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Abstract

The breakup of Laurasia to form the Northeast Atlantic Realm disintegrated an
inhomogeneous collage of cratons sutured by cross-cutting orogens. Volcanic rifted margins
formed that are underlain by magma-inflated, extended continental crust. North of the
Greenland-Iceland-Faroe Ridge a new rift—the Aegir Ridge—propagated south along the
Caledonian suture. South of the Greenland-Iceland-Faroe Ridge the proto-Reykjanes Ridge
propagated north through the North Atlantic Craton along an axis displaced ~150 km to the
west of the rift to the north. Both propagators stalled where the confluence of the
Nagssugtogidian and Caledonian orogens formed an ~300-km-wide transverse barrier.
Thereafter, the ~150 x 300-km block of continental crust between the rift tips—the Iceland
Microcontinent—extended in a distributed, unstable manner along multiple axes of extension.
These axes repeatedly migrated or jumped laterally with shearing occurring between them in
diffuse transfer zones. This style of deformation continues to the present day in Iceland. It is
the surface expression of underlying magma-assisted stretching of ductile continental crust
that has flowed from the Iceland Microplate and flanking continental areas to form the lower
crust of the Greenland-Iceland-Faroe Ridge. Icelandic-type crust which underlies the
Greenland-Iceland-Faroe Ridge is thus not anomalously thick oceanic crust as is often
assumed. Upper Icelandic-type crust comprises magma flows and dykes. Lower Icelandic-
type crust comprises magma-inflated continental mid- and lower crust. Contemporary magma
production in Iceland, equivalent to oceanic layers 2-3, corresponds to Icelandic-type upper
crust plus intrusions in the lower crust, and has a total thickness of only 10-15 km. This is
much less than the total maximum thickness of 42 km for Icelandic-type crust measured
seismically in Iceland. The feasibility of the structure we propose is confirmed by numerical
modeling that shows extension of the continental crust can continue for many tens of millions
of years by lower-crustal ductile flow. A composition of Icelandic-type lower crust that is
largely continental can account for multiple seismic observations along with gravity,
bathymetric, topographic, petrological and geochemical data that are inconsistent with a
gabbroic composition for Icelandic-type lower crust. It also offers a solution to difficulties in
numerical models for melt-production by downward-revising the amount of melt needed.
Unstable tectonics on the Greenland-Iceland-Faroe Ridge can account for long-term tectonic
disequilibrium on the adjacent rifted margins, the southerly migrating rift propagators that
build diachronous chevron ridges of thick crust about the Reykjanes Ridge, and the tectonic
decoupling of the oceans to the north and south. A model of complex, discontinuous
continental breakup influenced by crustal inhomogeneity that distributes continental material
in growing oceans fits other regions including the Davis Strait, the South Atlantic and the
West Indian Ocean.
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1 Introduction

The NE Atlantic Realm, the region north of the Charlie Gibbs Fracture Zone, including the
seas and seaboards west of Greenland, has persistently resisted attempts to account for many
of its features in terms of conventional plate tectonics. Although the region figured
prominently in the development of the spectacularly successful continental drift and plate
tectonic theories, e.g., with the discovery of symmetrical magnetic anomalies across the
Reykjanes Ridge, it has also defied predictions made by this theory that are successful in
most other areas. This is particularly true along the Greenland-Iceland-Faroe Ridge (GIFR)
where the crust is typically 30 km thick and the bathymetry a full kilometer shallower than is
expected by cooling and subsidence models for oceanic-crust [Detrick et al., 1977]. These
observations cannot be satisfactorily explained simply as conventional sea-floor-spreading
with a larger-than-typical magmatic rate at Iceland (Figure 1).

It is ironic that, despite the GIFR region not fitting the simple plate tectonic theory, it played
an important role in development of that theory. In the early 20" century Iceland attracted the
attention of Alfred Wegener who, as part of his theory of continental drift [Wegener, 1915],
predicted that Greenland and Scandinavia were separating at 2.5 m/a. Although his estimate
of rate was two orders of magnitude too large, his general theory was correct. Wegener was
influenced by arguments that a land bridge, postulated on biogeographical grounds to have
connected Europe and America, was inconsistent with isostasy. At the time, such land
bridges were widely invoked to explain the similarity, at some times in geological history,
between biota on opposite sides of wide oceans. Wegener recognized that biogeographical
observations worldwide could be explained by continental drift without land bridges.

Following acceptance of continental drift, the land bridge theory was essentially dropped.
Ironically, the NE Atlantic is perhaps the only place in the world where a long, ocean-
spanning land bridge did actually exist [Ellis & Stoker, 2014] (Section 3). The reason why
such a bridge existed, even when the ocean had attained a width of over 1000 km, is one
feature of many of the NE Atlantic that has, to date, not been satisfactorily explained.

A model for development of the NE Atlantic Realm that can account for these and all other
observations in a holistic way is required. Models that involve simple palinspastic
reconstructions of Laurasian super-continent breakup, and assume a bimodal crustal
composition (continental or oceanic) with sharp boundaries, are insufficient [Barnett-Moore
et al., 2018; Nirrengarten et al., 2018]. Models that explain the quantity, distribution and
petrology of igneous rocks in an ad hoc fashion are not forward-predictive and cannot
account for observations such as the close juxtaposition of volcanic and non-volcanic
margins, high-velocity lower crust (HVLC), frequent ridge jumps, and southward-
propagating rifts on the Reykjanes Ridge [Hey et al., 2010; Peron-Pinvidic & Manatschal,
2010]. Nor can such models, a century after Wegener’s work, explain why a land bridge
spanned the NE Atlantic Ocean until it had attained a width of ~1,000 km, and why 40% of
its length remains subaerial to the present day as the island of Iceland.

In this paper we develop such a model. We propose that the currently ~1,200 km wide
Greenland-Iceland-Faroe Ridge (GIFR) formed by magma-assisted continental extension
facilitated by ductile crustal flow, in a similar fashion to magmatic passive margins. The
extraordinary width of the GIFR was enabled by the inclusion of a ~45,000 km? block of
continental crust which we term the Iceland Microcontinent. The lower part of the ~30 km
thick GIFR crust is magma-dilated continental mid- and lower crust. Surface extension has
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been taken up on the GIFR by distributed, migrating rifts with shear between them
accommodated diffusely. Continental material is dispersed throughout the GIFR and sea-
floor spreading has not yet been established on a single, stable rift. Complete continental
breakup has thus still not fully occurred at this latitude.

Our paper is structured in the following way. First, we describe the unusual setting and
complex history of breakup of the NE Atlantic Realm that predicated the subsequent
complexities (Section 2). We then summarize structural and tectonic observations from the
GIFR and the adjacent Faroe-Shetland basin (Section 3). In Section 4 we present our new
model for the structure and evolution of the GIFR. Section 5 presents a numerical thermo-
mechanical simulation that illustrates the model is physically viable given reasonable
geological assumptions and Section 6 shows that it is consistent with the petrology,
geochemistry and source potential temperatures of NE Atlantic igneous rocks. Finally, in
Section 7, we discuss wider implications and analogous regions elsewhere in the oceans.

2 Continental breakup forming the Northeast Atlantic Realm

Opening of the NE Atlantic Realm in the early Cenozoic was not a simple, abrupt, isolated
event. It was the latest event in a >300 Myr period of episodic rifting and cooling that lasted
from the Late Palacozoic through the Mesozoic. It affected a region extending some half the
circumference of the Earth and disassembled a heterogeneous patchwork of cratonic blocks
and orogens [Bingen & Viola, 2018; Gasser, 2014; Gee et al., 2008b; Peace et al., this
volume; Wilkinson et al., 2017].

Final breakup occurred by magma-assisted continental extension [Gernigon et al., this
volume; Lundin & Doré, 2005; Peace et al., this volume; Roberts, 2003; Roberts et al., 1999;
Skogseid et al., 2000; Soper et al., 1992]. The crust extended by tens or hundreds of
kilometers from the Rockall Trough to the Barents Sea [Funck et al., 2017; Gaina et al.,
2017; Skogseid et al., 2000; Stoker et al., 2017]. Pre-breakup magmatism occurred
throughout the region including in Britain, the Rockall Trough, East Greenland, the Faroe
Islands and small-volume, small-fraction, scattered fields found in west Greenland and
Newfoundland [Larsen et al., 2009; Peace et al., 2016; Wilkinson et al., 2017]. Final
development of the axes of breakup in the NE Atlantic was influenced by both the direction
of extensional stress, pre-existing structure, and magmatism [Peace et al., 2018; Peace et al.,
submitted; Schiffer et al., this volume].

Greenland is cross-cut by several orogens that continue across formerly adjacent landmasses.
Easterly orientated orogens include the Inglefield mobile belt in the north
(Paleoproterozoic—ca. 1.96 - 1.91 Ga), the central Greenland Nagssugtoqidian orogen
bounded to the north by the Disko Bugt suture and to the south by the Nagssugtoqidian front
(Paleoproterozoic—ca. 1.86 - 1.84 Ga), and the south Greenland Ketilidian orogen
(Paleoproterozoic—ca. 1.89 - 1.80 Ga) (Figure 2) [Garde ef al., 2002; van Gool et al., 2002].
On the Eurasian continent the Nagssugtoqidian orogen is represented in Scotland as the
Lewisian gneiss (Laxfordian) and the Ketilidian orogen is represented in NW Ireland as the
Rhinns Complex (Figure 3).

The much younger Caledonian suture formed in the Ordovician-Devonian and closed the
Tornquist Sea and Iapetus Ocean to unite Laurentia, Baltica and Avalonia [Pharaoh, 1999;
Schiffer et al., this volume; Soper et al., 1992]. The Scottish Caledonides lie orthogonal to
the eastward continuation of the Nagssugtoqidian and Ketilidian orogens [Holdsworth et al.,
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2018]. The western frontal thrust of this suture runs down east Greenland ~100 - 300 km
from the coast [Gee et al., 2008a; Haller, 1971; Henriksen, 1999; Henriksen & Higgins,
1976]. A dipping feature imaged seismically using receiver functions at ~40 - 100 km
beneath east Greenland is interpreted as a subducted slab, trapped in the continental
lithosphere, when the Caledonian suture finally closed (Figure 4) [Schiffer et al., 2014].
Residual Caledonian slabs beneath the region were predicted earlier by plate models for the
geochemistry of Icelandic volcanics [Foulger & Anderson, 2005; Foulger et al., 2005]. A
congruent structure—the Flannan reflector—has been imaged seismically beneath north
Scotland [Schiffer et al., 2015; Smythe et al., 1982].

The breakup phases that formed the oceans west and east of Greenland are described in detail
by Peace et al. [this volume], Gernigon et al. [this volume] and Martinez and Hey [this
volume]. It is summarized here and a brief chronology of the most significant events is given
in Table 1. The north-propagating mid-Atlantic Ridge reached the latitude of the future
Charlie Gibbs Fracture Zone in the Late Cretaceous (~86.3 - 83.6 Ma) and the Rockall
Trough formed (Figure 1). The rift then propagated west of present-day Greenland at ~63 Ma
forming magma-poor margins and opening the Labrador Sea [Abdelmalak et al., 2018; Keen
et al., 2018; Nirrengarten et al., 2018; Oakey & Chalmers, 2012; Roest & Srivastava, 1989].

Propagation proceeded unhindered across the Grenville and Ketilidian orogens and the North
Atlantic craton but stalled at the junction of the Nagssugtoqgidian and Rinkian orogens
[Connelly et al., 2006; Grocott & McCaffrey, 2017; Peace et al., 2018; Peace et al.,
submitted]. There, the crust was locally thick [Clarke & Beutel, 2019; Funck et al., 2007;
Funck et al., 2012; Peace et al., 2017; St-Onge et al., 2009] and pre-existing subducted slabs
may also have been preserved in the lithosphere [Heron et al., 2019]. Rift propagation stalled
and the Davis Strait NNE-SSW sinistral, right-stepping transtensional accommodation zone
formed. This subsequently opened by magma-assisted continental transtension and
transpression. Further north Baffin Bay opened by a combination of continental extension
and possibly some subsidiary sea-floor spreading [Chalmers & Laursen, 1995; Chauvet et al.,
2019; Oakey & Chalmers, 2012; Suckro et al., 2012; Welford et al., 2018]. The Davis Strait
today is a 550-km wide shallow ridge of extended, magma-inflated, continental crust that
spans the ocean from Baffin Island to West Greenland [Dalhoff et al., 2006; Heron et al.,
2019; Schiffer et al., 2017].

At ~56 - 52 Ma rifting began to propagate east of Greenland forming the proto-Reykjanes
Ridge and a ridge-ridge-ridge triple junction at the location of the current Bight fracture zone
(Figure 1). Shortly thereafter, at ~50 - 48 Ma, the pole of rotation for Labrador Sea/Baffin
Bay opening migrated south by ~1000 km resulting in clockwise rotation of ~30 - 40 of the
direction of motion of Greenland relative to Laurentia [Oakey & Chalmers, 2012; Srivastava,
1978]. As a consequence the Labrador Sea/Baffin Bay plate boundary west of Greenland
became less favorable to extension [Gaina ef al., 2017] and motion was progressively
transferred to the axis east of Greenland. From ~36 Ma, opening was taken up entirely in the
NE Atlantic [Chalmers & Pulvertaft, 2001; Gaina et al., 2017].

As was the case for breakup west of Greenland, development of the mid-Atlantic Ridge in the
NE Atlantic was strongly influenced by pre-existing structure [Schiffer et al., this volume].
The classic “Wilson Cycle” model suggests that continental breakup occurs along older
sutures [Ady & Whittaker, 2018; Buiter & Torsvik, 2014; Chenin et al., 2015; Krabbendam,
2001; Petersen & Schiffer, 2016; Vauchez et al., 1997]. The collage of cratons and cross-
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cutting orogens that comprised the disintegrating Laurasian supercontinent had several
sutures that influenced breakup.

Development of the oceanic regions north and south of the GIFR described in more detail in
Sections 2.2.1 and 2.2.2 is summarized here. North of the present GIFR, the axis of extension
opened by southerly propagation within the Caledonian orogen. That orogen consists of
overthrust stacks of nappes and sinistral shear zones including the Mgre-Trgndelag Fault
Zone (Norway) and the Walls Boundary-Great Glen Fault and Highland Boundary Fault
(Scotland). These features may have controled the structures that opened [Dewey & Strachan,
2003; Doré et al., 1997; Fossen, 2010; Peace et al., this volume]. The new mid-Atlantic
Ridge formed obliquely along the orogen, however, so the propagating rift tip eventually
intersected its edge at the Caledonian Western Frontal Thrust [Schiffer et al., this volume].
There, it stalled.

South of the present GIFR the proto-Reykjanes Ridge propagated north from the Bight
Fracture Zone, cut unhindered across the Ketilidian orogen as did the Labrador Sea rift, and
split the North Atlantic craton. It arrived at the confluence of the transverse Nagssugtoqidian
and Caledonian orogens at ~C21 (50 - 48 Ma) [Elliott & Parson, 2008] and stopped at a
location ~300 km to the south and ~150 km to the west of the stalled, south-propagating ridge
tip to the north. It was between and around these two stalled ridge tips that the GIFR formed,
by magma-assisted deformation of the continental region between them.

2.1 High-velocity lower crust

High velocity lower crust (HVLC) is widespread beneath the margins of the NE Atlantic and
has very similar geophysical properties to the lower part of the Icelandic-type crust that
underlies the GIFR [Bott, 1974; Foulger et al., 2003]. Because of this, understanding the
origin and composition of HVLC is key to unraveling the development and current structure
of the NE Atlantic. In this section, we discuss in detail its geophysical characteristics and
possible origins.

Before oceanic crust began to form in the NE Atlantic Realm, wide rifted margins of
stretched continental crust developed and in some areas were blanketed by thick sequences of
seaward-dipping basalt flows (seaward-dipping reflectors—SDRs) [A Horni et al., 2016;
Talwani & Eldholm, 1977]. Lithospheric necking occurred by normal faulting in the upper
crust and distributed magma inflation and ductile flow in the mid- and lower crust (Figure 5).
Multiple changes in extension direction complicated the final structure [Barnett-Moore et al.,
2018].

The volcanic rifted margins may be divided into Inner-SDR and Outer-SDR regions [Planke
et al., 2000]. The Inner-SDRs comprise lavas up to 5 - 10 km thick that blanket heavily dyke-
injected continental upper crust formed during the continental extensional necking phase
[e.g., Benson, 2003; Geoffroy, 2005; Geoffroy et al., 2015]. Beneath this the sill-injected
lower crust exhibits high seismic velocities. Outer-SDRs sometimes lie seaward of these and
directly overlie thinner HVLC, with seismic properties identical to the HVLC beneath the
necked continental crust [Geoffroy et al., 2015]. HVLC may also extend for up to 100 km
beneath both the adjacent oceanic and continental domains [Funck et al., 2016 and references
therein; Rudnick & Fountain, 1995; Thybo & Artemieva, 2013].
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HVLC typically has seismic velocities intermediate between those expected for crust and
mantle. Constraints on its density are poor because the densities of the SDRs and underlying
lower crust are not well known. Geoffroy er al. [2015] define two kinds of HVLC — LC1 and
LC2. Typical working values for velocity and density are, for LC1 Vp ~7.2 - 7.3 km/s and
density 3000 - 3100 kg/m?, and for LC2 Vp ~7.6 to 7.8 km/s and density 3200 - 3300 kg/m’
(Figure 5) [Bauer et al., 2000; Geoffroy et al., 2015; Schiffer et al., 2016].

These geophysical properties are ambiguous regarding the composition, origin, and tectonic
significance of HVLC. Possible lithologies include:

Ultra-high-pressure granulite/eclogite crystalline basement representing exhumed
continental mid- and lower crust [Abdelmalak et al., 2017; Ebbing et al., 2006;
Gernigon et al., 2004; Gernigon ef al., this volume; Mjelde et al., 2013]. Such
material can have both high Vp (7.2 - 8.5 km/s) and high density [2.8-3.6 g/cm3;
Fountain et al., 1994]. It outcrops in the Norwe gian Western Gneiss Region which
continues beneath the North Sea and the platform east of the Mgre basin. Its top
surface may comprise old suture accommodation zones that controlled deformation
prior to breakup;

Syn-extension sill-intruded mid-to-lower continental crust. In wide-angle seismic
lines most HVLC beneath Inner-SDRs present high-amplitude, folded reflectors
disconnected from the deepest layered lower crust [Clerc et al., 2015; Geoffroy, 2005;
Geoffroy et al., 2015]. Such deformation fits with seaward ductile flow of this layer;

Exhumed and syn-rift serpentinized mantle. The HVLC beneath the mid-Norwegian
early Cretaceous basins, the Labrador Sea, Baffin Bay, Rockall Trough and the
Porcupine basin may be partially syn-rift serpentinized mantle exhumed beneath the
axes of maximum extension [Keen et al., 2018; Lundin & Doré, 2011; O'Reilly et al.,
1996; Peron-Pinvidic et al., 2013; Reston et al., 2001; Reynisson et al., 2011]. It is
directly observed at amagmatic margins, e.g., the Iberian margin, where the
serpentinization is thought to be caused by seawater infiltrating down crustal faults
and reacting with exhumed mantle at shallow depths. The HVLC beneath the NE
Atlantic SDRs lies under several kilometers of sediments and crust and it is unlikely
that seawater can penetrate sufficiently deep to cause pervasive serpentinization
beneath the basalt [Abdelmalak et al., 2017; Gernigon et al., 2004; Zastrozhnov et al.,
2018];

Inherited serpentinized material. Water could have been sourced from inherited
Caledonian or Sveconorwegian-Grenvillian mantle wedge material [Fichler et al.,
2011; Petersen & Schiffer, 2016; Schiffer et al., 2016; Slagstad et al., 2017]. The
source of NE Atlantic basalts is known to be wet [Jamtveit et al., 2001; Nichols et al.,
2002]. Pressure conditions corresponding to deep crust/shallow upper mantle depths
and temperatures of 500 - 700°C should not be exceeded for serpentinite to exist [e.g.,
Petersen & Schiffer, 2016; Ulmer & Trommsdorff, 1995]. Numerical modeling
confirms that such material can be preserved in rifted margins [Petersen & Schiffer,
2016] and that its strength would be less than half that of dry peridotite [Escartin et
al., 2001];

Mantle infiltrated with gabbroic melt. Such material has been observed at magma-
poor margins [Lundin & Doré, 2018; Miintener et al., 2010] and would have an
average seismic velocity midway between that of mantle and gabbro (Vp ~7 km/s);
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e Hybrid material comprising a mixture of some or all of the above on various scales.
For example, Schiffer e al. [2015] interpret HVLC bodies beneath east Greenland as
Caledonian subduction material including eclogitized mafic crust. What appears
geophysically to be a continuous layer might also vary laterally in composition—a
classic example of geophysical ambiguity [Mjelde et al., 2002].

An interpretation of HVLC as underplated material, i.e., high-temperature melt that
accumulated during initial opening of the NE Atlantic [Eldholm & Grue, 1994b; Mjelde et
al., 1997; Mjelde et al., 2002; Mjelde et al., 1998; Thybo & Artemieva, 2013] is challenged
by key geophysical and structural observations from the outer Vgring basin. There,
Cretaceous deformation was partly controlled by the top of a HVLC dome before the main
magmatic event in the Late Paleocene-Early Eocene, suggesting that the dome may predate
breakup magmatism by at least 15 - 25 Myr [Abdelmalak et al., 2017; Gernigon et al., 2004;
Gernigon et al., 2006].

In summary, the provenance of the HVLC underlying the Outer SDRs is ambiguous but it
likely includes a large proportion of continental crust. As a consequence the exact locations
of the outer limits of continuous offshore continental material (the continent-ocean boundary)
is poorly known in some areas [Bronner et al., 2011; Eagles et al., 2015; Gernigon et al.,
2015; Lundin & Doré, 2018; Schiffer et al., 2018]. Continental crust may grade into thick
oceanic crust via a magmatic transition zone tens of kilometers wide of stretched, intruded
continental crust—the continent-ocean transition [Eagles et al., 2015; Eldholm et al., 1989;
Gernigon et al., this volume; Meyer et al., 2009]. The width of the continent-ocean transition
may be partly controlled by the degree of stretching with narrow extensional zones forming
where new rifts follow pre-existing fabric, and wide zones where rifts cross-cut tectonic
fabric [Buck, 1991; Dunbar & Sawyer, 1988; Harry et al., 1993; Schiffer et al., this volume].

Full rupture of the crust leading to region-wide sea-floor spreading may be discontinuous,
diachronous and segmented [Elliott & Parson, 2008; Guan et al., 2019; Manton et al., 2018;
Schiffer et al., this volume; Theissen-Krah et al., 2017]. Continental fragments trapped
between pairs of volcanic rifted margins and transported into the new ocean to form “C-
blocks” may be widespread (Figure 5; Section 4) [Geoffroy et al., 2015; Geoffroy et al.,
submitted]. Continental crust may also be distributed by igneous mullioning as seen in the
southern Jan Mayen Microplate Complex (JMMC; Section 2.2.1), and by small-scale lateral
rift migrations [Bonatti, 1985; Gernigon et al., 2012; Gillard et al., 2017]. Continental
fragments may range in size from the 100-km scale down. Geophysical ambiguity and
blanketing of microcontinents with lavas hinder mapping the full distribution of continental
crust in the oceans. The eastern margin of the JMMC, for example, is overlain by SDRs and
the subaerial part of the GIFR (i.e. Iceland) is blanketed with lavas younger than ~17 Ma
[Breivik et al., 2012; Gudlaugsson et al., 1988]. Geochemistry can be used to complement
geophysics by testing the viability of proposed HVLC petrologies (Section 6).

2.2 Seafloor spreading north and south of the Greenland-Iceland-Faroe Ridge

Clear, well-mapped, linear magnetic anomalies reveal the contrasting histories of ocean
opening north and south of the GIFR (Figure 6). Breakup did not occur simultaneously along
the entire seaboard, as often assumed, but involved several isolated propagators and
intermediate continental blocks [Elliott & Parson, 2008; Gernigon et al., this volume].
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2.2.1 North of the Greenland-Iceland-Faroe Ridge

The earliest anomalies are likely associated with magma injection into extended continental
crust. True sea-floor spreading on the Aegir Ridge began at ~54 Ma (C24r). It started at its
northern end and propagated south to reach its full extent by ~52 Ma (Chron C23). Tectonic
reorganization and fan-shaped spreading occurred about this ridge C22-C21 (~48 Ma) with
spreading slower in the south than in the north (Table 1) [Gernigon et al., 2015].

Much if not all of the southern extension deficit was accommodated by diffuse, dyke-assisted
crustal dilation in the continental crust immediately to the west. This region later became the
southern JIMMC [Brandsdottir et al., 2015]. Crustal extension of up to 500% occurred
forming mullioned crust [Gernigon et al., 2015; Schiffer et al., 2018]. Extension ultimately
concentrated on the most westerly axis of dilation which developed into the Kolbeinsey
Ridge. The first unambiguous magnetic anomaly formed there at ~24 Ma [C6/7; Blischke et
al.,2017; Vogt et al., 1980].

The Aegir Ridge dwindled and became extinct a little after ~31 - 28 Ma [C12-C10; Gernigon
et al., 2015] after which all spreading north of the GIFR was taken up on the proto-
Kolbeinsey Ridge. This migration of the locus of extension likely occurred as a result of a
tectonic reorganization that rotated the local direction of motion counter-clockwise [Gaina et
al., 2017]. This would have rendered the southern part of the Aegir Ridge less favorable for
spreading and encouraged extension on the proto-Kolbeinsey Ridge. That extension
progressively detached the continental block and adjacent mullioned crust between the proto-
Kolbeinsey Ridge and the Aegir Ridge to form the JMMC [Schiffer et al., 2018]. Opening of
the Atlantic north of the GIFR (e.g. the Norwegian-Greenland Sea) thus occurred on a series
of unconnected, sub-parallel, migrating, propagating rifts.

The northern part of the JMMC is a coherent microcontinent on the 100-km scale [Peron-
Pinvidic et al., 2012]. SDRs formed on its eastern margin [Kodaira et al., 1998]. The crust
that makes up its southern part is severely intruded continental crust with clear rift zones
[Brandsdottir et al., 2015]. The nature of its transition into Iceland is, however, unknown.

Despite developing in the highly magmatically productive environment of the early NE
Atlantic the late Aegir Ridge was magma-starved and formed oceanic crust only 4 - 7 km
thick [Breivik et al., 2006; Greenhalgh & Kusznir, 2007]. This contrasts with both the
Kolbeinsey Ridge and the Reykjanes Ridge which are underlain by oceanic crust ~10 km
thick. Extreme variations in magmatic rate over short distances are inconsistent with
mechanisms of melt production that envisage extensive, coherent regions of influence and
suggest, instead, local dependency on melt productivity [Lundin et al., 2018; Simon et al.,
2009].

2.2.2 South of the Greenland-Iceland-Faroe Ridge

South of the GIFR, on the European side, poorly constrained, complicated magnetic
anomalies SW of the Faroe Islands suggest early disaggregated sea-floor spreading. The first
unambiguous and continuous spreading anomaly south of the Faroe Plateau formed at ~47
Ma (C21) [Elliott & Parson, 2008; Ellis & Stoker, 2014; Stoker et al., 2012]. On the
Greenland side, the oldest linear magnetic anomalies produced by the proto-Reykjanes Ridge
date from C24-22 (56 - 52 Ma), but they may represent rift-related basalt extrusion in the
Outer-SDR region and not true oceanic spreading. Linear magnetic anomalies terminate
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along the SE Greenland margin, unlike the European side where they are continuous along
the margin. This is consistent with early westward migration of the spreading axis. It finally
stabilized along a zone ~150 km west of the Aegir Ridge.

Extension proceeded normal to the strike of the Reykjanes Ridge and the continental edges
until ~37 - 38 Ma (C17) when an abrupt counter-clockwise rotation of the direction of plate
motion occurred. Spreading in the Labrador Sea then rapidly ceased (Table 1) [Gaina et al.,
2017; Jones, 2003; Martinez & Hey, this volume]. The Bight ridge-ridge-ridge triple junction
ceased to exist and the linear Reykjanes Ridge reconfigured to a right-stepping ridge-
transform array such that the new ridge segments were normal to the new direction of plate
motion.

Subsequently, and up to the present day, the Reykjanes Ridge has been slowly migrated east
by a series of small-offset, right-stepping propagators within the plate boundary zone that
have eliminated the transforms [Benediktsdéttir et al., 2012; Hey et al., 2010; Martinez &
Hey, this volume]. They originate at the GIFR and migrate south at rates of 10 - 25 cm/a,
each slicing a few kilometers off the Eurasian plate and transferring it to the North American
plate [Hey et al., 2016]. At least five and possibly as many as seven propagators [Jones et al.,
2002] have now transferred a swathe of the Eurasian plate ~30 km wide to the North
American plate between the GIFR and the Bight Fracture Zone [Benediktsdéttir et al., 2012].

Progression of each propagator tip is associated with transient changes in thickness of ~2 + 1
km in the oceanic crust formed. This has the curious consequence that the Reykjanes Ridge is
flanked by diachronous “chevrons” (also called “V-shaped ridges”) of alternating thick and
thin crust that are most clearly seen in the gravity field (Figure 7) [Vogt, 1971].

3 The Greenland-Iceland-Faroe Ridge

The GIFR comprises a ~1,200-km-long, shallow, trans-oceanic aseismic ridge up to 450 km
wide in the northerly direction (Figure 1). At present, 40% of it is exposed above sea level in
Iceland. It is shallower than 600 m and 500 m deep offshore west and east Iceland
respectively, ~1000 m shallower than the ocean basins to the north and south (Figure 8).

The GIFR was subaerial along its entire length for most of the history of the NE Atlantic.
Biogeographical evidence for plant and animal dispersal [Denk et al., 2011] and dating of the
onset of overflow of intermediate- and deep waters between the Norway and Iceland basins
[Ellis & Stoker, 2014; Stoker et al., 2005b] suggest that it formed a largely intact, trans-
Atlantic land bridge (the Thulean land bridge) until ~10 - 15 Ma and that much survived
above sea level longer than this. This leads to the surprising conclusion that the Thulean land
bridge survived intact until the NE Atlantic Ocean had attained a width of ~1000 km.

Magnetic anomalies on the GIFR are poorly defined, broader than classical oceanic spreading
anomalies, and resemble more closely anomalies on the outer SDRs (Figure 6) [e.g., Gaina et
al., 2017]. Very few can be clearly traced across the GIFR so the detailed history of breakup
in this region cannot be deduced reliably. Previous interpretations have relied largely on
extrapolation of anomalies to the north and south that are clear, assuming simple oceanic
crustal accretion in the region between.

Prior explanations for the poorly developed magnetic anomalies include repeated dyke
intrusion into the same zone during more than one magnetic chron, re-magnetization by later
intrusions, weathering, lateral migration of spreading centers and magmatism at multiple
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spreading centers [Bott, 1974]. Unclear anomalies are also expected because basalt extrusion
was subaerial and flooded older lavas, and because the legacy magnetic data available are
poor quality, limited, and poorly levelled.

We concur with these suggestions but go further and propose that distinct, oceanic-type linear
magnetic anomalies do not exist on the GIFR because it does not comprise oceanic crust
formed by classical sea-floor spreading. Instead, much of it may consist of magma-dilated,
ductile continental crust. Upper Icelandic-type crust [Bott, 1974 ; Foulger et al., 2003]
corresponds to current basaltic production. Lower Icelandic-type crust corresponds to
magma-inflated mid- and lower continental crust, the most likely lithology for the HVLC that
is widespread beneath the NE Atlantic passive margins (Section 2.1).

3.1 Crustal structure

The GIFR has been the target of numerous refraction, wide-angle reflection, and passive
seismic experiments [Foulger et al., 2003] as well as gravity, magnetic and magnetotelluric
work [Beblo & Bjornsson, 1978; 1980; Beblo et al., 1983; Eysteinsson & Hermance, 1985;
Hermance & Grillot, 1974; Thorbergsson et al., 1990]. It was the anomalous seismic nature
of its crust that led to it being termed “Icelandic-type” [Bott, 1974; Foulger et al., 2003]. It
features an upper crust with a thickness of ~3 - 10 km with high vertical velocity gradients,
and a lower crust ~10 - 30 km thick with low vertical velocity gradients (Figure 9 and Figure
10) [Darbyshire et al., 1998a; Foulger et al., 2003; Holbrook et al., 2001; Hopper et al.,
2003]. The lower crust has a Vp of 7.0 - 7.3 km/s. Icelandic-type crust has, in recent years,
usually been assumed to be anomalously thick oceanic crust with the lower crust equivalent
to oceanic layer 3. That model became the default assumption after Bjarnason et al. [1993]
reported a deep reflecting horizon at ~ 20 - 24 km depth beneath SW Iceland. It replaced an
earlier model that interpreted the layer beneath the upper crust as anomalously hot mantle
[Angenheister et al., 1980; Gebrande et al., 1980; Palmason, 1971; Tryggvason, 1962].

The model that Icelandic-type lower crust is oceanic is inconsistent with other observations.
Isostatic studies reveal the density of the lower crust to be ~3150 kg/m?, which is too high for
it to be oceanic [Gudmundsson, 2003; Menke, 1999]. At the same time, its seismic velocity is
too low for normal mantle peridotite. Models involving partial melt are ruled out by the low
attenuation of seismic shear waves which suggests that Icelandic-type lower crust is no hotter
than 800 - 900 C if it is peridotite [Sato et al., 1989] and 875 - 950 C if it is gabbroic [Menke
& Levin, 1994; Menke et al., 1995].

The theory that Icelandic lower crust is oceanic is largely based on interpreting deep seismic
reflections as the Moho. However, such reflections can also be interpreted as sills intruded
into continental lower crust. Refracted head waves are almost never observed in Iceland and
the large amplitudes of reflections expected from a Moho are not observed in receiver
functions [Du & Foulger, 1999; Du et al., 2002; Du & Foulger, 2001]. These properties are
similar to those of HVLC beneath the Inner- and Outer SDRs of the continental margins
[Mjelde et al., 2001]. The possible compositions and provenances of that material, discussed
in Section 2.1, thus provide candidates for Icelandic-type lower crust.

A serpentinized mantle origin for Icelandic-type lower crust is unlikely. If it were
serpentinized mantle, ~20% of serpentinization of peridotite at ~1 GPa (~30 km depth) is
required [Christensen, 2004]. Serpentinization in a rifting environment occurs from the top
down and water is unlikely to be able to reach the mantle at the active rift zones of Iceland. If
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it did, it would only be stable at temperatures < 700 “C or possibly < 500 °C [Tuttle &
Bowen, 1958] and the Icelandic lower crust is hotter than this [Menke & Levin, 1994; Menke
et al., 1995; Sato et al., 1989]. The only other possible way of serpentinizing the mantle is via
fluxing from beneath. In the NE Atlantic such serpentinization could have occurred in the
Caledonian suture [Fichler et al., 2011] and water is present in the source of basalts erupted
in Iceland [Jamtveit et al., 2001; Nichols et al., 2002]. However, no peridotite xenoliths have
been found in Iceland despite a century of extensive geological mapping and drilling,
suggesting that, whereas serpentinite may exist beneath some rifted margins, it probably does
not comprise lower Icelandic-type crust or HVLC beneath the adjacent volcanic margins.

Transitional crust comprising massively dyke- and sill-intruded, hyper-extended mid- and
lower continental crust is the most likely composition for Icelandic-type lower crust, as it is
for much of the HVLC beneath the volcanic margins. There is considerable support for this:

e The seismic velocity and density of continental lower crust match those of Icelandic-
type lower crust. Continental lower crust is thought to comprise predominately mafic
garnet-bearing granulites which have Vp~7.1 - 7.3 km/s and densities of 3000 - 3150
kg/m? [Rudnick & Fountain, 1995]. It may also contain minor components of
metapelite, intermediate and felsic granulites and mafic melts that would reduce Vp
and density.

e The thickness of the brittle surface layer in Iceland and the viscosity of the underlying
material have been constrained by geodetic studies of post-diking stress relaxation
[Foulger et al., 1992; Heki et al., 1993; Hofton & Foulger, 1996a; b; Pollitz & Sacks,
1996] and post-glacial rebound [Sigmundsson, 1991]. The brittle surface layer is ~10
km thick, a value that is consistent with the maximum depth of earthquakes
[Einarsson, 1991] and corresponds roughly to the upper crust from explosion
seismology and receiver functions (Figure 9). The lower crust beneath has a viscosity
of ~10' Pa s and is thus ductile.

e The Faroe Islands are underlain by continental crust topped by > 6 km of basalt [Bott
et al., 1974: Olavsdéttir et al., 2017]. Seismic data from the eastern part of the
Iceland-Faroe Ridge detect stretched continental crust similar to that underlying the
Rockall Bank where HVLC has been interpreted as inherited continental crust of
Palaeo-European affinity [Bohnhoff & Makris, 2004].

e Palinspastic reconstructions of Iceland require up to 150 km of crust older than the
surface lavas to underlie the island—the extreme westerly and easterly ~15-Ma
palaeo-rift products are separated by ~450 km whereas only ~300 km of widening
could have occurred at the ambient rate of 1.8 cm/a. Reassembly of the NE Atlantic
Ocean also requires up to 150 km of continental crust (original unstretched width) to
lie in the ocean [Blischke et al., 2017; Bott, 1985; Foulger, 2006; Gaina et al., 2009;
Gaina et al., 2017; Gernigon et al., 2015]. A similar width is required by the original
lateral offset of the tips of the Aegir Ridge and proto-Reykjanes Ridge. A southerly
continuation of the JMMC beneath the GIFR would be a simple source of this
material [Bott, 1985; Foulger & Anderson, 2005; Schiffer et al., 2018]. Icelandic-type
crust also underlies the transitional region between the NE Icelandic shelf and the
JMMC [Brandsdéttir et al., 2015].

e Magma-assisted extension at the far western and eastern ends of the proto-GIFR,
outside of the axes of breakup, is predicted by stress modeling and may have fed
additional continental crust into the developing GIFR.
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There are multiple lines of petrological and geochemical evidence for a component of
continental crust in Icelandic lavas, including Proterozoic and Mesozoic zircons
[Amundsen et al., 2002; Foulger, 2006; Paquette et al., 2006; Schaltegger et al.,
2002] elevated 8’Sr/®°Sr and Pb isotope ratios [Prestvik et al., 2001] and extensive
silicic and intermediate rocks including rhyolite and icelandite—an Fe-rich form of
andesite (Section 6).

3.2 The Faroe-Shetland basin—a bellwether of GIFR tectonic instability

The Faroe-Shetland basin comprises the eastern extension of the GIFR, is thus sensitive to
tectonic activity in that zone, and has been unstable throughout the Palacogene-early
Neogene [Stoker et al., 2018; Stoker et al., 2005b]. Key phases are summarized in Figure 11
and include the following.

Paleocene (~63 - 56 Ma): The pre-breakup rifting phase (late Danian—Thanetian)
was characterized by formation of a series of sag and fault-controlled sub-basins
[Dean et al., 1999; Lamers & Carmichael, 1999], coeval borderland uplift events (rift
pulses) [Ebdon et al., 1995; Goodwin et al., 2009; Mudge, 2015] and rifting and
extension accompanied by volcanism [Mudge, 2015; Olavsdottir ef al., 2017].

Latest Paleocene (~56 - 55 Ma): Uplift [Ebdon et al., 1995] and extrusion of syn-
breakup flood basalts and tuffs [Mudge, 2015] probably mark the onset of local,
discontinuous sea-floor spreading [Passey & Jolley, 2009].

Early-Mid-Eocene (~54 - 46 Ma): The syn-breakup rift-to-drift transition continued
during the early/mid-Ypresian-early Lutetian [Stoker et al., 2018]. Cyclical coastal
plain, deltaic and shallow-marine deposits attest to tectonic instability linked to
episodic uplift of the Munkagrunnur and Wyville Thomson ridges on the south flank
of the basin [Olavsdéttir et al., 2010: Olavsdoéttir et al., 2013b; Stoker et al., 2013].
Onset of continuous sea-floor spreading in the Norway basin (chron C21) was
accompanied by uplift events, continued growth of the Wyville Thomson and
Munkagrunnur ridges, and formation of inversion domes in the basin [Olavsdéttir et
al., 2010; Olavsdéttir ef al., 2013b: Ritchie et al., 2008; Stoker et al., 2013: Stoker et
al., 2018].

Late Paleogene-early Neogene (~35 - 15 Ma): The present-day basin physiography
was initiated in the latest Eocene/Early Oligocene with sagging leading to basin-ward
collapse of the margin west of Shetland [Stoker et al., 2013]. Onlapping Oligocene
and Lower Miocene basinal sequences were deformed by compressional stresses and
widespread inversion and fold growth culminated in the early Mid-Miocene [Johnson
et al., 2005; Ritchie et al., 2008; Stoker et al., 2005c¢].

Mid-Miocene—Pleistocene (16/15 Ma - present): Basinal sedimentation was
dominated by deep-water deposits [Stoker et al., 2005b] with Early Pliocene uplift
and tilting of the West Shetland and East Faroe margins accompanied by basinal
subsidence and reorganization of bottom current patterns [Andersen et al., 2000;
Olavsdottir et al., 2013b;, Stoker et al., 2005a; Stoker et al., 2005b]. Mid-and Late
Pleistocene sedimentation was dominated by shelf-wide glaciations [Stoker et al.,
2005a].

In summary, the Faroe-Shetland basin has experienced persistent tectonic unrest from the
Paleocene to the Early Miocene (~63 - 15 Ma). This is reflected onland in the Faroe Islands
in Paleogene and younger faults and dykes that show progressive changes in the direction of
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extension prior to and following NE Atlantic break-up [Walker et al., 2011]. This chronic
unrest likely reflects both instability on the GIFR to the west and the protracted breakup of
the wider NE Atlantic region.[l

4 A new model for the Greenland-Iceland-Faroe Ridge

In this section, we build on the background given above and propose a new working
hypothesis for development of the GIFR and how this affected the rest of the NE Atlantic
Realm. Numerical modeling of the processes we propose, and model fit with petrology and
geochemistry, are discussed in Sections 5 and 6.

As described above, the NE Atlantic Realm formed in a disorderly way as a consequence of
inherited strength anisotropy, coupled with frequent changes in the poles of rotation of sub-
regions [Hansen et al., 2009; Schiffer et al., 2018]. North of the GIFR, the Aegir rift opened
by southward propagation obliquely along the Caledonian orogen. It stalled at the western
frontal thrust and hooked around to the west (Figure 1). The Reykjanes Ridge to the south
stalled at the Nagssugtogidian orogen, ~300 km south of the Caledonian frontal thrust and
~150 km west of the Aegir Ridge (Section 2.2). The Reykjanes Ridge and Aegir Ridge thus
formed a pair of propagating, approaching, laterally offset rifts. The broad barrier formed by
the Nagssugtogidian and Caledonian orogens prevented them from propagating further and
conceivably eventually forming a continuous, conventional oceanic plate boundary.

As a consequence, the continental region between their tips, the ~300 x 150 km Iceland
Microcontinent, deformed by magma-assisted, distributed continental transtension and
developed into the GIFR as the ocean widened (Figure 12). The crust beneath the Iceland
Microcontinent and flanking areas thinned by ductile flow in its deeper parts. Extensive
magmatism built SDRs of the kind observed on the eastern margin of the JMMC and the NE
Atlantic rifted margins. Initially, the GIFR may have comprised an array of four passive
margins—one on each of the east Greenland and west Faroe margins, and one on either side of
the Iceland Microcontinent.

As the GIFR lengthened, and up to the present day, deformation persisted in a distributed
style along a series of ephemeral extensional rifts and diffuse, intermediate, poorly developed
shear transfer zones [Gerya, 2011]. The loci of extension repeatedly reorganized by migrating
laterally to positions that were stress-optimal and likely also influenced by pre-existing
structures in the underlying continental crust. Rifts that became extinct were transported
laterally out of the actively extending, central part. As it formed the GIFR was blanketed by
lavas in the style of volcanic-rifted-margins. Similar rift migrations also occurred in the
eastern Norway basin where the oceanic crust is thickest [Gernigon et al., 2012]. After ~48
Ma (C22) it seems that this style of extension persisted only on the GIFR. The permanent
disconnect between the Aegir Ridge and the Reykjanes Ridge and the low spreading rate in
the NE Atlantic (1 - 2 cm/a) would have further encouraged long-term diffuse deformation.

Figure 13 shows palinspastic reconstructions of the observed positions of active and extinct
rifts in the NE Atlantic Realm at various times. Swathes of extinct, short, NE-orientated
ridges similar to those that are currently active onland in Iceland are observed also in
submarine parts of the GIFR [Hjartarson et al., 2017]. There is insufficient observational data
at present to fully reconstruct the sequence of deformation on the GIFR because of the
blanketing lava flows and insufficient geophysical and geological research to date.
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Nevertheless, in Figure 14 we attempt such a reconstruction by extrapolating in time from
known active and extinct rifts [Hjartarson et al., 2017; Johannesson & Saemundsson, 1998].

A large block of crust older than the surface lavas is required by palinspastic reconstructions
to lie beneath Iceland [Foulger, 2006]. Thus, much of the Iceland Microcontinent may still
exist beneath Iceland and comprise a C-block [Geoffroy et al., 2015; Geoffroy et al.,
submitted]. C-blocks are expected to be flanked by Outer-SDRs and the geometry of some
dykes and lava flows in Iceland resemble these [Bourgeois et al., 2005; Hjartarson et al.,
2017]. It has long been speculated that the continental crust required by geochemistry to
underlie Iceland (Section 6) comprises a southerly extension of the magma-dilated southern
JMMC. Give the extent of continental crust that is required to underlie the GIFR it may be
more appropriate to view the JMMC as an offshore extension of the Iceland Microcontinent.

Deformation on the GIFR cannot be described by traditional rigid plate tectonics and
corresponding reconstructions. It corresponds to the case of multiple overlapping ridges, the
limit of an extensional zone [Engeln et al., 1988]. It may be likened to a lateral array of
hyper-extended SDRs underlain by HVLC comprising heavily intruded, stretched, ductile
continental crust. Repeated rejuvenation of the rift axes by lateral migration may have
boosted volcanism. Westerly migrations may have induced extension to the north to
concentrate in the westernmost axis of extension in the southern JIMMC, leading to extinction
of the Aegir Ridge and formation of the Kolbeinsey Ridge at ~24 Ma. That migration
switched the sense of the ridges north and south of the GIFR from right-stepping to left-

stepping.

Iceland is ~450 km wide in an EW direction and exposes ~40% of the GIFR (Figure 1). The
oldest rocks found there to date are 17 Ma. There is no evidence, or reason to think, that the
tectonic style on the GIFR was fundamentally different in the past from present-day Iceland.
On the contrary, the similarity of the submarine GIFR synclines to structure on land in
Iceland suggests that it was the same [Hjartarson et al., 2017].

Onland in Iceland extension over the last ~15 Ma has occurred via multiple unstable,
migrating, overlapping spreading segments connected by complex, immature shear transfer
zones that reorganize every few Myr (Figure 15). These include the South Iceland Seismic
Zone [Einarsson, 1988; 2008] and the Tjornes Fracture Zone [e.g., Rognvaldsson et al.,
1998]. Both are broad, diffuse seismic zones that deform in a bookshelf-faulting manner and
have not developed the clear topographic expression of faults that experience long-term
repeated slip.

There is geological evidence in Iceland for at least 12 spreading zones (Table 2) of which
seven are currently active, two highly oblique to the direction of plate motion, one waning,
one propagating, two non-extensional and five extinct. At least five lateral rift jumps are
known and a sixth is currently underway via transfer of extension from the Western Volcanic
Zone (WVZ) to the Eastern Volcanic Zone (EVZ). Extension has always been concentrated
in a small number of active, ephemeral rift zones at any one time (Figure 15).

There is no evidence that mature sea-floor spreading has yet begun anywhere along the
GIFR. If such were the case it would be expected that all extension would be rapidly
transferred to that zone and normal-thickness oceanic crust (i.e., ~6 - 7 km) would begin to
form. Indeed, the fact that rift-zone migrations are still ongoing in Iceland suggest that this is
not the case. There may be some narrow zones where embryonic sea-floor spreading began
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but was abandoned due to subsequent lateral rift jumps, e.g., immediately east of the east
Icelandic shelf, and in the deep channel in the Denmark Strait. Until this can be confirmed,
however, it remains a possibility that full continental breakup has not yet occurred in the
latitude band of the GIFR. This fundamentally challenges the concept that continental
breakup has yet occurred in this part of the NE Atlantic.

4.1 Mass balance

The GIFR today is 1,200 km long with a lower crust generally ~20 km thick and maximally
~30 km beneath central Iceland (Figure 9). If a substantial part of this is continental, a large
volume thus needs to be accounted for. Taking a present-day average breadth for the GIFR of
~200 km, the surface area is ~0.24 x 10° km?. If an average thickness of 15 km of continental
material lies beneath, a volume of ~3.6 x 10° km? is required.

We propose that this material was sourced from the Iceland Microcontinent and flanking
continental regions by ductile flow of mid- and lower crust. Ductile flow can stretch such
crust to many times its original length (necking), draw in material from great distances, and
maintain large crustal thicknesses. Numerical thermo-mechanical modeling (Section 5)
confirms that these processes can account for the lower-crustal thicknesses proposed and
even increase crustal thickness as material rises to fill the void created by rupture of the upper
crust.

Flow is enabled by the low viscosity of the lower crust beneath Iceland. This has been shown
to be 10'® - 10" Pa s by GPS measurements of post-diking stress relaxation following a
regional, 10-m-wide dyke injection episode in the Northern Volcanic Zone (NVZ) 1975 -
1995 [Bjornsson et al., 1979; Foulger et al., 1992; Heki et al., 1993; Hofton & Foulger,
1996a; b]. Numerical modeling of those data also showed that the surface, brittle layer was
approximately 10 km thick. The low viscosity found for the lower crust was confirmed by
measurements and modeling of the rapid isostatic rebound from retreat of the Weichselian ice
cap in Iceland and melting of the Vatnajokull glacier in south Iceland [Sigmundsson, 1991].
[Sigmundsson, 1991].

As a prelude to numerical thermo-mechanical modeling we present here a simple mass-
balance calculation. Inland in Greenland, receiver function studies indicate a Moho depth of
~40 km [Kumar et al., 2007]. The Caledonian crust of east Greenland is currently up to ~50
km thick [Darbyshire et al., 2018; Schiffer et al., 2016; Schmidt-Aursch & Jokat, 2005;
Steffen et al., 2017]. A pre-breakup Caledonian crustal thickness of about 60 km and a post-
breakup thickness of 30 km [Holbrook et al., 2001] is not unrealistic.

Beneath the Faroe-Shetland basin, crustal thinning left only a 10-km-thick crust while below
the Faroe shelf and islands seismic data indicate basement modified by weathering, igneous
intrusions and tuffs with a thickness of about 25 - 35 km [Richard et al., 1999]. Beneath the
banks to the SW of the Faroe Islands the thickness of the subvolcanic crust is up to 25 km but
it is as little as 8 km beneath the channels between them [Funck et al., 2008]. In the Faroe
Bank Channel and the channel between George Bligh and Lousy Bank, in prolongation of the
GIFR, the continental middle crust is almost completely gone and the lower crust is
dramatically thinned. Initial and final thicknesses of 60 km and 15 km are reasonable.

Thinning of the mid- and lower crust of 30 km (Greenland) and 45 km (Faroe region)
extending ~200 km along the margins and ~100 km inland could provide ~1.5 x 10® km? of
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material. Assuming original northerly and easterly dimensions for the Iceland Microcontinent
of 300 km and 150 km respectively, and thinning from an original 60 km to 15 km, an
additional ~2 x 10° km> of material is accounted for. Together, this totals ~3.5 x 10° km? of
material, very close to the ~3.6 x 10° km® required.

This mass balance calculation illustrates simply that our model is reasonable. It also shows
that the Iceland Microcontinent can provide over half of the continental material required.
This suggests that the formation of such an unusually large microcontinent was likely a key
element in the development of this unique region.

4.2 Problems and paradoxes solved

The model we propose can account naturally for many hitherto unexplained observations
from the GIFR and surrounding regions, and it is supported by multiple lines of evidence. In
particular, it offers a solution to the decades-old problems of why the Thulean land bridge
existed, and the nature of Icelandic-type crust. Thus:

e A composition of Icelandic-type crust comprising magma-inflated continental crust
blanketed with lavas can explain the high topography and bathymetry of the GIFR
and its prolonged persistence above sea level.

e The assumption that the full thickness of Icelandic-type crust corresponds to melt has
been widely accepted ever since Bjarnason et al. [1993] reported a reflective horizon
at ~20 - 24 km depth beneath south Iceland which they interpreted as the Moho. That
model cannot, however, account for the absence of refracted seismic phases (Section
3.1) which is inconsistent with gabbroic crust overlying mantle with a step-like
interface velocity increase. The lack of such refractions is, however, consistent with
the reflective horizon being a sill-like structure within or near the base of magma-
inflated continental crust.

e Icelandic-type lower crust has a seismic velocity Vp of 7.0 - 7.3 km/s and a density of
~3150 kg/m>. No reasonable basaltic petrology is consistent with this [Gudmundsson,
2003; Menke, 1999], but these values fit a composition of magma-inflated continental
crust.

e A lower crust containing significant continental material solves the paradox of
magmatic production on the GIFR. Icelandic-type lower crust cannot be gabbroic
because a melt layer up to 40 km thick cannot be explained with any reasonable
petrology and temperatures (Section 6) [Hole & Natland, this volume]. If the melt
layer corresponds only to Icelandic-type upper crust plus magma inflating the lower
crust—possibly a total thickness of up to ~15 km—much less melt needs to be
explained.

e A substantial volume of continental material in the lower crust can explain why the
thicknesses of the upper and lower crustal layers on the GIFR are de-correlated
(Figure 9) [Foulger et al., 2003; Korenaga et al., 2002]. In particular, the lower crust
is thick throughout a NW-SE swathe across central Iceland where the upper crust is of
average thickness. In the far south, the upper crust has its maximum thickness but the
lower crust is unusually thin (Figure 9).

e MORB melt formed in the mantle below the crust passes through the latter, melting
fusible components to a high degree, boosting melt volume, and acquiring the
continental signature observed in Icelandic rocks including the geochemistry,
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Proterozoic and Mesozoic zircons, and voluminous felsic and intermediate petrologies
(Section 6).

e The numerous, northerly trending synclines detected by seismology throughout
submarine parts of the GIFR are readily explained as volcanically active extensional
zones that were abandoned by lateral jumps and subsequently became extinct
[Hjartarson et al., 2017] (Figure 8).

e [f the JMMC is a northerly extension of the Iceland Microcontinent, the former may
have shared the tectonic instability of the GIFR, providing an explanation for why the
JMMC broke off east Greenland.

Our new model for the GIFR can account for the many unusual extensional, transtensional
and shear tectonic elements in the region. These include the curious distributed, bookshelf
mode in which shear deformation is taken up in Iceland in the South Iceland Seismic Zone
and the Tjornes Fracture Zone [Bergerat & Angelier, 2000; Einarsson, 1988; Taylor et al.,
1994].

It can also account for the widespread hook-like tectonic morphology that resembles the tips
of overlapping propagating cracks (Figure 16). These suggest that short extensional elements
are abundant. The southernmost Aegir Ridge is hooked westward, mirroring the shape of the
Blosseville coast of Greenland and curving into the transverse Caledonian frontal thrust
[Brooks, 2011]. The extensional NVZ of Iceland curves westward at its northern end where it
links with the Kolbeinsey Ridge via the Tjornes Fracture Zone. At its north end, the
Reykjanes Ridge hooks to the east where it runs onshore to form the Reykjanes Peninsula
extensional transform zone [Taylor et al., 1994]. The direction of extension in the EVZ is
rotated ~35° clockwise compared with the NVZ as shown by both the strike of dyke- and
fissure swarms and current measurements of surface deformation made using GPS [e.g., Perlt
et al., 2008]. The southernmost tip of this propagating rift, the Vestmannaeyjar archipelago,
hooks to the west, complementing the east-hooking northern Reykjanes Ridge and Reykjanes
Peninsula Zone (Figure 16).

The contrasting tectonic morphology and behavior north and south of the GIFR are naturally
explained by tectonic decoupling by the GIFR that separates them. North of the GIFR the
boundary is dominated by spreading ridges orthogonal to the direction of extension, separated
by classic transform faults. To the south, the Reykjanes Ridge as a whole is oblique to the
spreading direction and devoid of transform faults. Numerous tectonic events occurred north
or south of the GIFR but not in both regions simultaneously [Gernigon ef al., this volume;
Martinez & Hey, this volume]. In Iceland, tectonic decoupling can explain the north-south
contrast in geometry, morphology and history of the rift zones and the north-south
asymmetry in geochemistry [e.g., Shorttle et al., 2013]. The latter may be important in
mapping the distribution of continental material beneath Iceland.

Unstable tectonics on the GIFR can further explain the diachronous chevrons of alternating
thick and thin crust that form at the tips of propagators within the Reykjanes Ridge plate
boundary zone (Figure 7; Sections 2.2.2 and 7.3.3). The onset times of several of the most
recent of these propagators at the GIFR coincide with major ridge jumps in Iceland (Table 1).
These observations are consistent with the propagators being triggered by major tectonic
reorganizations on the GIFR. Several similar ridges are observed in the oceanic crust east of
the Kolbeinsey Ridge [Jones et al., 2002]. The chronic instability of the mid-Norwegian shelf
and the adjacent Faroe-Shetland basin throughout the Palacogene-earliest Neogene is also
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accounted for [Ellis & Stoker, 2014; Gernigon et al., 2012; Stoker et al., 2018] (Figure 11)
(Section 3.2).

5 Thermo-mechanical modeling

We tested the plausibility of unusually prolonged survival of intact continental crust beneath
the GIFR by modeling numerically the behavior under extension of structures characteristic
of an ancient orogen such as the Caledonian and surrounding regions. The crust is required to
have stretched to over twice its original width, retained a typical thickness of ~20 km, and
persistently extended along more than one axis even up to the present day i.e. it underwent
long-term, diffuse extension.

We used a two-dimensional thermo-mechanical modeling approach [Petersen & Schiffer,
2016] to calculate the visco-elastic-plastic response of an ancient orogen under simple
extension. Full details of our methodological approach along with petrologic,
thermodynamic, rheological, thermal conductivity, radiogenic heat productivity, initial model
state, boundary conditions and melt productivity are described in detail by Petersen et al.
[2018]. The initial state for the model we use here differs from that used by Petersen et al.
[2018] only in that a) a uniform adiabatic temperature with potential temperature 7p =1325 C
is assumed for the entire mantle, and b) there is no MORB layer at the upper/lower mantle
boundary.

Prior to continental breakup, crustal thickness and structure likely varied throughout the
region, but precise details of the pre-rift conditions are not well known. Insights may be
gained from well-studied, currently intact orogens. The Himalaya orogen, a heterogeneous
stack of multiple terranes, entrained subduction zones, and continental material, is underlain
by one or more fossil slabs trapped in the lithosphere. These locally thicken the crust and
their lower parts are in the dense eclogite facies (Figure 17) [Tapponnier et al., 2001]. The
Palaeozoic Ural Mountains preserve a crustal thickness of 50 - 55 km [Berzin et al., 1996].
The Caledonian crust is up to ~50 km thick under east Greenland [Darbyshire e? al., 2018;
Schiffer et al., 2016; Schmidt-Aursch & Jokat, 2005; Steffen et al., 2017] and ~45 km thick
beneath Scandinavia [Artemieva & Thybo, 2013; Ebbing et al., 2012].

The pre-breakup crust in the region of the future NE Atlantic comprised the south-dipping
Ketilidian and Nagssugtogidian orogens and the bivergent Caledonian orogen with east-
dipping subduction of Laurentia (Greenland) and west-dipping subduction of Baltica
(Scandinavia) (Figure 4). The GIFR thus formed over fossil forearc/volcanic front lithosphere
that may initially have had a structure similar to that of the Zangbo Suture of the Himalaya
orogen (Figure 17). North of the GIFR the supercontinent broke up longitudinally along the
Caledonian suture where the crust was thinner.

We modeled the Caledonian frontal thrust as an orogenic belt where the lithosphere contrasts
with that of the flanking Greenland and Scandinavia areas in a) increased crustal thickness,
and b) eclogite from fossil subducted slabs embedded in the lithospheric mantle (Figure 4)
[Schiffer et al., 2014]. The eclogite is relatatively dense, potentially driving delamination, but
is rheologically similar to dry peridotite [Petersen & Schiffer, 2016 and references therein].
Additional weakening of the hydrated mantle wedge preserved under the suture would
enhance the model behavior we describe below [Petersen & Schiffer, 2016]. For the mantle,
we assume a pyrolite composition that is subject to melt depletion during model evolution.
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Figure 18 shows our initial, simplified model setup [Petersen et al., 2018]. Pre-rift continental
crustal thickness is 40 km for the lithosphere adjacent to the orogen. The crust beneath the
200-km-wide orogen is 50 km thick and underlain by an additional 20-km-thick slab of
HVLC with an assumed mafic composition. Phase transitions and density are self-
consistently calculated from pressure/temperature conditions throughout the model such that
the topmost part of the body is above eclogite facies and the lower part is in the eclogite
facies and thus negatively buoyant.

Densities and entropy changes are pressure- and temperature-dependent and calculated using
Perple_X-generated lookup tables [Connolly, 2005] based on the database of Stixrude and
Lithogow-Bertelloni [2011]. We use a wide box (2000 km x 1000 km) to enable simulation
of considerable extension distributed over a broad region, a grid resolution of 2 km, and a run
time of 100 Myr at a full extension rate of 1 cm/a. Rifting of the lithosphere is kinematically
forced by imposing plate separation at a rate of 0.5 cm/a via outwards perpendicular
velocities at both left and right boundaries throughout the depth range of 0 - 240 km.

A multigrid approach is employed to solve the coupled equations for conservation of mass,
energy and momentum as described by Petersen et al. [2015; 2018]. For the continental crust,
we assume plagioclase-like viscous behavior [Ranalli, 1995]. The HVLC is assumed to
follow an eclogite flow law [Zhang & Green, 2007]. The upper mantle is assumed to follow a
combined diffusion/dislocation creep flow law [Karato & Wu, 1993]. The lower mantle, here
defined as the region where the pressure/temperature-dependent density exceeds 4300 kg/m?,
approximately corresponding to Ringwoodite-out conditions, is assumed to follow the linear
flow law inferred by Ci kovad et al. [2012].

As the structure extends, rifting develops in the broad region where the crust is thickest. The
Moho temperature is highest there (i.e. ~800 C; Figure 18 central panels) due to greater
burial and radiogenic heat production. During the first 10 Myr of widening, extensional strain
within the crust is laterally distributed due to the delocalizing effect of flow in the lower crust
[e.g., Buck, 1991]. Thinning of the mantle lithosphere is not counteracted by this effect and
within 10 Myr it has been thinned by a factor of up ~2. This results in onset of decompression
melting after ~12 Myr. At this point, the crust in the stretched orogen retains a large thickness
of 30 - 40 km. This contrasts with the sequence of events where the crust is thin and brittle
under which conditions decompression melting only onsets after breakup i.e. when complete
thinning of the continental crust occurs [Petersen et al., 2018].

Thinning of the mantle lithosphere leads to lateral density gradients between the
asthenosphere and displaced colder lithospheric mantle that destabilize the lithospheric
mantle [Buck, 1986; Keen & Boutilier, 1995; Meissner, 1999]. Consequently, the mantle
lithosphere, including the already negatively buoyant HVLC, starts to delaminate at ~12 Myr
(Figure 18). As a result, asthenosphere at a potential temperature (7p) of ~1325 C and crust at
an initial temperature of ~600 - 800 C are rapidly juxtaposed. This leads to increased heat
flow into the crust which therefore remains ductile enough to flow and continues to extend in
the delocalized, “wide rift mode” of Buck [1991]. The loci of extension repeatedly migrate
laterally and this mode of deformation continues as long as lower crust is available. The loci
of extension only stabilize after ~70 Myr.

Figure 18 shows the predicted structure after 51 Myr, approximately the present day, and a
magnification of the 51-Myr lithology panel is shown in *. The continental crust is still intact
across the now 1,200-km-wide ocean and extending diffusely. Decompression melting is
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occurring beneath two zones. The HVLC body has disintegrated and the largest pair of
fragments are 200 - 300 km in diameter. These, along with carapaces of lithospheric mantle,
have subsided to a depth near the base of the transition zone. Between them, a narrow arm of
mantle upwells and flattens at the base of the crust to form a broad sill-like body ~200 km
thick that underlies the entire ocean. Upwelling includes some material from just below the
transition zone as a consequence of the sinking HVLC displacing uppermost lower-mantle
material.

Full lithosphere breakup has not occurred by 51 Myr. It is imminent at 71 Myr (Figure 18).
The lower crust beneath distal areas flows into the thinning extending zone and only when
the supply of ductile lower crust is depleted does extension localize, leading to full
lithosphere rupture and sea-floor spreading. This may take several tens of millions of years.
In the case where the crust is thinner and/or HVLC is lacking modeling predicts transition to
sea-floor spreading after only a few million years.

The generic model presented here shows that it is possible for extending lithosphere to
remain for as long as 70 Myr in a delocalized ‘wide’ stretching mode [senso Buck, 1991]
with lower crust from distal areas flowing into the extending zone. Since the delamination,
the mantle lithosphere has effectively been removed and decompression melting occurs
where the mantle wells up beneath the rift system. Together, these interdependent processes
provide a physical mechanism for how continental crust could be preserved beneath the GIFR
despite more than 50 Myr of extension (Figure 20). At the same time, the model accounts for
the magmatism observed on the GIFR in that it predicts decompression melting in the mantle.
These melts rise, intrude and erupt, covering the continental crust as it stretches, and would
produce crust similar to the “embryonic” crust proposed to occur in the Norway Basin
[Geoffroy, 2005; Gernigon et al., 2012].

The predictions of our model for present-day structure compare well with seismic
tomography images (Figure 21). For example, a cross section through the full-waveform
inversion tomographic model of Rickers et al. [2013] shows several features that are in close
correspondence to those we predict. These include the flanking high-wave-speed bodies at
the bottom of the transition zone, a narrow, weak, vertical, low-wave-speed body between
them and a broader, stronger, low-wave-speed body in the top ~200 km underlying the entire
ocean. The high-wave-speed bodies correspond to the delaminated lithospheric mantle and
the low-wave-speed anomalies correspond to the temperature anomalies predicted by the
modeling (Figure 19). A mantle temperature anomaly of ~ 30 C is predicted beneath the
entire ocean down to ~ 200 km depth as a result of upper mantle upwelling. The seismic
anomaly could then be explained by this temperature anomaly and a resulting increase in the
degree of partial melt by up to 0.5% [Foulger, 2012]. Such a temperature anomaly is
consistent with the low values predicted by Ribe et al. [1995] who modeled the topography of
the region, and the petrological estimates of Hole and Natland [this volume]. Seismic
tomography images are notoriously variable in detail, in particular anomaly amplitudes
[Foulger et al., 2013], and we thus place most significance on the correspondence between
the shape of the predicted (Figure 19) and observed (Figure 21) anomalies.

Our results differ from those of existing mechanical models in that breakup of the continental
crust is more protracted [e.g., Brune et al., 2014]. For example, Huismans and Beaumont
[2011] showed that extension of lithosphere with relatively weak crust results in pre-breakup
wide-rift-mode extension for ~35 Myr. Our model differs from theirs by having dense HVLC
that delaminates as a consequence of rifting thereby increasing heat flow into the crust. This
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enables wide rifting to persist for much longer than where no HVLC is present, even in the
absence of an especially weak lower crustal rheology.

The amount and detailed history of wide-mode extension is controlled by the thickness of the
initial crust and rheology-governing parameters such as initial thermal state, heat flow,
radiogenic heat production and crustal flow laws. We examined models that varied some of
these parameters to investigate the sensitivity of our results to the assumed initial conditions.
We modeled crustal thicknesses of 35 km for the region and 40 km for the orogen, and
lithosphere thickness of 100 km with quartzite-like crustal rheology. Similar results to those
described above were obtained. Factors we do not incorporate in our simple model that would
further encourage crustal stretching and delay breakup include increased basal heat flow
and/or internal heat production and inclusion of 3D effects that would permit ductile mid-
and lower crust to flow along the strike of the Caledonides towards the GIFR during
extension.

6 Geochemistry

All aspects of the petrology and geochemistry of igneous rocks in the NE Atlantic Realm are
consistent with a model where Icelandic lower crust contains a substantial amount of
continental crust. The geochemical and petrological work most powerful to test this model is
that which addresses the composition and potential temperature (7p) of the melt source.

6.1 Composition of the melt source

The source of Icelandic lavas cannot be explained by mantle peridotite alone [e.g., Presnall &
Gudfinnsson, 2011]. A component of continental material is required and some studies have
presented evidence that this could be of Caledonian age [Breddam, 2002; Chauvel &
Hemond, 2000; Korenaga & Kelemen, 2000]. It could come from subducted slabs still
remaining in the shallow mantle, as has been proposed earlier [Foulger & Anderson, 2005;
Foulger et al., 2005]. The observations could also be explained by the upward flow of mantle
melt through a substrate of stretched, magma-inflated continental crust similar to some
HVLC beneath the passive margins.

Titanium: The petrology and geochemistry of igneous rocks along the mid-Atlantic ridge
change radically at the Icelandic margin. Low-TiO; basalts are found on the Reykjanes and
Kolbeinsey Ridges and in the rift zones of Iceland. These rocks do not follow the MORB
array of Klein and Langmuir [1987] but have the least Nag and Tisg of the entire global array.
These lavas are probably derived mostly from a peridotitic MORB source.

Basalts with high-TiO> and FeO(T) signatures occur in Iceland, Scotland, east and west
Greenland, but not on the Reykjanes or Kolbeinsey Ridges. These basalts cannot come from
MORB-source mantle—the source is required to have distinct Fe-Ti-rich material and other
important geochemical indicators such as REE that are not found in MORB-source mantle.
The extent of differentiation beneath Icelandic central volcanoes is also high enough to
produce abundant silicic lavas—icelandite and rhyolite—in association with the FeO(T)-
TiO»-rich basalts. These rocks comprise 10% of the surface volcanics of Iceland but are not
present on the adjacent submarine ridges and are uncommon on all other oceanic spreading
plate boundaries.
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A candidate for the source of such lavas is lower continental crust, possibly
pyroxenite/eclogite arising from gabbro with elevated TiO» and FeO(T) at pressures in the
eclogite facies, along with refractory sub-continental lithospheric mantle (SCLM), originally
from the Greenland and European margins and still present in the central North Atlantic. A
hybrid source of this sort can explain the diversity of Icelandic magmas [Foulger &
Anderson, 2005; Foulger et al., 2005; Korenaga, 2004; Korenaga & Kelemen, 2000].
Because there is no major isotopic anomaly, the source cannot be very old. Candidate
material is common in continental lithosphere. For example, xenolith suites of lower crustal
cumulates from Permian lamprophyres in Scotland have the required characteristics [Downes
et al., 2007; Hole et al., 2015].

The close proximity of the low- and high-Ti, high-FeO(T) basalts suggests that their different
sources are physically close together. It is clear that these sources have been tapped since the
opening of the NE Atlantic as they are also seen in the same successions in the Skaergaard
intrusion in east Greenland [Larsen et al., 1999]. The high-TiO> and FeO(T) lavas found in
Iceland are typical of lavas derived from sub-continental lithospheric mantle and pyroxenite.
No more than 20 - 30% of pyroxenite in a hybrid source is required to explain the
observations.

Isotope ratios: Elevated ¥’Sr/*Sr and Pb isotope ratios are found in basalts from east and
southeast Iceland [Prestvik et al., 2001]. This has been interpreted as requiring a component
of continental material in the source beneath Iceland. That component could come from crust
or detached SCLM buried beneath surface lavas [Foulger et al., 2003].

Zircons: Archaean and Jurassic zircons with Lewisian (1.8 Ga) and Mesozoic (~126 - 242
Ma) inheritance ages have been reported from lavas in NE Iceland. This has been interpreted
as indicating ancient continental lithosphere beneath Iceland [Paquette et al., 2006;
Schaltegger et al., 2002]. A continental composition for Icelandic-type lower crust can
explain these results.

Water: Water in basalt glass from the mid-Atlantic Ridge indicates elevated contents in the
source from ~61 N across Iceland [Nichols et al., 2002]. The water contents are estimated to
be ~165 ppm at the southern end of the Reykjanes Ridge, rising to 620 - 920 ppm beneath
Iceland. Such a component, and other volatiles such as CO; [Hole & Natland, this volume]
decrease the solidus of a source rock and increase the volume of melt produced for a given Tp
(Section 6.2).

6.2 Temperature of the melt source

The temperature of the melt source of Icelandic rocks is too low to be able to account for a
30-40-km-thick basaltic crust using any reasonable lithology [Hole & Natland, this volume].
It is therefore an inevitable conclusion that much of the lower crust beneath the GIFR must
arise from a process other than high-temperature partial melting of mantle peridotite.

Geochemical work aimed at determining the potential temperature of NE Atlantic source
rocks has used basalts from Iceland and high-MgO picrites from the Davis Strait [Clarke &
Beutel, 2019; Hole & Natland, this volume]. The Tp for the source of MORB is generally
used as the standard against which other calculated mantle temperatures are compared. The
currently accepted value of this is 1350+40 C (Table 3) [Hole & Natland, this volume].
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A large range of temperatures, 7p = 1400 - 1583 C, has been suggested for the mantle
beneath Iceland [Hole & Millett, 2016; Putirka, 2008]. The breadth of this range in itself
indicates how difficult it is to derive a repeatable, reliable Tp using geochemistry and
petrology. Difficulties include the lack of surface samples that correspond to an original
mantle melt—crystalline rocks essentially always contain xenocrysts, and no picritic glass
has been found in the NE Atlantic Realm [Presnall & Gudfinnsson, 2007]. The unknown
source composition also introduces uncertainty. The geochemistry of Icelandic lavas requires
there to be a component of recycled surface materials in the source and variable volatile
contents including water [Nichols et al., 2002]. Ignoring any of these unknowns causes
estimates of Tp to be erroneously high.

Crystallization temperatures estimated from olivine-spinel melt equilibration, the so-called
“aluminum-in-olivine” method, are independent of whole-rock composition. The
temperatures yielded by this method are 7p ~1375 C and ~100 C higher for the Davis Strait
picrites (Table 3) [Hole & Natland, this volume]. A summary of global maximum
petrological estimates of Tr and ranges of olivine-spinel equilibrium crystallization
temperatures for magnesian olivine are shown in Figure 22.

Petrological estimates of the potential temperature 7p of the source of basalts in the NE
Atlantic Realm suggest upper-bound 7p of ~1450 C for Iceland and ~1500 C for the picrites
of Baffin Island, Disko Island and west Greenland [Hole & Natland, this volume]. There may
thus have been a short-lived, localized burst of magma from a relatively hot source lasting ~2
- 3 Myr when propagation of the Labrador Sea spreading center was blocked at the
Nagssugtoqidian orogen, but there is no compelling evidence for a Tp anomaly > ~100 C
before or after this anywhere in the NE Atlantic Realm.

The melt volume produced at Iceland has also been used as a constraint in models for Tp.
That work has assumed that the full thickness of the 30-40-km-thick seismic crustal layer is
melt produced by steady state fractional melting of a peridotite mantle source. Production of
just 20 km of igneous crust would require a 7p of ~1450 - 1550°C assuming a damp or dry
peridotite source [Sarafian et al., 2017]. No credible lithology or temperature can explain the
crustal thickness of ~40 km that has been measured for central Iceland [Darbyshire et al.,
1998a; Foulger et al., 2003].

Crustal thickness beneath the active volcanic zones of Iceland varies from ~40 km (beneath
Vatnajokull) to ~15 - 20 km (beneath the Reykjanes Peninsula extensional transform zone)
[Foulger et al., 2003]. If the full thickness of crust everywhere is formed from melting in the
mantle, unrealistically large lateral variations in temperature of the source of ~150 C over
distances of ~125 km would be required [Hole & Natland, this volume].

6.3 3He/'He

Elevated *He/*He values are commonly assumed to indicate a core-mantle boundary
provenance for the melt source. This association was originally suggested when it was found
that some lavas from Hawaii contain high->He/*He [Craig & Lupton, 1976]. It was reasoned
that, over the lifetime of Earth, the *He/*He of the mantle has progressively decreased from
an original value of ~200 times the present-day atmospheric ratio (Ra) to ~8 +2 Ra—the
value most commonly observed in MORB. It was subsequently assumed that a lava with
3He/*He much larger than 8 Ra must have arisen from a primordial source, isolated for
Earth’s 4.6 Ga lifetime, deep in the mantle near the core-mantle boundary.
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This theory has long been contested and it has been counter-proposed that the helium instead
resided for a long time in depleted, unradiogenic materials such as olivine in the sub-
continental lithospheric mantle [ Anderson, 2000a; b; 2001; Anderson et al., 2006; Foulger &
Pearson, 2001; Natland, 2003; Parman et al., 2005]. That theory would fit the high—3He/4He
values reported from Iceland and the Davis Strait [Starkey et al., 2009; Stuart et al., 2003] if
the deeper parts of the crust beneath these regions contain ancient material, as we propose in
this paper.

7 Discussion
7.1  The Greenland-Iceland-Faroe Ridge

The model presented here proposes that in general Icelandic-type upper crust is mafic in
nature, equivalent to Layers 2 - 3 of oceanic crust, whilst Icelandic-type lower crust is
magma-dilated continental crust. The pre-existing SCLM mostly delaminated during the
stretching process (Section 5) (Figure 18). The melt layer thus comprises Icelandic-type
upper crust plus the melt that intruded into the continental crust below as plutons, dykes and
sills. The location of Iceland with respect to the east Greenland and Faroe Volcanic margins
fits the model of Geoffroy et al. [2015; submitted] of a dislocated C-block (Figure 5).

This new model contributes to the > 40-year controversy regarding whether the crust beneath
Iceland is thick or thin. A “thin crust” model, generally assumed in the 1970s and 1980s,
attributed Icelandic-type upper crust to the melt layer—the subaerial equivalent of oceanic
crust—and the layer currently termed “Icelandic-type lower crust” to hot, partially molten
mantle [Bjornsson et al., 2005]. From the 1990s, long seismic explosion profiles using
modern digital recording were shot and deep reflecting horizons were discovered. A “thick
crust” model was then introduced that interpreted the layer previously thought to be hot,
partially molten mantle as Icelandic-type lower crust, the equivalent of oceanic layer 3, and
part of the melt layer.

Our findings support the thin-crust model with the caveat that Icelandic-type lower crust is
indeed crust, and not hot mantle as previously proposed, but it is magma-inflated continental
crust. This model agrees with long-sidelined magnetotelluric work in Iceland which detects a
high-conductivity layer at ~10 - 20 km depth. This layer was proposed to mark the base of
the crust [Beblo & Bjornsson, 1978; 1980; Beblo et al., 1983; Eysteinsson & Hermance,
1985; Hermance & Grillot, 1974]. High-conductivity layers are common in continental mid-
and lower crust [e.g., Mufoz et al., 2008]. Explosion seismology and receiver functions find
the thickness of Icelandic-type upper crust to be ~3 - 10 km (Figure 9; Figure 10) [Darbyshire
et al., 1998b; Foulger et al., 2003] which is comparable with the crustal thicknesses beneath
the Reykjanes Ridge and the Kolbeinsey Ridge if additional magma dilating the Icelandic-
type lower crust is taken into consideration. This is nevertheless up to ~40% thicker than the
global average of 6 - 7 km. Mantle fusibility enhanced by pyroxenite and water (Section 6), a
moderate elevation in temperature (Section 6.2), and bursts of volcanism accompanying
frequent rift jumps (Section 4) can account for the enhanced melt volumes.

The plate boundary traversing the GIFR cannot be likened to a conventional spreading ridge
with segments connected by linear transform faults as is commonly depicted in simplified
illustrations. Historically, motion in the GIFR region was postulated to have been taken up on
a classic ~150-km-long sinistral transform fault named the Faroe Transform Fault or the
Iceland Faroe Fracture Zone [Bott, 1985; Voppel et al., 1979] and this idea was reiterated in
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subsequent work [e.g., Blischke et al., 2017; Guarnieri, 2015]. Locations proposed for this
feature include the north edge of the Iceland shelf, central Iceland, and the South Iceland
Seismic Zone [Bott, 1974].

There is, however, no observational evidence for such a structure [Gernigon et al., 2015;
Schiffer et al., 2018] and it does not, even to a first order, fit the observations on the ground.
Only a GIFR that deforms as a broad zone of distributed extension and shear can account for
the reality of the geology of Iceland and adjacent regions [Schiffer et al., 2018].

Our model may provide a long-awaited explanation for why the JMMC broke off east
Greenland. Westerly migration of axes of extension on the GIFR may have changed the stress
field in the diffusely extending continental area to the north and encouraged extension there
to coalesce on the single most westerly zone which thereafter developed into the Kolbeinsey
Ridge.

7.2 Crustal flow

Ductile crustal flow has been incorporated into earlier numerical models of continental
breakup. A ductile, low-viscosity layer that decouples the upper lithosphere from the lower
was incorporated in models of extending continental lithosphere by Huismans and Beaumont
[2011; 2014]. Such a layer enables ultrawide regions of thinned, unruptured continental crust
to develop along with distal extensional (sag) basins. Crustal thicknesses are maintained by
widespread lateral flow of mid- and lower-crustal material from beneath surrounding regions.
Lower crust may well up, further delaying full crustal breakup.

In our model, subsidence resulting from progressive thinning or delamination of the mantle
lithosphere is mitigated by hot asthenosphere rising to the base of the crust. This abruptly
raises temperatures, increasing heat flow and further encourages ductile flow. Low extension
rates, such as have characterized the NE Atlantic, tend to prolong the time to breakup and
encourage diffuse extension because ductile flow and cooling can continue for longer. The
crust may stretch unruptured for tens of millions of years and widen by 100s of kilometers
with axes of extension migrating diachronously and laterally across the extending zone. Only
after eventual rupture of the continental lithosphere can sea-floor spreading begin. Until that
occurs, geochemical signatures of continental crust and mantle lithosphere are expected in
overlying magmas that have risen through the continental material.

Depth-dependent stretching, in particular involving the lower-crustal ductile flow that we
model in Section 5, is both predicted by theory [McKenzie & Jackson, 2002] and required by
observations from many regions. These include amagmatic margins, the Basin Range
province, western USA [Gans, 1987] and deformation at collision zones, e.g., the Himalaya
and Zagros mountain chains [e.g., Kusznir & Karner, 2007; Royden, 1996; Shen et al., 2001].
Lower-crustal flow is actually observed where such crust is exhumed to the surface, e.g., at
Ivrea in the Italian Alps, where lower-crustal granulite intruded by mafic plutons is exposed
[e.g., Quick et al., 1995; Rutter et al., 1993].
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7.3 Magmatism

7.3.1 The concept of the North Atlantic Ieneous Province

The issues laid out in this paper bring into question the concept that the magmas popularly
grouped into the North Atlantic Igneous Province (NAIP) can be viewed as a single
magmatic entity [Peace et al., this volume]. The NAIP is generally considered to include the
volcanic rocks in the region of the Davis Strait, the volcanic margins of east Greenland and
Scandinavia, and the magmatism of the GIFR. These magmas are, however, only a subset of
those in the region and many others are not typically included [Peace ef al., this volume].
These include melt embedded in the “amagmatic” margins of SW Greenland and Labrador,
current volcanism at Jan Mayen, the Vestbakken Volcanic Province ~300 km south of
Svalbard, conjugates in NE Greenland [A Horni et al., 2016], magmatism at the west end of
the CGFZ [Keen et al., 2014] and basaltic sills offshore Newfoundland detected in ODP site
210-1276 that are thought to extend throughout an area of ~20,000 km? [Deemer ef al.,
2010]. It is illogical to exclude these, especially since the Cretaceous(?) Anton Dohrn and
Rockall seamounts are included in the NAIP [Jones ef al., 1994].

The grouping of a select subset of magmas in the NE Atlantic Realm into a single province is
predicated on and reinforces, the concept that they all arise from a single, generic source. A
model of such simplicity that fits all observations has been elusive for over half a century.
The obvious solution, and one that can readily account for the observations, is a model
whereby each magmatic event occurs in response to local lithospheric tectonics and melts are
locally sourced.

The same reasoning may well apply to other volcanic provinces, e.g., the South Atlantic
Volcanic Province. Generally included in this are the Parand and Etendeka flood basalts, the
volcanic rocks of the Rio Grande Rise and the Walvis Ridge, the currently active Tristan da
Cunha archipelago and even kimberlites and carbonatites in Angola and the Democratic
Republic of the Congo [see Foulger, 2018 for a review]. These volcanic elements contrast
with one another in the extreme and each most likely erupted in reaction to local tectonic
responses to global events and processes, with magmas locally sourced.

7.3.2 Magma volume

Estimates for the total volume of the magma generally lumped together as the NAIP are 2 -
10 x 10° km?® with a value of ~6.6 x 10° km? for the north Atlantic volcanic margins [Eldholm
& Grue, 1994a]. Assuming these margins formed in ~3 Myr, Eldholm and Grue [1994a]
calculate a magmatic rate of 2.2 km>®/a and suggest the NAIP is one of the most voluminous
igneous provinces in the world. That calculation assumes that the HVLC beneath the Inner
SDRs is all igneous and formed contemporaneously with the volcanic margins. If this is not
the case, the volume and magmatic rate for the north Atlantic volcanic margins must be
downward-revised by up to 30%, i.e. to ~4.4 x 10° km? for volume and 1.5 km*/a for
magmatic rate. Eldholm and Grue [1994a] furthermore estimate a magmatic rate of ~ 0.2
km?/a for Iceland. If the igneous crust on the GIFR is only 10 - 15 km thick, this rate must be
downward-revised to 0.12 - 0.08 km?/a. The magmatic rate per rift kilometer would then be 2
-3 x 10* km®/a compared with ~4.8 x 10 km?/a per rift kilometer for the global plate
boundary.
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These changes reconcile geological estimates with those derived from numerical modeling.
Magmatism at the NE Atlantic rifted margins has been simulated using models of
decompression melting in a convectively destabilized thermal boundary layer coupled with
upper-mantle (“small-scale”) convection [Geoffroy et al., 2007; Mutter & Zehnder, 1988;
Simon et al., 2009]. These models explore whether the volumes and volume rates can be
accounted for simply by breakup of the 100-200-km-thick lithosphere without additional ad
hoc processes. Current numerical models slightly under-predict traditional geological
estimates but could be reconciled with estimates lowered to take into account a wholly or
partially continental affinity of HVLC.

More accurate estimates of volume could also explain the extreme variations in magmatic
thickness over short distances required by assumptions of HVLC igneous affinity. For
example, the radical contrast between the unusually thin (4 - 7 km) oceanic crust beneath the
Aegir Ridge [Greenhalgh & Kusznir, 2007] and a ~30 km igneous thickness beneath the
adjacent GIFR defies reasonable explanation but the problem vanishes if the latter
assumption is dropped.

7.3.3 The chevron ridges

Lithosphere- and asthenosphere-related mechanisms compete to explain the chevron ridges
that flank the Reykjanes Ridge [Hey et al., 2008; Jones et al., 2002]. Martinez and Hey [this
volume] suggest that the required oscillatory changes in magmatic production result from
axially propagating mantle upwelling instabilities that travel with ridge-propagator tips along
the Reykjanes Ridge. These originate in Iceland and the gradient in mantle properties along
the Reykjanes Ridge results in the convective instabilities migrating systematically south
along the Ridge. Upwelling is purely passive and the propagators behave in a wave-like
manner without the flow of actual mantle material along the Ridge. In this model, the
transition from linear to ridge/transform staircase plate boundary geometry at ~37 - 38 Ma
failed to eliminate the structure of the deeper asthenospheric melting zone and the Reykjanes
Ridge is restructuring itself to realign over that zone.

Several of the propagators onset at the GIFR in concert with tectonic reorganizations there
(Table 1) [Benediktsdottir et al., 2012] inviting consideration of lithospheric triggers. The
Reykjanes Ridge as a whole is oblique to the direction of plate motion but its axis comprises
an array of right-stepping en echelon spreading segments, each of which strikes perpendicular
to the direction of motion. Such fabric resembles a left-lateral transtension zone.

The diachronous chevron crustal fabric began to form at ~37 - 38 Ma when the Reykjanes
Ridge changed from a linear to a ridge-transform configuration with a ~30 counter-
clockwise rotation in the direction of plate motion (Section 2.2.2) [Gaina et al., 2017]. From
25-15 Ma slow, counter-clockwise rotation of the extension direction continued and from 15
Ma - present it rotated back [Gaina et al., 2017]. Slow counter-clockwise migration of the
spreading direction would gradually hinder strike-slip motion on the transform segments and
encourage evolution toward extension with a minor left-lateral shear overprint. Very slow
changes in the direction of extension might be insufficient to trigger a sudden and major
reorganization but enough to bring about the slow plate-boundary evolution observed.

Regardless of whether a lithosphere- or asthenosphere-related mechanism is responsible for
the chevron ridges, it is clear that shallow processes control them as their southerly
propagation was temporarily blocked by several previously existing transform faults north of
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the present reorganization tip near the Bight transform fault. Furthermore, if their inception is
related to tectonic reorganizations on the GIFR, then conversely the time at which the
propagators set off from the GIFR could indicate the times of first-order tectonic
reorganizations on the GIFR.

The transform-eliminating rift propagators of the Reykjanes Ridge are unique in their degree
of development but not entirely unknown elsewhere. Examples outside the NE Atlantic
include a southward propagator eliminating a transform formerly at 21 40’N on the mid-
Atlantic Ridge [Dannowski et al., 2011] and propagators on the faster-spreading (~100
km/Myr) NE Pacific plate boundary that eliminated the Surveyor, Sila, Sedna and Pau
transforms [Atwater & Severinghaus, 1989; Hey & Wilson, 1982; Shih & Molnar, 1975].
Propagating small-scale convective instabilities have also been postulated to form volcanic
ridges and seamount chains that flank parts of the East Pacific Rise in a direction parallel to
plate motion [e.g, Forsyth et al., 2006].

7.3.4 The North Atlantic geoid high

The GIFR sits at the apex of a ~3000-km-long bathymetric and geoid high (up to ~4000 m
and 80 m respectively) that stretches from the Azores to the Jan Mayen Fracture Zone
[Carminati & Doglioni, 2010; King, 2005; Marquart, 1991]. Without this high the Thulean
land bridge and Iceland would not have been subaerial. Globally, the only other comparable
geoid high extends through Indonesia and Melanesia and to the Tonga Trench. Major geoid
highs with lower amplitudes or smaller spatial extents are associated with the SW Indian
Ocean and the Andean mountain chain.

The geoid highs associated with Indonesia, Melanesia and Tonga, and the Andean mountain
chain are a consequence of accumulations of dense subducted slabs. The geoid high of the
north Atlantic corresponds closely to the pre-breakup Caledonian orogen plus the south
European/North African Hercynian orogen (Figure 23). A possible explanation for part of the
geoid anomaly is thus residual, dense, subducted Caledonian and Hercynian slabs along with
continental lower crust and mantle lithosphere distributed in the shallow mantle. Henry Dick
and colleagues have long argued that the petrology and geochemistry of magmas on the SW
Indian ridge require SCLM in the melt source [Cheng et al., 2016; Dick, 2015; Gao et al.,
2016; Zhou & Dick, 2013]. That ridge is the current locus of extension between Africa and
Antarctica which separated as part of Pangaea breakup beginning in the Jurassic. By analogy
with the NE Atlantic, continental material might also remain in the mantle beneath the ocean
there and the SW Indian geoid high might thus be explained in a similar way to that of the
north Atlantic.

7.3.5 Regions analogous to the GIFR

There are clear parallels between the GIFR and the Davis Strait. The structure and tectonic
development of the latter show similar characteristics to the GIFR but to a less extreme
degree (Figure 24). The Davis Strait is colinear with the GIFR and both function as
transtensional shear zones. Its primary feature is the long Ungava Fault Complex [Peace et
al., 2017]. This is underlain by ~8 km of oceanic crust beneath which is ~8 km of HVLC
with Vp up to 7.4 - 7.5 km/s [Chalmers & Pulvertaft, 2001; Funck et al., 2006; Funck et al.,
2007; Srivastava et al., 1982] and density of 2850 - 3050 kg/m3 [Suckro et al., 2013]. These
values are similar to those of Icelandic-type lower crust.
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Like the GIFR, the bathymetric high that contains the 550-km-long Davis Strait is elongated
in the direction approximately perpendicular to plate motion. It has water depths of < 700 m,
contrasting with the adjacent > 2000-m-deep Labrador Sea and Baffin Bay. At the Davis
Strait north-propagating rifting stalled at the confluence of the Nagssugtoqidian and Rinkian
orogens and continued displaced by several hundred kilometers in a right-stepping sense. In
the case of the GIFR, both north- and south-propagating oceanic rifting stalled at the
confluence of the Nagssugtoqgidian and Caledonian orogens.

The Jan Mayen Fracture Zone formed where a major, pre-existing transverse structure
formed a barrier to the south-propagating Mohns Ridge. It was also an episodic transtensional
structure, has a history of migration of the locus of deformation, bathymetric highs and
unusual volcanism, e.g., on the island of Jan Mayen and in the submarine Traill @ and Vgring
Spur igneous complexes [Gernigon et al., 2009; Kandilarov et al., 2015]. Continental crust is
possibly trapped between parallel segments of the Zone.

7.3.6 Regions analogous to the NE Atlantic Realm

The history, structure, tectonics and petrology of the NE Atlantic Realm are unusually
complex but it represents an extreme example and not a unique case. Other regions that show
similar features suggest that the style of breakup it exemplifies is generic. The NE Atlantic
Realm may owe its extremity to the facts that the NE Atlantic was formed by two opposing
propagators that stalled at a barrier, an unusually large microcontinent was captured, and the
spreading rate was and is exceptionally slow.

The South Atlantic Igneous Province also includes regions of shallow sea-floor, anomalously
thick crust, anomalous volcanism and continental crust distributed in the ocean. It has a
history of stalled spreading-ridge propagation, coincidence with a major pre-existing
transverse structure and both shear and extensional deformation in a zone several hundred
kilometers broad in the direction perpendicular to plate motion [Foulger, 2018; Kusznir & al.,
2018]. Graca et al. [2019] recently presented evidence that the Rio Grande Rise, which
contains continental material [Santos Ventura et al., 2019], and parts of the Walvis Ridge
were once joined, but split apart by at least four ridge jumps. Such a process is very similar to
that which we propose for the GIFR.

The Lomonosov Ridge in the Arctic ocean can be viewed as an incipient microcontinent.
West of India, the Laxmi basin comprises a pair of aborted conjugate volcanic passive
margins with Outer SDRs that appear to be underlain by HVLC and flank an intra-oceanic
microcontinent—a C-block [Geoffroy et al., submitted; Guan et al., 2019; Nemc¢ok & Rybar,
2017]. The Seychelles region in the West Indian Ocean, the Galapagos Islands region in the
east Pacific [Foulger, 2010, p 100-101] and the Shatsky Rise [Korenaga & Sager, 2012;
Sallares & Charvis, 2003] all display analogous features. Regions currently in the process of
breaking up in a similar mode include the Afar area [Acton et al., 1991], the Imperial and
Mexicali Valleys and Baja California (California and Mexico). The abundance of continental
crustal fragments in the oceans is becoming increasingly clear, with much originating at
locations where continental breakup was complicated by lithospheric heterogeneities.

Despite the very different structure and context, tectonics comparable to those observed on
the GIFR and in Iceland are also observed on the East Pacific Rise (EPR). There, “dueling”
overlapping propagating ridge pairs with intermediate bookshelf shearing build ridge-
perpendicular and ridge-oblique zones of crustal complexity (Figure 25) [Perram et al.,
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1993]. In oceanic settings overlapping ridge tips tend to form where lithosphere is weak and
to migrate along-strike. Overlapping spreading centers are kinematically unstable and the tips
inevitably fail episodically and are replaced by new ones. An unusual facet of the
development of the GIFR that is not reported from the East Pacific Rise is the switching of
the sense of overlap when the Aegir Ridge was replaced by the Kolbeinsey Ridge.

Comparable styles of deformation are also observed in the Japan-, Manus-, Lau- and Mariana
Trench back-arc basins [Kurashimo et al., 1996; Martinez et al., 2018; Taylor et al., 1994].
Beneath back-arc basins the hydrous mantle environment above the dewatering slab does not
become dehydrated and the attendant increase in viscosity tends to localize upwelling melt.
As a result, extension does not become focused in a single rift zone but remains distributed
between multiple, parallel rifts. Magnetic anomalies are disorganized and water also reduces
the solidus, increasing melt production [Dunn & Martinez, 2011; Martinez et al., 2018].

On land, similar petrologies, including high-TiO> basalts, association with abundant rhyolite,
and likely provenance of the source in subcontinental material are observed in flood basalts
that erupted through continental lithosphere. These include the Central Atlantic Magmatic
Province [Peace et al., this volume], the Deccan traps and the Columbia River Basalts.

8 Conclusions
Our main conclusions may be summarized:

1. Disintegration of the Laurasian collage of cratons and orogens to form the Labrador Sea,
Baffin Bay and the NE Atlantic Ocean lasted several tens of millions of years and
occurred piecewise and diachronously via rift propagation.

2. The GIFR formed where the south-propagating Aegir Ridge and the north-propagating,
Reykjanes Ridge stalled at the junction of the Nagssugtoqidian and Caledonian orogens.
The intervening ~300-km wide (northerly) and ~150-km long (easterly) continental
block, the Iceland Microcontinent, along with flanking areas, extended by distributed,
magma-assisted continental extension via multiple parallel migrating rifts with diffuse
shear zones between them. The continental crust was capped by surface lavas. It stretched
to form the 1000-km long Thulean continental land bridge which was not overrun by
oceanic waters until ~10 -15 Ma.

3. Magma-assisted continental extension was enabled by ductile flow of low-viscosity mid-
and lower crust.

4. Icelandic-type crust comprises the 3 - 10 km thick upper crust, equivalent to oceanic
layers 2 - 3, underlain by lower crust up to ~ 30 km thick comprising magma-inflated
continental crust.

5. The melt layer that caps the GIFR comprises the Icelandic-type upper crust plus magma
injected into the Icelandic-type lower crust, and has a total thickness of ~10 - 15 km.

6. The petrology and geochemistry of Icelandic lavas is consistent with inclusion of a
component from underlying continental crust.

7. A largely continental Icelandic-type lower crust is consistent with the fact that no
reasonable models of temperature or mantle petrology can generate the ~40 km of melt
necessary to explain its entire thickness as wholly oceanic.

8. The chevron ridges that flank the Reykjanes Ridge form in association with small-offset
propagators initiated by tectonic reorganizations on the unstable GIFR.
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9. The GIFR tectonically decouples the oceanic regions to the north and south.

10. The continuity of continental crust beneath the GIFR means that, at this latitude, Laurasia
still has not yet entirely broken up. An implication of this is that the GIFR could be
considered to be a new kind of plate boundary.

11. A model whereby continental breakup is characterized by diachronous rifting, strong
influence from pre-existing structures, distributed continental material in the new oceans,
and anomalous volcanism matches many other oceanic regions.
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1366  Table 1: Chronology of major tectonic events in the NE Atlantic. Timescale after Gradstein et
1367  al. [2012]. Chevron ridge # after Jones et al. [2002].

1368
Date Chevron Magnetic Event
(Ma) ridge # chron
58-57 C26 Beginning of opening of the Labrador Sea.
56-52 C24-22  First magnetic anomaly on the proto-Reykjanes Ridge.

Beginning of opening of the North Atlantic Ocean on the

A CoAr Aegir Ridge and west of the Lofoten margin.
54-ca 46 C24-21 Rift to drift transition, Faroe-Shetland and Hatton margins.
54.9-50 Spreading propagated from the Greenland Fracture Zone
' south to the Jan Mayen Fracture Zone.
52 C23 Aegir Ridge reaches its maximum southerly extent.
50-48 C21 ~30-40 clockwise rotation of direction of plate motion .
Onset of fan-shaped spreading about the Aegir Ridge. Pulse
48 C22-21 of extension in the southern JMMC. No major change south
of the GIFR.
40 C18 Counter-clockwise rotation of direction of plate motion.
38-37 7 C17 Rey}q anes Ridge becomes stair-step. First chevron ridge
begins to form.
36 C13 Cessation of spreading in the Labrador Sea.
33-29 C12-10 Counter-clockwise rotation of direction of plate motion.
Extinction of the ultra-slow Aegir Ridge. Second chevron
31-28 6 C12-10 ridge begins to form about the Reykjanes Ridge
o c6/7 FI.I'St unambiguous magnetic anomaly about the Kolbeinsey
Ridge.
15-10 C5A/C5  Breaching of the Thulean land bridge.
Rift jump in Iceland from North West Syncline to Snafellsnes
14 5 Zone and Hunafl6i Volcanic Zone, propagator “Loki” starts to
travel south down Reykjanes Ridge forming third chevron
ridge.
9 4 Propagator “Fenrir” starts to travel south down Reykjanes
Ridge forming fourth chevron ridge.
Extinction of Snafellsnes Zone, propagator “Sleipnir” starts
7 3 to travel south down Reykjanes Ridge forming fifth chevron
ridge.
5 ’ Propagator “Hel” starts to travel south down Reykjanes Ridge
forming sixth chevron ridge.
2 1 EVZ in Iceland forms, propagator “Frigg” starts to travel

south down Reykjanes Ridge forming seventh chevron ridge.

1369
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1370  Table 2: Rift zones indicated by geological observations on land in Iceland.

1371
Name Acronym Tectonic status
North West Syncline NWS Extinct
Austurbrin Syncline AS Extinct
East Iceland Zone EIZ Extinct
Snafellsnes Zone SZ Oblique, non extensional
Hunafl6i Volcanic Zone HVZ Extinct
Modrudalsfjallgardar Zone MZ Extinct
Reykjanes Peninsula Zone RPZ Oblique, extensional
Western Volcanic Zone WVZ Active, waning
Hofsjokull Zone HZ Active, very short
Northern Volcanic Zone NVZ Active
Orazfajokull-Snafell Zone ovz Active, non extensional
Eastern Volcanic Zone EVZ Active, propagating
1372
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1374  Table 3: Potential temperatures required to produce 20 km of melt for various source
1375  compositions [from Hole & Natland, this volume].

1376
Source composition Tp C
dry peridotite 1550
dry peridotite + 10% pyroxenite 1540
dry peridotite + 40% pyroxenite 1470
damp peridotite + pyroxenite 1450
damp peridotite 1450
pyroxenite 1325-1450
Baffin Island picrites (Tor-sp) 1500
1377
1378

1379
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1385  Figure 1: Regional map of the North East Atlantic Realm showing features and places

1386  mentioned in the text. Bathymetry is shown in color and topography in land areas in gray.
1387  BB: Baffin Bay, DAS: Davis Strait, DI: Disko Island, LS: Labrador Sea, CGFZ: Charlie-
1388  Gibbs Fracture Zone, BFZ: Bight Fracture Zone, RR: Reykjanes Ridge, IB: Iceland basin,
1389  DKS: Denmark Strait, SKI: Skaergaard intrusion, BC: Blosseville coast, KR: Kolbeinsey
1390  Ridge, JMMC: Jan Mayen Microcontinent Complex, AR: Aegir Ridge, NB: Norway basin,
1391  WIMFZ, EJMFZ: West and East Jan Mayen Fracture Zones, JM: Jan Mayen, LB: Lofoten
1392 basin, VP: Vgring Plateau, VB: Vgring basin, MB: Mgre basin, FI: Faroe Islands, SI:

1393  Shetland Islands, FSB: Faroe-Shetland basin, MT: Moine Thrust, GGF: Great Glen Fault,
1394  HBF: Highland Boundary Fault, SUF: Southern Upland Fault, MTFZ: Mgre-Trgndelag Fault
1395  Zone, HB: Hatton basin, RT: Rockall Trough, PB: Porcupine basin. Red lines: boundaries of
1396  the Caledonian orogen and associated thrusts, blue lines: northern boundary of the Hercynian
1397  orogen, both dashed where extrapolated into the younger Atlantic Ocean.
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1401
1402  Figure 2: Schematic map of Greenland showing features referred to in the text. A: Arsuk, AS:
1403  Ataa Sund, BS: Bylot Sund, DB: Disko Bugt, IBr: Inglefield Bredning, IBu: Inussulik Bugt,
1404  IL: Inglefield Land, ITZ: Ikertoq thrust zone, KF: Karrat Fjord, KY: Kap York, M:
1405
1406

Midternas, Na: Naternaq, NI: Nordre Isortoq, NS: Nordre Strgmfjord, Nu: Nunatarsuaq, RB:

Rensselaer Bugt, S: Sermilik, T: Thule basin, TB: Tasiussaq Bugt, UF: Uummannaq Fjord
1407  [from St-Onge et al., 2009].
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Figure 3: Reconstruction of the North Atlantic Realm at 1265 Ma. NAC: North Atlantic
Craton, Nag: Nagssugtoqidian. Juvenile terranes: a: Sissimuit Charnockite, b: Arfersiorfic
diorite, c: Ammassalik Intrusive Complex, d: South Harris Complex, e: Loch Maree Group, f:
Lapland-Kola Granulite Belt, g: Tersk and Umba terranes [from Mason et al., 2004].
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1419  Figure 4: Receiver function image of the crust and upper mantle under central east Greenland
1420  from Schiffer et al. [2014] showing the Central Fjord structure. A geological cross-section
1421  based on Gee [2015] is overlain showing the Caledonian nappes and foreland basin, and the
1422 Devonian basin. Younger sedimentary basins are from Schlindwein & Jokat [2000].

1423 Extrapolated Moho depths are from Schiffer et al. [2016].
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1428

1429  Figure 5: Schematic diagram illustrating the generalized structure of Inner- and Outer-SDRs
1430  and a possible “C-Block’ under Iceland. Outer-SDRs comprise thick subaerial eruptive layers
1431  underlain by hyper-extended middle crust and high-Vp mafic material of uncertain affinity
1432 but similar in structure to massively sill-intruded lower crust. Ductile flow and magma-

1433 assisted inflation can extend such crust to many times its original length. Material eroded
1434 from the underlying lithospheric mantle may be distributed in the direction of extension and
1435  incorporated in the underlying asthenosphere. LC1: sill-injected continent-derived ductile
1436  crust. LC2: highly reflective, undeformed layer, tectonically disconnected from LCI1, and
1437  with much higher Vp (7.6-7.8 km/s) [adapted from Geoffroy et al., submitted].
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Figure 6: Magnetic anomalies in the North Atlantic Ocean [from Gaina et al., 2017].

43



1445
1446

1447
1448
1449
1450
1451
1452

1453

1454

44

Figure 7: Perspective view along the Reykjanes Ridge looking towards Iceland showing the
flanking chevron ridges converging with the spreading axis. Fracture-zone traces delineating
former transform faults that have been eliminated can be seen as oblique cross-cutting
structures in the lower part of the figure. Submarine areas show satellite-derived Free Air
gravity anomalies from Sandwell et al. [2014] with the land topography of Iceland
superimposed.
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Figure 8: The Greenland-Iceland-Faroe Ridge and surrounding areas showing bathymetry
and tectonic features. JMMC: Jan Mayen Microcontinent Complex. Thick black lines: axes
of Reykjanes and Kolbeinsey Ridges, thin gray lines on land: outlines of neovolcanic zones,
dark grey: currently active extensional volcanic systems, dashed black lines: extinct rifts on
land, thin black lines: individual faults of the South Iceland Seismic Zone (SISZ), white:
glaciers. WVZ, EVZ, NVZ: Western, Eastern, Northern Volcanic Zones, TFZ: Tjornes
Fracture Zone comprising two main shear zones and one (dotted) known only from
earthquake epicenters (see also Figure 15). Thick red lines: extinct rift zones from Hjartarson
et al. [2017].
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1475  Figure 9: Compilation of results from receiver function analysis in Iceland. Top: Depth to the
1476  base of the upper crust, middle: depth to the base of the lower crust, bottom: thickness of the
1477  lower crust [data from Foulger et al., 2003].
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Figure 10: Velocity-depth profiles showing the average one-dimensional seismic structure of
Icelandic-type crust from explosion profiles shot in Iceland and in 10-Ma oceanic crust south
of Iceland [Gebrande et al., 1980]. Open-headed arrows, estimates of the base of the upper
crust from various studies; solid-headed arrows, estimates of the base of the lower crust; M,
proposed Moho identifications [from Bjarnason et al., 1993; Flovenz, 1980; Foulger et al.,
2003; Staples et al., 1997].
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Figure 11: Cenozoic tectonostratigraphy for the Faroe-Shetland basin. The compilation of the
stratigraphy and Faroe-Shetland tectonics is based mainly on Stoker ef al. [2013; 2018;
2005b]. Additional information: ‘Stratigraphy’ and ‘Unconformity’ columns [Mudge, 2015],
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49



1503
1504

1505

1506
1507
1508
1509
1510
1511

1512

1513

50

0Ma 15Ma

Figure 13: Locations of known extensional axes during opening of the NE Atlantic Ocean.
Basemap and magnetic chrons (black lines) from GPlates using a Lambert Conformal Conic
projection. Isochrons are from Miiller ef al. [2016]. Spreading ridges: Red—active, blue—
extinct. Locations of some extinct offshore spreading axes are from Hjartarson et al. [2017]
and Brandsdottir et al. [2015]. Green: approximate boundary of Jan Mayen Microplate
Complex. Areas where there is no direct evidence for rifts or spreading axes are left white.
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Figure 14: Speculative reconstruction of the sequence of extensional deformation on the
GIFR and surroundings. Outline of land areas and locations of known extensional axes are
from Figure 13 with the latter shown as solid lines. Red: active, blue: extinct. Dashed lines
show speculative positions of ridges at times when observational data are lacking. Green
solid line: approximate boundary of Jan Mayen Microplate Complex. Pale blue dashed line:
approximate boundary of Iceland Microcontinent. This, and the Jan Mayen Microplate
Complex expand with time as a result of magma inflation and ductile flow.
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Figure 15: Map of Iceland from Einarsson [2008] showing earthquakes 1994-2007 from the
database of the Icelandic Meteorological Office. Yellow: volcanic systems. The Tjornes
Fracture Zone comprises GOR: the Grimsey Oblique Rift, HFZ: the Hasavik-Flatey Zone,
ER: the Eyjafjardardll Rift, DZ: the Dalvik Zone. Other abbreviations are RR: Reykjanes
Ridge, KR: Kolbeinsey Ridge, RPR: Reykjanes Peninsula Rift Zone (also known as the
Reykjanes Peninsula extensional transform zone), WVZ: Western Volcanic Zone, SISZ:
South Iceland Seismic Zone, EVZ: Eastern Volcanic Zone, CIVZ: Central Iceland Volcanic
Zone, NVZ: Northern Volcanic Zone, SIVZ: South Iceland Volcanic Zone, Kr, Ka, H and L:
the central volcanoes Krafla, Katla, Hengill and Langjokull, V: the Vestmannaeyjar
archipelago.
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1541  Figure 16: Similar to Figure 8 but showing additionally lines of curved sections of plate
1542  boundary that resemble curving, approaching crack tips (dashed magenta lines). Inset:
1543  expanded view of Vestmannaeyjar archipelago. Bold arrows: current direction of regional
1544  plate motion. For other details and abbreviations see caption of Figure 8.
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1551  Figure 17: Schematic figure of the lithospheric structure of a well-studied, currently intact
1552  orogen—the Himalaya-Tibet orogen. Green: lithospheric mantle, red and pink: crust or

1553  intrusives, yellow and dark green: sedimentary basins. The orogen is underlain by an array of
1554  trapped fossil slabs that thicken the crust locally. Deeper parts of the slabs are in the dense
1555  eclogite facies and negatively buoyant [from Tapponnier et al., 2001].
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Figure 18: Simplified thermo-mechanical model of Cenozoic extension of the western frontal
thrust of the Caledonian suture. Left panels: Lithology at selected times, thick black lines:
minimum/maximum temperature profiles as a function of depth, thin black lines: isotherms
from 1400 C with 100 C intervals. Upper left panel: initial model configuration. Central
panels: density evolution, dashed black lines: isotherms from 0 C to 1400 C at 200 C
intervals, full black lines: isotherms from 1450 C at 25 C intervals. Right panels: effective

viscosity evolution.



1570
1571

1572
1573

1574
1575

Model11054 at 50.681 Myr
T T T

e

Depth (km)

¥
A

2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Horizontal distance (km)

Model11054 at 50.681 Myr

N —— Wt L
400 600 800 1000 1200 1400 1600
Horizontal distance (km)
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1580

1581  Figure 20: Map view sketch of our model. Green: the Caledonian frontal thrust zone where
1582  the crust is relatively thick prior to breakup, arrows: lateral inflow of weak lower crust into
1583  the extending, thinning zone. The persistence of continental crust beneath the GIFR

1584  maintains a warm, weak lithosphere and encourages distributed deformation and lateral rift
1585  jumps to persist.
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1590  Figure 21: Cross section through the full-waveform inversion tomographic model of Rickers
1591 et al. [2013]. Colored dots are spaced at intervals of 1000 km. Compare with lower left panel
1592  of Figure 18.
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Figure 22: Summary of global maximum petrological estimates of 7p (diamonds + 40 C;
Herzberg & Asimow [2015]) and olivine-spinel equilibrium crystallization temperatures (To-
sp) for magnesian olivine (dots). The lower light-blue shaded region represents the range of
To for olivine which crystallized from near-primary magmas formed at ambient 7p ~1350 +
40 C (upper pink-shaded region). The horizontal dashed lines represent the maximum
estimated 7p for Iceland and West of Greenland (WoG; Disko Island, Baffin Island) from
Hole and Natland [this volume]. Data sources for Torsp: MORB, Gorgona komatiite and
Archean komatiite: Coogan et al. [2014], British Palaeocene, Baffin Island, West Greenland
(Disko Island): Coogan et al. [2014], Spice et al. [2016], Iceland: Matthews et al. [2016],
Spice et al. [2016], Tortugal: Trela et al. (2017). Petrological estimates from Herzberg and
Asimow [2008; 2015], Hole [2015], Hole and Millett [2016] and Trela et al. [2017].
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Figure 23: Continents reassembled to 50 Ma with the location of the future NE Atlantic
centered over the present-day geoid high (red area). Thick white lines outline the Caledonian,
Nagssugtoqgidian, and Hercynian orogens. The area encompassed by these orogens is shaded
and corresponds to the majority of the region of the geoid high.
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Figure 24: Structural map of the oceanic region west of Greenland showing Cretaceous
basins and the extent of Paleogene volcanics, including inferred continuation as shown in
Abdelmalak ef al. [2018]. Different proposed continent-ocean boundaries are also shown.
The magnetic lineations and fracture zones are reproduced from Chalmers [2012]. BB: Baffin
Bay, BI: Baffin Island, CFZ: Cartwright Fracture Zone, DS: Davis Strait, GR: Greenland,
LFZ: Leif Fracture Zone, LS: Labrador Sea, UFZ: Ungava Fault Zone, LA: Labrador.
Elevation data are from Smith and Sandwell [1997].
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Figure 25: Schematic diagrams showing models of spreading ridge evolution observed on the
East Pacific Rise. Top panels: ridges in the region 26 S - 32 S between the Easter and Juan
Fernandez microplates. Parallel, solid lines: active ridges, parallel dashed lines: extinct
ridges. The structure is modeled as a brittle layer overlying and weakly coupled with an
underlying ductile layer. Deformation in this layer is shown by shading with gray indicating
uniform motion and white indicating little or no motion. Arrows show displacement.
Extension occurs in the overlap zone on curved, overlapping ridges that progressively
migrate outward, are removed from the magma supply, become extinct, and are replaced by
new ridges. Distributed bookshelf faulting occurs in the overlap zone [from Martinez et al.,
1997]. Bottom panels: Model for the evolution of the East Pacific Rise at 20 40’S showing a
possible origin of rotated blocks. Shading indicates magnetization polarities. The ridge tips

alternate between propagation and retreat, leading to the term “dueling propagators” [from
Perram et al., 1993].
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