Check for
Updates

Approximating Binary Longest Common Subsequence in
Almost-Linear Time®

Xiaoyu He
xiaoyuh@princeton.edu
Princeton University
USA

ABSTRACT

The Longest Common Subsequence (LCS) is a fundamental string
similarity measure, and computing the LCS of two strings is a
classic algorithms question. A textbook dynamic programming al-
gorithm gives an exact algorithm in quadratic time, and this is
essentially best possible under plausible fine-grained complexity
assumptions, so a natural problem is to find faster approximation
algorithms. When the inputs are two binary strings, there is a sim-
ple %—approximation in linear time: compute the longest common
all-0s or all-1s subsequence. It has been open whether a better ap-
proximation is possible even in truly subquadratic time. Rubinstein
and Song showed that the answer is yes under the assumption that
the two input strings have equal lengths. We settle the question,
generalizing their result to unequal length strings, proving that,
for any ¢ > 0, there exists § > 0 and a (% + §)-approximation
algorithm for binary LCS that runs in n!** time. As a consequence
of our result and a result of Akmal and Vassilevska-Williams, for
any ¢ > 0, there exists a ((—; + §)-approximation for LCS over g-ary
strings in n1*¢ time.

Our techniques build on the recent work of Guruswami, He, and
Li who proved new bounds for error-correcting codes tolerating
deletion errors. They prove a combinatorial “structure lemma” for
strings which classifies them according to their oscillation patterns.
We prove and use an algorithmic generalization of this structure
lemma, which may be of independent interest.

CCS CONCEPTS

+ Theory of computation — Design and analysis of algo-
rithms; Error-correcting codes.

KEYWORDS

longest common subsequence, approximation algorithms, almost-
linear time, deletion codes

ACM Reference Format:

Xiaoyu He and Ray Li. 2023. Approximating Binary Longest Common Sub-
sequence in Almost-Linear Time. In Proceedings of the 55th Annual ACM
Symposium on Theory of Computing (STOC °23), June 20-23, 2023, Orlando, FL,

“X. He was supported by the NSF Mathematical Sciences Postdoctoral Research Fellow-
ships Program under Grant DMS-2103154. R. Li was supported by the NSF Mathemati-
cal Sciences Postdoctoral Research Fellowships Program under Grant DMS-2203067.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

STOC °23, June 20-23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9913-5/23/06.
https://doi.org/10.1145/3564246.3585104

1145

Ray Li
rayyli@berkeley.edu
UC Berkeley
USA

USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3564246.
3585104

1 INTRODUCTION

In this paper, we give improved approximation algorithms for the
Longest Common Subsequence (LCS), a fundamental string simi-
larity measure that is of theoretical and practical interest. The LCS
of two strings, as the name suggests, is the length of the longest se-
quence that appears as a (not necessarily contiguous) subsequence
in both strings. The LCS is one of the most ubiquitous ways to quan-
tify the similarity of two strings, a task that appears in a variety of
contexts from spell checkers to DNA processing.

Computing the LCS is a classic algorithms question. A textbook
dynamic programming algorithm gives an exact algorithm in qua-
dratic time O(n?), while the fastest known algorithm runs in time
0O(n?/log? n) [27]. Whether we can improve these algorithms has
been a longstanding open question (see, for example, Problem 35
of [21]). Under fine-grained complexity assumptions such as the
Strong Exponential Time Hypothesis [2, 5, 17] and even more plau-
sible hypotheses [3], there is no exact algorithm for LCS in time
O(n?¢) with & > 0. Because of these barriers for exact algorithms,
it is natural to wonder whether there are faster approximation
algorithms.

When the inputs are two binary strings, the simple algorithm
that computes the longest all-0s or all-1s common subsequence
gives a %—approximation in linear time. Despite its simplicity, this
has been the best known approximation for binary LCS on arbitrary
inputs, even in truly subquadratic time (n?~¢ for an absolute & > 0).
This raises the following natural question.

Question 1.1. Do there exist §,¢ > 0 and a (% + §)-approximation
algorithm of the LCS of two binary strings of length at most n in
time O(n?7%)?

Towards Question 1.1, Rubinstein and Song [30] showed that,
if we assume the input strings have the same length, for all ¢ > 0,
there is a (% + 8)-approximation of the LCS in time O(n!*¢) (§
depends on ¢). However, for the general setting of unequal length
inputs remained open.

Our main result answers Question 1.1 in full, handling unequal
length strings.

Theorem 1.2. For all ¢ > 0, there exists an absolute constant
8 = 8(¢) > 0 and a deterministic algorithm that, given two binary
strings x and y of not-necessarily-equal length, outputs a (% +9)-
approximation of the longest common subsequence in time O(n'*¢)

where n = max(|x|, |y]).!

1Our runtime is actually O(n - min(|x|, | y|)¢), which is slightly better in the case y
is much longer than x, but we state it as is for simplicity.

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2958-6845
https://orcid.org/0000-0003-3441-2364
https://doi.org/10.1145/3564246.3585104
https://doi.org/10.1145/3564246.3585104
https://doi.org/10.1145/3564246.3585104
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564246.3585104&domain=pdf&date_stamp=2023-06-02

STOC ’23, June 20-23, 2023, Orlando, FL, USA

We note that our algorithm uses the equal-length LCS algorithm
of [30] as a black box, so any improvements in the equal-length
setting automatically yield improvements in the unequal-length
setting. In general, if there is an equal-length LCS algorithm running
in time T(n) giving a (% + §)-approximation, our algorithm gives a
O((n+T(n)) logA n) time (%+5A)-appr0ximation on unequal length
strings, for an absolute constant A. Furthermore, while we present
our algorithm as outputting the length of the longest common
subsequence, we can output the subsequence of the promised length
if the black-boxed equal-length LCS algorithm can.

Our work gets around a technical barrier for unequal length
strings, which was highlighted in [7]. The algorithms of [30] used
the intimate connection between LCS and Edit Distance, the number
of insertions, deletions, and substitutions needed to transform one
string to another. If we ignore substitutions, Edit Distance and LCS
are in fact equivalent to compute exactly. Similar to LCS, there is
no exact algorithm for Edit Distance in n®~¢ time with ¢ > 0, under
plausible fine-grained complexity assumptions [3, 13, 17]. Approxi-
mation algorithms for Edit Distance are well-studied, and a recent
line of work [8-10, 12, 14, 15, 19, 22, 25] culminated in a constant-
factor approximation of Edit Distance in almost-linear time [10].
Rubinstein and Song used these approximation algorithms for Edit
Distance to obtain their approximation for LCS. However, because
they rely on Edit Distance algorithms, they crucially use that the
strings are equal length: note that if one string has length n and the
other string has length 100n, their edit distance is always at least
99n, so even computing a 3-approximation of edit-distance of the
two input strings would be unhelpful for approximating LCS.

Our work gets around this problem by using different techniques
to handle unequal length strings. Our techniques are adapted from
a recent work [23] that proves lower bounds for error-correcting
codes correcting deletions [26, 31] via the following combinatorial
result about LCS.

Theorem 1.3 ([23], deletion code limitation). There exists an ab-
solute constants A,§ > 0 such that for any set C of binary strings

of length n with |C| > ZIOgA", there exist two strings x and y with
LCS(x,y) = (% +6)n.

Intuitively, we may expect the techniques for Theorem 1.3 to be
useful here because it shares similarities with our main result, Theo-
rem 1.2. While Theorem 1.3 is a “negative result” for deletion codes,
it is a “positive result” in the algorithmic sense, as it shows that
among any small set of strings, two of them have a long common
subsequence. Furthermore, it has a similar flavor as Question 1.1,
as both consider “beating the trivial matching” for LCS in binary
strings. Thus, one might suspect then that these two problems are
related, and we show indeed they are. On the other hand, adapting
the techniques from [23] to our setting is nontrivial as we need to
(i) make the combinatorial techniques algorithmic and (ii) handle
unequal length strings (note in Theorem 1.3 all strings are of the
same length).

Computing LCS is also interesting over larger alphabets. Approx-
imating LCS when there is no restriction on the alphabet has been
well studied [11, 16, 24, 28, 29], and currently the best result [11, 28]
gives a randomized noﬁ-approximation in linear time. Over an
alphabet of a given size q > 2, there is, similar to the binary case, a

1146

Xiaoyu He and Ray Li

trivial linear time %—approximation obtained by taking the longest
common constant subsequence. For fixed g, over general g-ary in-
puts, this was the best known approximation, even in subquadratic
time. For g-ary inputs where the two strings have the same length,
Akmal and Vassilevska-Williams [7] (see also [6]) generalized the
result of Rubinstein and Song, showing for all ¢ > 0 there is a
(é + §)-approximation in n*¢ time.

By the work of Akmal and Vassilevska-Williams [7], our main
result immediately implies improved approximation algorithms
over non-binary alphabets, for the general case of not-necessarily-
equal length strings. Akmal and Vassilevska-Williams showed that
if there is a (% + §)-approximation for binary LCS (which we show),
there is a (% + &’)-approximation for g-ary LCS in essentially the
same runtime. Hence, we have the following corollary.

Corollary 1.4 (Follows from Theorem 1.2 and Theorem 1 of [7]).
For all ¢ > 0 and integers q > 2, there exists an absolute constant
d = 6(¢) > 0 and a deterministic algorithm that, given two q-ary
strings x and y of not-necessarily-equal length, outputs a (Cll +9)-

approximation of the longest common subsequence in time O(n'*¢)

where n = max(|x|, [y|).

2 PRELIMINARIES

For clarity of presentation, we sometimes drop floors and ceilings
where they are not crucial.

Strings. For a string x, a subsequence of x is any string obtained
by deleting any number of bits of x. A substring is a subsequence
that appears as consecutive bits of x. Let 0(x) and 1(x) denote the
number of zeros and ones, respectively, in x. A property P of binary
strings is a set of binary strings. We say a string x satisfies/has a
property P if x is in the set P.

Intervals. We use interval notation similar to that of [19]. By
convention, an interval I = [a, b] denotes the set {a+1,a+2,...,b},
and we write start | = aand end I = b. Note that I and I’ are disjoint
if and only if either end I’ < start] or endI < startI’. The length
of an interval I = [a,b] is b — a. For a string x, let x; denote the
contiguous substring x44+1xg+2 - - - Xp. By abuse of notation, when
the string x is understood, we may use I to refer to the substring
x1. For an integer w, we say interval I is w-aligned if start] and
end I are multiples of w. An interval is a w-interval if it has length
w and is w-aligned. Let round,,(I) denote the largest w-aligned
subinterval of I. Note we always have |round,, (I)| > |I| — 2w.

For an interval I and integer w, let 7 ,,(I) be the collection of
w-intervals that are subintervals of I. When a string x is understood
(as it always will be), we write T, := 7 4,(|x]). Note that if |x| is a
multiple of w, the intervals of I ,, partition [m].

A rectangle is a product I X J where I and J are intervals. A
square is a rectangle I X J with |I| = |]|. A certified rectangle is a
pair (I X J, k) where « is a positive number.

Define a partial ordering on intervals, where I < I’ iff end I <
startI’. That is, every element of I is less than every element of
I'. Note that if two intervals have nonempty intersection, they
are incomparable. We also define a partial ordering on rectangles,
where Ix J < I’ x J' iff [< I’ and J < J’. We say a collection of

Approximating Binary Longest Common Subsequence in Almost-Linear Time

(certified) rectangles is ordered if any two (certified) rectangles are
comparable under this partial order.

For any two strings x and y, fix a canonical matching 7 = 7(x, y)
between the bits of x and y that achieves the longest common
subsequence (7 is not necessarily unique, but we can fix it to be, say,
the lexicographically earliest one). For I C [|x|], let J| denote the
(unique) smallest interval such that the bits of xj are only matched
with bits in y e in the matching 7. Note that clearly if I’ and I are
disjoint, then J{ and Jj, are disjoint.

For any string x, we write d(x) for the density of x, i.e. the ratio
between the number of ones in x and the length of x. For y > 0, we
say an interval I is y-balanced in x if d(xy) € [% +y], and we say I
is y-imbalanced in x otherwise. If x is understood (as it always will
be), we simply say y-balanced and y-imbalanced. A useful property
of balanced strings x is that we can find LCS close to |x|/2 with
any other string of the same length.

Lemma 2.1. Ifx and y are strings such that x is y-balanced and
x| = lyl, then LCS(x,y) = (3 —)lxl.

PRrROOF. Suppose without loss of generality y has at least |y|/2
ones. Then y has at least |x|/2 ones. Since x is y-balanced, then x
has at least (% — ¥)|x| ones, so the LCS is at least (% -plxl. O

Algorithms. Let Trivial(x,y) denote the output of the simple
algorithm that outputs the longest all-Os or all-1s subsequence.
Clearly Trivial(x, y) = max(min(0(x), 0(y)), min(1(x), 1(y)).

Rubinstein and Song showed that one can obtain a (% + 0)-
approximation of equal length LCS. Their result immediately ex-
tends to a (% +¢”)-approximation for near-equal length LCS, which
we use.

Theorem 2.2 (Follows immediately from [30]). Foranye > 0, there
exists a §eq = Oeq(€) > 0 and a (% + 8eq) -approximation of the LCS
of two binary strings x and y with |x|, |y| € [(1 = eg)n, (1 + Seq)n]
in time O(n*%).

Let EqLCS(x, y) denote the output of the algorithm from Theo-
rem 2.2.

3 PROOF SKETCH

In this section we give a high-level overview of our almost-linear
time LCS approximation algorithm, Theorem 1.2. We start by de-
scribing the novel ingredient, our algorithmic structure lemma,
Lemma 4.1. It states, roughly speaking, that binary strings s of
length w can be classified among one of O(log w) oscillation types
or scales, such that for any two strings s, t with the same type,
there is a long subinterval sy in s with LCS(sy,) > (1/2 + §)|sg].
Moreover, the lemma is algorithmic in that both the type of s and
the long subinterval s are computable from s in time nearly linear
inw.

To formally define oscillation types, we first introduce the notion
of a flag. In a string x, an £-flag is an index i such that between the
ith one and the (i + £)-th one, there are strictly more than 10(¢£ — 1)
zeros. In other words, an ¢-flag is a one-bit in s that is immediately
followed by a 0-dense interval of length on the order of ¢. The
existence of many ¢-flags in x means that x “oscillates at scale ¢
An *-flag is an index i that is a ¢-flag for some ¢ > ¢, where ¢ must

1147

STOC ’23, June 20-23, 2023, Orlando, FL, USA

be a power of two. The oscillation types guaranteed by Lemma 4.1
are as follows.

Definition 3.1 (Definition 4.5 below). Let ¢ be a power of two,
t€[1,w],and x € {0, 1}".

2 2

(1) We say that x is f-coarse if £ > &“w and there is a ¢
imbalanced interval I in x of length £. We say x is coarse

2.

if it is £-coarse for some £ > ¢
(2) We say that x is £-fine if it is not coarse, £ < 2w, the number
of £*-flags in x is at least ew, and x contains (0f1f)ewlt

subsequence. We say x is fine if it is £-fine for some ¢ < ¢

as a
2

w.
To a first approximation, this means that every string x either has a
long imbalanced subinterval or else behaves like the periodic string
(Oflf)W/Zf for some .

Now we return to summarizing the proof of Theorem 1.2. By
prior results [7, 30] (see also [6]), it suffices to consider the “perfectly
balanced case,” where the shorter string x has an equal number of
zeros and ones.

Theorem 3.2. For all € > 0, there exists an absolute constant § =
d(e) > 0 and a deterministic algorithm that, on input strings x and y
with 0(x) = 1(x) < min(0(y), 1(y)), gives a (% + 8)-approximation
of the longest common subsequence in time O(n'*¢).

Theorem 1.2 follows from Theorem 3.2 by prior work [7, 30]; for
completeness include the details in Section 6. In the rest of this
section, we sketch the proof of Theorem 3.2.

Our algorithm for Theorem 3.2, which is described in pseudocode
in Algorithms 1 and 2, is a modification of the standard quadratric
time DP algorithm for LCS, which we formulate as follows. The
standard DP algorithm computes LCS(x, y) by computing the full
array DP[i][j] == LCS(x[;],y[j1), 0 < i < [x]|, 0 < j < |y| via the
recursion

max(DP[i][j - 1],
DP[i - 1][j],
DP[i][j] = DPli—1][j—-1]+1) ifxi=uy;
max(DP[i][j - 1],
DP[i - 1][j]) otherwise.

In total this takes O(|x| - |y|) applications of the recursion. To prove
Theorem 3.2, we don’t need to compute the exact value of LCS(x,),
rather, we only need to output a value between (1/2 + §) LCS(x, y)
and LCS(x, y). To estimate the LCS efficiently, we modify the DP
above by recursing over large subrectangles instead of one bit at
a time. We compute a collection of large rectangles I X J (where
I and J are long subintervals of [|x|] and [|y|], respectively) and
estimates k(I X J) for their LCS (we call these certified rectangles).
We guarantee that k (IXJ) < LCS(xy, yj) in every rectangle, and we
desire that many of these k(I x J) are good estimates of LCS(xr, yy).
(For readers familiar with [19], finding these rectangles is analogous
to their “Covering Phase”).

The large rectangles under consideration are fw-aligned sub-
rectangles of [|x|] X [|y|], where w = |x|/log |x| is a typical length
of the x-intervals and 6 is a small constant discretization parameter
(in the real proof, we use a coarser discretization for x-intervals
than for y-intervals, but ignore that here for sake of illustration).

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Our modified DP algorithm is then

DP[i][j] = max (DP [start] — Ow] [start J],
DP [start] [start] — Ow],
DP [startI] [start J] + k(I X J)
over [X] € Rs.t.end] =iend] = j)(1)

where x (I x J) denotes the lower bound for LCS(x;, y;) guaranteed
by our certification algorithm. Observe that by induction DP[i][J]
is still a lower bound for LCS(x[;}, y[j])- Because of our discretiza-
tion, we only need to consider i and j a multiple of 6w, so the
number of dynamic programming states drops from O(|x| - |y|)

to O(14
certify a collection of rectangles for which the dynamic program
(1) outputs a (% + §)-approximation.

The main step is find a significant fraction of “good” rectangles
for which x(I x J) > (1/2 + y) LCS(xr, yj). We look for good
rectangles in three different ways, as shown in Algorithm 1. (1)
First, we check for the “trivial” rectangles where Trivial(x, yy) >
(1/2 4+ y)|x1| (y > 0 chosen very small). (2) Next, we black-box the
equal-length LCS algorithm of Rubinstein and Song, and efficiently
check for squares I'x J with [I| = |J| and LCS(xy, yy) > (1/2+y)|xq].
(3) Finally — and this is the main technical contribution of our work
— we use the algorithmic structure lemma, Lemma 4.1, to efficiently
compute “oscillation frequencies” for the intervals I and J. For any
given rectangle I X J where |]| is longer than |I|, they can then be
certified quickly by checking if J has the same oscillation frequency
as I. For technical reasons, for this last type of rectangle we are
unable to guarantee that LCS(xr,yy) > (1/2 + y)|x;| as we did
for the other two types, but we can instead guarantee the weaker
assumption that I has a long subinterval I for which LCS(xy/, yy) >
(1/2 + y)|xp |. Handling this technicality requires some care, but to
get across the main ideas we ignore this detail for the rest of this
sketch and imagine that all certified rectangles satisfy LCS(xz, yy) >
(1/2+7)lx].

We also certify using the trivial algorithm a weaker set of “default”
rectangles I J where Trivial(I, J) > (1/2—y%)|I| (the constants are
chosen for illustration). These rectangles exist all over the place and
are used in the DP to fill in the gaps between the efficient ones above.
We may assume LCS(x,y) > (1-0)|x| — or else the trivial matching,

) < é(%) Thus it remains to show we can quickly

which is always |x|/2 by the setup of Theorem 3.2, gets a (l%s)—
approximation — and this assumption guarantees we can certify
many good rectangles and many default rectangles. We show that
while most of the (I x J) are (1/2 — y*)|I| coming from the default
rectangles, a significant enough fraction of them are (1/2 + y)|I|
that for the final answer we get DP[|x|][|y]] > (1/2 + 8)|x].

Since we are going for an almost-linear time algorithm (and not
just subquadratic), we need to be careful to certify the rectangles
lyly2
o)

x|
possible J-intervals. If y is much longer than x (say |y| = |x|?), then
we cannot simply try to certify every rectangle, or else the runtime
is super-linear in the input size, even if we can certify rectangles in
constant time. Instead, we restrict ourselves to certifying rectangles
I x J where J is “minimal”. That is, for each x-interval I and each
end(J), we look for the minimal J where we can certify k(I X J) >
(1/2 + y)|I|. We can find such J by binary search (the ability to

quickly. Note that, naively, there are roughly (%)2 ~ 6(

1148

Xiaoyu He and Ray Li

binary search depends on a technical property of the algorithmic
structure lemma), so that the number of rectangles we are checking

is now only é(%), rather than (5(%)2

4 ALGORITHMIC STRUCTURE LEMMA

We now state and prove our algorithmic structure lemma. We note
that the final algorithm uses this lemma as a black-box, and can be
understood without the proof of this lemma. The interested reader
can skip to Section 5 after Section 4.1.

4.1 Algorithm Structure Lemma Statement

The following is the key technical lemma. It is inspired by and builds
upon the “Structure Lemma” of [23], which was used to prove new
deletion code bounds.

Lemma 4.1 (Algorithm Structure Lemma). There exists an absolute
constant 8¢oq. > 0 such that for all sufficiently large w, there exists
T < 2logw and 2T string properties Py, ..., Pr,Q1, ..., Qr such that:
(1) If string x has length w, then there exists at € [T| such that
x has property Py.
(2) IfLCS(x,y) = (1 — Ocoge)|x| and x has property Py, then y
(not necessarily of length w) has property Q;.
(3) Property Q; is hereditary, meaning that if y has Q; andy is a
subsequence of y’, theny’ has Q;.
(4) Foreveryt € [T], and strings x and y, we can test if x satisfies
P; in time O(wlogw). We can also preprocess the string y
in time O(|y|log |y|), such that we can answer queries of the
form “does y’ satisfy Qr,” for substrings y’ of y, in O(w) time.
(5) If string x has length w and property Py and string y has
property Q;, then there exists an interval I C [w] such that
LCS(xr,y) > % + Ocodew- Furthermore, given x and t, the
interval I and the promised common subsequence of x; and y
can be chosen independent of y, and both can be found in time
O(wlogw).

Remark 4.2. Initem 5, it is easy to see that, if y < §.04./10, we
may additionally assume (by starting with 520 de = Scode/2) that
the interval I is yw-aligned by taking I’ := roundy,,(I). We do so
in the application in Section 5.

We now provide some more intuition for Lemma 4.1. First, we
describe the properties P; and Q; that we actually use (based on
Definition 3.1). For convenience, to define the properties, we index
them as Py, Pe,1, Py for £ < w a power of 2, for a total of roughly
T ~ 3log w properties.

e If ¢ > ?wand b € {0, 1}, then Py, is the property that x is £-
coarse, and its imbalanced interval of length ¢ is imbalanced
in the direction of b-bits (i.e. has more b’s than b’s).

e If £ > ¢?w and b € {0,1}, then Qy, is the property that y
has at least (#)t’ b-bits.

e If ¢ < e2w, then Py is the property that x is £-fine.

e If £ < ¢%w, then Qy is the property that y contains y,
(0£10)eW/(50) a5 4 subsequence.

The properties P; are based on one of the key technical lemmas
of the deletion codes bound [23], a combinatorial structure lemma.
This structure lemma roughly says that for strings of length n, there

are properties f’l, .. ,157 with T < O(logn), such that

Approximating Binary Longest Common Subsequence in Almost-Linear Time

(i) any binary string of length n has some property P;, and

(ii) if two strings x and y have property P;, then x and y have
(contiguous) substrings x” and y’ of length Q(n) whose LCS
is at least (% + 5)(&2@‘) (the real guarantee is stronger
but more technical to state).

Theorem 1.3, the deletion codes lower bound, is proved (very roughly)

by partitioning each string in C into polylog n substrings, finding
by pigeonhole two strings x and y such that the types of the corre-
sponding substrings of x and y agree, and using guarantee (ii) to
find a (§ +&’)w overall LCS.

Lemma 4.1 is a generalization of this combinatorial structure
lemma that is “algorithmic” and “handles unequal length strings”
The properties P; that we choose in Lemma 4.1 are similar to the
properties P; of [23], and it is not hard to check by inspection that
the properties P; of [23] can be tested in linear time. The difficulty
lies in finding properties Q; of strings y that (a) can be “inherited”
from properties like P; if y has a subsequence covering most of x,
(b) can be tested efficiently, and (c) still guarantee an LCS advantage
between x and y.

Because of Lemma 4.1, we can define the following algorithms,
which we use in our final LCS algorithm.

Definition 4.3. For an integer w, let Py, ..., Pr,Q1,...,Qr be the
properties from Lemma 4.1. Let GetPType,, (x) denote the smallest
index t such that x has property P;. Let IsQType,,(x,t) be true
if x has property Q; and false otherwise. For x satisfying P; for
some t, let Getl,,(x,t) denote a yw-aligned interval I such that
LCS(xr,y) = % + 8c0dew for all y satisfying Q;. Such an interval
exists by Lemma 4.1 and Remark4.2.

By Lemma 4.1, GetPType,,(x) can be computed in O(w log? w)
time, since one can simply test each of the O(log w) properties P;.
By Lemma 4.1, any string y can be preprocessed in O(|y|log |y|)
time such that, for any contiguous substring y” of y, sQType, (v, t)
can be computed in O(w) time. Note that the input to GetPType,,
must have length w, but the string input to [sQType,, can have
arbitrary length. By Lemma 4.1, Getl,,(x, t) can be computed in
O(wlog w) time.

4.2 Combinatorial Structure Lemma and Types

In a string x, an ¢-flag is an index i such that between the ith one
and the (i + £)-th one, there are strictly more than 10(¢ — 1) zeros.
An t*-flag is an index i that is a ¢-flag for some ¢ > ¢, where ¢t must
be a power of two. By abuse of notation, if i is a £-flag, we may also
call the i-th one of x a ¢-flag. Note that there are many more zeros
than ones between the ith and (i + £)-th one, so flags tell us where
it is more advantageous to use zeros rather than ones in finding
long subsequences.

The basis for the algorithmic structure lemma is a combinatorial
structure lemma for strings, which we inherit from [23, Lemma
4.1]. We use a weaker form of the lemma, which has a significantly
simpler statement and proof, and is also tailored to our algorithmic
application. The proof is given in Appendix A.

Lemma 4.4 (Combinatorial Structure Lemma). For¢ = 107> and
w sufficiently large, at least one of the following two conditions holds
for every string x € {0,1}™.

1149

STOC ’23, June 20-23, 2023, Orlando, FL, USA

(1) There exists £ € [¢?w, w] equal to a power of two and an
0.1-imbalanced interval I in x of length {.

(2) There exists € € [1,%w) equal to a power of two such that
the number of t*-flags in x is at least ew, and x contains
(0£19)w/t gs a subsequence.

For the remainder of Section 4, fix ¢ := 10~°. Lemma 4.4 shows
that every sufficiently long string x is of one of the below types, of
which there are log w total.

Definition 4.5. Let ¢ be a power of two, £ € [1, w],and x € {0,1}™.
2

(1) We say that x is £-coarse if £ > ¢?w and there is a ¢
imbalanced interval I in x of length ¢. We say x is coarse
if it is £-coarse for some £ > £2w.

(2) We say that x is £-fine if it is not coarse, £ < £2w, the number
of £*-flags in x is at least ew, and x contains 0719w/t a5 a
subsequence. We say x is fine if it is £-fine for some £ < e?w.

Note that for the convenience of our later proofs, we change the
imbalanced threshold from 0.1 in Lemma 4.4 to the much smaller £
in the above definition. Since every 0.1-imbalanced interval is also
¢%-imbalanced, Lemma 4.4 implies every sufficiently long string x
is of one of the above two types.

4.3 Algorithmic Structure Lemma Ingredients

As in the last section, we fix £ = 107>, Also, for brevity, for every
positive integer ¢, define the special string

yp = (Oflf)fw/(Sf) .

We prove two ingredients to justify our “Q;” properties in the
algorithmic structure lemma. The first is the simple observation
that if x is -fine and LCS(x,y) > (1 — §cpge) x|, then y inherits
the easily testable subsequence y, from x.

Lemma 4.6. Let0 < § < £/10, ¢ be a power of two, and w > £~ 2¢.
Ifx is an ¢-fine string of length w and LCS(x,y) > (1 — d)w, then
Y is a subsequence of y.

PRroOF. By definition, if x is £-fine then x contains (0¢1¢)¢ w/t =
y;’ as a subsequence. Since LCS(x,y) > |x| — Sw and y? is a sub-
sequence of x, we have LCS(y?, y) > |y?| — Sw. Thus, there is
a subsequence of y obtained by applying dw deletions to yf,. By
counting, at most 28w/ of the chunks 0°1¢ in y? receive more than
/2 of these deletions. The remaining ew/¢ — 26w/t > 4ew/(5¢)
chunks each have at least £/2 zeros and ¢/2 ones. Taking ¢ zeros
from the first two chunks, ¢ ones from the next two, and so on, we
see that y contains y, as a subsequence, as desired. O

The second ingredient implies that if x is £-fine, then a substring
of x can be matched advantageously with y,.

Lemma 4.7. Let £ be a power of two, and w > e 2¢. If a string x of
length w is £-fine, then there exists an interval I with LCS(xy, y¢) >
]

7 + %|x|. Furthermore, given x and ¢, we can determine the interval
I and the common subsequence of x; and ye in time O(w log w).

Proo¥. The number of £*-flags in x is at least ew. By pigeonhole,
there exists some interval I’ = [a, b] of length 4e%w containing
at least 2e3w many £*-flags (the lost factor of two accounts for
2¢?w possibly not evenly dividing w). Furthermore, since x is not

STOC ’23, June 20-23, 2023, Orlando, FL, USA

coarse, we may assume that each such £*-flag is an ¢’-flag for some
¢’ € [£,%w). Thus, the interval I = [a,b + 11e2w] has length
462w +116%w < 206w and x” := x7 has at least 2e3w many ¢*-flags
(we cannot simply take x” = xp, as bits at the right end of I may be
flags in x but not in xp). Furthermore, x’ is £2-balanced since it has
length at least £2w and is a substring of x, which is not coarse. We
can find interval I’, and thus I and x’, in time O(w log w), because
(with preprocessing of the string’s prefix sums) we can test whether
a bit is an £*-flag in log w time, so counting the flags in an interval
can be done in O(w log w) time, and there are a constant number
of intervals to check.]
X

Now we claim LCS(x",y¢) > 5 + &3]x|. Construct a common

subsequence x”’ of x” and y’ as follows: Initialize a counter i = 1.

While i < 1(x'),
(1) Append a one to x”/,
(2) If the ith one of x” is an ¢’-flag for some ¢’ > ¢, append
1+ [10(¢" —1)] zerosto x” and i « i+ ¢'.
(3) Otherwise i « i+ 1.
We claim the subsequence x”” has the following properties.

e x"’ is a subsequence of x’.
e x’’ is a subsequence of yp.
e x’’ has length at least By e3x|.

To see the first property, take the subsequence of x” where the
one added to x”” when the counter is i is matched to the i-th one
of x’, and the zeros added when the counter is i are the zeros
between the i-th and (i +¢")-th one of x’, of which there are at least
1+ [10(£" — 1)] because i is an £’-flag in x”.

To see the second property, first note that [10(¢/ — 1) +1 > ¢/
for all positive integers ¢’, so all runs of zeros in x”” have length
at least £. Write x”/ = 1910921930% . .. 1%k+1_where all ag; > £ and

azi—1 > 1 for all positive integers i (except possibly a1, which

may be 0). Notice that 1% and 0% are each subsequences of (0°1¢)"%,

where r; = [a;/t] < % + 1. Thus, x”’ is a subsequence of (0°1¢)"
forr :=r; +--- +ry;. Thus, we have

ap+ -+ dpk4

IN

r<ri+---+rop +(2k+1)

C Hart -+ ag)
4
80e2w ew
< —— <,
4 5¢
proving that x’ is a subsequence of y,. In the third inequality above,
we used ag +ag+---+agg = k€, s02k+1 < 3k < M.In

the fourth inequality, we used aj +- - -+agy; = x| < |x’| < 2062 w.

To see the third property, notice that |x”’| — i only changes when
a run of zeros is added to x”’. If this run is added for an ¢’ -flag at i in
x’, then difference |x”’| — i increases by 1+ [9(¢' — 1)| > ¢/, while
the total number of flags skipped over is at most ¢’. By induction
on i, after every while-loop iteration, we have

|x”| =i > #{¢"-flags in [i]}.
so the total length of x”” at the end is at least

1 x’
1(x") + #{f"-flags in x'} > (5 - gz) Ix’| + 263w > % +&3x|,
as desired. The first inequality above follows from the fact that x’
is £2-balanced, and the second from |x’| < 20&%w. O

1150

Xiaoyu He and Ray Li

4.4 Proof of the Algorithmic Structure Lemma

PROOF OF LEMMA 4.1. Let 8o, = £*/2. We define the properties
P; and Q; based on the types in Definition 4.5. For convenience,
we index them not as Py, Pa, ..., Pr, but rather as Py, Py, 1, Py for
¢ < w a power of 2, for a total of roughly T ~ 3log w properties.

e If¢ > e?wand b € {0,1}, then Py, is the property that x is £-
coarse, and its imbalanced interval of length ¢ is imbalanced
in the direction of b-bits (i.e. has more b’s than b’s).

e Ift > c2wandb € {0, 1}, then Qyp is the property that y
has at least (%)f b-bits.

o If £ < £w, then Py is the property that x is £-fine.

e If £ < ¢?w, then Qy is the property that y contains y,
(0£19)ew/(50) a5 subsequence.

We now verify the conditions of Lemma 4.1.

(1) For every length-w string x, there exists a t such that x has
property Py.
This follows immediately from Lemma 4.4.
(2) If LCS(x,y) = (1 — Ocoge)|x| and x has property Py, then y
has property Q.
First suppose £ > £w, b € {0,1}, and x has property Prp.
Then x has a substring x7 of length at least 2w with at least
(% +¢2)¢ b-bits. The longest common subsequence of xy and
y has at least |I| — 5040w of the bits of x7, so y has at least
(% +eH 0= 8 pgew 2 (1+2—€4)£’ b-bits, satisfying property Qp p.
If x has property Py for £ < 2w, x is £-fine. By Lemma 4.6,
y has property Q.
For every t, property Q; is hereditary, meaning that if y has
Qr andy is a subsequence of y’, then y’ has Q.
This follows from the definition of Q; and that being a sub-
sequence is a transitive relation.
For every t, property Py can be tested in time O(w log w), and
property Q; can be tested in time O(w) on substrings of a
string y, after O(|y| log |y|) prepreocessing.
Testing the P;’s can be done in O(w log w) because, after
O(w) preprocessing by storing all prefix sums, we can check
whether any particular index is an ¢-flag or not in O(1) time,
and for any particular property P;, we need to check at most
O(wlog w) flags.
To test Q;, first note that if we are working with a coarse
property Qg p, this can be tested in O(1) time after prepro-
cessing prefix sums. To test a fine property Qy, preprocess the
string y as follows: for every index j € {0,1,..., |y|} and bit
b € {0, 1}, compute nexty, ;(j), the smallest index j” such that
the substring y ; ;7| has at least £ bits equal to b. For any j and
b, nexty, ;(j) can be computed by a binary search in log(|y|)
time, so the preprocessing takes time O(|y|log |y|). Now
property Q; can be tested on a substring y; in O(w) time by
evaluating nexty ¢(nexto¢(- - - nexty ¢ (nexto(start J)) ---)),
where there are ew/(5¢) calls to each of nextg, and nexty g,
and checking if the result is at most end J.
Ifx has property Py, |x| = w, and y has property Qy, then there
exists an interval I C [w] such that LCS(x1,y) > |_£|+5codew~
Furthermore, given x and t, the interval I and the promised
common subsequence of x; and y can be chosen independent
of y, and both can be found in time O(w log w).

—
&S
=

—~
N
=

Approximating Binary Longest Common Subsequence in Almost-Linear Time

First suppose x has property Py j and y has property Q, ; for
¢ > e2wand b € {0,1}. Then x has a substring x; of length
¢ with at least (% + £2)¢ b-bits and y has at least (%)t’

b-bits, so LCS(x1,y) > (%){’ i %w, as desired.

> Ll
Furthermore, I can be found in linear time by a linear sweep,

2

and the common subsequence is simply b(%)[as desired.
Now suppose x has property P; for £ < ew, and y has
property Qp. Thus, x is £-fine and y contains y, as a sub-
sequence. By Lemma 4.7, there exists an interval I with

LCS(x1,y) > % + &3|x|, as desired. Furthermore, also by
Lemma 4.7, I and the common subsequence of x; and y can
be computed from x and t in time O(w log w), independent
of y, as desired.

This proves Lemma 4.1. o

5 ALMOST-LINEAR TIME ALGORITHM

We now give the almost-linear time algorithm for the “equally
balanced” case, which implies our main result. Specifically, we
prove the following (see Section 6 for how Theorem 1.2 follows
from Theorem 3.2).

Theorem (Theorem 3.2, restated). For all ¢ > 0, there exists an
absolute constant § = §(¢) > 0 and a deterministic algorithm that,
on input strings x and y with 0(x) = 1(x) < min(0(y), 1(y)), gives
a (% + §)-approximation of the longest common subsequence in
time O(n!*%).

The algorithm is given in Algorithm 2 with the covering step
given in Algorithm 1. The rest of this section proves the correctness.

5.1 Parameters and Notation Conventions

Throughout x and y are the input strings satisfying 0(x) = 1(x) <
min(0(y), 1(y)), and throughout n = max(|x|, |y|). Let w be the

|x|
log ||
number of bits from x and y that |x| and |y| are multiples of w. Let

e = bl
X T W

closest power of 2 to We may assume by deleting a negligible

~ log|x| and my = % ~ W. Throughout, we
always denote intervals for string x by the letter I, and intervals
for string y by the letter J. By abuse of notation, we let intervals
I (possibly with decorations) denote the substring xj, and we let
intervals J denote the substring y;.

Let ¢ > 0be such that O(n!*¢) is the desired runtime. Let §,,4, be
the constant from Lemma 4.1. Let Seq = Jeq(%) be the constant from
Theorem 2.2. Let , B, y, 8, 6 be constant powers of 1/2 that satisfy
min(Seq, Sgode) = @ > f > y > 6 = 0. That is, § is sufficiently
small compared to y, which is sufficiently small compared to S,
which is sufficiently small compared to a. For completeness, we
note it suffices to take § = § = y8,y = %,82 B = a®. We did not try
to optimize our constants. We give the following intuition for the
above parameters.

e « lower bounds the LCS advantage gained from both algo-
rithmic structure lemma rectangles and nearly-square rect-
angles.

e fis the “nearly-square” parameter: in the optimal LCS, in-
tervals I are called nearly-square if they get matched to in-
tervals of length < (1 + f)|I|. We may assume at most 2

1151

STOC ’23, June 20-23, 2023, Orlando, FL, USA

fraction of intervals are nearly-square or else the nearly-
square rectangles (together with “trivial rectangles”) give a
(% + poly ff)-approximation by applying EqLCS to each of
them.

y is the “imbalanced” parameter and discretization parameter
for I-intervals: we may assume most yw-length intervals to
be y-balanced, or else the “Trivial rectangles” give a (% +
poly y)-approximation. We also round all I-intervals so that
they are yw-aligned. y is small enough so that the effect of
this rounding is negligible.

d is the overall LCS approximation advantage: we obtain a
(l%s)—approximation. We assume LCS(x,y) > (1 -)|x|, or
else Trivial gives a (%s)—approximation.

0 is the discretization parameter for J-intervals: we round all
J-intervals so that they are Ow aligned. 0 is small enough so
that the effect of this rounding is negligible. We take 0, the
J-interval discretization, to be smaller than y, the I-interval
discretization, so that the gain from matching “Trivial rect-
angles” is larger than the loss due to discretization.

5.2 Runtime

We now analyze the runtime. We re-emphasize, as we did in the
proof sketch, that we need to be careful about factors my in our
runtime, but not powers of my: my is only log n, but my is roughly
ly|/|x|, which can be a positive power of |y|.

We first run a O(|y|)-time preprocessing of prefix-sums that
allows us to query zero-counts and one-counts in any interval in
either x or y in O(1) time. We also preprocess string y so that we can
test every property Q; efficiently on substrings of y; for each t this
takes O(]y| log |y|) preprocessing time, for a total preprocessing
time that is O(|y| log? |y|).

The runtime of CoveringAlgorithm is dominated by calls to
Trivial, EQLCS, GetPType,,, IsQType,,, and Getl,,. Note that in Line 4
and Line 7, J can be computed by a binary search over a search
space of size my/6, and thus can be found in log(my/8) calls to
Trivial, which each take O(1) time with preprocessing. Thus, the
first nested loop takes O(m,zcmy logmy) < é(|y|/|x|) time.

The second nested loop has O(mym,) calls to EQLCS, each of
which runs in O(|x|1+%) time, and thus takes O(n'*) time.

For the third nested loop, the number of calls to GetPType,, and
Getl,, is my, and each run in time O(w log w), so the runtime is at
most O(|x|). Because the property Q; is hereditary, we can compute
J in Line 20 by binary search with log(my/68) < O(log |y|) calls to
IsQType,,, which runs in time O(w) (the binary search crucially
saves us a factor of roughly |y|/|x| in the runtime). The number of
binary searches is O(mxmy), so in total the runtime of this step is
O(mxmy - log(my) - w) < O(ly|log? |yl).

There are O(mym,) rectangles, and the dynamic programming
has O(mymy) states. The runtime of the dynamic programming is
thus O(myxmy) < O(lyl/|x]), so the total runtime is thus O(]y|**¢).

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Xiaoyu He and Ray Li

Algorithm 1: CoveringAlgorithm

Algorithm 2: FullLCSAlgorithm

Input: x, y such that 1(x) = 0(x) < min(1(y),0(y))
Output: A set R of certified rectangles (I X J, k) where I is
yw-aligned, J is Ow-aligned, and LCS(1, J) > k.
// Trivial rectangles
1 R — {([0, |x[] x [0, [yl], Trivial ([0, |x[], [0, [y[]))}
2 for all yw-aligned intervals I do
for j :0,...,my/9 do
J « the smallest Ow-aligned interval s.t.
end J = Owj and Trivial(1,]) > (% - Vo)1l
if J exists then
| R« RU(I xJ,Trivial(I,]))
J < the smallest fw-aligned interval s.t.
end J = Owj and Trivial(I, J) > (% + §)|I|
if | exists then
| R« RU(I x J,Trivial(I,]))

3
4

10 for Ow-aligned intervals | with |J| = |I| do

| R —RU(I x J,Trivial(I,]))

11

// Nearly-square rectangles
for intervals1 € I,, do
for Ow-aligned intervals J with
Jle[(1=-a)w,(1+a)w] do
| R —RU(IxJ,EqQLCS(L,]))

12
13

14

// Algorithmic structure lemma rectangles
fori=1,...,my do
I—[(i-1w,iw]
t « GetPType, (x1)
I’ « Getly,(x1,t)
for j=1,...,my/0 do
J « smallest interval such that end J = Owj,
|7l = (1+0.98)w, and IsQType,,(y;,)
if J exists then
L R «— RU' x],lI—ZI‘+aw)

15

16

17

18

19
20

21

22

23 return R.

5.3 Correctness Proof, High Level Overview
We need two inequalities about our output, FullLCSAlgorithm(x, y).
LCS(x,y) = FullLCSAlgorithm(x, y) (2)
1+6
% LCS(x, y) < FullLCSAlgorithm(x, y) 3)
Equation (2) is the easier, which we prove at the end of this section.
Equation (3) is the harder direction. We prove it in two cases, based
on the following definition.
Definition 5.1. We say a pair of binary strings (x, y) is good if
(1) LCS(x,y) > (1= 8)|x],
(2) For at least (1 — y)my intervals I € I, every I’ € I y,(I)
is y-balanced, and
(3) Atleast 1 — % of I € T ,, satisfy 7= (1+ B
We call a pair bad if it is not good.

1152

Input: x, y such that 1(x) = 0(x) < min(1(y),0(y))

Output: A (%)—approximation of LCS
1 R « CoveringAlgorithm(x, y)

// DP[i][j] lower bounds LCS([0,ywi], [0,0wj])
DP « [0,myx/y] X [0, my/0] array, initialized to 0
fori=1,...,my/y do
for j = 1,,..,my/9 do
DP[i][j] < max(DP[i—1][j], DP[i][j — 1])
for (Ix J,k) € R withendI = (yw)i,end J = (6w)],
do

DP[i][j] «
DP[i]LJj],

X DP[(start 1)/ (yw)] [(start J)/(Ow)] + x

rgturn DP[my/y][my/0].

Obviously, we cannot determine in almost-linear time if an input
is good or bad, since that involves computing LCS(x, y). However,
our analysis of the performance of FullLCSAlgorithm(x, y) differs
depending on whether the input is good or bad. In Section 5.4, we
prove (3) when the input is bad, and in Section 5.5, we prove (3)
when the input is good.

In both the easy direction (2) and the hard direction (3), we use
the following characterization of the output of the dynamic pro-
gramming in Algorithm 2. Recall a collection of rectangles is called
an ordered collection if every pair (I, J) and (I’, J’) is comparable
(i.e.eitherI <I"and J < J'orI>1I"and J > J').

Lemma 5.2. The output of FullLCSAlgorithm is the maximum, over
all ordered collections of certified rectangles (I; X J1,k1), ..., (Ir X
](, K[), 0fK1 + K2+ +Kp.

Proor. By induction, it follows that DP[i][] is the maximum,
over all ordered collections of certified rectangles (I1 X J1, k1), . . ., (IrX
Je, kp) contained in [0, ywi] X [0, 0wj], of k1 + k2 + - - - + k. Here,
we use that, for all rectangles I X J in R, interval I is yw-aligned
and interval J is fw-aligned. O

The next lemma asserts that certified rectangles are indeed “cer-
tified”

Lemma 5.3. Every certified rectangle (IX], k) in CoveringAlgorithm
satisfies LCS(L,]) > k.

Proor. This is true of all rectangles certified by Trivial and
EqLCS by definition. The algorithmic structure lemma rectangles

(I'x], k) for kx = |1—2/‘+aw satisfy LCS(I’, J) > k by Lemma4.1. O

The easy direction (2) follows from Lemma 5.2 and Lemma 5.3.

Corollary 5.4. FullLCSAlgorithm(x,y) < LCS(x,y)

Proor. By Lemma 5.2, the output of FullLCSAlgorithm(x, y)
equals k1 +- - -+xp for some ordered collection of certified rectangles

Approximating Binary Longest Common Subsequence in Almost-Linear Time

(I X J1,k1)s - - -, (Ir X Jp, k¢). Then, by Lemma 5.3, we have

t £

FullLCSAlgorithm(x,y) = Z Ki < Z LCS(I;, Ji) < LCS(x,y),
i=1 i=1

as desired. |

5.4 Proof of (3) for Bad Inputs

We show that (3) holds in the bad case by conditioning on which
case of Definition 5.1 is violated.

IA

Subcase 1: Trivial. In the first subcase, we suppose LCS(x, y)
(1-9)|x|.

Lemma 5.5. IfLCS(x,y) < (1 —6)|x|, then (3) holds.

Proor. We always have Trivial([0, |x|], [0, |y[]) = % as % =
1(x) = 0(x) < min(1(y),0(y)). Hence, we have
1+6
FullLCSAlgorithm(x,y) > % > % LCS(x,y).
O

Subcase 2: Locally imbalanced. In the next subcase, we assume
LCS(x,y) > (1 — O)|x| and that a nontrivial fraction of intervals
are imbalanced. Since x and y have such a long LCS, we know that
most intervals in x appear nearly unmodified in y:

Lemma5.6. Ifw’ isa positive integer that divides |x| and LCS(x,y) >
(1-0)|x/|, then at most\/g‘j—,l intervalsl; € 1 satisfyLCS(;, JT) >
(1= Vo)|].

Proor. To obtain the longest common subsequence of x and y,
one applies at most dm deletions. By counting, at most \/SL’;—J inter-

vals of 1 .,y receive more than Vow' deletions, and the remaining
intervals satisfy the desired inequality. O

We now can establish (3) in this case.

Lemma 5.7. If at least ymy many yw-intervals are y-imbalanced,
and LCS(x,y) > (1 — 6)|x|, then (3) holds.

Proor. Let Iy < -+ < Iy sy be the intervals of 7y,,. For all
i =1,....,myxly let J; : roundgw(]IT_), so that J; are pairwise
disjoint. Let Kj;;,p4; be the indices i such that I; is y-imbalanced.
By assumption |Kimpar|l = ymx. Let Kypoq be the indices i such
that LCS(I;, JT) > (1 — V3)|Ii|. By Lemma 5.6 with w' = yw,
|Kgood| >(1- \/3)%

Observe that under these assumptions, CoveringAlgorithm cer-
tifies many rectangles using the trivial algorithm. For i € Kjo04,
we have Trivial(I;, J;) > %(1 — Vo) |I;| - 26w > (% — V8)|I;|. Thus,
we certify (I; X J/, (% — V8)|I;]) for some subinterval J! C Ji, de-
fined as the shortest §w-aligned interval with end]i’ =end J; and
Trivial(L;, J)) > (1 - Vo)|L;].

For i € Kyo0q N Kimpal» we have Trivial(L;, J;) 2 Trivial(Ii,]I:) -
20w > (% +y- Vo) |Ii| - 26w > (% + %)yw. Thus, we certify (I; X
Jis (3+ %) |I;]) for some subinterval J/ C J;, defined as the shortest
Ow-aligned interval with end J/ = end J; and Trivial([;, J) > (% +
Dl
21l

1153

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Thus CoveringAlgorithm obtains an ordered collection of certi-
fied rectangles (I; X J/, k;) over i € Kgooa With ki > (% —V8)|I;| for
alli € Kypoq and k; > (% - Vé+ %)llil for all i € Kyooa N Kimba-
Thus,

FullLCSAlgorithm(x, y)
I
iEI(good
1
2
|
as desired. In the last inequality, we used (i) [Kgo0a| = (1 — V) %,

146
Vom,
Y

vV

v

‘/3) (yw) - |Kgood| +)E/(YW) : |Kgood N Kimpatl

) LCS(x,),

, (iii) y > 4, and (iv) myw =
o

(ii) |Kgood N Kimpaill 2 ymx -
|x] = LCS(x, y).

Subcase 3: Many nearly-square intervals. This case applies when
the equal-length input algorithm [30] correctly certifies many rect-
angles. Recall that an interval I € I, is nearly-square if |J{| <
(14 p)|I|. For convenience, we call I oblong if it is not nearly-square.

Lemma 5.8. If at least f2my intervalsI € I ., are nearly-square,
then (3) holds.

ProOF. LetIj < I < --- < I, be the intervals of 7,,. Forall i =
1,...,my,let Jj = roundgw(]f), so that the J; are pairwise disjoint.
Let Kgpor¢ be the set of indices i such that I; is nearly-square. By
assumption, |Kpore| = f2my. Let Kgooa be the set of indices i
such that LCS(I;, JF) > (1 — VO)|L;|. By Lemma 5.6, [Kyo0q| >
(1= V&)my.

Just as in the proof of Lemma 5.8, we track the rectangles certified
by CoveringAlgorithm. For i € K04, we have Trivial(;, Ji) > (%—
V8)|L;], so we certify (I; xJi (% —V8)|I;]) for some subinterval Jc
Ji.Fori € KjoodNKshort, we have (1+a)w > (1+f)w > |J[| = |Jil
since [; is nearly-square, and |J;| = LCS(I;, J;) > LCS(Ii,]IT_) -
260w > (1 - V8 - 20)w > (1 — a)w. Hence, EqLCS(Z;, Ji) is called
at Line 14 and has value at least (% +a) LCS(I;, J;) = (% +a)(1 -
V6 - 20)w > 1424, by Theorem 2.2.

We thus have an ordered collection of certified rectangles (I; X
Ji ki) over i € Kgoq With x; > (% —Vo)wforalli e Kgo0q and
Ki > (% -V5+ S)w forie Kgo0d N Kshort- Thus,

FullLCSAlgorithm(x, y)

>

i€Kgood

>

1 a
2 (E - \/S) w- |Kgood| + EW : |Kgood N Kshort|

|

as desired. In the last inequality, we used (i) [Kgooa| = (1 - Vo) my,
(ii) 1Kgood N Ksore| = B2my — Vmy, (ii) & > B > 6, and (iv)
mxw = |x| = LCS(x, y). O

>

1%3) LCS(x,y),

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Wrapping up the bad case. We now can prove the following
lemma.

Lemma 5.9. If (x,y) is bad, then (3) holds.

Proor. If (x,y) is bad, then either item 1, 2, or 3 of Defini-
tion 5.1 is violated. If 1 is violated, (3) holds by Lemma 5.5. If 2
is violated, there are at least ymy intervals I with a y-imbalanced
yw-subinterval, so there are at least ym, many y-imbalanced yw-
intervals, so by Lemma 5.7, (3) holds. If 3 is violated, (3) holds by

Lemma 5.8. O

5.5 Proof of (3) for Good Inputs
Let

m = (1 - 2% my.

The following lemma establishes the natural structural property
for good inputs.

Lemma 5.10. If (x,y) is good, then there exist an ordered sequence
of rectangles Iy X Jy < -+ < Iy X Jpy_ such that for alli, () I; € L,
(ii) every yw-subinterval of I; is y-balanced, (iii) |Ji| = (1 +0.96)w,
and (iv) 1sQType,, (y7,, GetPType, (x1,)) returns true.

ProOF. Among the my intervals I € 1, all but at most Vomy
intervals satisfy LCS(L, J]) > (1 - V8)|I| by Lemma 5.6, at most
ymx have a y-imbalanced yw-subinterval since (x, y) is good, and
at most f2my are nearly-square since (x, y) is good. Thus, at least
(1 - 2%)my = m), intervals are (i) satisfying LCS(LJ7) > (1 -
Vo) 1|, (ii) y-balanced in all yw-subintervals, and (iii) oblong. Let
I < -+ < Iy be mj of these intervals. Let J; = roundgw(]fi), S0
these J; are pairwise disjoint. For all such i, we have

Uil 2 IJf | =20w > (1+f=20)w > (1+0.98)w
and
LCS(I;, Ji) = LCS(L;, Jf) — 26w > (1 - V& - 20)w > (1 - a)w.

For all t such that xj, has property P;, we have yj, has property Q;
by Lemma 4.1 (Item 2). Thus, IsQType,,(yy,, t) returns true for ¢t =
GetPType,, (x1,). We have found our ordered sequence of rectangles
Lhix <. <Dy XJm. O

We now can prove the main result for this section.
Lemma 5.11. If (x,y) is good, then (3) holds.

Proof. Let [X J1 < I X Jo < < Iy, X Jpy, be the or-
dered sequence of rectangles given by Lemma 5.10. By construc-
tion, for all i = 1,...,m%, we have (i) I; € I, (ii) every yw-
subinterval of I; is y-balanced, (iii) |J;| > (1 + 0.98)w, and (iv)
IsQType,, (yj,, GetPType, (x7,)) = true.

Asaresult, atloop iterationi = (end ;) /wand j = (end J;)/(6w)
of Line 20, the interval J exists (the interval J = J; satisfies the
requirement, so a minimal] exists). Thus, CoveringAlgorithm cer-

tifies a rectangle (I x J/, l L aw) where I/, the output of Getl,,,

is a yw-aligned subinterval of I; and]l isa submterval of J; with
length at least (1 + 0.96)w.

We would like to build an ordered collection of certified rectan-
gles containing these (I} X J;, Ui aw), which embed more than
half of each small interval I l’ into y. However, for each of these

1154

Xiaoyu He and Ray Li

rectangles, J/ is typically much longer than I, so using many of
them is extremely wasteful of bits in y. To reduce this issue, we
let ¢t := 3/f and build an ordered collection using only every ¢-th
rectangle from the preceding family.

Let mY/ be the largest multiple of ¢ less than m/,. For each i that
is a multiple of ¢, partition I; into II.L < IlM < IlR where IIM = I. For
i not a multiple of t, let I; := I;. For i a multiple of t, let jM =7

For i a multiple of ¢, we claim there exist fw-aligned mtervals
JR ¢ < Jimtsr <Jieez <+ < Jiz1 < J} such that

.]i <]lM
o JH1 =1} 1.
o [Jicel=|lielfore=1,...,t—1.
o JR,I=1IR |(wetakeIR 0).

]lM ;<]R ; (thls is vacuously true if i = t)

To see that such intervals exist, note that the interval
[end] o start]] = [end J{_,, start J/]

contains all intervals]l.’_ ‘ fort=1,...,
length at least (1 + 0.95)w, we have

t — 1. Since each J;_, has

start]iM - end]i}\ft > (-1 (1+098)w

>(t+1)w
t—1
7L 7 7R
> I+) il +1IR 1.
=1

The last inequality holds as each term on the right is at most w.
Thus we can construct the intervals greedily in order

Jh v Jima o e I
by setting end]NiL = startji]‘/l, and then end J;_; = startji]‘, and so
on. They will be w-aligned as all of the I intervals have lengths a
multiple of yw, and thus a multiple of fw.

By construction of these intervals, CoveringAlgorithm certifies
the following rectangles for i < m//:

(I I l) where «; :=T+aw ift|i
(IL X J) where KlL = Trivial(fiL,jiL) ift]i
(IR) where Kf = Trivial(ff,jf?) ift]i
(I x],-, ki) where x; = Trivial(I;, J;) ifrti (4)

The first collection of rectangles comes from the definition of
IM = I/ and]M J{. The rest of the rectangles come from the
fact that we cert1fy all yw-aligned squares with the trivial algorithm
in CoveringAlgorithm Line 11. Furthermore, the rectangles are in-
creasing in i, with additionally f{‘ X]NIL < I~IM ><]~IM < I;R leR foria
multiple of t. Hence, the rectangles in (4) form an ordered collection
IR >
- y)|fi| for all other i, be-
cause the intervals INIR, fl]“ I; are all yw-aligned and thus y-balanced.
Thus, by Lemma 5.2, the output of FullLCSAlgorithm(x,y) is at

of rectangles. By Lemma 2.1, we also have KiL > (% -
—y)|I~lR| for i a multiple of ¢ and k; > (%

Approximating Binary Longest Common Subsequence in Almost-Linear Time

least
Z (KiL+1<fw+Kf)+ Z Ki
i<m} i<my
tli tfi
1 Sy GM L (7 1 ~
> 3 (o) @i van) s 3 (5=
i<m i<my
t|i tti
1
> (E—y)w~m;'+ocw-ém;'

1+6

> | —=
2

|

In the third inequality, we used that mw > (mf - Hw > (1 -
32)myw and mew = |x| = LCS(x,). O

) LCS(x,y)

We can now finish the proof of Theorem 3.2.

ProoF oF THEOREM 3.2. We have now proved that (2) and (3)
always hold, and that FullLCSAlgorithm runs in time O(n'*¢), so
FullLCSAlgorithm gives a (%)-approximation of the LCS of two
binary strings with 0(x) = 1(x) < min(0(y), 1(y)) in time O(n!*%),

as desired. |

6 PUTTING IT ALL TOGETHER

In this final section we use standard techniques to finish the proof
of Theorem 1.2 given the balanced case Theorem 3.2. This proved
in [30] for equal length strings and in [7] for unequal length strings
(see also [6]).

Lemma 6.1 (Lemma 13 of [7], see also Lemma 3.5 of [6]). For every
p > 0, there exists 6 = 5(p) > 0 such that the following holds. There
exists an algorithm which, given binary strings x, y with |x| < |y|
and 0(x) = 1(y) < (% — p)|x|, computes a (% + 8)-approximation of
LCS(x,y) in deterministic linear time. >

Lemma 6.2. For all ¢ > 0, there exists an absolute constant § =
d(e) > 0 and a deterministic algorithm that, given two strings x and
y with |x| < |y| and min(1(x), 1(y)) = min(0(x), 0(y)), outputs a
(% + 8)-approximation of LCS(x, y) in time O(|y|1*¢).

ProorF. Let 61 = 61(¢) > 0 be the absolute constant in Theo-
rem 3.2. Let 2 > 0 be the absolute constant in Lemma 6.1 with
parameter p = §1/10. Let § = min(6;/2, §2). As |x| < |y|, we have
three cases, and we find a (% + J)-approximation to LCS(x, y) in
each.

Case 1. 0(x) = min(0(x),0(y)), 1(x) = min(1(x), 1(y)). Then
0(x) = 1(x) = |x|/2 and LCS(x,y) > |x|/2. The algorithm in
Theorem 3.2, gives a (% + 81)-approximation of the LCS.

2There are several minor differences between this statement and the statement in [7].
First, the statement in [7] says subquadratic time but it actually runs in linear time,
similar to the analogous algorithm in [30] who proved Lemma 6.1 for equal-length
strings. This was confirmed in private communication with the authors.
Second, [7] prove the statement when 0(x) and 1(y) are within ¢|x| of each other
for some |x|, while we only consider when they are equal.

1155

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Case 2.0(y) = min(0(x),0(y)), 1(x) = min(1(x), 1(y)). We have
1(x) = 0(y) < 0(x). There are two subcases.

Subcase 2a. 1(x) > (% — p)|x|. In this case, delete 0(x) —1(x) <
plx| zeros from x arbitrarily to get a balanced subsequence x’.
Then LCS(x’,y) = LCS(x,y) — plx| = (1 — p) LCS(x, y). Thus, the
algorithm in Theorem 3.2 gives a common subsequence of length
(3 +81)(1 - p) LCS(x,y) > (§ +8) LCS(x,y).

Subcase 2b. 1(x) < (% — p)|x|. In this case, Lemma 6.1 with
parameter p finds a common subsequence of length at least (% +
8) LCS(x,y).

Case 3. 0(x) = min(0(x),0(y)), 1(y) = min(1(x), 1(y)). Sym-
metric to case 2. m]

Theorem (Theorem 1.2, restated). For all ¢ > 0, there exists an
absolute constant § = §(¢) > 0 and a deterministic algorithm
that, given two binary strings x and y of not-necessarily-equal
length, outputs a (% + §)-approximation of the longest common
subsequence in time O(n1*¢) where n = max(|x], |y|).

Proor. Let §) be the constant in Lemma 6.2. Let § = §y/5. Let
the input strings be x and y and assume without loss of generality
|x| < |y| and that min(0(x),0(y)) = min(1(x),1(y)). We have
Trivial(x, y) = min(0(x),0(y)) and LCS(x,y) < min(0(x),0(y)) +
min(1(x), 1(y)).

If min(0(x),0(y)) = (1 + &) min(1(x), 1(y)), then, as ;gg
% +0, the trivial algorithm gives a (% +J)-approximation of the LCS.
Thus we may assume min(0(x), 0(y)) < (1 + &) min(1(x), 1(y)).
Delete min(0(x), 0(y)) — min(1(x), 1(y)) < d min(1(x), 1(y)) ze-
ros from each of x and y arbitrarily to obtain x” and y’ with

min(0(x"),0(y")) = min(1(x), 1(y")).

>

We have
LCS(x",y") = LCS(x,y) — o min(1(x), 1(y)) > (1 — §) LCS(x,y).

Running the algorithm in Lemma 6.2 gives an approximation to
LCS(x’,y’) that is at least (% + 80)(1 = 8) LCS(x,y) > (% +
8) LCS(x,y), as desired.]

7 CONCLUSION AND OPEN QUESTIONS

We close with some related open questions.

e What is the best possible approximation factor of binary LCS
in almost-linear or truly subquadratic time? We give a % +4
in almost-linear time. We made no attempt to optimize &,
and currently it depends on the runtime exponent 1 + ¢.
Related to the above, can we prove fine-grained hardness of
approximation results for LCS? It is known that a determin-
istic 2~ (logm)'™® approximation in n?~¢ time for LCS over
alphabet n°1) would imply new circuit lower bounds, as
would a deterministic 1 — -approximation for binary
inputs [1, 4, 20].

We studied the algorithmic question of computing LCS, where,
as the previous two questions highlight, the optimal approx-
imation factor is open. We showed this algorithmic question
is closed related to an analogous combinatorial question,
which is also open: What is the largest constant « € (0,1)

1
polylogn

STOC ’23, June 20-23, 2023, Orlando, FL, USA

such that in any set C C {0, 1}" of |C| > 22(") binary strings,
there are always two strings x, y with LCS(x, y) > an? The
optimal @ is known to be in [% +107%0 2 — 2] [18, 23],
and 1 — a quantifies the maximum fraction of adversarial
deletions that can be tolerated by a (asymptotically) positive
rate code.

It would also be interesting to understand how strong is
the connection between the deletion codes question and
the algorithmic LCS question. At first blush, it seems that
techniques derived solely from analysis of deletion codes
should not give an a-approximation for & > 2 — V2 ~ 0.59
(because of the deletion codes construction [18]), so beating
this ratio would show some separation between the two
questions.

How does the optimal subquadratic time or almost-linear
time approximation factor grow with the alphabet size? Over
alphabet size g, we show that we can beat (barely) the trivial
é-approximation. We know that we can always get a ran-
domized ﬁ—approximation in linear time [11, 28], which
is much better than %1 for large alphabets.

There is a natural question that arises from another possible
approach to proving Theorem 1.2. Define the directed edit
distance of two strings x, y to be the number of edits needed
to get from x to y, where insertions cost 0 and deletions
(and substitutions) cost 1. Equivalently, Bedit (x,y) = |x| -
LCS(x,y). When the strings are equal length, the directed
edit distance is simply half the edit distance. A constant-
factor approximation of directed edit distance in almost-
linear time would immediately imply Theorem 3.2 and thus
Theorem 1.2. This suggest the following question, which
may be of independent interest.

Question 7.1. Is there an almost-linear time constant-factor
approximation of the directed edit distance?

We note that Eedit(x, y) is not a metric. Indeed, it is not even
symmetric?, and it does not satisfy the triangle inequality.
Thus, the existing edit distance approximation algorithms
[10, 15, 19, 25], which rely heavily on the triangle inequal-
ity, do not seem to immediately apply to directed edit dis-
tance. On the other hand, directed edit distance does satisfy
a “directed triangle inequality”: for strings x, y, z, we have
Zedit(x’ z) < Aedit(x, y) + Eedit(y, z). This gives some hope
that fast approximation algorithms exist.

ACKNOWLEDGMENTS

We thank Saeed Seddighin for introducing us to the question of ap-
proximating binary LCS and for suggesting its potential connection
to the deletion codes bound [23]. We thank Negev Shekel Nosatzki
for helpful discussions about edit-distance algorithms. We thank
Shyan Akmal and Virginia Vassilevska-Williams for helpful dis-
cussions on their work [7]. We thank Aviad Rubinstein for helpful
feedback. We thank Venkatesan Guruswami for helpful feedback
and encouragement.

3 Redit (0011, 00) = 2 but Aegit (00,0011) = 0

1156

Xiaoyu He and Ray Li

A PROOF OF LEMMA 4.4

Lemma 4.4 is essentially a corollary of the stronger combinatorial
structure lemma [23, Lemma 4.1], except that the constant depen-
dences are superior and we make the additional assumption that
the lengths involved are all powers of two. For completeness, we
include a proof here which is significantly simpler than the proof
of [23, Lemma 4.1].

Lemma (Lemma 4.4, restated). For e = 107> and w sufficiently
large, at least one of the following two conditions holds for every
string x € {0,1}™.
(1) There exists £ € [¢?w, w] equal to a power of two and an
0.1-imbalanced interval I in x of length {.
(2) There exists £ € [1,%w) equal to a power of two such that
the number of t*-flags in x is at least ew, and x contains
(0f19)w/t gs a subsequence.

Proor. We first reduce to the case that w is a power of two.
Indeed, suppose we show the statement for all lengths w’ equal to
sufficiently large powers of 2, with a stronger ¢/ = 107 in place
of ¢. Then, let w’ be the largest power of two at most w, and let
x" = x[,v] be the prefix of x of length w’ > w/2. Applying our
assumption to x’, the lemma statement holds for x” with stronger
¢ =107 If x’ falls into the first case of the lemma, then x’ contains
a 0.1-imbalanced interval I of length ¢ € [(¢/)?w’, w’] C [£%w, w],
so x must fall into the first case as well.

Otherwise, there exists £ € [1, (¢/)?w’) equal to a power of two
such that the number of £*-flags in x’ is at least (¢/)?w’ > ew,
and x’ contains (Oflf)(f,)zw//e 2 (Oflf)fz Wit If ¢ > ¢%w, then
the existence of an ¢*-flag implies that there is a 0.1-imbalanced
interval of length at least £ in x, so x again falls into the first case
of the lemma. On the other hand, if £ < £2w then x falls into the
second case of the lemma, as desired.

Thus, we assume w is a power of two and prove this special
case with the stronger constant & = 1074, Let w = 2K, and for any
0<k<Kand1<i<2K¥ definely; = [(i—1)-2F+1,i-2K]
to be an aligned dyadic interval of length 2K. Observe that for each
k, the intervals Ij ; form a partition of [w]. If I ; is 0.1-imbalanced
for some k satisfying ok > £2w, case 1 holds and we are done. Thus,
we may assume [; is 0.1-balanced whenever 2k > £2w. We would
like to show that case 2 above always holds.

Call an interval I is sparse if d(x;) < 0.01, and dense otherwise.
Let Sg. denote the collection of all maximal sparse dyadic intervals
I ; of length 2k, i.e. all sparse dyadic intervals Ii ; that are not
proper subintervals of other sparse Iy ;. Let S = Uszo Sk, so that
S is the collection of all maximal sparse dyadic intervals in x, and
the elements of S are pairwise disjoint.

Observe that sparse intervals are certainly 0.1-imbalanced, so
by our previous assumption, Sg is empty if 2k > £w. On the other
hand, we also assumed that Ix ; [w] is 0.1-balanced, so the
number of zeros in x is at least 0.4w. Every zero-bit in x constitutes
a sparse dyadic interval Iy ; of length 1 by itself, and every sparse
dyadic interval lies inside some element of S. Thus, intervals in S
cover all zero-bits in x and have total length at least 0.4w.

Letif I = Iy ; and i > 1, define the predecessor of I to be pred(I) :=

I i-1-

Approximating Binary Longest Common Subsequence in Almost-Linear Time

Claim. Ifk > 0,1 < i < 2Kk [, ; € 8,1 = 2mx(0k=5) gpg
pred(Iy ;) is dense, then the number of t-flags in pred(Iy. ;) is at least
0.01 - | pred(Ix ;)|.

Proor. If k < 5 then the assumption that I ; is sparse implies
that it contains only zeros, so the first one-bit in pred(Iy ;) is a
1-flag, and this is sufficient. Assume now that k > 5. Observe that
since Iy ; is sparse, it contains at least 0.99 - 2k > 2k=1 5 q0(¢ - 1)
zeros and at most 0.01 - 2% < 2k=6 = t/2 ones. In particular, the last
t/2 = 2K~ ones in Xpred(Ix,;) (or all of them if there are fewer than

2k=6Y must all be t-flags. As pred(Iy ;) is dense, we are done. O

Thus, dense predecessors of elements of S contain many flags. In
order to make sure these flags are not double-counted, we first pass
to a subcollection of S, defined as follows. Write if I, | € S, write
I < J if both pred(I) and pred(J) exist, and pred(I) c pred(]J).
Define 8’ to be the subcollection of S obtained by removing the (at
most one) element of the form Ij ; without a predecessor, and then
removing all elements non-maximal with respect to <. Observe that
if two dyadic intervals satisfy I < J, then I C pred(]J), so for any
dyadic interval J, the total length of all elements I of S satisfying
I < J is at most |J|. By passing to S’, we deleted at most half of the
total length in S, plus possibly one interval with no predecessor,
which has length at most £2w. Thus,

PRLE % D= et > 0.1w.

IeS’ IeS
Writing S’ for the collection of all intervals in S” with length
at least 2%, we pick kg to be the largest 0 < ko < K for which

Z 1] > 0.01w.

IeS’sz

Our choice of ¢ is ¢ := 2max(0k=5) Note that £ < ¢*w because
Sy is empty when 2k > ¢2w. We separately prove each of the two
required hypotheses.

Claim. For ¢ = 2m2(0k0=5) ‘the number of £*-flags in x is at least
ew.

Proor. For any two dyadic intervals I, J, either] < JorIN J =
0. Thus, {pred(])|I € S;k} is a collection of pairwise-disjoint
intervals with total length at least 0.01w. By the previous claim,
the number of ¢#*-flags in one of these intervals pred(I) is at least
0.01] pred(I)| = 0.01]1], and so in total the number of £*-flags in x

is at least 10~*w, as desired. m]
It remains to check that x contains (071¢)¢W/?.
Claim. For ¢ = 2mx(0ko=5) contains (0°19)€W/! as a subse-

quence.

PRrRoOF. Letk = ko+1. By the maximality of ko, we have 2163;k || <

0.01w. Let S5 denote the collection of maximal sparse dyadic in-
tervals of length at least 2¥. Reversing the analysis which led to a
lower bound on the total length of S’, we obtain

Z I <2 Z I + ew < 0.1w.

IeSsk IES’Zk

1157

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Since all sparse dyadic intervals of length 2¥ lie inside some element
of Ss k., we see that in total at most 0.1- 2K~ of the dyadic intervals
Iy ; are sparse.

On the other hand, at most 0.7 - 2K~k of them have density
greater than 0.99, since otherwise these very dense intervals alone
account for at least 0.68w ones, making the entire interval [w]
0.1-imbalanced, which is a contradiction. In sum, out of 2K —k total
intervals Ij ;, at most 0.1 - 2K=K have density less than 0.01, and
at most 0.7 - 2K have density greater than 0.99, leaving at least
0.2 - 2K~k that must each contain 0.01 - 2K zeros and 0.01 - 2% ones.
Passing to only these subintervals, we conclude that x contains
a subsequence of the form x” = xyx2 - - - x 5. ok« Where each x;
contains 0.01 - 2% zeros and 0.01 - 2% ones. A string of the form
(1°0%)@ can be found as a subsequence of x’ by taking ones from
the first [100£/2%7 x;’s, then zeros from the next [100£/2%7, and so

on. Since £ > 2k_6, we can pick

0.2 2K-k

a» ——— >10"%
2[100¢/2%]

w/t,

as desired.]

Combining the above two claims proves that if case 1 of the lemma
does not hold, then case 2 does for ¢ = 2max(0.ko=5) O

REFERENCES

[1] Amir Abboud and Arturs Backurs. 2017. Towards Hardness of Approximation
for Polynomial Time Problems. In 8th Innovations in Theoretical Computer Science
Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA (LIPIcs, Vol. 67), Chris-
tos H. Papadimitriou (Ed.). Schloss Dagstuhl - Leibniz-Zentrum fir Informatik,
11:1-11:26. https://doi.org/10.4230/LIPIcs.ITCS.2017.11

Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. 2015. Tight
Hardness Results for LCS and Other Sequence Similarity Measures. In IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,
USA, 17-20 October, 2015, Venkatesan Guruswami (Ed.). IEEE Computer Society,
59-78. https://doi.org/10.1109/FOCS.2015.14

Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and
Ryan Williams. 2016. Simulating branching programs with edit distance and
friends: or: a polylog shaved is a lower bound made. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,
MA, USA, June 18-21, 2016, Daniel Wichs and Yishay Mansour (Eds.). ACM,
375-388. https://doi.org/10.1145/2897518.2897653

Amir Abboud and Aviad Rubinstein. 2018. Fast and Deterministic Constant
Factor Approximation Algorithms for LCS Imply New Circuit Lower Bounds. In
9th Innovations in Theoretical Computer Science Conference, ITCS 2018, January
11-14, 2018, Cambridge, MA, USA (LIPIcs, Vol. 94), Anna R. Karlin (Ed.). Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 35:1-35:14. https://doi.org/10.4230/
LIPIcs.ITCS.2018.35

Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. 2014. Con-
sequences of Faster Alignment of Sequences. In Automata, Languages, and Pro-
gramming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark,
July 8-11, 2014, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 8572),
Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias (Eds.).
Springer, 39-51. https://doi.org/10.1007/978-3-662-43948-7_4

Shyan Akmal. 2021. Longest Common Subsequence Over Constant-Sized Alphabets:
Beating the Naive Approximation Ratio. Master’s thesis. Massachusetts Institute
of Technology.

Shyan Akmal and Virginia Vassilevska Williams. 2021. Improved Approximation
for Longest Common Subsequence over Small Alphabets. In 48th International
Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-
16, 2021, Glasgow, Scotland (Virtual Conference) (LIPIcs, Vol. 198), Nikhil Bansal,
Emanuela Merelli, and James Worrell (Eds.). Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 13:1-13:18. https://doi.org/10.4230/LIPIcs.ICALP.2021.13
Alexandr Andoni. 2018. Simpler constant-factor approximation to edit distance
problems. (2018). http://www.cs.columbia.edu/~andoni/papers/edit/

Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. 2010. Polylogarith-
mic Approximation for Edit Distance and the Asymmetric Query Complexity.
In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010,

—_
o,

3

—
)

G

—
&

[

https://doi.org/10.4230/LIPIcs.ITCS.2017.11
https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1145/2897518.2897653
https://doi.org/10.4230/LIPIcs.ITCS.2018.35
https://doi.org/10.4230/LIPIcs.ITCS.2018.35
https://doi.org/10.1007/978-3-662-43948-7_4
https://doi.org/10.4230/LIPIcs.ICALP.2021.13
http://www.cs.columbia.edu/~andoni/papers/edit/

STOC ’23, June 20-23, 2023, Orlando, FL, USA

[10]

[11]

[12]

(13

[14

(15]

[16

(17

(18

[19

[20]

October 23-26, 2010, Las Vegas, Nevada, USA. IEEE Computer Society, 377-386.
https://doi.org/10.1109/FOCS.2010.43

Alexandr Andoni and Negev Shekel Nosatzki. 2020. Edit Distance in Near-Linear
Time: it’s a Constant Factor. In 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, Sandy
Irani (Ed.). IEEE, 990-1001. https://doi.org/10.1109/FOCS46700.2020.00096
Alexandr Andoni, Negev Shekel Nosatzki, Sandip Sinha, and Clifford Stein. 2022.
Estimating the Longest Increasing Subsequence in Nearly Optimal Time. In 63rd
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver,
CO, USA, October 31 - November 3, 2022. IEEE, 708-719. https://doi.org/10.1109/
FOCS54457.2022.00073

Alexandr Andoni and Krzysztof Onak. 2012. Approximating Edit Distance in
Near-Linear Time. SIAM J. Comput. 41, 6 (2012), 1635-1648. https://doi.org/10.
1137/090767182

Arturs Backurs and Piotr Indyk. 2015. Edit Distance Cannot Be Computed in
Strongly Subquadratic Time (unless SETH is false). In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, Rocco A. Servedio and Ronitt Rubinfeld (Eds.). ACM,
51-58. https://doi.org/10.1145/2746539.2746612

Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. 2004. Approx-
imating Edit Distance Efficiently. In 45th Symposium on Foundations of Computer
Science (FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings. IEEE Computer
Society, 550-559. https://doi.org/10.1109/FOCS.2004.14

Joshua Brakensiek and Aviad Rubinstein. 2020. Constant-factor approximation
of near-linear edit distance in near-linear time. In Proccedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA,
June 22-26, 2020, Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,
Gautam Kamath, and Julia Chuzhoy (Eds.). ACM, 685-698. https://doi.org/10.
1145/3357713.3384282

Karl Bringmann and Debarati Das. 2021. A Linear-Time n0'4prpr0ximation for
Longest Common Subsequence. In 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland
(Virtual Conference) (LIPIcs, Vol. 198), Nikhil Bansal, Emanuela Merelli, and James
Worrell (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 39:1-39:20.
https://doi.org/10.4230/LIPIcs ICALP.2021.39

Karl Bringmann and Marvin Kiinnemann. 2015. Quadratic Conditional Lower
Bounds for String Problems and Dynamic Time Warping. In IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, Venkatesan Guruswami (Ed.). IEEE Computer Society, 79-97.
https://doi.org/10.1109/FOCS.2015.15

Boris Bukh, Venkatesan Guruswami, and Johan Hastad. 2017. An Improved
Bound on the Fraction of Correctable Deletions. IEEE Trans. Inf. Theory 63, 1
(2017), 93-103. https://doi.org/10.1109/TIT.2016.2621044

Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucky, and
Michael E. Saks. 2020. Approximating Edit Distance Within Constant Factor in
Truly Sub-quadratic Time. J. ACM 67, 6 (2020), 36:1-36:22. https://doi.org/10.
1145/3422823

Lijie Chen, Shafi Goldwasser, Kaifeng Lyu, Guy N. Rothblum, and Aviad Rubin-
stein. 2019. Fine-grained Complexity Meets IP = PSPACE. In Proceedings of the

1158

[21]

[22

[24]

[25]

[26]

[27

[28

[29]

[30

Xiaoyu He and Ray Li

Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, Timothy M. Chan (Ed.). SIAM, 1-20.
https://doi.org/10.1137/1.9781611975482.1

Vasek Chvatal, David A Klarner, and Donald Ervin Knuth. 1972. Selected combi-
natorial research problems. Computer Science Department, Stanford University.
Elazar Goldenberg, Aviad Rubinstein, and Barna Saha. 2020. Does preprocessing
help in fast sequence comparisons?. In Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June
22-26, 2020, Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam
Kamath, and Julia Chuzhoy (Eds.). ACM, 657-670. https://doi.org/10.1145/
3357713.3384300

Venkatesan Guruswami, Xiaoyu He, and Ray Li. 2021. The zero-rate threshold
for adversarial bit-deletions is less than 1/2. In 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022.
IEEE, 727-738. https://doi.org/10.1109/FOCS52979.2021.00076
MohammadTaghi Hajiaghayi, Masoud Seddighin, Saeed Seddighin, and Xiaorui
Sun. 2019. Approximating LCS in Linear Time: Beating the v/n Barrier. In Pro-
ceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, Timothy M. Chan (Ed.).
SIAM, 1181-1200. https://doi.org/10.1137/1.9781611975482.72

Michal Koucky and Michael E. Saks. 2020. Constant factor approximations
to edit distance on far input pairs in nearly linear time. In Proccedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020,
Chicago, IL, USA, June 22-26, 2020, Konstantin Makarychev, Yury Makarychev,
Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy (Eds.). ACM, 699-712.
https://doi.org/10.1145/3357713.3384307

Vladmir I. Levenshtein. 1966. Binary codes capable of correcting deletions,

insertions and reversals. Soviet Physics Dokl. (English Translation) 10, 8 (1966),
707-710.

William J. Masek and Mike Paterson. 1980. A Faster Algorithm Computing String
Edit Distances. J. Comput. Syst. Sci. 20, 1 (1980), 18-31. https://doi.org/10.1016/
0022-0000(80)90002-1

Negev Shekel Nosatzki. 2021. Approximating the Longest Common Subsequence
problem within a sub-polynomial factor in linear time. CoRR abs/2112.08454
(2021). arXiv:2112.08454 https://arxiv.org/abs/2112.08454

Aviad Rubinstein, Saeed Seddighin, Zhao Song, and Xiaorui Sun. 2019. Approx-
imation Algorithms for LCS and LIS with Truly Improved Running Times. In
60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019,
Baltimore, Maryland, USA, November 9-12, 2019, David Zuckerman (Ed.). IEEE
Computer Society, 1121-1145. https://doi.org/10.1109/FOCS.2019.00071

Aviad Rubinstein and Zhao Song. 2020. Reducing approximate Longest Common
Subsequence to approximate Edit Distance. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January
5-8, 2020, Shuchi Chawla (Ed.). SIAM, 1591-1600. https://doi.org/10.1137/1.
9781611975994.98

[31] Jeffrey D. Ullman. 1967. On the capabilities of codes to correct synchronization

errors. IEEE Transactions on Information Theory 13, 1 (1967), 95-105.

Received 2022-11-07; accepted 2023-02-06

https://doi.org/10.1109/FOCS.2010.43
https://doi.org/10.1109/FOCS46700.2020.00096
https://doi.org/10.1109/FOCS54457.2022.00073
https://doi.org/10.1109/FOCS54457.2022.00073
https://doi.org/10.1137/090767182
https://doi.org/10.1137/090767182
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1109/FOCS.2004.14
https://doi.org/10.1145/3357713.3384282
https://doi.org/10.1145/3357713.3384282
https://doi.org/10.4230/LIPIcs.ICALP.2021.39
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1109/TIT.2016.2621044
https://doi.org/10.1145/3422823
https://doi.org/10.1145/3422823
https://doi.org/10.1137/1.9781611975482.1
https://doi.org/10.1145/3357713.3384300
https://doi.org/10.1145/3357713.3384300
https://doi.org/10.1109/FOCS52979.2021.00076
https://doi.org/10.1137/1.9781611975482.72
https://doi.org/10.1145/3357713.3384307
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1016/0022-0000(80)90002-1
https://arxiv.org/abs/2112.08454
https://arxiv.org/abs/2112.08454
https://doi.org/10.1109/FOCS.2019.00071
https://doi.org/10.1137/1.9781611975994.98
https://doi.org/10.1137/1.9781611975994.98

	Abstract
	1 Introduction
	2 Preliminaries
	3 Proof Sketch
	4 Algorithmic Structure Lemma
	4.1 Algorithm Structure Lemma Statement
	4.2 Combinatorial Structure Lemma and Types
	4.3 Algorithmic Structure Lemma Ingredients
	4.4 Proof of the Algorithmic Structure Lemma

	5 Almost-Linear Time Algorithm
	5.1 Parameters and Notation Conventions
	5.2 Runtime
	5.3 Correctness Proof, High Level Overview
	5.4 Proof of (3) for Bad Inputs
	5.5 Proof of (3) for Good Inputs

	6 Putting It All Together
	7 Conclusion and Open Questions
	Acknowledgments
	A Proof of Lemma 4.4
	References

