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Abstract — Wheelchair-mounted robotic arms are used in
rehabilitation robotics to help persons with physical impairment
perform activity of daily living (ADL) tasks. However, the dexterity
of manipulation tasks makes the teleoperation of the robotic arm
challenging for the user, as it is difficult to control all degrees of
fireedom with a handheld joystick or a touch screen device. PbD
(Programming by demonstration) allows the user to demonstrate the
desired behavior and enables the system to learn from the
demonstrations and adaptto a new environment. This learned model
can perform a new set of action in a new environment. Learning
firom demonstration includes object identification and recognition,
trajectory planning, obstacle avoidance, and adapting to a new
environment, wherever necessary. PbD using a learning-based
approach learns the task through a model that captures the
underlying structures of the task. The model can be a probabilistic
graphical model, a neural network, or a combination of both. PbD
with learning can be generalized and applied to new situations as
this method enables the robot to learn the model rather than just
memorizing and imitating the demonstration. In addition to this, it
also helps in efficient learning with a reduced number of
demonstrations. This survey focuses on an overview of the recent
machine learning (ML) techniques used with PbD to perform
dexterous manipulation tasks that enable the robot to learn and
apply what is learned to a new set of tasks and a new environment.

Keywords—ADL, teleoperation, PbD, object recognition,
trajectory planning, obstacle avoidance, manipulation, machine-
learning techniques

L INTRODUCTION

Humans can determine how to approach an object and pick
it up when introduced to a new one. They can see the object,
identify the location and manipulate their arms to reach an
object of interest, avoiding the obstacles in the environment. It
has always been an area of interest to create robots that can
perform dexterous manipulation and grasping comparable to
humans. However, introducing new objects and tasks, the
constantly changing environment, and the complexity involved
in manipulation, make it challenging to solve the problem [1].
Nearly one million American adults need assistance to perform
ADL tasks, i.e., pouring a glass of milk or water, combing hair,
or feeding themselves [2].
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Wheelchair-mounted robotic arms are equipped with dexterous
tools to help users perform the desired action without relying
on the human caregiver. They can be equipped with a vision
system for object detection and recognition and can be
programmed to perform complex manipulation tasks with
autonomy. However, this requires high programming skills and
constant updates with changing environments, which is evident
in the real world [2]. Motion planning can help eliminate
specific lower-level actions like trajectories. However, it
requires specifying goal location and via points, which could be
more reliable in a constantly changing environment [3].
Moreover, the users should easily be able to control wheelchair-
mounted assistive robots for effective operation. Most
Wheelchair-mounted robotic arms are equipped with control
interfaces, such as joysticks, that provide low-dimensional
control, owing to the user's physical limitations, although a
robotic arm has more degrees of freedom (DoFs).

PbD is a methodthat allows a robotto learn intuitively fromthe
user demonstration and requires minimal programming skills.
This process enables the robot to learn and adapt to a
demonstration by humans, along with the constraints in the
environment and the model of the task to be performed. The
procedure of demonstration groups the human as a teacher and
the robot as a learner, which facilitates the robot to learn from
the demonstration and autonomously perform novel tasks in a
new environment [4]. There are several ways to demonstrate a
task to the robot. Most widely, the demonstration approaches
can be categorized into three broad categories — kinesthetic
teaching, teleoperation, and imitation learning, or passive
observation. The mode of demonstration can be chosen based
on the complexity ofthe application. The ease of demonstration
and mapping the demonstration to the working space of the
robot are the critical factors in choosing the method.

PbD using a learning-based approach includes using ML
algorithms to generalize the learned behavior from human
demonstrationto anew environment. The choice ofthe learning
algorithm depends on the specific task, the type and quality of
the available data, and the desired performance metrics. PbD or
LfD is often combined with ML techniques to learn



manipulation tasks in real environments [5]. It is essential to
develop a model that a robot can easily be taught to achieve
complex dexterity and adapt to the manipulation skills during a
demonstration. This model is often called skill learning
framework and is desired if flexible, allowing the robot to learn
and adapt to the human tutor [6]. PbD using learning involves
two distinct phases. The first phase is a task learning phase that
creates representation from the demonstration, followed by the
task refining phase. This iterative process helps converge the
learned task representation to a desired task [7].

The paper's organization is as follows: We categorize the PbD
approaches in section II, followed by identifying the training
methods in section IIl. This section also includes a detailed
survey of different learning methods used in each category.
Section IV includes a discussion of the appropriate methods for
PbD. Finally, concluding remarks are made in Section V.

II.  CATEGORIES OF DEMONSTRATION

As discussed in Section I, the choice of the mode of
demonstration depends on the complexity of the manipulation,
the ease of demonstration, and mapping the demonstration to
the work space. The demonstration approaches are broadly
categorized as — kinesthetic teaching, teleoperation, and
imitation learning, or passive observation, which is shown in
Fig 1. We will discuss each method briefly and compare them
against the key factors discussed above.

A. Kinesthetic teaching

This is the mode of demonstration where the user physically
guides the robot through the task with the robot’s own body.
The user moves the robot's joints with their hands to
demonstrate the desired motion. The inbuilt sensors record the
kinematic parameters like joint angles and torques, which is
then fed to the learning model. It relies onrobot hardware and
requires no additional interfaces or user training. This mode of
demonstration holds following the ease of demonstration and
mapping the demonstration to the robot's workspace, as it is
directly on the robot utilizing its inbuilt sensors to record. This
process cannot control all the DoF of the robot by the user [3].

B. Teleoperation

This is a mode of demonstration where the user utilizes an
interface to control the robot’s DoF. The interfaces can be a
joystick[6, 8, 9], a GUI such as a touch screen or amonitor [7,
8], and haptic devices [6, 10, 11, 12] in some cases. This
approach opens the door to remote controlling as the user need
not be near the robot to demonstrate the action. Also, the user
can demonstrate a large-scale multi-robot system using this
technique.

However, this approach demands rigorous user trainingin using
the interface to control the DoFs ofthe robot. Teleoperationcan
handle higher degrees of freedom, and it is easy to map the
demonstration to the robot’s workspace, as the robot system is
also involved in task executionin lieu with the demonstration
provided.
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Fig 1. Categories of demonstration

C. Passive Observation or Imitation learning

Passive observation, also known as imitation learning, is an
approach where the user demonstrates the action using his/her
own body, which the robot observes passively, without
execution. Additional sensors sometimes facilitate this
demonstration for tracking. This approach is very suitable for
robots with Higher DoF, where kinesthetic teaching or
teleoperation can be cumbersome. However, mapping the
demonstration to the robot’s workspace can be complicated.
The demonstration techniques can be recording a video of a
demonstration[5, 8, 13] or cameraobservation[14, 15,16]. The
summary of the demonstration categories discussed above has
been illustrated in Fig. 1.

III. TRAINING METHODS IN MACHINE LEARNING

From the perspective of learning algorithm, learning from
demonstration is categorized into two broad sections: direct
approach and indirect approach. The direct approach is referred
to as the process of learning the policy from the demonstration
provided, which maps the state to the action, commonly known
as Behavior cloning. The indirect approach focuses on
recovering the reward function from the demonstration and
learning the policy that maximizes the recovered reward
functions [6]. This paper will classify the training methods as
unsupervised, supervised, and reinforcement learning, and will
discuss each in detail. This categorization will help us to
understand the training methods in a broader way where all the
associated techniques can be discussed.

A. Unsupervised Learning

Unsupervised learning (UL), as suggested by its name, is a
method of training a ML model that utilizes unlabeled data.
Here, the unlabeled data refers to a data set that has not been
identified in terms of characteristics, properties, or
classifications. Therefore, the model is trained to predict the
patterns in the input data and establish a relationship within it
[3,17].

Consider a system with a sequence of input xi, X2, X3, ..., X
where x: is a sensory input at any time t. Based on the
application, this input can be different suchas a video or a pixel
in an image or something else. UL is defined by the system's



ability to learn independently without predetermining the
output. Hence, the system receives a set of inputs x1, X2, X3, ...,
x¢ without the target output or the rewards from the
environment. In this case, the framework for learning is based
on finding patterns in the input data and building
representations, which can help predict future inputs and
decision-making. This is a method of learning a probabilistic
model of data by estimating a model to represent the
distribution for an input x, based on previous inputs xi1, X2, X3,
..., Xt-1. This model can detect an abrupt change in the data and
classification of the data by evaluating the probabilities [18].
Clustering techniques like the Gaussian mixture model,
Expectation maximization, and K-means and dimensionality
reduction are some methods used in UL.

Dynamic Movement Primitive (DMP) framework is widely
used in PbD because of its smoothness and continuity of the
generalized trajectories. However, it only uses one
demonstration to learn the model. As learning the task from
multiple demonstrations is preferable, Song etal. [15] proposed
a Probability-based movement primitive (PbMP) that includes
multiple demonstrations into one model using a probabilistic
approach. It utilizes the concept of key points to detect motion
units in the kinematic data from the demonstration. Input
signals with respective regression models represent each
trajectory segment. The model has different linear equations
with different values for independent variables. The difference
in the slopes of the variable point regression model represents
the signal inconsistency between consecutive segments. Based
on these difference scores, the non-Maximum suppression
(NMS) algorithm is used to select representative candidate
points. It uses an unsupervised segmentation algorithm that
does not require the user to provide prior knowledge. It can
extract the common feature from the demonstrated data using a
hidden semi-Markov-model (HSMM). Estimation of HSMM
parameters is done by using an expectation-maximization
algorithm for all the sequences.

Gaussian mixture model (GMM), one of the most recurrent type
of UL model, presets multiple Gaussian distributions into a
fitted space of training dataset, called Gaussian mixture
regression (GMR). This ML model is trained using expectation
maximization (EM) algorithm. The new data point is classified
according to the distribution where it most likely belongs. The
task parameterized GMM (TP-GMM) is useful in robotic
manipulators for adaptive trajectories. It is a variation to GMM
that allows to perform GMR considering different frames for
observationrecording [17].

B. Supervised Learning

Supervised Learning (SL) algorithm is a ML technique that
utilizes labeled data for training. The labeled data are identified
in terms of characteristics, properties, or classifications and
consist of input and corresponding output data. The pattern is
learned from the labeled data that train the model to predict the
output for new input data [3, 17].

If we consider human learning, SL is similar to learning from
reading books [21]. SL includes regression, classification,

hierarchical task networks, and neural networks [3]. Yonggiang
et al. [13] proposed a self-supervised learning approach,
generalizationby self-supervised practicing (GSSP), that learns
pouring skills from unsupervised demonstrations. The learned
skill could achieve accuracy and speed compared to a human
with a reduction in mean volume error lower than the state-of-
the-art works. They utilize the recurrent neural network (RNN)
based pouring skill model designed to process its inputs in
order. The pouring skill model is generalized to different
container shapes, liquid types, and granular materials. The input
features to the RNN are the angular velocity, volume at time t,
volume to be poured, the initial volume of a liquid in a source
container, and the height H and body diameter D of the source
container when modeled as a cylinder.

For robotic grasping, discriminative approaches are used that
sample grasp candidates and rank them via neural network. The
use of a grasp quality convolution neural network trained by
using the dataset formed from the outcome of the physics
simulation to grasp objects in randomized poses on a plane and
the aligned crop of a depth image where the grasp is located
helps predict the grasp success for given grasp candidates and
depth images [1]. Using multiple layers of unit collection that
interact with the input (pixel values when images are
considered), Convolution neural networks (CNN) has its utility
inimage recognitionand analysis, recommender systems, video
processing, natural language processing (NLP), object
recognition, and face recognition [19, 20]. Imitation learning is
one of the methods that utilize SL. Expert demonstrations train
the policy, and based on the dataset, the SL algorithms are
launched to improve policy [21]. The ability of CNN to extract
powerful image features and that of long short-term memory
(LSTM) at predicting time series data has exhibited better
performance when combined [20]. Simge et al. [20] proposed
the CNN-LSTM version to achieve fact training with the best
estimation accuracy. A comparison was made between CNN
and CN-LStM models, which later presented better tracking
accuracy and smoother estimation results. Inigo et al. [22] used
DMP with CNN to find insertiontasks indemonstrations to find
the suitable feature to extract that distinguishes insertion from
other movements. The CNN combined with gripper activations
help divide the tasks into phases Encoded and DMPs. This
approach has proven to be more robust than regular DMPs.

Hsien-1 et al. [23] utilized GMM to train the skin model that
classifiesthe skincolor andnon-skin color fromanimage input,
followedby hand positionand orientationto translate and rotate
the hand image to a neutral pose. CNN approach is adopted to
classify seven types of human hand gestures. The GMM for
modeling the skin color is validated. Multiple images were
taken from a subject for each gesture type to train and test the
CNN. As the convolutionand subsampling of images help CNN
learn the gestures, the proposed system is proven useful for
various types of gestures. Also, using GMM and CNN together
was indifferent to changes in the lighting conditions and was
able to provide detailed features of the gestures that helped
achieve best results.



Zen et al. [24] introduced semantic robot programming (SRP)
for declarative robot programming over demonstrated scenes.
The scenes can be perceived from RGBD observations via
discriminatively-informed generative estimation of scenes and
transfers (DIGEST). SRP uses R-CNN as a discriminative
object detector to obtain a set of bounding boxes. Each
bounding box outputs the confidence measure via a deep
convolution neural network. R-CNN object detector is trained
on the dataset that has 15 grocery objects.

C. Reinforcementlearning

Reinforcement learning (RL) is a machine learning
technique where the model learns by trial and error. Based on
the feedback received from the environment, the model is
trained to make decisions. The ultimate goal is maximizing the
reward signal with state agent combination and feedback from
the environment. Some widely used RL methods are Q-
learning and deep reinforcement learning. An agent is a robotic
system that performs an actiona € A and gets an observation s
€ S, of the state of the environment from sensors. As the robot
interacts with the environment, it changes. As a result of this, a
reward is obtained by the agent r € R from the environment,
which rates the actionbased on its performance. The goal ofthe
agent is to explore and discover an optimum policy that
maximizes the reward [25].

AgentiRobot
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Fig. 2 Q-Learning Framework

RL helps the agent maximize the outcome (reward) based on
trial and error (exploration), where the agent can perceive or
infer information and adapt it adaptively towards changing
environment, similar to the learning process in humans.
Learning is inspired by punishment and reward resulting from
the change of state in the environment [26]. In continuous
action space, the DRL method can map from image inputs to
the control policy, which is helpful in robot control. In discrete
action spaces, DRL methods exhibit strong search capability
within the high-dimensional decision space, which is helpful
for the exploration and navigation of intelligent agents in anew
environment [27]. Reinforcement learning differs from
supervised learning as it does not need labeled input/output
pairs. It focuses onfinding the balance between explorationand
exploitation. Reinforcement learning is modeled as a Markov
decision process (MDP), which has a set of environment and
agent states S, a set of actions of the agent A, a probability of
transition from state s to s’ at any time t, and an immediate
reward R, after a transition froms to s’ with an actiona. One
of'the widely used RL method is Q learning.

qnew(s, @) = (1-0)q (5, a) T aR(®) + 1 +ymaxq (s’,a’))a (1)

where q (s, a) in the old value, (Rt + 1 + ymaxq(s',a’)is the
learned value, «a is the learning rate (0<a <1),and R(t) is the
reward ant any time t. The framework of Q learning is
demonstrated in fig 2.

Q-learning is a model-free RL algorithm where the value
functionQ is arbitrarilyinitialized. Depending on the action and
the possible future states, its value is updated [17].

Sean etal. [10] useduser feedback on the system’s performance
online and RL to train the interface. The approach scales with
regular use; increased use of an interface to perform regular
activities results in increased competence and personalization
of the interface. The main challenge occurs due to the
requirement ofa large amount of training data fromthe sparsity
of rewards. The authors propose a hierarchical solutionto the
problem: offline training is utilized to perform tasks, then the
online user feedback is used to learn the mapping of user input
to robot behavior. This is an example of human-in-the-loop
learning which is quite commonin rehabilitationrobotics. First,
the task-conditioned policy is pre-trained to perform various
tasks without human interaction. Secondly, a user is in the loop
in the online learning phase that utilizes RL with sparse, user-
provided rewards to interpret the user’s input. The optimal
policy for the task is computed using the pre-trained task-
conditioned policy by observing information from the task that
the user completes. The algorithm is called assistive
teleoperation via human-in-the-loop reinforcement learning
(ASHA), which is evaluated with 12 participants using a
webcam and eye gaze to perform three simulated
manipulations, viz., flipping switches, opening a shelf, and
rotating a valve. The algorithm learns to map 128-dimensional
gaze feature to 7-dimensional joint torques in less than 10
minutes of online training and adapting to changing
environments.

Robot learning by mapping between human inputs and their
intended action using RL has also been used with work related
to shared autonomy. Dylan et al. [2] designed a teleoperation
algorithm for assistive robots to learn latent actions from task
demonstrations. Unlike the teleoperationstrategy, latent actions
improved objective and subjective performance. Navigating an
unknown environment by automatic exploration is also a key
area for performing ADL tasks. A deep reinforcement learning-
based decision algorithm, auxiliary task fully convolutional Q-
Learning (AFCQN), is proposed by Haoran et al. [27] that
utilizes a deep neural network to learn exploration strategy.
Exploration is taken as a sequence decision-making task by the
authors. They utilize the Markov decision process as a
framework for decision-making. PbD requires extensive
training for initial task learning and generalization of the
learned model to a different environment. In robotic task
learning problems, the deep model fusion (DMF) RL algorithm
can efficiently generalize the learned task by model fusion that



helps to solve the problem of adaptation to a new environment.
A multi-objective guided reward system converts sparse
rewards to dense rewards to speed up the training process. The
robot is pre-trained in various environments to obtain different
policy models. When the environment changes, the DMF-RL
methodisused to improve the performance by the fusionofpre-
trained policy models, as all the models have helpful
information that is useful in boosting performance [28].

RL methods have also been used in humanoid motion planning
of robotic arms that mimics human arm’s motion. This process
broadly includes two steps: (1) Extraction of human motion
rules (HMR) and (2) RL training. Aolie et al. [14] used VICON
optical motioncapture system for HMR extractionto obtain the
trajectory of human arm. For RL training, deep deterministic
policy gradient (DDPG) and hindsight experience replay (HER)
are adopted to train the humanoid motionofthe robotic arm that
combines former motion rules and designs corresponding
reward functions. States of the robotic arm were analyzed and
the action features on the robotic arm platform were compared
with the human arm action.

PbD requires an accurate demonstration for the learning
algorithm to be efficient. However, with human teachers, the
demonstrations are not perfect all the time and can often
provide incorrect information. Interactive RL learning allows
the agent to learn quicker than non-interactive RL as the agent
learns from two sources: Observation of the environment and
feedback from a secondary critic source, like a human teacher
or sensor feedback. However, the information provided by the
critic is only sometimes perfect. Taylor et al. [29] introduced
revision estimation from a partially Incorrect resources
(REPalR) framework that can estimate correction to imperfect
feedback. Corruption function is defined between the correct
and received reward, which is updated using a reward function
R. To learn the reward functions from human demonstrations
and preferences, Malayandi et al. [9] utilized a new framework
of reward learning, DemPref that uses demonstrations in
addition to preference queries to learn the reward function.

PbD has been an essential paradigm in learning ADL tasks with
shared assistive control. However, more reactive assistive
behavior can be generated by combining the motion from the
demonstration with a real-time goal prediction method. This
can also help reduce the number of joystick control inputs, a
key factor in rehabilitation robotics. Calvin et al. [6] proposed
amethod that blends demonstration-generated assistive motion
with user input based on goal predictions to achieve the task.
The authors used the DMP-based assistive control method to
predict the user goal by comparing the user input with DMP-
generated assistive motion during the control process. They
also compared the method with Partially observable Markov’s
Decision Process (POMDP) and direct controlusing a joystick.
The time taken to complete the task and the number of user
inputs required is the least in the method proposed by the
authors.

Tymoteusz et al. [25] evaluated positioning accuracy, motion
trajectory, and the number of steps requiredto positionarobotic
arm task using various RL algorithms. DDPG, twin delayed
deep deterministic policy gradient (TD3), soft actor-critic
(SAC), and HER were evaluated in six different combinations:
DDPG, TD3, SAC, DDPG+HER, TD3+HER, and SAC+HER.
Sparse, dense, and dense trajectory reward functions were
tested for each of the six combinations. The advantage of
combining DDPG, TD3, and SAC with HER was seen for
sparse reward. DDPG and DDPG+HER were found to be best
for dense rewards. Finally, for dense trajectory reward, the
smallest positioning error was obtained for TD3, and the least
standard deviation was obtained for the DDPG+HER
algorithm. Yoan et al. [7] used tree boosted relational imitation
learning (TBRIL) to learn the policy close to the one
demonstrated. The Authors propose a task refining process
based on the GUI that shows the user the elements of the task
learned by the system and allows them to correct it.

1V. DiscussioN

PbD is a method widely used inrobot learning as itreduces
complex programming to achieve the manipulation task and
relies on demonstration provided by a human to replicate the
task. However, the crucial factor for the PbD to be efficient is
the quality of the demonstration and the availability of labeled
data for predicting the outcome based on the input signal. It is
helpful in rehabilitation robotics, considering the ability of the
user to tele operate to perform dexterous manipulation tasks. A
complete task can be broken down into actions, and the
sequence of actions for ADL tasks can be demonstrated and
stored as a data set. Also, a set of actions can be common to
multiple tasks, and learning these actions would help complete
various tasks autonomously. PbD depends on the quality of the
demonstration and availability of labeled data, which is not
possible inall cases.

Moreover, the human-in-the-loop constantly needs to provide
feedback if the task is not performed as desired. Hence, this
leads to a requirement for a robust learning method that is
capable of learning the policy from the demonstration and
predictingdesirable output from given input based on either the
probabilistic approach or maximizing the reward function. The
three broad methods, viz., unsupervised, supervised, and
reinforcement learning, have been discussed in the previous
section with detailed descriptions of each method and recent
techniques developed and used for robot learning. The choice
of a particular method will depend on the cost and duration of
the training, availability of data as discrete/continuous or
labeled/unlabeled, the approach and quality of demonstration,
the complexity of the manipulation task involved, and
adaptability to a constantly changing environment. For
example, UL is feasible in terms of cost and duration of the
training and can use unlabeled data to predict the possible
output. However, it is not feasible when the complexity of the
manipulation task and adaptability to a changing environment
is considered, as it relies ona probabilistic model and predicts



the desired output based on unlabeled input data. Conversely,
SL is based on neural networks that can train a model to
perform complex manipulation tasks and adapt to a changing
environment. However, it requires labeled data to predict the
output based on previous input/output combinations.

RL techniques have proven to be promising in PbD, which
learns the model based on exploration and exploitation and
maximizes the reward functionto produce a desired output. The
recently proposed RL techniques have been discussed in the
above section that solves problems related to the quality of
demonstration and incorrect feedback, navigation in a novel
environment, predicting user goal in shared assistive control,
integrating human demonstrations with preferences, humanoid
motion planning of a robotic arm, controlling high DoF robots
with low DoF latent actions, and assistive teleoperation with
human-in-the-loop. Most of the methods mentioned above are
useful when efficient learning with shared autonomy is
considered, which is the case in rehabilitation robotics. While
it has many advantages, some limitations include the
Exploration-Exploitation trade-off, i.e., a balance between the
two, designing appropriate reward functions, Computational
limitation with increased state space, and requirement ofa large
amount of data for efficient learning. Blending the RL
techniques has proven to help eliminate some of the problems.
Although RL is the most efficient method that helps efficient
training of the model, it may have difficulty generalizing to an
unseen environment. This limits its usefulness in real-world
applications.

Future work includes exploring the methods and combining
them to eliminate the limitations of individual methods. Intense
research is required to eliminate the evident problems in robot
learning and minimize the difference between human
demonstration and learned action by utilizing the models for
complete and efficient learning.

V.  CONCLUSION

This review provides an overview of the significance of
Programming by demonstration (PbD) in robot learning,
different approaches of demonstration used in PbD, the
associated machine learning methods and techniques for
efficient robot learning, the strength and limitations of the
learning methods, and a future direction of the research
associated with the field of PbD. Several aspects of PbD using
a learning-based approach was studied. We identified different
approaches of demonstration followed by a detailed discussion
of machine learning methods and techniques that are available
under each method, the state-of-the-art methods proposed by
different researchers and their use in robot learning, and a brief
discussion on the strengths and limitations of the learning
methods and scope of future work. PbD has potential inthe field
of robot learning because of the ease of programming without
any expert skills and uses a demonstration approach which is
the most efficient way to teach. Blending PbD with machine
learning techniques helps in efficient learning of the task and
adapting to a change in the environment. This is helpful in

shared autonomy, where the robot learns from demonstration
and a training model to achieve a desired output. Also, the
feedback provided by the user can be utilized to learn any
deviation from the previously learned task. This is an essential
field in robotics that can enable robots to efficiently learn from
a human teacher and mimic the action to provide a desired
output.
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