤ γ
1/n
id · γ · Δ

1/2nd
K ·

√
nd · (det M)1/nd

as desired. ��
Combining Propositions 3.3 and 3.1, we obtain the following corollary.

Corollary 3.2. Let γ, γid ≥ 1 and n ≥ 1 be an integer. For any γ′ ≥ γ
1/n
id · γ ·

Δ
1/2nd
K , there is a probabilistic, polynomial-time reduction from solving (γ′, n)-

module-HSVP in Kn to solving (γ, n)-free-module-HSVP in Kn and γid-ideal-
HSVP.

3.3 The Case of CVPcov

Similarly to the two previous cases, we start by an auxiliary lemma.

Lemma 3.3. Using the same notations as in Algorithm 3.1, we have cov(N) ≤
γid · Δ

1/d
K · cov(M).

Proof. Let t ∈ SpanK(N). We want to prove the existence of a vector s ∈ N

with ‖t − s‖ ≤ γid · Δ
1/d
K · cov(M).

Let u ∈ α · I−1 be a shortest nonzero vector of α · I−1 for the infinity norm.
By Minkowski’s theorem, we know that

‖u‖∞ ≤ det(α · I−1)1/d = Δ
1/2d
K · N (α · I−1)1/d ≤ γid · Δ

1/d
K ,

Reductions from Module Lattices to Free Module Lattices 851

where the last inequality was proven in the proof of Lemma 3.1. Note that since
α ∈ I, then the ideal α · I−1 is integral and so in particular u ∈ OK . This in
turn, implies that for any x ∈ M , we have u · x ∈ N .

Now, let us define t′ = u−1 · t. It holds that t′ ∈ SpanK(N) = SpanK(M),
so by definition of the covering radius, there exists s′ ∈ M such that ‖t′ − s′‖ ≤
cov(M). From what we have seen above, s = u · s′ is then a vector of N , and
from the bound on ‖u‖∞ we finally obtain

‖t − s‖ ≤ ‖u‖∞ · ‖t′ − s′‖ ≤ γid · Δ
1/d
K · cov(M),

as desired. ��
Proposition 3.4. If O solves (γ, n)-free-module-CVPcov, then on input a
pseudo-basis of a rank-n module M and a target vector t ∈ SpanK(M), Algo-
rithm 3.1 outputs s ∈ M such that ‖t − s‖ ≤ γ · γid · Δ

1/d
K · cov(M).

Proof. Let N be as in Algorithm 3.1. Since N is a submodule of M , and s ∈ N ,
then in particular we have s ∈ M . Moreover, from Lemma 3.3, we know that
cov(N) ≤ γid · Δ

1/d
K · cov(M), hence it follows that

‖t − s‖ ≤ γ · cov(N)

≤ γ · γid · Δ
1/d
K · cov(N),

as desired. ��
Combining Propositions 3.4 and 3.1, we obtain the following corollary.

Corollary 3.3. Let γ, γid ≥ 1 and n ≥ 1 be an integer. For any γ′ ≥ γ ·γid·Δ1/d
K ,

there is a probabilistic, polynomial-time reduction from solving (γ′, n)-module-
CVPcov in Kn to solving (γ, n)-free-module-CVPcov in Kn and γid-ideal-HSVP.

4 From Ideal-HSVP to Rank-2 Free-Module Problems

In this section, we show that solving ideal-HSVP can be reduced to solving free-
module-SVP (respectively free-module-HSVP, free-module-CVPcov) in modules
of rank 2. Since HSVP reduces to SVP in the same lattice by Minkowski’s the-
orem, we actually only need to prove two reductions, one to free-module-HSVP
and one to free-module-CVPcov. We do so in the two subsections below.

4.1 The Case of HSVP (and SVP)

In this subsection, we reduce ideal-HSVP to free-module-HSVP in modules of
rank 2. The high level idea is to use a two-element representation of the input
ideal to transform it into a free rank-2 module, such that any short vector of
this free rank-2 module can be transformed back into a short vector of the input

852 G. De Micheli et al.

ideal. Similar ideas were used in [DM22] in order to transform a rank-2 module
into a free rank-4 module.

More precisely, given an ideal I, we compute a two-element representation
I = 〈a〉 + 〈b〉 and construct the free module M with a basis consisting of the
columns of the following matrix

(
a b
0 ε

)

,

where ε > 0 is a rational number to be specified later. Observe that every s ∈ M

is of the form
(
x y

)T for x ∈ I and y ∈ 〈ε〉. Hence, if s is small, then its first
coordinate x is a small element of I. Here, since the size of s is related to the
determinant of M , which depends on the choice of ε, we want to take ε as small
as possible. However, M also contains vectors of the form

(
0 vε

)T for v ∈ OK ,
so if ε is too small then the short vectors of M are of this form and result in
x = 0. To avoid this case, we observe that when

(
0 vε

)T is a short vector of M
then ε can be upper bounded by a quantity depending only on K, I and a. Thus
by choosing ε greater than this quantity, we avoid the case where short vectors
of M have their first coordinate equal to 0.

Proposition 4.1. For any γ ≥ 1 and γ′ > 2γ2 ·Δ1/2d
K , there exists a probabilis-

tic polynomial-time reduction from solving γ′-ideal-HSVP to solving (γ, 2)-free-
module-HSVP in K2.

Proof. Let I be a non-zero ideal of K, without loss of generality we can assume
that I is integral (otherwise we scale it to an integral ideal, which does not
change its geometry). Compute a two-element representation I = 〈a〉 + 〈b〉 with
a �= 0 using the algorithm of Theorem 2.2 and consider the free module M ⊂ K2

generated by the free basis (in columns)
(

a b
0 ε

)

,

for some ε > 0, rational, to be determined. We want to prove that any solution
to γ-HSVP in M is of the form

(
x y

)T , with x a solution to γ′-ideal-HSVP
in I. Since a free basis of M is efficiently computable from I (in probabilistic
polynomial time), this will give us a probabilistic polynomial time reduction
from γ′-ideal-HSVP to (γ, 2)-free-module-HSVP as desired.

Let us first prove that if ε is large enough, then all solutions to γ-HSVP in
M are of the form

(
x y

)T with x non-zero. To do so, assume for a contradiction

that
(
0 vε

)T is a solution to γ-HSVP in M , then v ∈ OK\{0} and there exists
u ∈ OK such that ua + vb = 0. By definition of γ-HSVP, we have

ε · ‖v‖ ≤ γ ·
√

2d · Δ
1/2d
K · N (M)1/2d = γ ·

√
2d · Δ

1/2d
K · ε1/2 · N (a)1/2d.

Next, we want to show that because of the equality ua+vb = 0, then v has to be
quite large, and the inequality above cannot be satisfied. The equality ua+vb = 0

Reductions from Module Lattices to Free Module Lattices 853

implies that 〈u〉 〈a〉 = 〈v〉 〈b〉. Assume for the moment that b �= 0. Then, all ideals
in the equation above are nonzero (since both a and b are nonzero, and v should
also be nonzero). Since I = 〈a〉 + 〈b〉, there exist nonzero integral ideals J1, J2

such that 〈a〉 = IJ1, 〈b〉 = IJ2 and J1, J2 do not have any common factor in their
factorization into prime ideals. Since I is invertible (because it is non-zero), the
equality 〈u〉 〈a〉 = 〈v〉 〈b〉 can be rewritten as 〈u〉J1 = 〈v〉J2. Note that all ideals
involved in this equality are integral (because u and v are in OK). Since J1 and
J2 are coprime, it must be that J1 divides 〈v〉, which implies in particular that
N (v) ≥ N (J1) = N (a)/N (I), where the last equality comes from the definition
of J1. Finally, recall from Eq. (2) that ‖v‖ ≥ √

d · N (v)1/d, which gives us

‖v‖ ≥
√

d ·
(N (a)

N (I)

)1/d

.

In the case b = 0, then N (a) = N (I) and thus the inequality still holds, since
v ∈ OK . Combining this inequality with the one above we obtain

√
d ·

(N (a)
N (I)

)1/d

≤ ‖v‖ ≤ γ · √
2d · Δ

1/2d
K · N (a)1/2d

ε1/2
,

which results in

ε ≤ 2γ2Δ
1/d
K · N (I)2/d

N (a)1/d
.

Therefore choosing ε > 2γ2Δ
1/d
K N (I)2/d/N (a)1/d guarantees that the solution

s =
(
x y

)T to γ-SVP over M satisfies x �= 0.
Now, we also choose ε such that

ε ≤ γ′2

2γ2
· N (I)2/d

N (a)1/d
.

Note that γ′ > 2γ2·Δ1/2d
K implies the existence of such ε. Calling the free-module-

HSVP oracle on input M , let s be the output and x be the first coordinate of s.
The choice of ε guarantees that x ∈ I\{0} and

‖x‖ ≤ ‖s‖ ≤ γ ·
√

2d · Δ
1/2d
K · ε1/2 · N (a)1/2d

≤ γ′ ·
√

d · Δ
1/2d
K · N (I)1/d = γ′ ·

√
d · det(I)1/d.

Hence x is a solution to γ′-ideal-HSVP over I. ��
Since (γ, 2)-free-module-HSVP reduces to (γ, 2)-free-module-SVP (by defini-

tion and by Minkowski’s bound), Proposition 4.1 implies the following proposi-
tion.

Proposition 4.2. For any γ ≥ 1 and γ′ > 2γ2 ·Δ1/2d
K , there exists a probabilis-

tic polynomial-time reduction from solving γ′-ideal-HSVP to solving (γ, 2)-free-
module-SVP in K2.

854 G. De Micheli et al.

4.2 The Case of CVPcov

Let us now consider the reduction to CVPcov in free-modules of rank 2. The
main ideas of the reduction are similar to the SVP/HSVP case, but the analysis
is a bit different.

The idea is again to consider the free rank-2 module M spanned by the

columns of the matrix
(

a b
0 ε

)

, where I = 〈a〉 + 〈b〉 and ε is small. We show that

if ε is sufficiently small, then the covering radius of this lattice is roughly equal
to det(I)1/d (up to polynomial factors). Note that, contrary to the SVP/HSVP
case, we have no lower bound on ε here. The ideal case would be ε = 0, but
this would lead to a (non free) module of rank 1. Ensuring that the module has
rank 2 is the only reason we take ε �= 0.

Then, in order to find a short vector in I, we simply solve CVPcov in M with
a target vector of the form t = (t0, 0)T , where we choose t0 just slightly above
the covering radius of M , so that any solution s = (s0, s1)T has s0 �= 0, and
s0 ∈ I is somewhat short.

Proposition 4.3. For any γ ≥ 1 and γ′ ≥ 5 · γ · d · λ
(∞)
d (OK), there exists

a probabilistic polynomial-time reduction from solving γ′-ideal-HSVP to solving
(γ, 2)-free-module-CVPcov in K2.

Proof. Let I be an integral ideal in OK (we can assume that I is integral without
loss of generality, if it is not we scale it). Let a, b ∈ OK be such that I = 〈a〉+〈b〉
(with a �= 0), and ε > 0 be some rational number. Let M be the rank-2 free

module spanned by the basis
(

a b
0 ε

)

. First, let us prove that

cov(M) ≤ ε ·
(
d · λ

(∞)
d (OK) · Δ

1/2d
K · (

√
d + ‖a‖)

)
+ d3/2 · λ

(∞)
d (OK) · det(I)1/d.

Let t = (t0, t1)T ∈ SpanK(M) = K2. Let w ∈ OK be such that ‖wε − t1‖ ≤
cov(εOK) (i.e., wε is a closest point to t1 in the ideal εOK). If we subtract
w · (b, ε)T to t, we obtain a new vector t′ = (t′0, t

′
1)

T , which is at the same
distance to M as t (since w · (b, ε)T ∈ M), but whose second coordinate is small,
namely ‖t′1‖ ≤ cov(εOK).

Let us now reduce the first coordinate. Let α ∈ I be a closest vector to t′0,
that is, ‖α − t′0‖ ≤ cov(I). Since I is generated by a and b, there exists u0 and
v0 in OK such that α = u0a + v0b. We would like to take v0 as small as possible
(since adding v0 times the second basis vector will make the second coordinate
of our vector increase again). We know that any (u, v) = (u0 + kb, v0 − ka) with
k ∈ OK also satisfies α = ua + vb. Hence, we can always reduce v modulo a and
ensure that ‖v‖ = ‖v0 − ka‖ ≤ cov(aOK).

Reductions from Module Lattices to Free Module Lattices 855

Overall, we obtain (u, v) ∈ O2
K with ‖v‖ ≤ cov(aOK) such that ‖ua + vb −

t′0‖ ≤ cov(I). Taking s = u(a, 0)T + (v + w)(b, ε)T ∈ M finally gives us

‖t − s‖ = ‖t′ − u(a, 0)T − v(b, ε)T ‖
= ‖(t′0 − α, t′1 − εv)T ‖
≤ ‖t′0 − α‖ + ‖t′1‖ + ε‖v‖
≤ cov(I) + cov(εOK) + ε · cov(aOK).

To conclude, recall from preliminaries (Eqs. (3) and (4)) that

cov(I) ≤ d3/2 · λ
(∞)
d (OK) · det(I)1/d,

cov(aOK) ≤ d · λ
(∞)
d (OK) · Δ

1/2d
K · ‖a‖,

cov(εOK) ≤ ε · d3/2 · λ
(∞)
d (OK) · Δ

1/2d
K ,

where in the last inequality we used the fact that ε is rational and so ‖ε‖ = ε
√

d.
Combining everything, we obtain the desired upper bound on cov(M).

We can now describe our reduction from ideal-HSVP to free-module-CVPcov

in modules of rank 2. Our algorithm takes as input some integral ideal I. It
computes in probabilistic polynomial time a and b in OK such that I = 〈a〉 +
〈b〉, with a �= 0 (see Lemma 2.2). Then, it sets ε > 0 rational such that ε ≤
(
Δ

1/(2d)
K · (

√
d + ‖a‖)

)−1

·det(I)1/d, and compute the free basis
(

a b
0 ε

)

, spanning

some rank-2 module M .
The reduction also creates the target vector t = (δ, 0)T , with δ ∈ Q such

that δ ∈ (2, 3] ·γ ·dλ
(∞)
d (OK) ·det(I)1/d. The reduction then runs the (γ, 2)-free-

module-CVPcov oracle on input M and t, to obtain a vector s = (s0, s1)T , and
it outputs s0.

One can check that the reduction in probabilistic polynomial time. Let us
now prove that s0 is a solution to γ′-HSVP in I with γ′ as in the theorem
statement.

First, s0 ∈ I since a and b are both in I. Also, by choice of ε and using what
we have proven above, we know that cov(M) ≤ 2d3/2 ·λ(∞)

d (OK) ·det(I)1/d. This
implies that

‖s0 − δ‖ ≤ ‖s − t‖ ≤ γ · cov(M) < ‖δ‖,

using the fact that ‖δ‖ =
√

dδ since δ ∈ Q ⊆ K. This means that s0 is nonzero,
and ‖s0‖ ≤ ‖δ‖ + γ · cov(M) ≤ 5γ · d · λ

(∞)
d (OK) · √

d · det(I)1/d, as desired. ��

5 From Rank-2 Free-Module Problems to Rank-n
Free-Module Problems

We conclude the reductions by proving a reduction from free-module-SVP
(respectively HSVP, CVPcov) in modules of rank 2 to free-module-SVP (respec-
tively HSVP, CVPcov) in modules of rank n ≥ 2. These reductions are not

856 G. De Micheli et al.

surprising, since they follow the intuition that the hardness of module problems
increase when the rank of the module increases (for a fixed underlying field).
Following this intuition, the reductions for SVP and CVPcov are easily obtained
by embedding the rank 2 input module into a larger rank module, and padding
the extra dimensions with dummy vectors. Surprisingly however, the reduction
for HSVP is not as easy as the other two, and we even have some significant loss
in the approximation factor when reducing to modules of rank n with n odd.
The proof of Proposition 5.2 (the HSVP reduction) is the most interesting one
of this section. We believe that improving the reduction for HSVP to obtain a
smaller loss is an interesting open problem.

5.1 The Case of SVP

In this subsection, we reduce SVP in rank-2 free modules in K2 to SVP in rank-n
free module, where n ≥ 2. This is naturally done by embedding the rank 2 free
module into a larger rank free module.

Let M1 ⊂ K2 be a rank-2 free modules with a free basis B′ ∈ K2×2. We con-
struct a rank-n free module M ⊂ Kn generated by the columns of the following
block matrix

B =

⎛

⎝
B′ 0

0 δIn−2

⎞

⎠ ∈ Kn×n

where δ is a positive, rational number, to be determined later. Note that M1 is
the rank-2 free module generated by the first two columns of B. If we let M2 be
the rank-(n − 2) free module generated by the remaining n − 2 columns of B,
then we see that M = M1 ⊕ M2, and the sum is orthogonal.

Lemma 5.1. With the above notations, λ1(M) = min{λ1(M1), λ1(M2)}.
Proof. Let s ∈ M\{0} be a shortest vector, we have s = s1 + s2, where s1 ∈ M1,
s2 in M2 and s1, s2 are orthogonal (when viewed as vectors in C

nd). If both
s1 and s2 are nonzero vectors, then λ1(M) = ‖s‖ > min{‖s1‖ , ‖s2‖}, which is
absurd. Thus one of s1 and s2 is zero vector, and the conclusion follows. ��

Suppose that we have access to an oracle solving (γ, n)-free-module-SVP on
input any free basis of any rank-n module in Kn. Calling this oracle on input B
will give a short vector s of M . The idea is to choose δ large enough such that
M2 does not contain any relatively short vector of M and thus the short vectors
of M should be the short vectors of M1. In particular, if we choose δ such that
λ1(M2) ≥ γλ1(M1), then a solution s to γ-SVP in M is also a solution to γ-SVP
in M1 (when projecting on the first two coordinates).

Lemma 5.2. If δ > γ · √
2 · det(M1)1/(2d), then λ1(M2) > γ · λ1(M1).

Proof. Let s = (0, 0, s1δ, . . . , sn−2δ)T ∈ M2 be a shortest nonzero vector of M2,
where si ∈ OK . Observe that there exists some i ∈ {1, . . . , n − 2} such that
si �= 0, then

λ1(M2) = ‖s‖ ≥ δ · ‖si‖ ≥ δ ·
√

d > γ ·
√

2d · det(M1)1/(2d).

Reductions from Module Lattices to Free Module Lattices 857

By Minkowski’s bound, it follows that λ1(M2) > γλ1(M1). ��
We can now prove our reduction from rank 2 to rank n free modules.

Proposition 5.1. Let γ ≥ 1 be a reaul number and n ≥ 2 be an integer. There is
a polynomial-time (deterministic) reduction from solving (γ, 2)-free-module-SVP
in K2 to (γ, n)-free-module-SVP in Kn.

Proof. Consider a rank-2 free module M1 given by a basis B′ ∈ K2×2. We set
δ = �γ · 2 · det(M1)1/(2d)� and construct the block matrix

B =

⎛

⎝
B′ 0

0 δIn−2

⎞

⎠ ∈ Kn×n

as above. Note that computing δ and constructing B can be performed in time
polynomial in the size of B′ and in log ΔK (and the size of B is polynomial in
these two quantities). We observe also that B is a free basis of a rank n module
in Kn. Calling the (γ, n)-free-module-SVP oracle on this module produces s =
(s1, s2, . . . , sn) ∈ Kn. Our reduction algorithm then outputs the vector formed
by the first two coordinates of s.

We have seen that this procedure is polynomial time. Let us now show that
the output vector is a solution to γ-SVP in M1. Since δ satisfies the condition
of Lemma 5.2, we have λ1(M2) > γλ1(M1) ≥ λ1(M1). By Lemma 5.1, it follows
that λ1(M) = λ(M1). The output s of the oracle then satisfies ‖s‖ ≤ γ ·λ1(M1) <
λ1(M2). This implies that s′ = (s1, s2)T is nonzero, in M1 and of euclidean norm
≤ γ · λ1(M1) as desired. ��

5.2 The Case of HSVP

In this section, we reduce HSVP in free modules of rank 2 to HSVP in free
modules of rank n ≥ 2. The strategy is somewhat similar to the SVP case:
we embed our rank-2 module into a rank-n module and use the oracle in this
rank-n module. However, in the HSVP case, padding the extra dimensions of the
modules with (scaled) identity vectors does not seem to work. Hence, we instead
copy our rank-2 modules into n/2 orthogonal copies of itself. For this reason, the
case with n odd behaves differently from the case with n even, and we obtain
a worse approximation factor in this case of n odd (this is the only reduction
in this section, where the new approximation factor is more than linear in the
original approximation factor).

Proposition 5.2. Let n ≥ 2 be an integer and define εn = 0 if n is even and
εn = 1/(n−1) if n is odd. For any real numbers γ ≥ 1 and γ′ ≥ γ1+εn ·√n

1+εn ·
Δ

εn/2d
K , there exists a (deterministic) polynomial time reduction from solving

(γ′, 2)-free-module-HSVP to solving (γ, n)-free-module-HSVP.

Note that the quantity εn in the theorem is always ≤ 1/2, so by taking
γ′ ≥ γ3/2 · n3/4 · Δ

1/4d
K , the theorem’s requirement is fulfilled.

858 G. De Micheli et al.

Proof. Consider a rank-2 free module M1 given by a basis B′ ∈ K2×2. Consider
the case when n is even, we construct the block matrix

B =

⎛

⎜
⎜
⎜
⎝

B′ 0 · · · 0
0 B′ · · · 0
...

...
. . .

...
0 0 · · · B′

⎞

⎟
⎟
⎟
⎠

∈ Kn×n,

which is a block diagonal matrix with diagonal elements consisting of n/2 blocks
of B′. Observe the cost of constructing B and the size of B is polynomial in
the size of B′. We observe also that B is a free basis of a rank n module
in Kn. Calling the (γ, n)-free-module-HSVP oracle on this module produces
s = (s1, s2, . . . , sn) ∈ Kn satisfying ‖s‖ ≤ γ · √

nd · det(M)1/nd. Our reduction
algorithm then selects an odd index i such that (si, si+1) is nonzero and outputs
s′ = (si, si+1). Such i always exists since s is nonzero, and s′ ∈ M1 and satisfies

‖s′‖ ≤ ‖s‖ ≤ γ ·
√

nd · det(M)1/nd

= γ ·
√

nd ·
(
Δ

n/2
K · N (detB)

)1/nd

= γ ·
√

nd · Δ
1/2d
K ·

(
N (detB′)n/2

)1/nd

= γ ·
√

nd · det(M1)1/2d ≤ γ′ ·
√

2d · det(M1)1/2d,

the last inequality is obtained by the fact that γ′ = γ
√

n ≥ γ · √
n/2 when n

is even. Hence, s′ is a solution to γ′-HSVP in M1 as desired. Now consider the
case when n is odd, we construct the block matrix

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B′ 0 0 · · · 0 0
0 B′ 0 · · · 0 0
0 0 B′ · · · 0 0
...

...
. . .

...
...

0 0 0 · · · B′ 0
0 0 0 · · · 0 δ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Kn×n,

where δ is a rational number satisfying δ0 < δ ≤ 2δ0, for

δ0 = γn/(n−1) · Δ
n/2d(n−1)
K · (

√
n)n/(n−1) · N (detB′)1/2d

.

Note that B is a block diagonal matrix with diagonal elements consisting of
(n − 1)/2 blocks of B′ and δ. Similarly to the case where n is even, B is a
free basis of a rank n module in Kn; the cost of constructing B and the size
of B is polynomial in the size of B′ and log ΔK . Calling the (γ, n)-free-module-
HSVP oracle on this module produces s = (s1, s2, . . . , sn) ∈ Kn satisfying ‖s‖ ≤
γ · √

nd · det(M)1/nd. Our reduction algorithm now select an odd index i < n
such that (si, si+1) is nonzero and outputs s′ = (si, si+1).

Reductions from Module Lattices to Free Module Lattices 859

Now we show that such choice of i can always be made. Suppose by contra-
diction that the (γ, n)-free-module-SVP outputs s = (0, . . . , 0, δu) ∈ Kn, where
u ∈ OK\{0}. Note that we have

δ · ‖u‖ ≤ γ ·
√

nd · (det M)1/nd = γ ·
√

nd · Δ
1/2d
K · N (detB′)(n−1)/2nd · δ1/n.

Since u ∈ OK \ {0}, we have ‖u‖ ≥ √
d, which implies

δ ≤ γn/(n−1) · Δ
n/2d(n−1)
K · (

√
n)n/(n−1) · N (detB′)1/2d = δ0.

This contradicts the choice of δ. Thus the reduction algorithm in case n is odd
can always outputs s′ which is a nonzero vector of M1 and satisfies
∥
∥s

′∥∥ ≤ ‖s‖ ≤ γ ·
√

nd · det(M)
1/nd

= γ ·
√

nd · Δ
1/2d
K · N (detB

′
)
(n−1)/2nd · δ

1/n

≤ γ ·
√

nd · Δ
1/2d
K · N (

detB
′)(n−1)/2nd · 21/n · γ

εn · Δ
εn/2d
K · √

n
εn · N (

detB
′)1/2nd

≤ γ
1+εn · √

n
1+εnΔ

εn/2d
K ·

√
2d · Δ

1/2d
K · N (detB

′
)
1/2d

≤ γ
′ ·

√
2d · det(M1)

1/2d
,

as desired. ��

5.3 The Case of CVPcov

In this subsection, we reduce CVPcov in free modules of rank 2 to CVPcov in
free modules of rank n ≥ 2. This is probably the simplest of the three reductions
from this section. Like in the SVP case, we simply embed our rank—2 module
M1 into a rank-n module by padding the extra dimensions with (scaled) identity
vectors. We only need to ensure that these vectors are smaller than the covering
radius of M1, to be sure that these extra dimensions do not increase the covering
radius of our module too much. Then, we create a target vector by padding zeros
to the original target vector. Overall, we prove the following reduction.

Proposition 5.3. Let γ ≥ 1 a real number and n ≥ 2 an integer. There
is a (deterministic) polynomial-time reduction from solving (γ′, 2)-free-module-
CVPcov in K2 to (γ, n)-free-module-CVPcov in Kn, for any γ′ ≥ √

2 · γ.

Proof. Consider a rank-2 free module M1 given by a basis B′ ∈ K2×2 and a
target vector t1 ∈ SpanK(M1) = K2. Let us assume without loss of generality
that M1 ⊆ O2

K .
The reduction algorithm computes δ ≤ (dn · λd(OK))−1 rational and con-

structs the block matrix (spanning a module called M)

B =

⎛

⎝
B′ 0

0 δ · In−2

⎞

⎠ ∈ Kn×n.

860 G. De Micheli et al.

and the target vector t = (t1T , 0, . . . , 0)T (with n − 2 zeros). The reduction
then calls the oracle solving (γ, n)-free-module-CVPcov on input B and t, which
outputs a vector s. Let us call s1 the vector formed by the first two coordinates
of s. The reduction algorithm finally outputs s1.

One can check that computing an appropriate value of δ can be done in
polynomial time since we know from Lemma 2.1 that λ

(∞)
d (OK) ≤ Δ

1/d
K . Con-

structing B and t can also be performed in polynomial time, hence our reduction
runs in polynomial time.

Let us now focus on correctness. From the definition of B, we know that
s1 ∈ M1. We also know that

‖t1 − s1‖ ≤ ‖t − s‖ ≤ γ · cov(M).

Let us analyse cov(M). Because of the special shape of B, we know that

cov(M) =
√

cov(M1)2 + δ2 · cov(O n−2
K)2

≤
√

cov(M1)2 + (δ · dn · λd(OK))2 ≤
√

cov(M1)2 + 1

Moreover, we know from preliminaries that cov(M1) ≥ 1/2 · λ1(M1) ≥ √
d/2,

where the last inequality follows from the fact that M1 ⊆ O2
K . Combining this

with the previous inequality yields

cov(M) ≤
√

2 · cov(M1).

Hence, our reduction solves (
√

2γ, 2)-CVPcov in M1 as desired. ��

6 Combining the Reductions

In this last section, we combine the three reductions from Sects. 3, 4 and 5 to
prove our main theorems.

Theorem 6.1. Let γ ≥ 1 and n ≥ 2 be an integer. For any γ′ > 2 · γ3 · Δ
3/2d
K ,

there is a probabilistic, polynomial-time reduction from solving (γ′, n)-module-
SVP in Kn to solving (γ, n)-free-module-SVP in Kn.

Theorem 6.2. Let γ ≥ 1 and n ≥ 2 be an integer. For any γ′ > γ2 ·√2n·Δ1/2d
K ,

there is a probabilistic, polynomial-time reduction from solving (γ′, n)-module-
HSVP in Kn to solving (γ, n)-free-module-HSVP in Kn.

Theorem 6.3. Let γ ≥ 1 and n ≥ 2 be an integer. For any γ′ ≥ γ2 ·5√
2·d·Δ2/d

K ,
there is a probabilistic, polynomial-time reduction from solving (γ′, n)-module-
CVPcov in Kn to solving (γ, n)-free-module-CVPcov in Kn.

We note that, in the statements above, we chose to make the lower bound on
γ′ as simple as possible, but not necessarily as tight as possible. If the reader is

Reductions from Module Lattices to Free Module Lattices 861

interested in tighter bounds, it might be worth combining the reductions from
the previous sections in a more careful way.

Interestingly, the reduction for SVP is the less tight of the three reductions, if
we ignore the factors depending on the field and the module rank. Indeed, in the
SVP case, the new approximation factor γ′ is cubic in the original approximation
factor γ, when for the other two reductions, the new approximation factor γ′ is
only quadratic in γ. We do not know whether it is possible to decrease the loss
to quadratic in γ in the SVP case too, and leave it as an open problem.

Proof (Proof of Theorem 6.1). Let γ1 = γ′, γ2 = γ′

γΔ
1/d
K

and γ3 = γ4 = γ. It holds

by definition that γ1 ≥ γ4 ·γ2 ·Δ1/d
K hence, by Corollary 3.1, we have a reduction

from (γ1, n)-module-SVP to (γ4, n)-free-module-SVP and γ2-ideal-HSVP. Then,
observe that because of the lower bound on γ′ in the theorem statement, we have
γ2 > 2γ2

3 · Δ1/2d
K , so by Proposition 4.2 there is a reduction from γ2-ideal-HSVP

to (γ3, 2)-free-module-SVP. Finally, by Proposition 5.1, there is a reduction from
(γ3, 2)-free-module-SVP to (γ4, n)-free-module-SVP. Combining the three reduc-
tions provides a reduction from (γ1, n)-module-SVP to (γ4, n)-free-module-SVP
as required. ��

Proof (Proof of Theorem 6.2). Let γ1 = γ′, γ2 =
(

γ′

γ

)n

·Δ−1/2d
K and γ4 = γ. For

γ3, we treat the case n = 2 separately: if n = 2, we let γ3 = γ · √
n and if n ≥ 3

we take γ3 = γ3/2 · n3/4 · Δ
1/4d
K .

First, let us observe that by definition of γ1, γ2 and γ4, it holds that γ1 ≥
γ
1/n
2 · γ4 · Δ

1/2nd
K . Hence, by Corollary 3.2, there is a reduction from (γ1, n)-

module-HSVP to (γ4, n)-free-module-HSVP and γ2-ideal-HSVP.
Then, observe that thanks to the lower bound on γ′ in the theorem’s state-

ment, we have that γ2 > 2 · (γ3/2 · n3/4 · Δ
1/4d
K)2 · Δ

1/2d
K when n ≥ 3 and

γ2 > 2 · (γ · √
n)2 · Δ

1/2d
K when n = 2. In both cases, by choice of γ3, it holds

that γ2 > 2γ2
3 · Δ

1/2d
K and so from Proposition 4.1, we have a reduction from

γ2-ideal-HSVP to (γ3, 2)-free-module-HSVP.
Finally, let εn be as in Proposition 5.2, that is εn = 0 if n is even and

εn = 1/(n − 1) if n is odd. Note that εn = 0 when n = 2 and εn ≤ 1/2 when
n ≥ 3. With this in mind, one can check that γ3 ≥ γ1+εn

4 · √
n
1+εn · Δ

εn/2d
K in

both cases n = 2 and n ≥ 3. From Proposition 5.2, this implies the existence of
a reduction from (γ3, 2)-free-module-HSVP to (γ4, n)-free-module-HSVP. Com-
bining the three reductions provides a reduction from (γ1, n)-module-HSVP to
(γ4, n)-free-module-HSVP as required. ��

Proof (Proof of Theorem 6.3). Let γ1 = γ′, γ2 = γ · 5
√

2 · d · Δ
1/d
K , γ3 =

√
2γ

and γ4 = γ. By definition and from the lower bound on γ′ in the theorem
statement, it holds that γ1 ≥ γ4 · γ2 · Δ

1/d
K hence, by Corollary 3.3, we have

a reduction from (γ1, n)-module-CVPcov to (γ4, n)-free-module-CVPcov and γ2-
ideal-HSVP. Then, by definition of γ2 and using the fact that λ

(∞)
d (OK) ≤ Δ

1/d
K

(see Lemma 2.1), we have γ2 ≥ 5γ3 · d · λ(∞)
d (OK), so by Proposition 4.3 there is

862 G. De Micheli et al.

a reduction from γ2-ideal-HSVP to (γ3, 2)-free-module-CVPcov. Finally, we have
γ3 ≥ √

2 · γ4 and so by Proposition 5.3, there is a reduction from (γ3, 2)-free-
module-CVPcov to (γ4, n)-free-module-CVPcov. Combining the three reductions
provides a reduction from (γ1, n)-module-CVPcov to (γ4, n)-free-module-CVPcov

as required. ��

7 Application: Dequantizing Module-LLL

One of the main application of our reductions (and more precisely of the reduc-
tion for SVP from Theorem 6.1) is a de-quantized, i.e., classical version of the
LLL algorithm for modules lattices from [LPSW19] (which we refer to as module-
LLL). Module-LLL is an oracle-based algorithm which, on input a pseudo-basis
of a rank-n module M ⊂ Km, outputs a somewhat short vector of the module.
The algorithm is heuristic and runs in quantum polynomial time, provided it
is given access to an oracle solving the closest vector problem in a fixed (field
dependent) lattice LK . The authors of [LPSW19] also showed that module-LLL
can be made classical if the input module is free and represented by a basis, but
they were unable to de-quantize the algorithm in the generic case. The following
theorem was proved in [LPSW19].

Theorem 7.1 (Heuristic [LPSW19, Theorem 5.1]). For any sequence of
number fields K and any η > 0, there exist a sequence of lattices LK of dimension
O((log ΔK)2+η), an approximation factor γ = 2Õ(log ΔK)/d and an algorithm A
such that (under some heuristics):

• Algorithm A solves (γn, n)-free-module-SVP in Kn;
• Algorithm A makes a number of queries to an oracle solving the closest vector
problem in LK and requires a total number of classical operations that are both
polynomial in log ΔK and the input bit-length.

Note that our formulation of Theorem 7.1 is slightly different from the one
of Theorem 5.1 from [LPSW19]. In particular, we state the theorem only for full
rank modules and we use the recent result from [BST+20] to simplify some of the
bounds. More precisely, in [LPSW19, Theorem 5.1], both the dimension of the
lattice LK and the approximation factor γ involved the quantity d log(cov(OK)).
By combining Lemma 2.1 and Eq. (3), we can see that cov(OK) ≤ d3/2 ·Δ3/(2d)

K ,
which implies that d log(cov(OK)) = Õ(log ΔK), and leads to our simplification.

We now show in the following theorem that there exists a classical module-
LLL algorithm that solves an approximate version of the module-SVP problem,
regardless of the fact that the input module is free or not. The only difference
between Theorem 7.2 below and Theorem 7.1 above is that A now solves module-
SVP, instead of free-module-SVP.

Theorem 7.2. For any sequence of number fields K and any η > 0, there exist
a sequence of lattices LK of dimension O((log ΔK)2+η), an approximation factor
γ′ = 2Õ(log ΔK)/d and an algorithm A such that (under some heuristics):

Reductions from Module Lattices to Free Module Lattices 863

• Algorithm A solves ((γ′)n, n)-module-SVP in Kn;
• Algorithm A makes a number of queries to an oracle solving the closest vector
problem in LK and requires a total number of classical operations that are both
polynomial in log ΔK and the input bit-length.

Proof. Combine Theorem 7.1 with Theorem 6.1.

Note that, due to the reduction, the approximation factor γ′ from Theo-
rem 7.2 is a priori slightly worse than the approximation factor γ in Theorem 7.1
(we have, e.g., γ′ = 3 ·γ3 ·Δ3/2d

K), but the difference is hidden in the soft O nota-
tion that is used in both statements.

Acknowledgements. Gabrielle De Micheli is supported in part by the Swiss National
Science Foundation Early Postdoc.Mobility fellowship. Daniele Micciancio is supported
by the NSF Award 1936703, Samsung and Intel. Alice Pellet-Mary is supported by the
CHARM ANR-NSF grant (ANR-21-CE94-0003) and by the PEPR quantique France
2030 programme managed by the ANR (ANR-22-PETQ-0008 PQ-TLS). Nam Tran is
supported by CSIRO Data61 PhD Scholarship and CSIRO Data61 Top-up Scholar-
ship. This work was done when Nam Tran was a Master student in the University of
Limoges (France) and doing his internship at Institute of Mathematics of Bordeaux
(IMB, France), founded by IMB.

References

[BF14] Biasse, J.F., Fieker, C.: Subexponential class group and unit group com-
putation in large degree number fields. LMS J. Comput. Math. 17(A),
385–403 (2014)

[BGV14] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomor-
phic encryption without bootstrapping. ACM Trans. Comput. Theory
(TOCT) 6(3), 1–36 (2014)

[BHJ22] Bley, W., Hofmann, T., Johnston, H.: Computation of lattice isomorphisms
and the integral matrix similarity problem. In: Forum of Mathematics,
Sigma, vol. 10, p. e87. Cambridge University Press, Cambridge (2022)

[Boe22] de Boer, K.: Random walks on Arakelov class groups. PhD thesis, Leiden
University (2022)

[BS16] Biasse, J.F., Song, F.: Efficient quantum algorithms for computing class
groups and solving the principal ideal problem in arbitrary degree number
fields. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 893–902. SIAM (2016)

[BST+20] Bhargava, M., Shankar, A., Taniguchi, T., Thorne, F., Tsimerman, J.,
Zhao, Y.: Bounds on 2-torsion in class groups of number fields and integral
points on elliptic curves. J. Am. Math. Soc. 33(4), 1087–1099 (2020)

[CDPR16] Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators
of principal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5 20

[CDW17] Cramer, R., Ducas, L., Wesolowski, B.: Short Stickelberger class relations
and application to ideal-SVP. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10210, pp. 324–348. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56620-7 12

https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-319-56620-7_12

864 G. De Micheli et al.

[Coh12] Cohen, H.: Advanced Topics in Computational Number Theory, vol. 193.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4419-8489-0

[DM22] De Micheli, G., Micciancio, D.: A fully classical LLL algorithm for modules.
Cryptology ePrint Archive (2022)

[FPS22] Felderhoff, J., Pellet-Mary, A., Stehlé, D.: On module unique-SVP and
NTRU. In: Advances in Cryptology-ASIACRYPT 2022: 28th International
Conference on the Theory and Application of Cryptology and Information
Security, Taipei, Taiwan, 5–9 December 2022, Proceedings, Part III, pp.
709–740. Springer, Heidelberg (2022)

[FS10] Fieker, C., Stehlé, D.: Short bases of lattices over number fields. In: Han-
rot, G., Morain, F., Thomé, E. (eds.) ANTS 2010. LNCS, vol. 6197, pp.
157–173. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14518-6 15

[Gen09a] Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford
University (2009)

[Gen09b] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceed-
ings of the Forty-First Annual ACM Symposium on Theory of Computing,
pp. 169–178 (2009)

[GGH+16] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. SIAM J. Comput. 45(3), 882–929 (2016)

[Hop98] Hoppe, A.: Normal forms over Dedekind domain, efficient implementation
in the computer algebra system KANT. PhD thesis, TU Berlin (1998)

[HPS06] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key
cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–
288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

[LM06] Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are col-
lision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 13

[LPR13] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. J. ACM (JACM) 60(6), 1–35 (2013)

[LPSW19] Lee, C., Pellet-Mary, A., Stehlé, D., Wallet, A.: An LLL algorithm for
module lattices. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019.
LNCS, vol. 11922, pp. 59–90. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34621-8 3

[LS15] Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module
lattices. Des. Codes Cryptogr. 75(3), 565–599 (2015)

[PR06] Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006). https://doi.
org/10.1007/11681878 8

[PS21] Pellet-Mary, A., Stehlé, D.: On the hardness of the NTRU problem. In:
Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13090, pp. 3–
35. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3 1

[PT23] Pellet-Mary, A., Tran, N.: Reductions from module lattices to free module
lattices (2023). https://hal.science/hal-04119912/document

[SSTX09] Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key
encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-10366-7 36

https://doi.org/10.1007/978-1-4419-8489-0
https://doi.org/10.1007/978-3-642-14518-6_15
https://doi.org/10.1007/978-3-642-14518-6_15
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-030-34621-8_3
https://doi.org/10.1007/978-3-030-34621-8_3
https://doi.org/10.1007/11681878_8
https://doi.org/10.1007/11681878_8
https://doi.org/10.1007/978-3-030-92062-3_1
https://hal.science/hal-04119912/document
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36

Reductions from Module Lattices to Free Module Lattices 865

[Ste15] Stephens-Davidowitz, N.: Dimension-preserving reductions between lattice
problems (2015). http://noahsd.com/latticeproblems.pdf

[Was97] Washington, L.C.: Introduction to Cyclotomic Fields, vol. 83, p. 104.
Springer, Heidelberg (1997). https://doi.org/10.1007/978-1-4612-1934-7

http://noahsd.com/latticeproblems.pdf
https://doi.org/10.1007/978-1-4612-1934-7

	Reductions from Module Lattices to Free Module Lattices, and Application to Dequantizing Module-LLL
	1 Introduction
	2 Preliminaries
	2.1 Lattices
	2.2 Number Fields
	2.3 Ideals
	2.4 Modules
	2.5 Algorithmic Problems over Module and Ideal Lattices

	3 From Module Problems to Free-Module Problems and Ideal-HSVP
	3.1 The Case of SVP
	3.2 The Case of HSVP
	3.3 The Case of CVP

	4 From Ideal-HSVP to Rank-2 Free-Module Problems
	4.1 The Case of HSVP (and SVP)
	4.2 The Case of CVP

	5 From Rank-2 Free-Module Problems to Rank-n Free-Module Problems
	5.1 The Case of SVP
	5.2 The Case of HSVP
	5.3 The Case of CVP

	6 Combining the Reductions
	7 Application: Dequantizing Module-LLL
	References

