

# A Systematic Approach to Designing Broadband Millimeter-Wave Cascode Common-Source With Inductive Degeneration Low Noise Amplifiers

Yaolong Hu<sup>✉</sup>, *Graduate Student Member, IEEE*, and Taiyun Chi, *Member, IEEE*

**Abstract**—This paper presents a design methodology that can effectively extend the bandwidth of a cascode common-source with inductive degeneration low noise amplifier (LNA), which is one of the most popular LNA topologies in the millimeter-wave bands. Specifically, this methodology addresses how to broaden the input matching bandwidth by realizing dual-resonant  $S_{11}$ , and how to extend the gain bandwidth by synthesizing a transformer-based second-order bandpass output network. As a proof of concept, a 27–46 GHz LNA is implemented in the GlobalFoundries 45-nm CMOS SOI process, achieving 25.5–50 GHz 3-dB gain bandwidth, 27–46 GHz return loss bandwidth, 21.2 dB peak gain, 2.4 dB minimum noise figure, and  $-9.5$  dBm peak  $\text{IIP}_3$ , under 25.5 mW DC power consumption. Consistent performance is measured across multiple samples, demonstrating the robustness of the presented design methodology.

**Index Terms**—5G, bandpass network, bandwidth, broadband, CMOS, impedance transformation, inductive degeneration, input matching, low noise amplifier (LNA), millimeter-wave (mmWave), transformer.

## I. INTRODUCTION

HERE is a growing interest in developing instantaneously broadband mmWave transceivers that can concurrently support multiple 5G NR bands from 24 to 43 GHz (band n257 – band n261) [1], [2], [3], [4], [5], [6]. This trend is motivated by emerging communication needs such as inter-band carrier aggregation to increase the overall data throughput, global multi-standard coverage to support international roaming, and agile frequency hopping to avoid user interference and congestion. In addition to high-speed wireless communications, the last few years have seen the rise of wireless sensing at mmWave frequencies, which uses electromagnetic transmission and reception for sensing environmental variables, such as gesture estimation [7] and heart rate [8] and respiratory rate monitoring [9]. Wireless sensing is being discussed as an additional function to be supported in cellular networks as smaller wavelengths of mmWave carriers can achieve higher sensing resolution. Much like communications, emerging wireless sensing applications also favor instantaneously broadband

Manuscript received 21 November 2022; accepted 18 January 2023. Date of publication 30 January 2023; date of current version 31 March 2023. This work was supported in part by the National Science Foundation under Grant CNS-1956297. This article was recommended by Associate Editor H. Sjoland. (*Corresponding authors*: Yaolong Hu; Taiyun Chi.)

The authors are with the Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005 USA (e-mail: yh72@rice.edu; taiyun.chi@rice.edu).

Color versions of one or more figures in this article are available at <https://doi.org/10.1109/TCASI.2023.3239396>.

Digital Object Identifier 10.1109/TCASI.2023.3239396

transceivers, as the range resolution is inversely proportional to the bandwidth (BW).

As the first stage of the receiver (RX), LNA plays an important role in defining the RX noise figure (NF) and BW. A few broadband mmWave LNA designs have been reported recently. In [3], a resistive feedback technique is presented, achieving 20–40 GHz BW and 2.5–3 dB NF with 18 mW DC power. In [10], a three-stage staggered gain tuning technique is demonstrated, achieving 24–44 GHz BW and 4.2–5.5 dB NF with 58 mW DC power. A dual-path noise cancellation LNA is introduced in [11]. By using a common-gate path and a resistive feedback common-source path, it achieves 22.9–38.2 GHz BW and 2.65–4.62 dB NF. In [12], a 22–32 GHz LNA is presented based on a multistage transformer-based noise matching technique, achieving 1.7 dB minimum NF in a 22-nm FDSOI process. Another 22-nm FDSOI LNA with a similar BW is reported in [13]. It also utilizes transformer-based input matching to enhance the BW and demonstrates 3.1–3.7 dB NF with 20.5 mW DC power.

The key contribution of this paper is to present a systematic yet intuitive design approach that can turn a conventional cascode common-source with inductive degeneration LNA into a broadband implementation. The presented approach incurs minimal design overhead and NF degradation and can be readily adapted to guide broadband LNA designs in other frequency bands. Specifically, we introduce two circuit innovations to enhance the LNA BW [14] and present a detailed study of their design space. First, we extend the input matching BW by realizing dual resonances for the input reflection coefficient ( $S_{11}$ ). This is made possible by exploring the intrinsic gate-to-drain parasitic capacitance of the input transistor and the frequency-dependent behavior of the first-stage load impedance – both are often ignored in the conventional input matching analysis of the common-source with inductive degeneration topology. Second, we extend the gain BW by constructing a wideband second-order bandpass output network that can be miniaturized into a single transformer footprint. It naturally absorbs the transformer’s non-ideal magnetic coupling, finite winding inductances, and parasitic capacitances while achieving a uniform transimpedance gain across a wide frequency range.

This paper is organized as follows. In Section II, the design procedure and design equations to realize the dual-resonant input matching are discussed. In Section III, the synthesis flow of the transformer-based second-order bandpass output

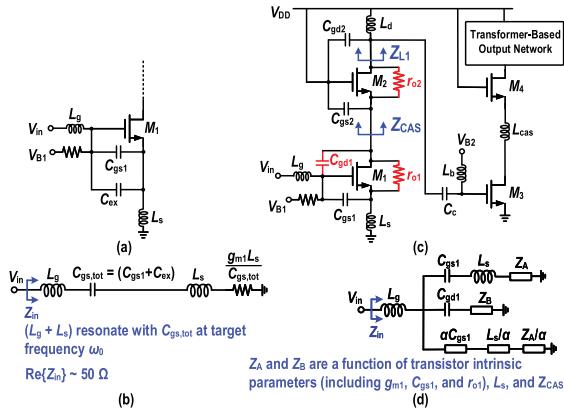


Fig. 1. (a) Schematic of the common-source with inductive degeneration LNA and (b) its input matching equivalent circuit. (c) Schematic of a two-stage cascode common-source with inductive degeneration LNA with  $C_{gd1}$ ,  $r_{o1}$ , and  $r_{o2}$  highlighted, which are often ignored in the conventional input matching analysis. (d) Its re-derived input matching equivalent circuit.

network is introduced. Section IV presents a 27–46 GHz LNA design example. Its measurement results are presented in Section V. Section VI concludes this paper.

## II. DUAL-RESONANT INPUT MATCHING

### A. Common-Source With Inductive Degeneration LNA and Its Bandwidth Bottleneck

One of the most widely used LNA topologies at RF and mmWave is the common-source with inductive degeneration (Fig. 1) [15], [16], [17], [18], [19], [20], [21], [22], [23], [24]. Its equivalent circuit consists of the gate inductor  $L_g$ , the gate-to-source capacitor  $C_{gs,tot}$  (including the parasitic capacitor  $C_{gs1}$  and an explicit capacitor  $C_{ex}$ ), the source degeneration inductor  $L_s$ , and a frequency-independent real part  $g_{m1}L_s/C_{gs,tot}$ . Ignoring the gate-to-drain parasitic capacitance  $C_{gd1}$  and the output impedance  $r_{o1}$  of the input transistor, the input impedance is derived as [25]

$$Z_{in} = \frac{1}{j\omega C_{gs,tot}} + j\omega(L_g + L_s) + \frac{g_{m1}L_s}{C_{gs,tot}} \quad (1)$$

The input matching BW is inherently limited since the equivalent circuit only results in a single  $LC$  resonance at the target frequency  $\omega_0$ .

As mentioned earlier,  $C_{gd1}$  is usually neglected in the input matching analysis. This is a reasonable assumption at low-GHz radio frequencies, especially in advanced technology nodes, since an explicit capacitor  $C_{ex}$  is often needed to increase  $L_s$  and decrease  $L_g$  [25] so that their values become realizable for on-chip or on-package integration. As a result, the ratio of  $C_{gd1}:C_{gs,tot} = C_{gd1}:(C_{gs1}+C_{ex})$  is quite small, and thus, ignoring  $C_{gd1}$  does not compromise the accuracy of the analysis.

However, it is a common practice *not* to add  $C_{ex}$  at mmWave, since the values of  $L_g$  and  $L_s$  can be directly accommodated on-chip. Removing  $C_{ex}$  can also achieve a better NF [25]. As such,  $C_{gd1}$  becomes comparable to  $C_{gs,tot}$ , and transistor-level simulations start to deviate from the prediction made by (1). In fact, including the parasitic capacitance of the routing to higher metal layers,  $C_{gd1}:C_{gs1}$  is only about 1:2.

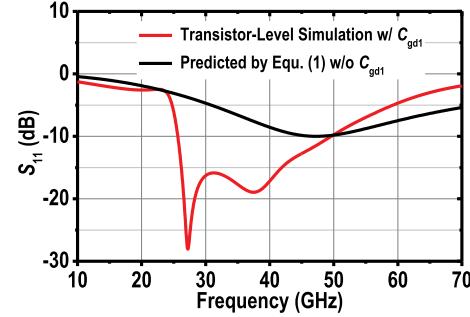


Fig. 2. Transistor-level  $S_{11}$  simulation including  $C_{gd1}$  [14] and the predicted  $S_{11}$  based on (1) without considering  $C_{gd1}$ .

Figure 2 shows the predicted  $S_{11}$  based on (1) without considering  $C_{gd1}$  and the transistor-level simulation including  $C_{gd1}$ , using the component values from our reference design [14]. A large discrepancy can be clearly seen in this comparison.

### B. Input Matching Equivalent Circuit Including the Gate-to-Drain Parasitic Capacitance of the Input Transistor

To bridge the gap between transistor-level simulations and hand calculations, we re-derive the input matching equivalent circuit to include  $C_{gd1}$ , as shown in Fig. 1(d). The equivalent circuit consists of three parallel branches in series with  $L_g$ . The impedances  $Z_A$  and  $Z_B$  in Fig. 1(d) are derived as

$$Z_A = \frac{\omega^2 L_s^2 + g_{m1} L_s r_{o1} / C_{gs1}}{r_{o1} + Z_{CAS} + j\omega L_s} \quad (2)$$

$$Z_B = \frac{r_{o1} + j\omega L_s}{r_{o1} + Z_{CAS} + j\omega L_s} Z_{CAS} \quad (3)$$

where  $Z_{CAS}$  is the impedance looking into the source terminal of the cascode transistor  $M_2$ . Including the channel-length modulation effect of  $M_2$ ,  $Z_{CAS}$  is given as

$$Z_{CAS} = \frac{r_{o2} + Z_{L1}}{1 + g_{m2}r_{o2}} \quad (4)$$

where  $Z_{L1}$  is the load impedance of the first stage.

In Fig. 1(d), the first parallel branch is the same as in the conventional input matching equivalent circuit when  $r_{o1}$  is ignored. The second branch models the feed-forward current through  $C_{gd1}$ . The third branch is a scaled version of the first branch with a coefficient  $\alpha$ , which is derived as

$$\alpha = \frac{\frac{g_{m1}Z_{CAS}}{j\omega C_{gs1}} - Z_{CAS} \frac{\frac{g_{m1}Z_{CAS}}{j\omega C_{gs1}} + j\omega L_s + \frac{g_{m1}L_s}{C_{gs1}}}{r_{o1} + j\omega L_s + Z_{CAS}}}{\frac{1}{j\omega C_{gd1}} + Z_{CAS} \frac{r_{o1} + j\omega L_s}{r_{o1} + j\omega L_s + Z_{CAS}}} \quad (5)$$

Although the expression of  $\alpha$  looks quite complicated,  $\alpha$  is essentially a function of the transistor intrinsic parameters (including  $g_{m1}$ ,  $C_{gs1}$ ,  $C_{gd1}$ , and  $r_{o1}$ ), which are frequency independent, and  $Z_{CAS}$ , which is frequency dependent. Our key observation is that  $Z_{CAS}$  and the resulting  $\alpha$  provide additional degrees of freedom to shape the input impedance  $Z_{in}$  over frequency, and thus, it becomes possible to synthesize dual-resonant  $S_{11}$  by controlling the frequency response of  $Z_{CAS}$ .

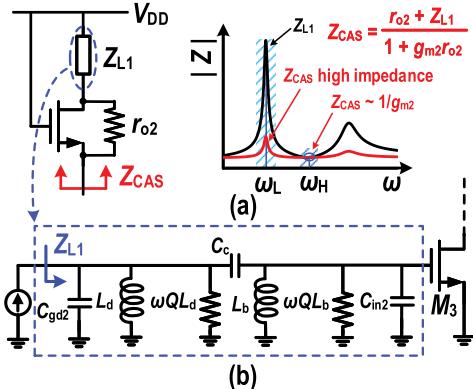


Fig. 3. (a)  $Z_{CAS}$  behaves as a high impedance at  $\omega_L$  but a low impedance at  $\omega_H$  by properly designing  $Z_{L1}$ . (b)  $Z_{L1}$  is the impedance looking into the inter-stage capacitively coupled resonator.

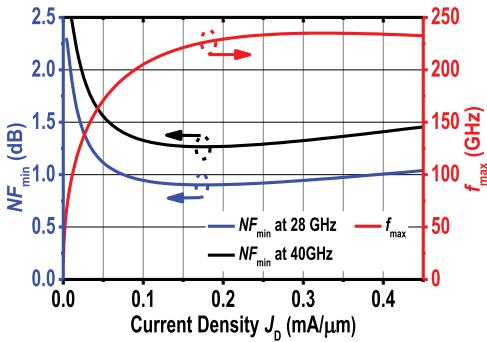


Fig. 4. Simulated  $NF_{min}$  and  $f_{max}$  versus current density  $J_D$  for a floating-body transistor in the GlobalFoundries 45-nm CMOS SOI process.

### C. Achieving Dual-Resonant $S_{11}$

In this sub-section, we present a systematic approach to realizing dual-resonant  $S_{11}$  at two target frequencies  $\omega_L$  and  $\omega_H$ , respectively. To validate our analysis, we also include numerical calculations and simulation results in this sub-section, based on our reference design [14] using the GlobalFoundries 45-nm CMOS SOI process. Our design target is  $\omega_L/2\pi = 27 \text{ GHz}$  and  $\omega_H/2\pi = 41 \text{ GHz}$ .

As mentioned earlier, our key idea is to differentiate the value of  $Z_{CAS}$  at the two  $S_{11}$  resonances, allowing us to optimize the two  $S_{11}$  resonances sequentially. Specifically,  $Z_{CAS}$  is implemented as a high impedance at  $\omega_L$  but a low impedance at  $\omega_H$  [Fig. 3(a)]. This can be achieved by properly designing  $Z_{L1}$ , which is the impedance looking into the capacitively coupled resonator between the first stage and second stage, as shown in Fig. 3(b). The detailed design procedure to arrive at the dual-resonant  $S_{11}$  is presented as follows.

*Step 1:* Determine the optimal biasing current density  $J_{D,\text{opt}}$  and the size  $(W/L)_1$  of the input transistor  $M_1$ .

This step is quite similar to other mmWave LNA designs presented in literature [16]. In our reference design, we first simulate the minimum NF ( $NF_{min}$ ) and  $f_{max}$  against the biasing current density  $J_D$  of a 45-nm floating-body NMOS transistor, as shown in Fig. 4. From the simulation, we choose  $J_{D,\text{opt}} = 0.2 \text{ mA}/\mu\text{m}$ , achieving a low  $NF_{min}$  and a high  $f_{max}$  simultaneously. Under this biasing condition, the maximum transistor size can be determined based on the DC power

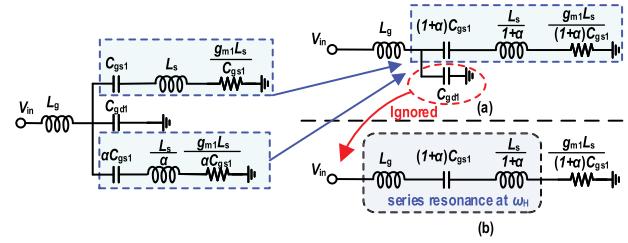


Fig. 5. The input matching equivalent circuit in Fig. 1(d) can be consolidated around  $\omega_H$ . (a) Including the second branch leads to better accuracy, while (b) removing the second branch simplifies the analysis.

budget. In our reference design, the width of  $M_1$  is chosen as  $55 \mu\text{m}$ , resulting in  $11 \text{ mA}$  DC current.

Note that once the biasing condition and the size of  $M_1$  are chosen, its intrinsic transistor parameters, i.e.,  $g_{m1}$ ,  $r_{o1}$ ,  $C_{gs1}$ , and  $C_{gd1}$ , are determined. The equations to extract these parameters from the simulated or measured Y-parameters can be found in [26].

#### Step 2: Synthesize the High-Frequency $S_{11}$ Resonance

The goal of this step is to achieve the high-frequency  $S_{11}$  resonance at the target frequency  $\omega_H$  and to determine the required  $(W/L)_2$ ,  $L_s$ , and  $L_g$ .

Since  $Z_{L1}$  is designed to be a low impedance at  $\omega_H$  based on our assumption [Fig. 3(a)],  $Z_{CAS}$  can be approximated as

$$Z_{L1} \approx 0 \Rightarrow Z_{CAS} \approx \frac{1}{j\omega C_{gd1}} \text{ at } \omega_H \quad (6)$$

where  $g_{m2}$  is the transconductance of the cascode transistor  $M_2$ . The output impedance of the input transistor  $r_{o1}$  has little effect on the coefficient  $\alpha$  at  $\omega_H$  as  $1/g_{m2}$  is much smaller than  $r_{o1}$ . Ignoring  $r_{o1}$ , the expression of  $\alpha$  in (5) can be simplified as

$$\alpha \approx \frac{g_{m1}Z_{CAS}}{j\omega C_{gs1}} / \left( \frac{1}{j\omega C_{gd1}} + Z_{CAS} \right) \approx \frac{g_{m1}/g_{m2}}{C_{gs1}/C_{gd1}} \quad (7)$$

From (7),  $\alpha$  is purely real around  $\omega_H$ , so we can consolidate the first and third branches in Fig. 1(d) as a single branch. A low  $Z_{CAS}$  also leads to a low impedance for  $Z_B$  based on (3) and thus,  $Z_B$  in the second branch can be ignored without compromising the accuracy. The input matching equivalent circuit in Fig. 1(d) can then be simplified around  $\omega_H$ , as shown in Fig. 5(a).

Within the frequency of interest of our reference design (25–50 GHz), the impedance of the second branch  $1/j\omega C_{gd1}$  is at least  $1.8 \times$  higher than that of the first branch. To simplify the input impedance analysis around  $\omega_H$  and develop design insights, we temporarily ignore the second branch, as shown in Fig. 5(b). In this case, the input impedance presents a single RLC series resonance, as

$$Z_{in} = j\omega L_g + \frac{1}{j\omega C_\alpha} + j\omega L_\alpha + R_\alpha \quad (8)$$

where

$$L_\alpha = \frac{L_s}{1 + \alpha} \quad (9)$$

$$C_\alpha = (1 + \alpha)C_{gs1} \quad (10)$$

$$R_\alpha = \frac{g_{m1}L_s}{(1 + \alpha)C_{gs1}} \quad (11)$$

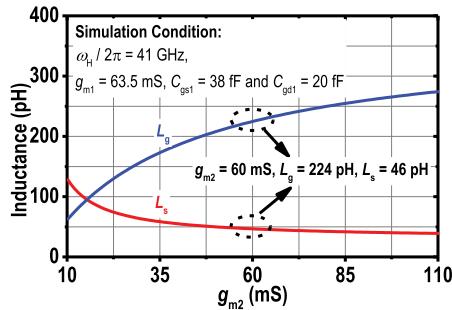


Fig. 6. Calculated  $L_s$  and  $L_g$  against  $g_{m2}$  based on (12) and (13) for our reference LNA design assuming  $\omega_H/2\pi = 41$  GHz.

Note that the equivalent circuit in Fig. 5(b) is almost identical to that of the conventional common-source with inductive degeneration topology, except the impedances of  $C_{gs}$ ,  $L_s$ , and  $g_m L_s / C_{gs}$  are scaled by a factor of  $(1+\alpha)$ . To realize impedance matching,  $R_\alpha$  should be set to be  $R_s$ , and the resonant frequency should be set to be  $\omega_H$ . Based on these two conditions and the simplified expression of  $\alpha$  in (7), the unknown inductors  $L_s$  and  $L_g$  can be solved, as

$$L_s = \frac{R_s C_{gs1}}{g_{m1}} (1 + \alpha) \approx R_s \left( \frac{C_{gd1}}{g_{m2}} + \frac{C_{gs1}}{g_{m1}} \right) \quad (12)$$

$$L_g = \frac{1/\omega_H^2}{(1 + \alpha) C_{gs1}} - \frac{L_s}{(1 + \alpha)} \approx \frac{(1 - L_s C_{gs1} \omega_H^2) C_{gs1} g_{m2}}{C_{gs1} \omega_H^2 (g_{m2} C_{gs1} + g_{m1} C_{gd1})} \quad (13)$$

For a target resonant frequency  $\omega_H$ ,  $L_g$  and  $L_s$  are only a function of  $g_{m2}$ , since  $g_{m1}$ ,  $C_{gs1}$ , and  $C_{gd1}$  are already determined in the Step 1. To illustrate this relationship, we plot the required  $L_s$  and  $L_g$  against  $g_{m2}$  based on (12) and (13) in Fig. 6, assuming  $\omega_H/2\pi = 41$  GHz. In our reference LNA design,  $g_{m2}$  is chosen as 60 mS, which is very close to  $g_{m1}$ .

Depending on the target operating frequency, ignoring the second branch as in Fig. 5(b) may lead to compromised accuracy, especially in higher mmWave bands where the impedance of the second branch, i.e.,  $1/\omega C_{gd1}$ , becomes lower. We then perform a more rigorous analysis by including the second branch as in Fig. 5(a). In this case,  $Z_{in}$  is given as

$$Z_{in} = j\omega L_g + \frac{1}{j\omega C_{gd1}} \left| \left( \frac{1}{j\omega C_\alpha} + j\omega L_\alpha + R_\alpha \right) \right| \quad (14)$$

The real and imaginary parts of  $Z_{in}$  are:

$$\text{Re}\{Z_{in}\} = \frac{R_\alpha / (\omega C_{gd1})^2}{R_\alpha^2 + (\omega L_\alpha - 1/\omega C_\alpha - 1/\omega C_{gd1})^2} \quad (15)$$

$$\begin{aligned} \text{Im}\{Z_{in}\} = & \omega L_g + \left[ \frac{-R_\alpha^2}{\omega C_{gd1}} + \frac{2L_\alpha}{\omega C_\alpha C_{gd1}} - \frac{\omega L_\alpha^2}{C_{gd1}} \right. \\ & \left. - \frac{1}{\omega^3 C_\alpha^2 C_{gd1}} - \frac{1}{\omega^3 C_\alpha C_{gd1}^2} + \frac{L_\alpha}{\omega C_{gd1}^2} \right] \\ & \times [R_\alpha^2 + (\omega L_\alpha - \frac{1}{\omega C_\alpha} - \frac{1}{\omega C_{gd1}})^2]^{-1} \quad (16) \end{aligned}$$

The required  $L_s$  and  $L_g$  to realize the input matching at  $\omega_H$  can be analytically derived by setting (15) to be  $R_s$  and (16) to be zero, respectively. However, the calculations can be quite complex. Instead, we can rely on numerical solvers to find

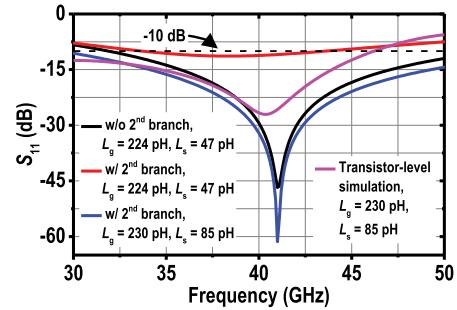


Fig. 7. Predicted  $S_{11}$  around  $\omega_H$  based on the equivalent circuit in Fig. 5 and the transistor-level simulation of our reference LNA design.

$L_s$  and  $L_g$ . Similar as shown in Fig. 6,  $L_s$  and  $L_g$  are only a function of  $g_{m2}$ .

Based on the simplified schematic [Fig. 5(b)] and the more rigorous schematic [Fig. 5(a)], we apply the analyses described above to guide the design of our reference LNA and determine the required  $L_s$  and  $L_g$ . First, we choose the design point according to the simplified schematic and (12)–(13). The predicted  $S_{11}$  is plotted in Fig. 7 (the black curve). As we expected, a deep  $S_{11}$  resonance is realized at the desired frequency of 41 GHz. Next, we plot the  $S_{11}$  using the same  $L_g$  and  $L_s$  but including the second branch (the red curve in Fig. 7). The resonant frequency down-shifted from 41 GHz to 38.3 GHz, and the depth of  $S_{11}$  becomes worse. This aligns with the trade-off we mentioned earlier – the hand calculations and design equations do get simplified when we use the simplified schematic, at the cost of compromised accuracy. To restore a deep  $S_{11}$  notch at the target frequency, additional CAD optimizations are needed to fine adjust the values of  $L_g$  and  $L_s$ . Still, it is always helpful to use the simplest possible analysis to arrive at an initial estimation of circuit parameters and then refine them with optimizations in practical designs.

Alternatively, we can include the second branch in the analysis from the beginning [Fig. 5(a)], if the goal is to achieve an accurate calculation of the design parameters. When we start with the equivalent circuit in Fig. 5(a), the predicted  $S_{11}$  (the blue curve in Fig. 7) is very close to the transistor-level simulation (the pink curve) in terms of the frequency and depth of  $S_{11}$ . The slight mismatch is due to the finite  $Z_{L1}$  in practice, which we have assumed to be zero to simplify our analysis, as shown in (6). Nevertheless, using the equivalent circuit in Fig. 5(a) requires more exhaustive calculations to find the desired  $L_s$  and  $L_g$  based on (15) and (16).

### Step 3: Synthesize the Low-Frequency $S_{11}$ Resonance

Up to this point, we have determined the parameters of the input transistor  $M_1$ , the parameters of the cascode transistor  $M_2$ , the gate inductor  $L_g$ , and the source degeneration inductor  $L_s$ . The only undecided circuit parameters in the first stage are the passive elements in the inter-stage capacitively coupled resonator, i.e.,  $C_c$ ,  $L_d$ , and  $L_b$  in Fig. 1(c) and Fig. 3(b). Their component values determine both the input impedance ( $Z_{L1}$ ) and the transimpedance gain of the capacitively coupled resonator. The  $Q$  in Fig. 3(b) models the quality factor of the inductors, and  $C_{in2}$  models the input capacitance of the second stage.

To realize the desired  $S_{11}$  resonance at  $\omega_L$ , the required  $Z_{L1}$  can be solved based on the equivalent circuit in Fig. 1(d).

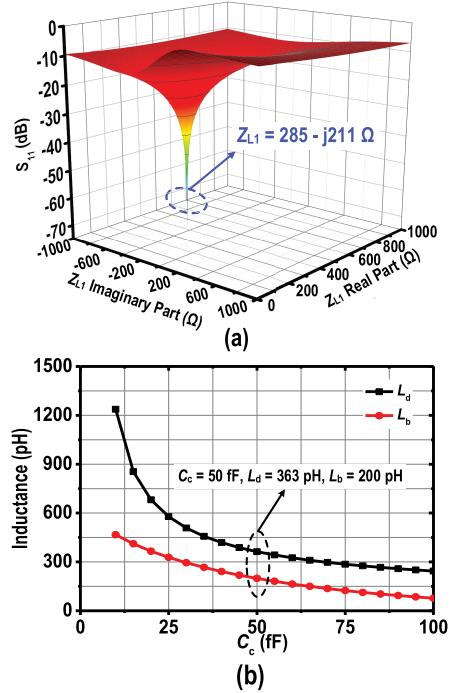


Fig. 8. (a) Calculated  $S_{11}$  at  $\omega_L$  against the real and imaginary parts of  $Z_{L1}$  based on the input matching equivalent circuit in Fig. 1(d). (b) Calculated  $L_d$  and  $L_b$  against  $C_c$  to realize the optimum  $Z_{L1}$ .

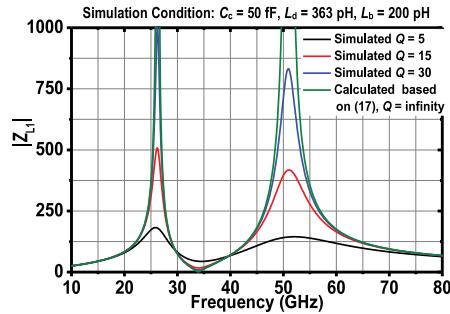


Fig. 9.  $|Z_{L1}|$  against frequency for different  $Q$ . The two parallel resonant frequencies  $\omega_{p1,2}$  and the series resonant frequency  $\omega_s$  are shown in (18) and (19).

Using our reference LNA design as an example, we plot the  $S_{11}$  against the real and imaginary parts of  $Z_{L1}$  in Fig. 8(a), assuming  $\omega_L/2\pi = 27$  GHz. Based on the optimum  $Z_{L1}$ , which is  $285 - j211 \Omega$  for our reference design, we can get a family of solutions for  $L_d$ ,  $L_b$ , and  $C_c$ , as plotted in Fig. 8(b).

In addition to achieving the desired  $S_{11}$  resonance, the selection of  $L_d$ ,  $L_b$ , and  $C_c$  is also crucial in shaping the voltage gain of the first stage. This is because a capacitively coupled resonator can realize two parallel resonances and one series

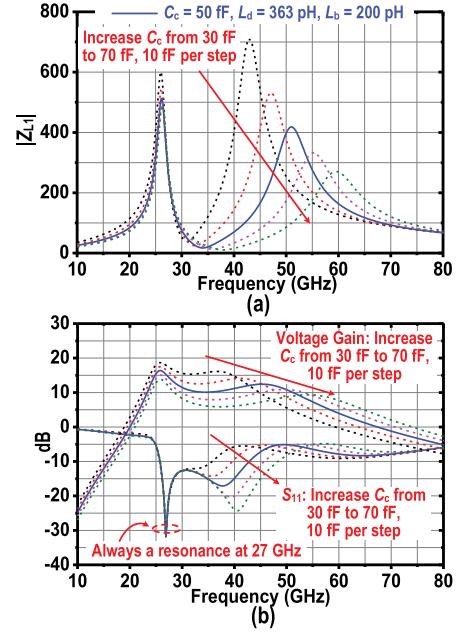


Fig. 10. (a) Simulated  $Z_{L1}$  magnitude versus different  $(C_c, L_d, L_b)$  solutions. (b) Simulated first-stage voltage gain and  $S_{11}$  versus different  $(C_c, L_d, L_b)$  solutions.

resonance for its input impedance [27]. If we assume  $Q$  is infinite,  $Z_{L1}$  can be expressed as (17), shown at the bottom of this page. By setting the denominator and numerator of (17) to be zero, the two parallel resonant frequencies  $\omega_{p1,2}$  and the series resonant frequency  $\omega_s$  can be derived as (18) and (19), shown at the bottom of this page, respectively. Note that  $Z_{L1}$  can no longer reach infinity or zero with a finite  $Q$ , as illustrated in Fig. 9. Due to the parallel and series resonances, the transimpedance gain and the resulting first-stage LNA voltage gain present two peaks and one dip in between [Fig. 10(b)]. We can see that as  $C_c$  becomes larger, the gain difference at  $\omega_{p1}$  and  $\omega_s$  also gets larger, and the gain at  $\omega_{p2}$  becomes lower. Although this gain fluctuation can be compensated using the staggered tuning technique [10], to simplify the network design of the following stages, we only consider  $(C_c, L_d, L_b)$  solutions with a  $<6$ -dB gain ripple, so that we can assign  $\omega_{p1}$  as the lower 3-dB cutoff frequency of the following stages to reduce the gain ripple to be  $<3$  dB. This sets an upper bound for  $C_c$ . On the other hand, a smaller  $C_c$  brings  $\omega_{p1,2}$  closer; as a result, we can no longer realize a low impedance for  $Z_{L1}$  at  $\omega_H$  [Fig. 10(a)], and the high-frequency  $S_{11}$  resonance disappears [Fig. 10(b)], setting a lower bound for  $C_c$ . Considering this trade-off, we choose

$$Z_{L1} = \frac{\omega L_d [\omega^2 (C_c + C_{in2}) L_b - 1]}{\omega^4 L_d L_b (C_{gd2} C_c + C_{gd2} C_{in2} + C_c C_{in2}) - \omega^2 [L_d (C_{gd2} + C_c) + L_b (C_c + C_{in2})] + 1} \quad (17)$$

$$\omega_{p1,2}^2 = \frac{L_d (C_{gd2} + C_c) + L_b (C_c + C_{in2}) \mp \sqrt{[L_d (C_{gd2} + C_c) + L_b (C_c + C_{in2})]^2 - 4 L_d L_b (C_{gd2} C_c + C_{gd2} C_{in2} + C_c C_{in2})}}{2 L_d L_b (C_{gd2} C_c + C_{gd2} C_{in2} + C_c C_{in2})} \quad (18)$$

$$\omega_s^2 = \frac{1}{L_b (C_c + C_{in2})} \quad (19)$$

$C_c$  to be 50 fF in our reference LNA design, yielding  $L_d = 363$  pH and  $L_b = 200$  pH. The simulated voltage gain peaks at 25.8 GHz and at 45.2 GHz, respectively.

#### D. Noise Analysis of the Proposed Dual-Resonant $S_{11}$ Technique

For a two-stage cascode common-source with inductive degeneration LNA, its noise is dominated by the channel noises of three transistors – the input transistor  $M_1$ , the cascode transistor  $M_2$ , and the second-stage common-source transistor  $M_3$ . For  $M_1$ , only half of its noise current flows to the output when the input matching is realized [25]. Thus, the noise factor of  $M_1$  can be approximated as

$$F_1 \approx \gamma g_{d01} R_s \left( \frac{\omega}{\omega_T} \right)^2 \quad (20)$$

where  $\gamma$  is the excess noise coefficient,  $g_{d01}$  is the zero-bias conductance of  $M_1$ ,  $R_s$  is the source impedance, and  $\omega_T$  is the angular cutoff frequency. Since the proposed dual-resonant  $S_{11}$  technique ensures a good input matching over a wide BW,  $F_1$  is similar to that of a typical narrowband cascode common-source with inductive degeneration LNA.

For the cascode transistor  $M_2$ , its noise is typically ignored in low-GHz LNA analysis, because it is degenerated by the output impedance of  $M_1$ . However, the noise of  $M_2$  becomes more pronounced as frequency increases. As shown in [28], [29], the noise factor of the  $M_2$  can be approximated as

$$F_2 \approx \gamma g_{d02} R_s \left( \frac{\omega^2 C_x}{\omega_T g_{m2}} \right)^2 \quad (21)$$

where  $g_{d02}$  is the zero-bias conductance of  $M_2$ ,  $C_x$  is the parasitic capacitance at the source of  $M_2$ . As the frequency increases,  $F_2$  becomes larger due to  $C_x$ . Although the cascode topology provides better reverse isolation, it does have a larger NF than the common-source LNA, especially in high mmWave bands.

For the second-stage common-source transistor  $M_3$ , its noise factor is attenuated by the first-stage voltage gain  $A_{V1}$  [25], as

$$F_3 \approx \frac{\gamma g_{d03}}{R_s g_{m3}^2 A_{V1}^2} \quad (22)$$

$F_3$  manifests itself when  $A_{V1}$  is low, which happens around the series resonant frequency of the inter-stage network  $\omega_s$ . As a result, a slight noise penalty is expected around  $\omega_s$ .

In summary, with the proposed dual-resonant  $S_{11}$  technique, we anticipate the NF to be comparable to that of a classic narrowband cascode common-source with inductive degeneration LNA, except for the frequency around  $\omega_s$ , where a slight NF degradation is expected due to the increased noise contribution of  $M_3$ . A generally increased NF over frequency is also expected due to the  $M_2$  noise becoming more significant as frequency goes higher. A detailed NF simulation including the noise matching and noise summary of our LNA prototype is further elaborated in Sec IV.

#### E. Summary of the Dual-Resonant $S_{11}$ Design Flow

In summary, the design procedure to achieve dual-resonant  $S_{11}$  consists of three steps, as shown in Fig. 11. First,

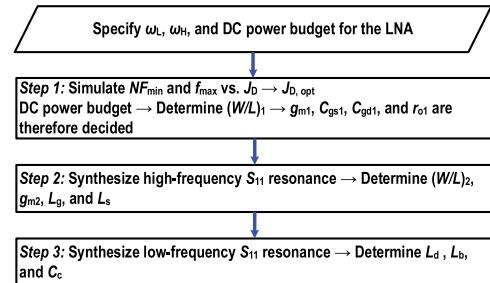


Fig. 11. Design flowchart to realize dual-resonant  $S_{11}$ .

biasing condition and device size of the input transistor are determined based on the DC power budget and simulated  $NF_{min}$  and  $f_{max}$ , as illustrated in Fig. 4. The intrinsic parameters of the input transistor are also decided after this step. Second, the biasing and device size of the cascode transistor and the values of inductors  $L_g$  and  $L_s$  are determined based on the target high-frequency  $S_{11}$  resonance. Initial parameter estimation can be derived using the simplified schematic in Fig. 5(b) and (8)–(13). Alternatively, a more accurate calculation can be performed using the schematic in Fig. 5(a) and equations (14)–(16). Third, the values of  $C_c$ ,  $L_d$ , and  $L_b$  are determined based on the target low-frequency  $S_{11}$  resonance. The design equations and trade-offs are summarized in Fig. 8, Fig. 10, and (17)–(19).

Note that the analysis described above ignores the parasitic capacitances of the inductors. This is because different inductor layout styles (i.e., different numbers of turns, radii, metal stack options, etc.) may end up with the same inductance but very different parasitic capacitances; ignoring all parasitic capacitances allows us to simplify the analysis without losing the design intuition and to stay generic without worrying about layout-dependent effects. Once the initial values of the inductors are decided according to the proposed design flow, they can be laid out based on the chip floorplan, and their parasitic capacitances can be extracted and added back to the equivalent input matching schematic to re-derive a new set of parameters. The final components can be arrived at after a few iterations. Meanwhile, CAD optimizations can be performed to optimize the component values.

We'd like to emphasize that our key idea is to leverage the intrinsic gate-to-drain parasitic capacitance of the input transistor  $C_{gd1}$  and the frequency-dependent behavior of the first-stage load impedance  $Z_{L1}$ , which are often overlooked in the conventional input matching analysis. The presented approach only requires component value updates without the need to modify the cascode common-source with inductive degeneration LNA topology. As such, it introduces minimal design and area overhead when transforming an existing narrowband mmWave LNA design into a broadband implementation.

### III. TRANSFORMER-BASED SECOND-ORDER BANDPASS OUTPUT NETWORK

The effective BW of an LNA is defined as the intersection of the  $-10$ -dB  $S_{11}$  BW and the  $3$ -dB gain BW. As such, achieving a flat gain within the frequency of interest is equally important as expanding the input matching BW for wideband

LNAs. Although the inter-stage capacitively coupled resonator provides the desired  $Z_{L1}$  over frequency to realize a dual-resonant  $S_{11}$ , it inevitably results in a gain dip in the middle of the BW. Therefore, the design goal of the second stage is to compensate for the first-stage gain dip and in turn, realize a flat overall gain across the operating frequency. When using a cascode amplifier as the output stage, it can be generally modeled as a high-impedance current source in parallel with the device parasitic capacitance. Therefore, the gain shape of the second stage is dominated by its output network.

A popular design methodology to realize broadband networks is to synthesize a high-order bandpass response and include the parasitic capacitance as part of the network [30], [31], [32]. High-order bandpass networks can also enable a few useful functionalities, such as providing low-impedance DC feeds [33], [34], [35], [36] and impedance up- or down-transformation [37], [38]. In this paper, we focus on second-order bandpass networks and their miniaturization into a transformer.

A canonical second-order bandpass network is shown in Fig. 12, which can be transformed from a low-pass prototype [39]. In particular, the coefficients  $g_1$  and  $g_2$  set the desired network response,  $\omega_0$  is the center frequency, which is the geometric mean of the lower cutoff frequency  $\omega_1$  and the higher cutoff frequency  $\omega_2$ , and  $\Delta$  is the fractional BW. As the circuit model of a physical on-chip transformer contains two inductors – a series leakage inductor and a shunt magnetization inductor [40], it is possible to miniaturize a canonical second-order bandpass network into a single transformer footprint, achieving a size reduction of roughly  $2\times$ .

To compensate for the gain dip of the first stage,  $\omega_1$  is chosen to be the same as the first parallel resonant frequency of the inter-stage network  $\omega_{p1}$ . This ensures that the first gain peak is effectively attenuated by 3 dB. Since the component values of the inter-stage network (i.e.,  $C_c$ ,  $L_d$ , and  $L_b$ ) are chosen to ensure the gain difference between the first-stage peak and dip to be  $<6$  dB, the overall two-stage gain variation remains within 3 dB. Additionally, since the second gain peak of the first stage is usually insignificant due to the degraded  $Q$  at higher frequencies, the higher cut-off frequency of the output network  $\omega_2$  is chosen as high as possible to extend the overall LNA gain BW.

In this section, we present two network synthesis methods to realize such network miniaturization and discuss their pros and cons. After showing the detailed synthesis procedure with design equations, we present a design example to illustrate the proposed design procedure.

#### A. Miniaturizing a Second-Order Bandpass Network Into a Single Transformer Footprint Using One-Step Norton Transformation

Starting with a canonical second-order bandpass network shown in Fig. 13, we first perform an inductive Norton transformation on the shunt-series inductors ( $L_1$  and  $L_2$ ). Norton transformation is a powerful technique in matching network designs to topologically swap a series inductor with a shunt inductor while maintaining the BW of the network. Here, the

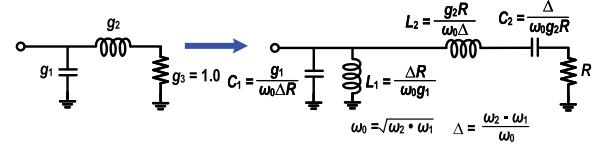


Fig. 12. Transforming a normalized second-order low-pass prototype to a bandpass network.

inductive Norton transformation ratio  $n_L$  can be found as [41]

$$n_L = \frac{L_1 + L_2}{L_1} \quad (23)$$

Next, we insert an ideal transformer with a turn ratio of  $k:n$  between the shunt inductor and the series capacitor. The ideal transformer and the two inductors ( $L_3$  and  $L_4$ ) can be replaced by a physical on-chip transformer if the following condition is satisfied, as

$$\frac{L_3}{L_4} = \frac{L_2}{L_1} = \frac{1 - k^2}{k^2} = \frac{g_1 g_2}{\Delta^2} \quad (24)$$

From (24), it can be seen that the required transformer magnetic coupling coefficient  $k$  is determined once the network prototype (indicated by the coefficients  $g_1$  and  $g_2$ ) and the fractional BW  $\Delta$  are given. This is an important conclusion, which is further elaborated in Sec III-B.

The device parasitic capacitance  $C_{dev}$  and the transformer parasitic capacitance of the primary winding  $C_{par1}$  can be absorbed by the shunt capacitor  $C_3$ . However, one critical drawback of this approach is that there is no budget for the transformer parasitic capacitance of the secondary winding  $C_{par2}$ . As such, the frequency response of a practical transformer-based implementation would deviate from that of the original second-order bandpass network even when the network loss is not taken into consideration. Such a deviation would become more significant as the frequency gets higher.

To address this drawback, we present another network miniaturization approach based on two Norton transformations in the next sub-section.

#### B. Miniaturizing a Second-Order Bandpass Network Into a Single Transformer Footprint Using Two-Step Norton Transformation

As shown in Fig. 14, we first split the capacitor  $C_2$  into two series capacitors  $C_3$  and  $C_{2a}$  and then perform a series-to-parallel conversion on the capacitor  $C_{2a}$  and the load resistor  $R$ . The quality factor of this series-to-parallel conversion  $Q_s$  is calculated as

$$Q_s = \frac{1}{\omega_0 C_{2a} R} \quad (25)$$

Note that there exists an upper bound for  $Q_s$  since  $C_{2a}$  has to be greater than  $C_2$ . This upper bound is the loaded quality factor of the series section of the bandpass prototype and is given as

$$Q_s < Q_{\text{prototype, series}} = \frac{1}{\omega_0 C_2 R} = \frac{g_2}{\Delta} \quad (26)$$

Next, we apply two Norton transformations on the series-shunt capacitors ( $C_3$  and  $C_4$ ) and the shunt-series inductors ( $L_1$  and  $L_2$ ), respectively.  $n_c$  is the capacitive Norton

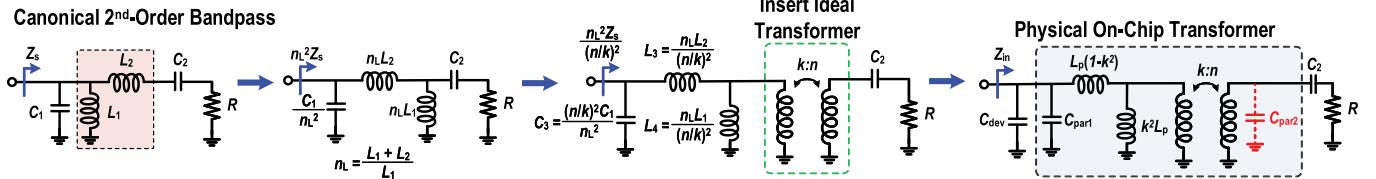


Fig. 13. Converting a canonical second-order bandpass network to a transformer-based network using one-step Norton transformation.

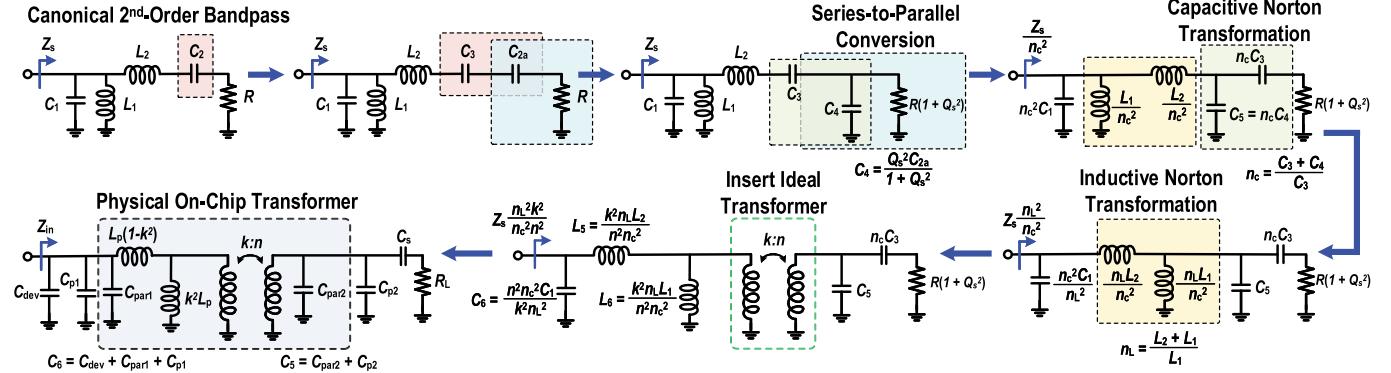


Fig. 14. Converting a canonical second-order bandpass network to a transformer-based network using two-step Norton transformation.

transformation ratio and  $n_L$  is the inductive Norton transformation ratio. Since the capacitive Norton transformation down-converts the impedance on its left, whereas the inductive Norton transformation up-converts the impedance, the input impedance  $Z_{in}$  is scaled by a factor of  $n_L^2/n_c^2$  after the two Norton transformations.

Finally, we insert an ideal transformer with a turn ratio of  $k:n$  between the shunt inductor and the shunt capacitor  $C_5$ . If the following two conditions are met:

$$L_5 = \frac{k^2 n_L L_2}{n^2 n_c^2} = L_p(1 - k^2) \quad (27)$$

$$L_6 = \frac{k^2 n_L L_1}{n^2 n_c^2} = L_p k^2 \quad (28)$$

the network highlighted in light blue can be implemented as a physical transformer with an actual turn ratio of  $1:n$ , a magnetic coupling coefficient of  $k$ , and a primary-winding self-inductance of  $L_p$ . The required  $k$  can be found as

$$k = \sqrt{\frac{\Delta^2}{g_1 g_2 + \Delta^2}} \quad (29)$$

Compared to the network synthesis approach presented in Sec III-A, the additional capacitive Norton transformation is particularly important as it provides the capacitance budget to absorb the transformer secondary-winding parasitic capacitance  $C_{par2}$ . On the primary side, the shunt capacitor  $C_5$  includes the device parasitic capacitance  $C_{dev}$ , the transformer primary-winding parasitic capacitance  $C_{par1}$ , and if needed, an explicit capacitor  $C_{p1}$ .

It turns out that the series-to-parallel conversion quality factor  $Q_s$  is a crucial design parameter. Once the center frequency  $\omega_0$ , fractional BW  $\Delta$ , and network prototype (coefficients  $g_1$  and  $g_2$ ) are known, all the circuit parameters (except for  $k$ ) in

Fig. 14 can be derived analytically as a function of  $Q_s$ :

$$L_p = \frac{(g_1 g_2 + \Delta^2) R_L}{\omega_0 g_1 n^2 \Delta (1 + Q_s^2) [1 + \frac{Q_s}{1+Q_s^2} (g_2/\Delta - Q_s)]^2} \quad (30)$$

$$C_5 = C_{par2} + C_{p2} = \frac{Q_s}{\omega_0 R_L} \times [1 + \frac{Q_s}{1+Q_s^2} (g_2/\Delta - Q_s)] \quad (31)$$

$$C_6 = C_{dev} + C_{par1} + C_{p1} = \frac{n^2 \Delta g_1 (1 + Q_s^2)}{\omega_0 R_L (g_1 g_2 + \Delta^2)} \times [1 + \frac{Q_s}{1+Q_s^2} (g_2/\Delta - Q_s)]^2 \quad (32)$$

$$C_s = \frac{1 + Q_s^2}{\omega_0 R_L (g_2/\Delta - Q_s)} \times [1 + \frac{Q_s}{1+Q_s^2} (g_2/\Delta - Q_s)] \quad (33)$$

Here,  $R_L$  is the load impedance of the network, which is single-ended  $50 \Omega$  or differential  $100 \Omega$  for a stand-alone LNA test chip, or models the input impedance of the following stage in a complete RX frontend.

The input impedance of the network  $Z_{in}$  is also a function of  $Q_s$ , as

$$Z_{in} = \frac{R_L}{n^2 (1 + Q_s^2) [1 + \frac{Q_s}{1+Q_s^2} (\frac{g_2}{\Delta} - Q_s)]^2} \times \left( \frac{g_1 g_2}{\Delta^2} + 1 \right) \quad (34)$$

A larger  $Z_{in}$  is generally preferred as it leads to a higher transimpedance gain of the output network.

1) *Summary of the Design Procedure:* With all the design equations derived, the design procedure to miniaturize a canonical second-order bandpass network into a single transformer footprint is summarized as follows.

First, given the target overall LNA gain and BW, once the design of the first stage is ready by following the dual-resonant input matching design procedure presented in Sec II, the frequency response of the output network, i.e., its  $\omega_0$ ,  $\omega_1$ ,  $\Delta$ , and maximum tolerable in-band ripple (indicated by  $g_1$  and  $g_2$ ) can be decided.

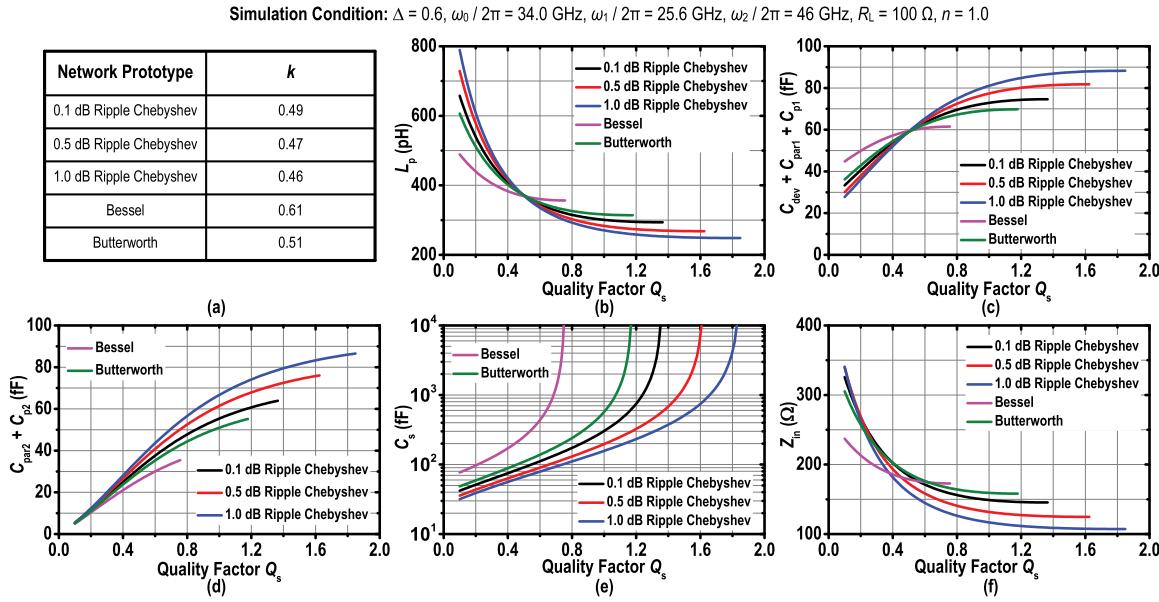


Fig. 15. Design space for different second-order bandpass network prototypes with calculated (a)  $k$ , (b)  $L_p$  vs.  $Q_s$ , (c)  $(C_{\text{par1}} + C_{\text{dev}} + C_{\text{p1}})$  vs.  $Q_s$ , (d)  $(C_{\text{par2}} + C_{\text{p2}})$  vs.  $Q_s$ , (e)  $C_s$  vs.  $Q_s$ , and (f)  $Z_{\text{in}}$  vs.  $Q_s$ .

Second, the required  $k$  can be calculated based on (29). It can be seen that  $k$  increases monotonically as the desired fractional BW  $\Delta$  becomes larger. For on-chip transformers, there typically exists an upper bound for the achievable  $k$ , which in turn, sets the upper limit of  $\Delta$  that can be practically realized. Additionally, the design curves for  $L_p$ ,  $(C_{\text{dev}} + C_{\text{par1}} + C_{\text{p1}})$ ,  $(C_{\text{par2}} + C_{\text{p2}})$ ,  $C_s$ , and  $Z_{\text{in}}$  can be plotted as a function of  $Q_s$  based on (30)–(34). A lower  $Q_s$  is generally preferred as it leads to smaller parasitic capacitances, which in turn, results in a larger  $Z_{\text{in}}$  and larger  $\Delta$ .

Finally, a physical on-chip transformer needs to be constructed to satisfy all the parameters. If these design parameters do not result in a practically achievable physical transformer, then we need to either increase  $Q_s$  to have more budget for the parasitic capacitances or relax the network specifications such as BW or in-band ripple. Additional EM optimizations may be required to fine-tune the transformer geometry and the values of the passive components.

We'd like to point out that the proposed network synthesis approach is fundamentally different from conventional transformer-based networks with two shunt capacitors at the primary and secondary windings [42]. From the network topology perspective, our approach has a series capacitor at the secondary winding, whereas the conventional designs always have a shunt capacitor at the secondary winding. This is because the starting points of the proposed network synthesis approach and prior reported transformer-based networks are quite different. Conventional broadband transformer-based networks are also known as magnetically coupled resonators. Although they can realize a dual-peaking frequency response, a critical limitation is that they cannot decouple the resonant frequencies and the gain ripple. In other words, having the two peaking frequencies more spread out inevitably leads to a larger gain ripple in between [43]. On the contrary, our approach starts with a canonical second-order bandpass network, consisting of a shunt  $LC$  branch and a series  $LC$  branch. As a result, the bandwidth and gain shape are completely decoupled, meaning that we can synthesize arbitrary frequency responses (such

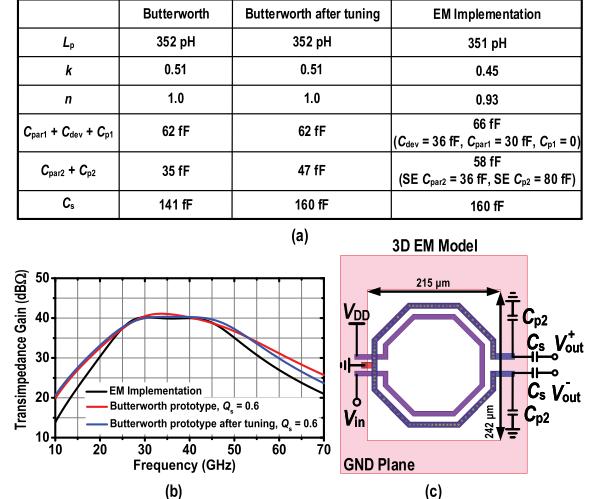


Fig. 16. (a) Design parameters based on Fig. 15 and after tuning to accommodate the network loss. The transformer parameters derived from the 3-D EM simulation are also listed in the table. (b) Simulated network transimpedance gain over frequency. (c) 3-D EM model of the transformer.

as Butterworth, Chebyshev, Bessel, etc.) following the classic “Insertion Loss” method of filter design [39].

2) *A Design Example*: In this sub-section, we use our reference LNA design as an example to illustrate the design procedure. The target center frequency  $\omega_0/2\pi$  is 34 GHz, the fractional BW  $\Delta$  is 60%, the differential load impedance  $R_L$  is 100  $\Omega$ , and the transformer turn ratio  $n$  is 1. For different second-order network prototypes, the required  $k$  is listed in Fig. 15 (a), and the design curves for  $L_p$ ,  $(C_{\text{dev}} + C_{\text{par1}} + C_{\text{p1}})$ ,  $(C_{\text{par2}} + C_{\text{p2}})$ , and  $C_s$  against  $Q_s$  are plotted in Fig. 15(b)–(e). Note that there exists an upper bound of  $Q_s$  introduced in the series-to-parallel conversion, as indicated in (26). The input impedance  $Z_{\text{in}}$  is also plotted in Fig. 15(f), showing a monotonic decrease with respect to  $Q_s$ .

For our reference LNA design, we choose Butterworth as the desired network response and  $Q_s = 0.6$ . Based on the design curves in Fig. 15, the required transformer parameters and the network transimpedance gain over frequency are shown in

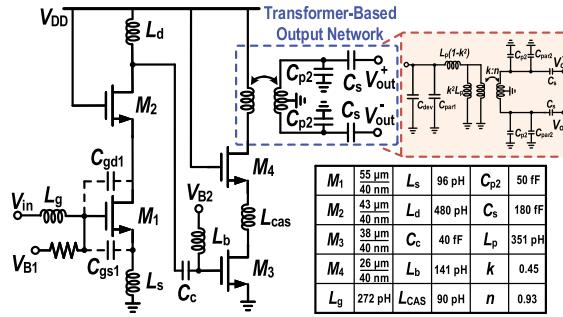


Fig. 17. LNA schematic with component values.

Fig. 16(a) and (b), respectively. Since practical transformers are lossy with a quality factor  $\sim 15$  in our target frequency bands, the network transimpedance gain starts to deviate from the ideal maximally flat response. We slightly fine-tune the shunt capacitance  $C_{p2}$  and series capacitance  $C_s$  on the secondary side of the transformer so that its in-band ripple is again minimized when the loss is taken into consideration [the blue curve in Fig. 16(b)]. Next, we implement a physical transformer with the goal of satisfying all the design parameters listed in Fig. 16(a). The 3-D EM model of the transformer and its dimension are shown in Fig. 16(c). Based on the EM-simulated S-Parameters, its  $k$ ,  $n$ ,  $L_p$ ,  $C_{\text{par1}}$ , and  $C_{\text{par2}}$  are extracted and are reasonably close to our design target. The transimpedance gain based on the 3-D EM model [the black curve in Fig. 16(b)] is also very close to our desired frequency response.

#### IV. A 27–46-GHz LNA IMPLEMENTATION EXAMPLE

Following the design procedure to achieve dual-resonant input matching in Sec II-B and the network synthesis approach to achieve broadband yet miniaturized output network in Sec III-B, a proof-of-concept 27–46-GHz broadband LNA is presented in this section as an implementation example. It is fabricated in the GlobalFoundries 45-nm CMOS SOI process. The design goal is to cover multiple mmWave 5G NR bands centered around 26, 28, 39, and 41 GHz (band n257 – band n261).

The LNA schematic is shown in Fig. 17, consisting of two stages. Both stages are biased with  $J_{D,\text{opt}} = 0.2 \text{ mA}/\mu\text{m}$  to achieve a low  $\text{NF}_{\min}$  and a high  $f_{\text{max}}$  simultaneously. The output transformer has differential outputs, making the LNA easier to be employed in a receiver chain, since the following blocks such as the mixer, variable gain amplifier, and phase shifter, are usually designed in a differential manner. In the design phase, the component values are first derived based on the analysis in Sec II and III and then optimized by 3-D EM simulations to accommodate the parasitic effects.

The simulated first-stage, second-stage, and overall LNA voltage gain is shown in Fig. 18. The first stage exhibits two gain peaks due to the inter-stage capacitively coupled resonator, as discussed in Sec II-C. To realize a flat overall gain, the low cutoff frequency of the output network is aligned with the first parallel resonant frequency of the inter-stage network, which is 26.3 GHz. As shown in Fig. 18, the simulated overall peak voltage gain is 22.7 dB at 41.3 GHz with an in-band ripple of 1.4 dB.

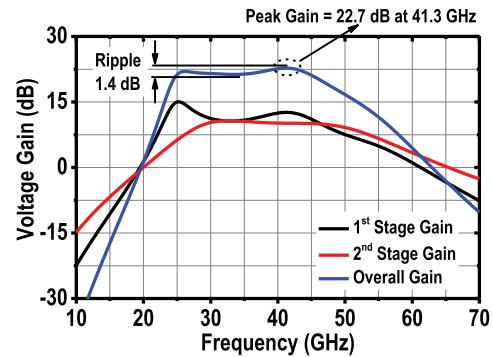
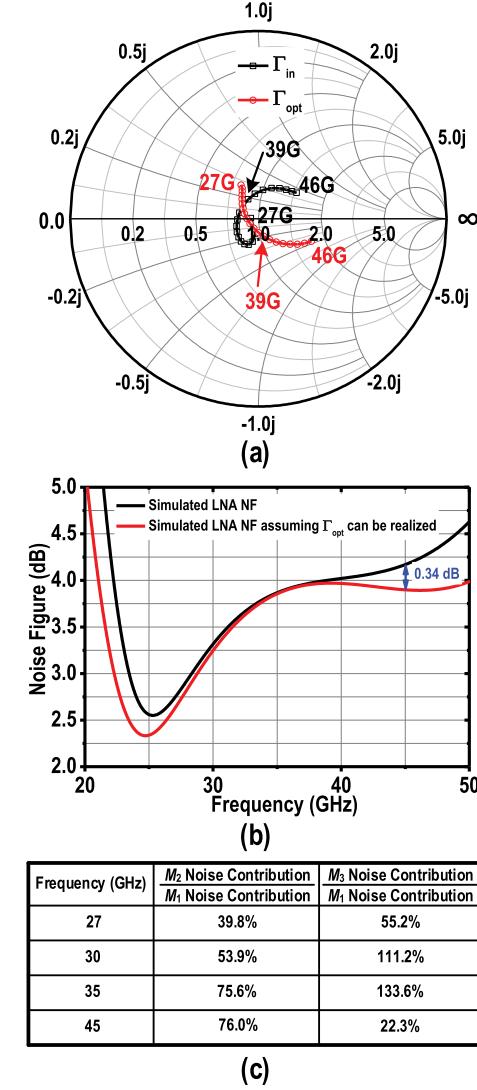


Fig. 18. The first-stage, second-stage, and overall LNA voltage gain.

Fig. 19. (a) Simulated  $\Gamma_{\text{in}}$  and  $\Gamma_{\text{opt}}$  from 27 to 46 GHz. (b) Simulated LNA NF. (c) LNA noise summary based on simulations.

The simulated input reflection coefficient  $\Gamma_{\text{in}}$  and the optimum noise reflection coefficient  $\Gamma_{\text{opt}}$  over frequency are shown on the Smith Chart in Fig. 19(a). There exists a slight mismatch between  $\Gamma_{\text{in}}$  and  $\Gamma_{\text{opt}}$  trajectories above 40 GHz, resulting in a 0.34 dB increase in the simulated NF at 45 GHz, as shown in Fig. 19(b). The higher NF at higher frequencies is due to two reasons. First, the cascode transistor  $M_2$  contributes more noise at higher frequencies, which can be seen from the

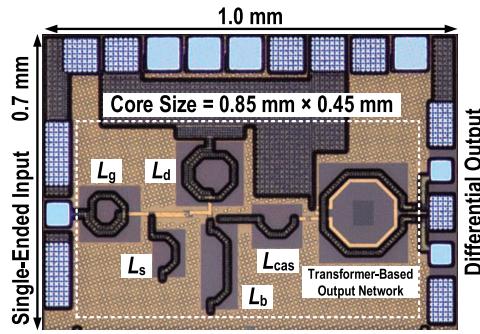


Fig. 20. Chip micrograph.

LNA noise summary in Fig. 19(c). This is a typical issue for mmWave cascode LNAs [44]. Second, the first stage has a gain dip between 30 and 35 GHz, where the noise of the second-stage common-source transistor  $M_3$  starts to manifest itself, as shown in Fig. 19(c).

Since the proposed design approach uses the same narrowband cascode common-source with inductive degeneration circuit topology with only component value updates, we expect minimal overhead in terms of chip area. In our original LNA design, we did not pay special attention to minimizing the chip area, especially the y dimension of the design. As can be seen in the chip micrograph (Fig. 20), if we reduce the y dimension of inductors  $L_d$ ,  $L_s$ , and  $L_b$ , the chip area can be significantly reduced. Therefore, we present an updated layout of  $L_d$ ,  $L_s$ , and  $L_b$  in Fig. 21(a), leading to a significantly reduced LNA core area of  $0.21 \text{ mm}^2$ . Meanwhile, the simulated S-parameters remain almost the same as those of our original design, as shown in Fig. 21(b).

## V. MEASUREMENT RESULTS

This section presents the S-parameters, NF, and linearity measurement results, which are all based on the probing of three samples. The supply voltage  $V_{DD}$  of the LNA is 1.3 V, and the DC power consumption is 25.5 mW.

### A. S-Parameters Measurement

Since this LNA has a single-ended input and a differential output, to characterize its small-signal performance, a three-port S-parameters measurement is performed using the Keysight N5225B four-port vector network analyzer. The measured and simulated  $S_{11}$ ,  $S_{21}$ , and  $S_{31}$  are shown in Fig. 22(a). The LNA achieves a peak single-ended / differential gain of 18.2 / 21.2 dB at 37.8 GHz, with a 3-dB gain BW of 25.5 to 50 GHz. The measured  $S_{11}$  is lower than  $-10$  dB from 27 to 46 GHz; its dual-resonant behavior can be clearly seen. The effective bandwidth of our prototype, which is defined as the intersection of the  $-10$ -dB  $S_{11}$  BW and the 3-dB gain BW, is limited by the input matching. The measured differential gain and  $S_{11}$  of three samples are plotted in Fig. 22(b), achieving negligible sample-to-sample variations.

The simulated and measured geometrically derived stability factors for the load ( $\mu$ ) and for the source ( $\mu'$ ) are shown in Fig. 22(c). They are always larger than 1, proving that the LNA is unconditionally stable over the frequency.

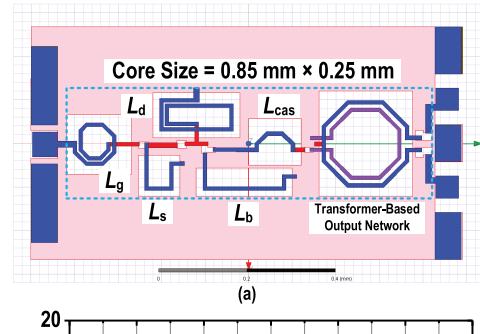
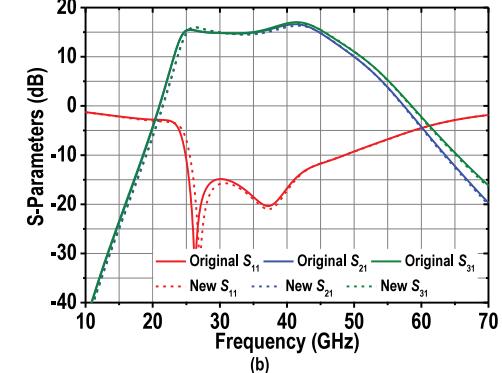


Fig. 21. (a) Optimize the layout of  $L_d$ ,  $L_s$ , and  $L_b$  to reduce the y dimension and the resulting chip area. The updated layout is simulated in HFSS. (b) Simulated S-parameters based on the new layout and the original design.

The measured balancing between the two differential outputs is summarized in Fig. 23. Within the effective BW of 27 to 46 GHz, the phase mismatch is less than  $3^\circ$ , and the amplitude mismatch is smaller than 1 dB, showing well-balanced differential outputs. The common-mode rejection ratio (CMRR) is  $>24$  dB.

### B. Noise Figure Measurement

The NF is measured using the Keysight N9040B spectrum analyzer and the Keysight 346CK01 noise source. The NF measurement results are summarized in Fig. 24(a). The minimum NF is 2.4 dB at 27.7 GHz, and the NF remains below 4.2 dB within the effective BW. The measured NF of the three samples is consistent.

### C. Linearity Measurement

The measured input-referred 1-dB compression point ( $IP_{1dB}$ ) and differential output-referred 1-dB compression point ( $OP_{1dB}$ ) of the three samples are shown in Fig. 24(b). Due to the frequency range limitation of our signal generator, the 1-dB compression point measurement is performed only up to 40 GHz. The LNA achieves  $-25.6$  to  $-17.4$  dBm  $IP_{1dB}$  and  $-4.6$  to  $+2.9$  dBm  $OP_{1dB}$  from 27 to 40 GHz.

For the third-order intercept point ( $IP_3$ ) measurement, two tones with a 100 MHz separation are applied to the LNA input, and their power levels are varied from  $-41.6$  to  $-36.6$  dBm. The measured input-referred  $IP_3$  ( $IIP_3$ ) and differential output-referred  $IP_3$  ( $OIP_3$ ) from 27 to 40 GHz are plotted in Fig. 24(c). The best  $IIP_3$  is  $-9.5$  dBm at 32 GHz and the best  $OIP_3$  is  $12.1$  dBm at 34 GHz, showing state-of-the-art LNA linearity.

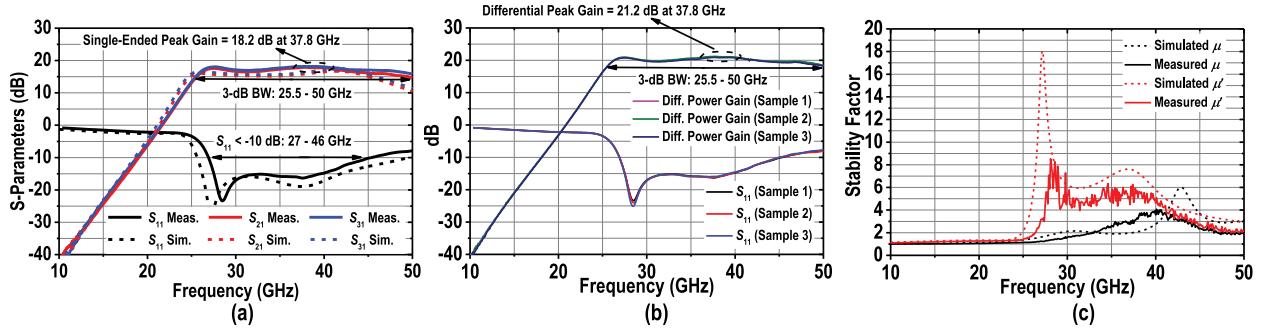


Fig. 22. (a) Measured and simulated  $S_{11}$ ,  $S_{21}$ , and  $S_{31}$ . (b) Measured differential power gain and  $S_{11}$  of three samples. (c) Measured and simulated stability factors  $\mu$  and  $\mu'$ .

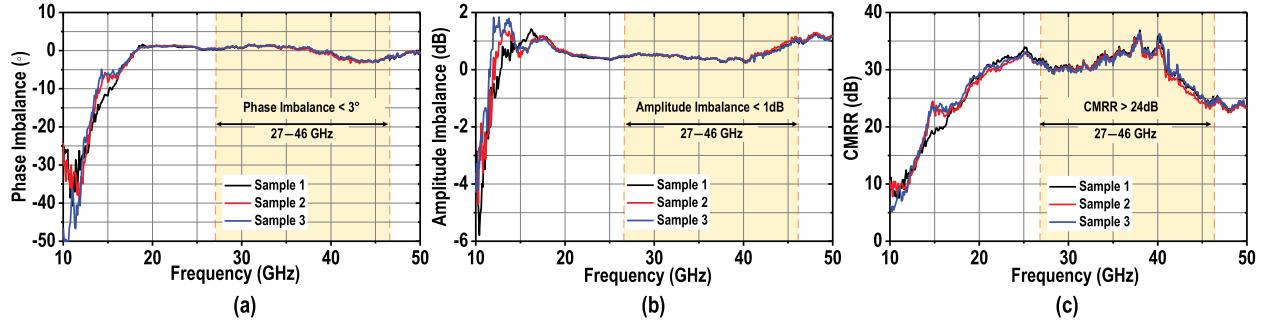


Fig. 23. (a) Measured phase imbalance, (b) amplitude imbalance, and (c) CMRR of three samples.

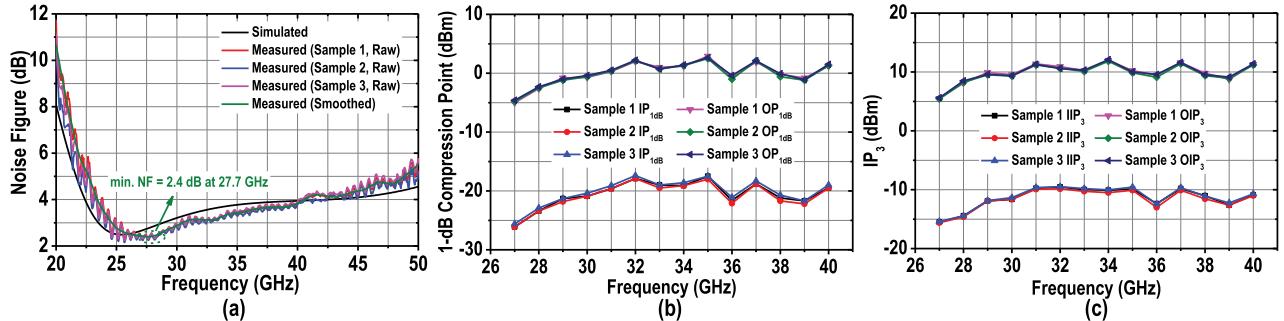


Fig. 24. (a) Simulated NF and Measured NF of three samples. (b) Measured IP<sub>1dB</sub> and differential OP<sub>1dB</sub>. (c) Measured IIP<sub>3</sub> and differential OIP<sub>3</sub>.

TABLE I  
PERFORMANCE COMPARISON TABLE

| Reference      | BW*<br>(GHz)         | 3-dB BW<br>(GHz)   | Peak Gain<br>(dB) | NF<br>(dB) | IIP <sub>3</sub><br>(dBm) | P <sub>DC</sub><br>(mW) | Core Size<br>(mm <sup>2</sup> ) | FoM** | Technology     |
|----------------|----------------------|--------------------|-------------------|------------|---------------------------|-------------------------|---------------------------------|-------|----------------|
| This Work      | 27–46                | 25.5–50.0          | 21.2              | 2.4–4.2    | -9.5                      | 25.5                    | 0.38<br>0.21 <sup>§</sup>       | 424   | 45-nm CMOS SOI |
| MWCL 2018 [45] | 26–33                | 26–33              | 27.1              | 3.3–4.3    | -12.1                     | 31.4                    | 0.26                            | 211   | 40-nm CMOS     |
| GSMM 2018 [10] |                      |                    | 18.4              | 3.4–4.4    | -6.1 <sup>†</sup>         | 21.5                    |                                 | 159   |                |
| RFIC 2019 [13] | 27–47.5 <sup>†</sup> | 24–47.5            | 20                | 4.2–5.5    | -9.4 <sup>††</sup>        | 58                      | 0.2                             | 69    | 45-nm CMOS SOI |
| TMTT 2020 [3]  | 24–29 <sup>†</sup>   | 24–29 <sup>†</sup> | 19.1 <sup>†</sup> | 3.1–3.7    | -13.2                     | 20.5                    | 0.22                            | 34    | 22-nm CMOS SOI |
|                | 37–42 <sup>†</sup>   | 37–42 <sup>†</sup> | 23                |            | -19                       |                         |                                 | 15    |                |
| JSSC 2020 [12] | 22–32                | 19–36              | 21.5              | 1.7–2.2    | -13.4                     | 17.3                    | 0.05                            | 293   | 22-nm CMOS SOI |
| TMTT 2020 [46] | 22–32                | 20–36              | 17.9              | 2.1–2.9    | -14.4                     | 5.6                     |                                 | 242   |                |
| JSSC 2021 [11] | 22.9–38.2            | 22.9–38.2          | 14.5              | 2.6–4.6    | -3.6                      | 18.9                    | 0.16                            | 400   | 28-nm CMOS     |
| RFIC 2021 [47] | 22.2–43              | 21.8–43            | 21.1              | 3.5–5.3    | -3.0                      | 22.3                    | 0.22                            | 1573  | 28-nm CMOS     |

\* Intersection of 3-dB gain BW and 10-dB return loss BW.

§ Based on updated layout.

† Graphically estimated.

†† Estimated using IP<sub>1dB</sub> + 9.6 dB.

\*\*  $FoM = \frac{10^3 \times Gain[\frac{W}{mW}] \times BW_{eff}[GHz] \times IIP_3[mW]}{P_{DC}[mW] \times (NF[linear]-1) \times f_c[GHz]}$ ,  $f_c$  is the geometric mean, peak gain and minimum NF are taken in FoM calculation.

## VI. CONCLUSION

A comparison with state-of-the-art broadband LNAs at a similar frequency range is shown in Table I. To benchmark their performance, a Figure-of-Merit (FoM) involving the power gain, BW, IIP<sub>3</sub>, DC power, NF, and the center frequency is adopted, as

$$FoM = \frac{10^3 \times Gain[\frac{W}{W}] \times BW_{eff}[GHz] \times IIP_3[mW]}{P_{DC}[mW] \times (NF[linear] - 1) \times f_c[GHz]} \quad (35)$$

Here, the BW is defined as the intersection of the 3-dB gain BW and the 10-dB return loss BW. As shown in Table I, the presented LNA achieves state-of-the-art BW and a competitive FoM. The reported FoM is lower than those in [3], [46], and [47] mainly because our measured IIP<sub>3</sub> is lower. Although linearity enhancement is not the major focus of this paper, the proposed dual-resonant input matching and broadband output network techniques are compatible with a few well-established IIP<sub>3</sub> enhancement techniques, such as the multi-gate transistor (MGTR) and derivative superposition (DS) [48]. Combining these techniques can potentially improve our IIP<sub>3</sub> by a few dB and in turn, result in a higher FoM.

In conclusion, two design techniques are presented in this paper to broaden the BW of mmWave LNAs. First, we extend the input matching BW by synthesizing dual-resonant input matching. Second, we extend the gain BW by constructing a second-order bandpass output network that can be miniaturized into a single transformer footprint. A proof-of-concept 27–46 GHz LNA is implemented in Globalfoundries 45-nm CMOS SOI process, achieving 21.2 dB peak gain, 2.4 dB minimum NF, and -9.5 dBm IIP<sub>3</sub> with 25.5 mW DC power. This design could be readily integrated with wideband RX frontends for multi-band 5G communications and high-resolution wireless sensing applications.

## REFERENCES

- [1] M.-Y. Huang, T. Chi, S. Li, T.-Y. Huang, and H. Wang, “A 24.5–43.5-GHz ultra-compact CMOS receiver front end with calibration-free instantaneous full-band image rejection for multiband 5G massive MIMO,” *IEEE J. Solid-State Circuits*, vol. 55, no. 5, pp. 1177–1186, May 2020.
- [2] A. Alhamed, G. Gultepe, and G. M. Rebeiz, “A multi-band 16–52-GHz transmit phased array employing 4 × 1 beamforming IC with 14–15.4-dBm P<sub>sat</sub> for 5G NR FR2 operation,” *IEEE J. Solid-State Circuits*, vol. 57, no. 5, pp. 1280–1290, May 2022.
- [3] M. Lokhandwala, L. Gao, and G. M. Rebeiz, “A high-power 24–40-GHz transmit–receive front end for phased arrays in 45-nm CMOS SOI,” *IEEE Trans. Microw. Theory Techn.*, vol. 68, no. 11, pp. 4775–4786, Nov. 2020.
- [4] J. Pang et al., “A power-efficient 24-to-71 GHz CMOS phased-array receiver utilizing harmonic-selection technique supporting 36dB inter-band blocker rejection for 5G NR,” in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, vol. 65, Feb. 2022, pp. 434–436.
- [5] S. Mondal and J. Paramesh, “A reconfigurable 28/37-GHz MMSE-adaptive hybrid-beamforming receiver for carrier aggregation and multi-standard MIMO communication,” *IEEE J. Solid-State Circuits*, vol. 54, no. 5, pp. 1391–1406, May 2019.
- [6] L. Gao, Q. Ma, and G. M. Rebeiz, “A 20–44-GHz image-rejection receiver with >75-dB image-rejection ratio in 22-nm CMOS FD-SOI for 5G applications,” *IEEE Trans. Microw. Theory Techn.*, vol. 68, no. 7, pp. 2823–2832, Jul. 2020.
- [7] S. Trotta et al., “2.3 SOLI: A tiny device for a new human machine interface,” in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, Feb. 2021, pp. 42–44.
- [8] C. Li et al., “A review on recent progress of portable short-range noncontact microwave radar systems,” *IEEE Trans. Microw. Theory Techn.*, vol. 65, no. 5, pp. 1692–1706, May 2017.
- [9] T.-Y. J. Kao, Y. Yan, T.-M. Shen, A. Y.-K. Chen, and J. Lin, “Design and analysis of a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection,” *IEEE Trans. Microw. Theory Techn.*, vol. 61, no. 4, pp. 1649–1659, Apr. 2013.
- [10] V. Chauhan and B. Floyd, “A 24–44 GHz UWB LNA for 5G cellular frequency bands,” in *Proc. 11th Global Symp. Millim. Waves (GSMM)*, May 2018, pp. 1–3.
- [11] Z. Deng, J. Zhou, H. J. Qian, and X. Luo, “A 22.9–38.2-GHz dual-path noise-canceling LNA with 2.65–4.62-dB NF in 28-nm CMOS,” *IEEE J. Solid-State Circuits*, vol. 56, no. 11, pp. 3348–3359, Nov. 2021.
- [12] B. Cui and J. R. Long, “A 1.7-dB minimum NF, 22–32-GHz low-noise feedback amplifier with multistage noise matching in 22-nm FD-SOI CMOS,” *IEEE J. Solid-State Circuits*, vol. 55, no. 5, pp. 1239–1248, May 2020.
- [13] L. Gao and G. M. Rebeiz, “A 24–43 GHz LNA with 3.1–3.7 dB noise figure and embedded 3-pole elliptic high-pass response for 5G applications in 22 nm FDSOI,” in *Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC)*, Jun. 2019, pp. 239–242.
- [14] Y. Hu and T. Chi, “A 27–46-GHz low-noise amplifier with dual-resonant input matching and a transformer-based broadband output network,” *IEEE Microw. Wireless Compon. Lett.*, vol. 31, no. 6, pp. 725–728, Jun. 2021.
- [15] V. Jain, S. Sundararaman, and P. Heydari, “A 22–29-GHz UWB pulse-radar receiver front-end in 0.18-μm CMOS,” *IEEE Trans. Microw. Theory Techn.*, vol. 57, no. 8, pp. 1903–1914, Aug. 2009.
- [16] T. Yao et al., “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio,” *IEEE J. Solid-State Circuits*, vol. 42, no. 5, pp. 1044–1057, May 2007.
- [17] H. Hashemi and A. Hajimiri, “Concurrent multiband low-noise amplifiers-theory, design, and applications,” *IEEE Trans. Microw. Theory Techn.*, vol. 50, no. 1, pp. 288–301, Jan. 2002.
- [18] P. Heydari, “Design and analysis of a performance-optimized CMOS UWB distributed LNA,” *IEEE J. Solid-State Circuits*, vol. 42, no. 9, pp. 1892–1905, Sep. 2007.
- [19] T.-K. Nguyen, C.-H. Kim, G.-J. Ihm, M.-S. Yang, and S.-G. Lee, “CMOS low-noise amplifier design optimization techniques,” *IEEE Trans. Microw. Theory Techn.*, vol. 52, no. 5, pp. 1433–1442, May 2004.
- [20] T. Chi, J. S. Park, S. Li, and H. Wang, “A millimeter-wave polarization-division-duplex transceiver front-end with an on-chip multifeed self-interference-canceling antenna and an all-passive reconfigurable canceller,” *IEEE J. Solid-State Circuits*, vol. 53, no. 12, pp. 3628–3639, Dec. 2018.
- [21] M. Y. Huang, T. Chi, F. Wang, T. W. Li, and H. Wang, “A 23-to-30 GHz hybrid beamforming MIMO receiver array with closed-loop multistage front-end beamformers for full-FoV dynamic and autonomous unknown signal tracking and blocker rejection,” in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, Feb. 2018, pp. 68–70.
- [22] H. Mohammadnezhad, R. Abedi, and P. Heydari, “A millimeter-wave partially overlapped beamforming-MIMO receiver: Theory, design, and implementation,” *IEEE Trans. Microw. Theory Techn.*, vol. 67, no. 5, pp. 1924–1936, May 2019.
- [23] R. Garg et al., “A 28-GHz beam-space MIMO RX with spatial filtering and frequency-division multiplexing-based single-wire IF interface,” *IEEE J. Solid-State Circuits*, vol. 56, no. 8, pp. 2295–2307, Aug. 2021.
- [24] S. Li, T. Chi, D. Jung, T.-Y. Huang, M.-Y. Huang, and H. Wang, “4.2 an E-band high-linearity antenna-LNA front-end with 4.8dB NF and 2.2 dBm IIP3 exploiting multi-feed on-antenna noise-canceling and Gm-boosting,” in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, Feb. 2020, pp. 1–3.
- [25] R. Behzad, *RF Microelectronics*. New York, NY, USA: Prentice-Hall, 2012.
- [26] O. Inac, M. Uzunkol, and G. M. Rebeiz, “45-nm CMOS SOI technology characterization for millimeter-wave applications,” *IEEE Trans. Microw. Theory Techn.*, vol. 62, no. 6, pp. 1301–1311, Jun. 2014.
- [27] F. Vecchi et al., “A wideband receiver for multi-Gbit/s communications in 65 nm CMOS,” *IEEE J. Solid-State Circuits*, vol. 46, no. 3, pp. 551–561, Mar. 2011.
- [28] L. Gao, E. Wagner, and G. M. Rebeiz, “Design of E- and W-band low-noise amplifiers in 22-nm CMOS FD-SOI,” *IEEE Trans. Microw. Theory Techn.*, vol. 68, no. 1, pp. 132–143, Jan. 2020.

- [29] S. Guo, T. Xi, P. Gui, D. Huang, Y. Fan, and M. Morgan, "A transformer feedback  $G_m$ -boosting technique for gain improvement and noise reduction in mm-Wave cascode LNAs," *IEEE Trans. Microw. Theory Techn.*, vol. 64, no. 7, pp. 2080–2090, Jul. 2016.
- [30] H. Wang, C. Sideris, and A. Hajimiri, "A CMOS broadband power amplifier with a transformer-based high-order output matching network," *IEEE J. Solid-State Circuits*, vol. 45, no. 12, pp. 2709–2722, Dec. 2010.
- [31] M. Bassi, J. Zhao, A. Bevilacqua, A. Ghilioni, A. Mazzanti, and F. Svelto, "A 40–67 GHz power amplifier with 13 dBm  $P_{SAT}$  and 16% PAE in 28 nm CMOS LP," *IEEE J. Solid-State Circuits*, vol. 50, no. 7, pp. 1618–1628, Jul. 2015.
- [32] M. Vigilante and P. Reynaert, "On the design of wideband transformer-based fourth order matching networks for  $E$ -band receivers in 28-nm CMOS," *IEEE J. Solid-State Circuits*, vol. 52, no. 8, pp. 2071–2082, Aug. 2017.
- [33] Y. Zhao and J. R. Long, "A wideband, dual-path, millimeter-wave power amplifier with 20 dBm output power and PAE above 15% in 130 nm SiGe-BiCMOS," *IEEE J. Solid-State Circuits*, vol. 47, no. 9, pp. 1981–1997, Sep. 2012.
- [34] T. Chi, M.-Y. Huang, S. Li, and H. Wang, "17.7 a packaged 90-to-300 GHz transmitter and 115-to-325 GHz coherent receiver in CMOS for full-band continuous-wave mm-wave hyperspectral imaging," in *IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, Feb. 2017, pp. 304–305.
- [35] S. Li, T. Chi, J.-S. Park, H. T. Nguyen, and H. Wang, "A 28-GHz flip-chip packaged Chireix transmitter with on-antenna outphasing active load modulation," *IEEE J. Solid-State Circuits*, vol. 54, no. 5, pp. 1243–1253, May 2019.
- [36] Y. Hu, X. Zhang, and T. Chi, "A 28 GHz hybrid-beamforming transmitter array supporting concurrent dual data streams and spatial notch steering for 5G MIMO," in *Proc. IEEE Custom Integr. Circuits Conf. (CICC)*, Apr. 2021, pp. 1–2.
- [37] A. Bevilacqua, "Fundamentals of integrated transformers: From principles to applications," *IEEE Solid State Circuits Mag.*, vol. 12, no. 4, pp. 86–100, Nov. 2020.
- [38] S. Li, T. Chi, T.-Y. Huang, M.-Y. Huang, D. Jung, and H. Wang, "A buffer-less wideband frequency doubler in 45-nm CMOS-SOI with transistor multiport waveform shaping achieving 25% drain efficiency and 46–89 GHz instantaneous bandwidth," *IEEE Solid-State Circuits Lett.*, vol. 2, no. 4, pp. 25–28, Apr. 2019.
- [39] D. Pozar, *Microwave Engineering*, 4th ed. Hoboken, NJ, USA: Wiley, 2011.
- [40] J. R. Long, "Monolithic transformers for silicon RF IC design," *IEEE J. Solid-State Circuits*, vol. 35, no. 9, pp. 1368–1382, Sep. 2000.
- [41] L. Besser and R. Gilmore, *Practical RF Circuit Design for Modern Wireless Systems* (Passive Circuits and Systems), vol. 1. Boston, MA, USA: Artech House, 2003.
- [42] A. Mazzanti and A. Bevilacqua, "Second-order equivalent circuits for the design of doubly-tuned transformer matching networks," *IEEE Trans. Circuits Syst. I, Reg. Papers*, vol. 65, no. 12, pp. 4157–4168, Dec. 2018.
- [43] C.-H. Li, C.-N. Kuo, and M.-C. Kuo, "A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18- $\mu$ m CMOS," *IEEE Trans. Microw. Theory Techn.*, vol. 60, no. 11, pp. 3502–3512, Nov. 2012.
- [44] Z. Wang, P.-Y. Chiang, P. Nazari, C.-C. Wang, Z. Chen, and P. Heydari, "A CMOS 210-GHz fundamental transceiver with OOK modulation," *IEEE J. Solid-State Circuits*, vol. 49, no. 3, pp. 564–580, Mar. 2014.
- [45] M. Elkholi, S. Shakib, J. Dunworth, V. Aparin, and K. Entesari, "A wideband variable gain LNA with high OIP3 for 5G using 40-nm bulk CMOS," *IEEE Microw. Wireless Compon. Lett.*, vol. 28, no. 1, pp. 64–66, Jan. 2018.
- [46] L. Gao and G. M. Rebeiz, "A 22–44-GHz phased-array receive beamformer in 45-nm CMOS SOI for 5G applications with 3–3.6-dB NF," *IEEE Trans. Microw. Theory Techn.*, vol. 68, no. 11, pp. 4765–4774, Nov. 2020.
- [47] A. Ershadi, S. Palermo, and K. Entesari, "A 22.2–43 GHz gate-drain mutually induced feedback low noise amplifier in 28-nm CMOS," in *Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC)*, Jun. 2021, pp. 27–30.
- [48] H. Zhang and E. Sánchez-Sinencio, "Linearization techniques for CMOS low noise amplifiers: A tutorial," *IEEE Trans. Circuits Syst. I, Reg. Papers*, vol. 58, no. 1, pp. 22–36, Jan. 2011.



**Yaolong Hu** (Graduate Student Member, IEEE) received the B.Eng. degree from Zhejiang University, Hangzhou, China, in 2018. He is currently pursuing the Ph.D. degree in electrical and computer engineering with Rice University, Houston, TX, USA. From May 2022 to August 2022, he was an Analog Design Intern with Kilby Labs, Texas Instruments Inc., Dallas, TX, USA. His research interests include millimeter-wave integrated circuits and systems. He was a recipient of the IEEE Custom Integrated Circuits Conference (CICC) Best Student Paper Award in 2021 and the IEEE International Microwave Symposium (IMS) Advanced Practice Paper Award Finalist in 2021.



**Taiyun Chi** (Member, IEEE) received the B.S. degree (Hons.) from the University of Science and Technology of China (USTC), Hefei, China, in 2012, and the Ph.D. degree from the Georgia Institute of Technology, Atlanta, GA, USA, in 2017.

He is currently an Assistant Professor with the Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA. His research interests include RF/millimeter-wave/terahertz integrated circuits and integrated bio-sensors and bio-actuators. His research group received the 2022 IEEE RFIC Symposium Best Student Paper Award Finalist, the 2021 IEEE Custom Integrated Circuits Conference (CICC) Best Student Paper Award, the 2021 IEEE International Microwave Symposium (IMS) Advanced Practice Paper Award Finalist, and the 2021 Texas Wireless Symposium Student Research Competition Award (1st Place). He was also a recipient of the Sigma Xi Best Ph.D. Thesis Award (Georgia Tech Chapter) in 2018, the IEEE CICC Best Paper Award in 2017, the IEEE Solid-State Circuits Society (SSCS) Predoctoral Achievement Award in 2017, the Microwave Theory and Techniques Society (MTT-S) Graduate Fellowship for Medical Applications in 2016, and the USTC Guo Moruo Presidential Scholarship in 2012. He is a Technical Program Committee (TPC) Member of the IEEE IMS and the TPC Co-Chair of the IEEE Texas Symposium on Wireless and Microwave Circuits and Systems.