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Abstract — Wheelchair-mounted robotic arms are used in 
rehabilitation robotics to help persons with physical impairment 
perform activity of daily living (ADL) tasks. However, the dexterity 
of manipulation tasks makes the teleoperation of the robotic arm 
challenging for the user, as it is difficult to control all degrees of 
freedom with a handheld joystick or a touch screen device. PbD 
(Programming by demonstration) allows the user to demonstrate the 
desired behavior and enables the system to learn from the 
demonstrations and adapt to a new environment. This learned model 
can perform a new set of action in a new environment. Learning 
from demonstration includes object identification and recognition, 
trajectory planning, obstacle avoidance, and adapting to a new 
environment, wherever necessary. PbD using a learning-based 
approach learns the task through a model that captures the 
underlying structures of the task. The model can be a probabilistic 
graphical model, a neural network, or a combination of both. PbD 
with learning can be generalized and applied to new situations as 
this method enables the robot to learn the model rather than just 
memorizing and imitating the demonstration. In addition to this, it 
also helps in efficient learning with a reduced number of 
demonstrations. This survey focuses on an overview of the recent 
machine learning (ML) techniques used with PbD to perform 
dexterous manipulation tasks that enable the robot to learn and 
apply what is learned to a new set of tasks and a new environment. 

    

Keywords—ADL, teleoperation, PbD, object recognition, 
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I. INTRODUCTION 
Humans can determine how to approach an object and pick 

it up when introduced to a new one. They can see the object, 
identify the location and manipulate their arms to reach an 
object of interest, avoiding the obstacles in the environment. It 
has always been an area of interest to create robots that can 
perform dexterous manipulation and grasping comparable to 
humans. However, introducing new objects and tasks, the 
constantly changing environment, and the complexity involved 
in manipulation, make it challenging to solve the problem [1]. 
Nearly one million American adults need assistance to perform 
ADL tasks, i.e., pouring a glass of milk or water, combing hair, 
or feeding themselves [2].  

Wheelchair-mounted robotic arms are equipped with dexterous 
tools to help users perform the desired action without relying 
on the human caregiver. They can be equipped with a vision 
system for object detection and recognition and can be 
programmed to perform complex manipulation tasks with 
autonomy. However, this requires high programming skills and 
constant updates with changing environments, which is evident 
in the real world [2]. Motion planning can help eliminate 
specific lower-level actions like trajectories. However, it 
requires specifying goal location and via points, which could be 
more reliable in a constantly changing environment [3]. 
Moreover, the users should easily be able to control wheelchair-
mounted assistive robots for effective operation. Most 
Wheelchair-mounted robotic arms are equipped with control 
interfaces, such as joysticks, that provide low-dimensional 
control, owing to the user's physical limitations, although a 
robotic arm has more degrees of freedom (DoFs). 
 
PbD is a method that allows a robot to learn intuitively from the 
user demonstration and requires minimal programming skills. 
This process enables the robot to learn and adapt to a 
demonstration by humans, along with the constraints in the 
environment and the model of the task to be performed. The 
procedure of demonstration groups the human as a teacher and 
the robot as a learner, which facilitates the robot to learn from 
the demonstration and autonomously perform novel tasks in a 
new environment [4]. There are several ways to demonstrate a 
task to the robot. Most widely, the demonstration approaches 
can be categorized into three broad categories – kinesthetic 
teaching, teleoperation, and imitation learning, or passive 
observation. The mode of demonstration can be chosen based 
on the complexity of the application. The ease of demonstration 
and mapping the demonstration to the working space of the 
robot are the critical factors in choosing the method. 
 
PbD using a learning-based approach includes using ML 
algorithms to generalize the learned behavior from human 
demonstration to a new environment. The choice of the learning 
algorithm depends on the specific task, the type and quality of 
the available data, and the desired performance metrics. PbD or 
LfD is often combined with ML techniques to learn 



manipulation tasks in real environments [5]. It is essential to 
develop a model that a robot can easily be taught to achieve 
complex dexterity and adapt to the manipulation skills during a 
demonstration. This model is often called skill learning 
framework and is desired if flexible, allowing the robot to learn 
and adapt to the human tutor [6]. PbD using learning involves 
two distinct phases. The first phase is a task learning phase that 
creates representation from the demonstration, followed by the 
task refining phase. This iterative process helps converge the 
learned task representation to a desired task [7]. 
 
The paper's organization is as follows: We categorize the PbD 
approaches in section II, followed by identifying the training 
methods in section III. This section also includes a detailed 
survey of different learning methods used in each category. 
Section IV includes a discussion of the appropriate methods for 
PbD. Finally, concluding remarks are made in Section V. 

II. CATEGORIES OF DEMONSTRATION 
As discussed in Section I, the choice of the mode of 

demonstration depends on the complexity of the manipulation, 
the ease of demonstration, and mapping the demonstration to 
the work space. The demonstration approaches are broadly 
categorized as – kinesthetic teaching, teleoperation, and 
imitation learning, or passive observation, which is shown in 
Fig 1. We will discuss each method briefly and compare them 
against the key factors discussed above. 

A. Kinesthetic teaching 
This is the mode of demonstration where the user physically 

guides the robot through the task with the robot’s own body. 
The user moves the robot's joints with their hands to 
demonstrate the desired motion. The inbuilt sensors record the 
kinematic parameters like joint angles and torques, which is 
then fed to the learning model. It relies on robot hardware and 
requires no additional interfaces or user training. This mode of 
demonstration holds following the ease of demonstration and 
mapping the demonstration to the robot's workspace, as it is 
directly on the robot utilizing its inbuilt sensors to record. This 
process cannot control all the DoF of the robot by the user [3]. 

B. Teleoperation 
This is a mode of demonstration where the user utilizes an 

interface to control the robot’s DoF. The interfaces can be a 
joystick [6, 8, 9], a GUI such as a touch screen or a monitor [7, 
8], and haptic devices [6, 10, 11, 12] in some cases. This 
approach opens the door to remote controlling as the user need 
not be near the robot to demonstrate the action. Also, the user 
can demonstrate a large-scale multi-robot system using this 
technique. 

 
However, this approach demands rigorous user training in using 
the interface to control the DoFs of the robot. Teleoperation can 
handle higher degrees of freedom, and it is easy to map the 
demonstration to the robot’s workspace, as the robot system is 
also involved in task execution in lieu with the demonstration 
provided. 

 
 

Fig 1. Categories of demonstration 
 

C. Passive Observation or Imitation learning 
Passive observation, also known as imitation learning, is an 
approach where the user demonstrates the action using his/her 
own body, which the robot observes passively, without 
execution. Additional sensors sometimes facilitate this 
demonstration for tracking. This approach is very suitable for 
robots with Higher DoF, where kinesthetic teaching or 
teleoperation can be cumbersome. However, mapping the 
demonstration to the robot’s workspace can be complicated. 
The demonstration techniques can be recording a video of a 
demonstration [5, 8, 13] or camera observation [14, 15, 16]. The 
summary of the demonstration categories discussed above has 
been illustrated in Fig. 1. 

III. TRAINING METHODS IN MACHINE LEARNING 
 From the perspective of learning algorithm, learning from 

demonstration is categorized into two broad sections: direct 
approach and indirect approach. The direct approach is referred 
to as the process of learning the policy from the demonstration 
provided, which maps the state to the action, commonly known 
as Behavior cloning. The indirect approach focuses on 
recovering the reward function from the demonstration and 
learning the policy that maximizes the recovered reward 
functions [6]. This paper will classify the training methods as 
unsupervised, supervised, and reinforcement learning, and will 
discuss each in detail. This categorization will help us to 
understand the training methods in a broader way where all the 
associated techniques can be discussed. 

A. Unsupervised Learning 
Unsupervised learning (UL), as suggested by its name, is a 

method of training a ML model that utilizes unlabeled data. 
Here, the unlabeled data refers to a data set that has not been 
identified in terms of characteristics, properties, or 
classifications. Therefore, the model is trained to predict the 
patterns in the input data and establish a relationship within it 
[3, 17]. 

 
Consider a system with a sequence of input x1, x2, x3, …, xt 
where xt is a sensory input at any time t. Based on the 
application, this input can be different such as a video or a pixel 
in an image or something else. UL is defined by the system's 



ability to learn independently without predetermining the 
output. Hence, the system receives a set of inputs x1, x2, x3, …, 
xt without the target output or the rewards from the 
environment. In this case, the framework for learning is based 
on finding patterns in the input data and building 
representations, which can help predict future inputs and 
decision-making. This is a method of learning a probabilistic 
model of data by estimating a model to represent the 
distribution for an input xt, based on previous inputs x1, x2, x3, 
…, xt-1. This model can detect an abrupt change in the data and 
classification of the data by evaluating the probabilities [18]. 
Clustering techniques like the Gaussian mixture model, 
Expectation maximization, and K-means and dimensionality 
reduction are some methods used in UL. 

 
Dynamic Movement Primitive (DMP) framework is widely 
used in PbD because of its smoothness and continuity of the 
generalized trajectories. However, it only uses one 
demonstration to learn the model. As learning the task from 
multiple demonstrations is preferable, Song et al. [15] proposed 
a Probability-based movement primitive (PbMP) that includes 
multiple demonstrations into one model using a probabilistic 
approach. It utilizes the concept of key points to detect motion 
units in the kinematic data from the demonstration. Input 
signals with respective regression models represent each 
trajectory segment. The model has different linear equations 
with different values for independent variables. The difference 
in the slopes of the variable point regression model represents 
the signal inconsistency between consecutive segments. Based 
on these difference scores, the non-Maximum suppression 
(NMS) algorithm is used to select representative candidate 
points. It uses an unsupervised segmentation algorithm that 
does not require the user to provide prior knowledge. It can 
extract the common feature from the demonstrated data using a 
hidden semi-Markov-model (HSMM). Estimation of HSMM 
parameters is done by using an expectation-maximization 
algorithm for all the sequences. 

 
Gaussian mixture model (GMM), one of the most recurrent type 
of UL model, presets multiple Gaussian distributions into a 
fitted space of training dataset, called Gaussian mixture 
regression (GMR). This ML model is trained using expectation 
maximization (EM) algorithm. The new data point is classified 
according to the distribution where it most likely belongs. The 
task parameterized GMM (TP-GMM) is useful in robotic 
manipulators for adaptive trajectories. It is a variation to GMM 
that allows to perform GMR considering different frames for 
observation recording [17]. 

B. Supervised Learning 
Supervised Learning (SL) algorithm is a ML technique that 

utilizes labeled data for training. The labeled data are identified 
in terms of characteristics, properties, or classifications and 
consist of input and corresponding output data. The pattern is 
learned from the labeled data that train the model to predict the 
output for new input data [3, 17]. 
If we consider human learning, SL is similar to learning from 
reading books [21]. SL includes regression, classification, 

hierarchical task networks, and neural networks [3]. Yongqiang 
et al. [13] proposed a self-supervised learning approach, 
generalization by self-supervised practicing (GSSP), that learns 
pouring skills from unsupervised demonstrations. The learned 
skill could achieve accuracy and speed compared to a human 
with a reduction in mean volume error lower than the state-of-
the-art works. They utilize the recurrent neural network (RNN) 
based pouring skill model designed to process its inputs in 
order. The pouring skill model is generalized to different 
container shapes, liquid types, and granular materials. The input 
features to the RNN are the angular velocity, volume at time t, 
volume to be poured, the initial volume of a liquid in a source 
container, and the height H and body diameter D of the source 
container when modeled as a cylinder. 

 
For robotic grasping, discriminative approaches are used that 
sample grasp candidates and rank them via neural network. The 
use of a grasp quality convolution neural network trained by 
using the dataset formed from the outcome of the physics 
simulation to grasp objects in randomized poses on a plane and 
the aligned crop of a depth image where the grasp is located 
helps predict the grasp success for given grasp candidates and 
depth images [1]. Using multiple layers of unit collection that 
interact with the input (pixel values when images are 
considered), Convolution neural networks (CNN) has its utility 
in image recognition and analysis, recommender systems, video 
processing, natural language processing (NLP), object 
recognition, and face recognition [19, 20]. Imitation learning is 
one of the methods that utilize SL. Expert demonstrations train 
the policy, and based on the dataset, the SL algorithms are 
launched to improve policy [21]. The ability of CNN to extract 
powerful image features and that of long short-term memory 
(LSTM) at predicting time series data has exhibited better 
performance when combined [20]. Simge et al. [20] proposed 
the CNN-LSTM version to achieve fact training with the best 
estimation accuracy. A comparison was made between CNN 
and CN-LStM models, which later presented better tracking 
accuracy and smoother estimation results. Inigo et al. [22] used 
DMP with CNN to find insertion tasks in demonstrations to find 
the suitable feature to extract that distinguishes insertion from 
other movements. The CNN combined with gripper activations 
help divide the tasks into phases Encoded and DMPs. This 
approach has proven to be more robust than regular DMPs. 

 
Hsien-l et al. [23] utilized GMM to train the skin model that 
classifies the skin color and non-skin color from an image input, 
followed by hand position and orientation to translate and rotate 
the hand image to a neutral pose. CNN approach is adopted to 
classify seven types of human hand gestures. The GMM for 
modeling the skin color is validated. Multiple images were 
taken from a subject for each gesture type to train and test the 
CNN. As the convolution and subsampling of images help CNN 
learn the gestures, the proposed system is proven useful for 
various types of gestures. Also, using GMM and CNN together 
was indifferent to changes in the lighting conditions and was 
able to provide detailed features of the gestures that helped 
achieve best results. 



Zen et al. [24] introduced semantic robot programming (SRP) 
for declarative robot programming over demonstrated scenes. 
The scenes can be perceived from RGBD observations via 
discriminatively-informed generative estimation of scenes and 
transfers (DIGEST). SRP uses R-CNN as a discriminative 
object detector to obtain a set of bounding boxes. Each 
bounding box outputs the confidence measure via a deep 
convolution neural network. R-CNN object detector is trained 
on the dataset that has 15 grocery objects. 

C. Reinforcement learning 
Reinforcement learning (RL) is a machine learning 

technique where the model learns by trial and error. Based on 
the feedback received from the environment, the model is 
trained to make decisions. The ultimate goal is maximizing the 
reward signal with state agent combination and feedback from 
the environment. Some widely used RL methods are Q- 
learning and deep reinforcement learning. An agent is a robotic 
system that performs an action a 𝜖 A and gets an observation s 
𝜖 S, of the state of the environment from sensors. As the robot 
interacts with the environment, it changes. As a result of this, a 
reward is obtained by the agent r 𝜖 R from the environment, 
which rates the action based on its performance. The goal of the 
agent is to explore and discover an optimum policy that 
maximizes the reward [25]. 
      

 
Fig. 2 Q-Learning Framework 

 
RL helps the agent maximize the outcome (reward) based on 
trial and error (exploration), where the agent can perceive or 
infer information and adapt it adaptively towards changing 
environment, similar to the learning process in humans. 
Learning is inspired by punishment and reward resulting from 
the change of state in the environment [26]. In continuous 
action space, the DRL method can map from image inputs to 
the control policy, which is helpful in robot control. In discrete 
action spaces, DRL methods exhibit strong search capability 
within the high-dimensional decision space, which is helpful 
for the exploration and navigation of intelligent agents in a new 
environment [27]. Reinforcement learning differs from 
supervised learning as it does not need labeled input/output 
pairs. It focuses on finding the balance between exploration and 
exploitation. Reinforcement learning is modeled as a Markov 
decision process (MDP), which has a set of environment and 
agent states S, a set of actions of the agent A, a probability of 
transition from state s to s’ at any time t, and an immediate 
reward Ra, after a transition from s to s’ with an action a. One 
of the widely used RL method is Q learning.                                                          

                                  
qnew (s, a) = (1-α) q (s, a) + α (R(t) + 1 + γ max q (s’, a’)) a’     (1) 
 
where q (s, a) in the old value, (𝑅𝑡 + 1 +  𝛾𝑚𝑎𝑥𝑞(𝑠′,𝑎′) is the 
learned value, 𝛼 is the learning rate (0< 𝛼  <1), and R(t) is the 
reward ant any time t. The framework of Q learning is 
demonstrated in fig 2. 

 
Q-learning is a model-free RL algorithm where the value 
function Q is arbitrarily initialized. Depending on the action and 
the possible future states, its value is updated [17].  

 
Sean et al. [10] used user feedback on the system’s performance 
online and RL to train the interface. The approach scales with 
regular use; increased use of an interface to perform regular 
activities results in increased competence and personalization 
of the interface. The main challenge occurs due to the 
requirement of a large amount of training data from the sparsity 
of rewards. The authors propose a hierarchical solution to the 
problem: offline training is utilized to perform tasks, then the 
online user feedback is used to learn the mapping of user input 
to robot behavior. This is an example of human-in-the-loop 
learning which is quite common in rehabilitation robotics. First, 
the task-conditioned policy is pre-trained to perform various 
tasks without human interaction. Secondly, a user is in the loop 
in the online learning phase that utilizes RL with sparse, user-
provided rewards to interpret the user’s input. The optimal 
policy for the task is computed using the pre-trained task-
conditioned policy by observing information from the task that 
the user completes. The algorithm is called assistive 
teleoperation via human-in-the-loop reinforcement learning 
(ASHA), which is evaluated with 12 participants using a 
webcam and eye gaze to perform three simulated 
manipulations, viz., flipping switches, opening a shelf, and 
rotating a valve. The algorithm learns to map 128-dimensional 
gaze feature to 7-dimensional joint torques in less than 10 
minutes of online training and adapting to changing 
environments. 

 
Robot learning by mapping between human inputs and their 
intended action using RL has also been used with work related 
to shared autonomy. Dylan et al. [2] designed a teleoperation 
algorithm for assistive robots to learn latent actions from task 
demonstrations. Unlike the teleoperation strategy, latent actions 
improved objective and subjective performance. Navigating an 
unknown environment by automatic exploration is also a key 
area for performing ADL tasks. A deep reinforcement learning-
based decision algorithm, auxiliary task fully convolutional Q-
Learning (AFCQN), is proposed by Haoran et al. [27] that 
utilizes a deep neural network to learn exploration strategy. 
Exploration is taken as a sequence decision-making task by the 
authors. They utilize the Markov decision process as a 
framework for decision-making. PbD requires extensive 
training for initial task learning and generalization of the 
learned model to a different environment. In robotic task 
learning problems, the deep model fusion (DMF) RL algorithm 
can efficiently generalize the learned task by model fusion that 



helps to solve the problem of adaptation to a new environment. 
A multi-objective guided reward system converts sparse 
rewards to dense rewards to speed up the training process. The 
robot is pre-trained in various environments to obtain different 
policy models. When the environment changes, the DMF-RL 
method is used to improve the performance by the fusion of pre-
trained policy models, as all the models have helpful 
information that is useful in boosting performance [28]. 

 
RL methods have also been used in humanoid motion planning 
of robotic arms that mimics human arm’s motion. This process 
broadly includes two steps: (1) Extraction of human motion 
rules (HMR) and (2) RL training. Aolie et al. [14] used VICON 
optical motion capture system for HMR extraction to obtain the 
trajectory of human arm. For RL training, deep deterministic 
policy gradient (DDPG) and hindsight experience replay (HER) 
are adopted to train the humanoid motion of the robotic arm that 
combines former motion rules and designs corresponding 
reward functions. States of the robotic arm were analyzed and 
the action features on the robotic arm platform were compared 
with the human arm action. 

 
PbD requires an accurate demonstration for the learning 
algorithm to be efficient. However, with human teachers, the 
demonstrations are not perfect all the time and can often 
provide incorrect information. Interactive RL learning allows 
the agent to learn quicker than non-interactive RL as the agent 
learns from two sources: Observation of the environment and 
feedback from a secondary critic source, like a human teacher 
or sensor feedback. However, the information provided by the 
critic is only sometimes perfect. Taylor et al. [29] introduced 
revision estimation from a partially Incorrect resources 
(REPaIR) framework that can estimate correction to imperfect 
feedback. Corruption function is defined between the correct 
and received reward, which is updated using a reward function 
R. To learn the reward functions from human demonstrations 
and preferences, Malayandi et al. [9] utilized a new framework 
of reward learning, DemPref that uses demonstrations in 
addition to preference queries to learn the reward function.  
 
PbD has been an essential paradigm in learning ADL tasks with 
shared assistive control. However, more reactive assistive 
behavior can be generated by combining the motion from the 
demonstration with a real-time goal prediction method. This 
can also help reduce the number of joystick control inputs, a 
key factor in rehabilitation robotics. Calvin et al. [6] proposed 
a method that blends demonstration-generated assistive motion 
with user input based on goal predictions to achieve the task. 
The authors used the DMP-based assistive control method to 
predict the user goal by comparing the user input with DMP-
generated assistive motion during the control process. They 
also compared the method with Partially observable Markov’s 
Decision Process (POMDP) and direct control using a joystick. 
The time taken to complete the task and the number of user 
inputs required is the least in the method proposed by the 
authors. 

Tymoteusz et al. [25] evaluated positioning accuracy, motion 
trajectory, and the number of steps required to position a robotic 
arm task using various RL algorithms. DDPG, twin delayed 
deep deterministic policy gradient (TD3), soft actor-critic 
(SAC), and HER were evaluated in six different combinations: 
DDPG, TD3, SAC, DDPG+HER, TD3+HER, and SAC+HER. 
Sparse, dense, and dense trajectory reward functions were 
tested for each of the six combinations. The advantage of 
combining DDPG, TD3, and SAC with HER was seen for 
sparse reward. DDPG and DDPG+HER were found to be best 
for dense rewards. Finally, for dense trajectory reward, the 
smallest positioning error was obtained for TD3, and the least 
standard deviation was obtained for the DDPG+HER 
algorithm. Yoan et al. [7] used tree boosted relational imitation 
learning (TBRIL) to learn the policy close to the one 
demonstrated. The Authors propose a task refining process 
based on the GUI that shows the user the elements of the task 
learned by the system and allows them to correct it. 
 

IV. DISCUSSION 
       PbD is a method widely used in robot learning as it reduces 
complex programming to achieve the manipulation task and 
relies on demonstration provided by a human to replicate the 
task. However, the crucial factor for the PbD to be efficient is 
the quality of the demonstration and the availability of labeled 
data for predicting the outcome based on the input signal. It is 
helpful in rehabilitation robotics, considering the ability of the 
user to tele operate to perform dexterous manipulation tasks. A 
complete task can be broken down into actions, and the 
sequence of actions for ADL tasks can be demonstrated and 
stored as a data set. Also, a set of actions can be common to 
multiple tasks, and learning these actions would help complete 
various tasks autonomously. PbD depends on the quality of the 
demonstration and availability of labeled data, which is not 
possible in all cases. 
 
Moreover, the human-in-the-loop constantly needs to provide 
feedback if the task is not performed as desired. Hence, this 
leads to a requirement for a robust learning method that is 
capable of learning the policy from the demonstration and 
predicting desirable output from given input based on either the 
probabilistic approach or maximizing the reward function. The 
three broad methods, viz., unsupervised, supervised, and 
reinforcement learning, have been discussed in the previous 
section with detailed descriptions of each method and recent 
techniques developed and used for robot learning. The choice 
of a particular method will depend on the cost and duration of 
the training, availability of data as discrete/continuous or 
labeled/unlabeled, the approach and quality of demonstration, 
the complexity of the manipulation task involved, and 
adaptability to a constantly changing environment. For 
example, UL is feasible in terms of cost and duration of the 
training and can use unlabeled data to predict the possible 
output. However, it is not feasible when the complexity of the 
manipulation task and adaptability to a changing environment 
is considered, as it relies on a probabilistic model and predicts 



the desired output based on unlabeled input data. Conversely, 
SL is based on neural networks that can train a model to 
perform complex manipulation tasks and adapt to a changing 
environment. However, it requires labeled data to predict the 
output based on previous input/output combinations.  
 
RL techniques have proven to be promising in PbD, which 
learns the model based on exploration and exploitation and 
maximizes the reward function to produce a desired output. The 
recently proposed RL techniques have been discussed in the 
above section that solves problems related to the quality of 
demonstration and incorrect feedback, navigation in a novel 
environment, predicting user goal in shared assistive control, 
integrating human demonstrations with preferences, humanoid 
motion planning of a robotic arm, controlling high DoF robots 
with low DoF latent actions, and assistive teleoperation with 
human-in-the-loop. Most of the methods mentioned above are 
useful when efficient learning with shared autonomy is 
considered, which is the case in rehabilitation robotics. While 
it has many advantages, some limitations include the 
Exploration-Exploitation trade-off, i.e., a balance between the 
two, designing appropriate reward functions, Computational 
limitation with increased state space, and requirement of a large 
amount of data for efficient learning. Blending the RL 
techniques has proven to help eliminate some of the problems. 
Although RL is the most efficient method that helps efficient 
training of the model, it may have difficulty generalizing to an 
unseen environment. This limits its usefulness in real-world 
applications. 
 
Future work includes exploring the methods and combining 
them to eliminate the limitations of individual methods. Intense 
research is required to eliminate the evident problems in robot 
learning and minimize the difference between human 
demonstration and learned action by utilizing the models for 
complete and efficient learning. 

V. CONCLUSION  
This review provides an overview of the significance of 
Programming by demonstration (PbD) in robot learning, 
different approaches of demonstration used in PbD, the 
associated machine learning methods and techniques for 
efficient robot learning, the strength and limitations of the 
learning methods, and a future direction of the research 
associated with the field of PbD. Several aspects of PbD using 
a learning-based approach was studied. We identified different 
approaches of demonstration followed by a detailed discussion 
of machine learning methods and techniques that are available 
under each method, the state-of-the-art methods proposed by 
different researchers and their use in robot learning, and a brief 
discussion on the strengths and limitations of the learning 
methods and scope of future work. PbD has potential in the field 
of robot learning because of the ease of programming without 
any expert skills and uses a demonstration approach which is 
the most efficient way to teach. Blending PbD with machine 
learning techniques helps in efficient learning of the task and 
adapting to a change in the environment. This is helpful in 

shared autonomy, where the robot learns from demonstration 
and a training model to achieve a desired output. Also, the 
feedback provided by the user can be utilized to learn any 
deviation from the previously learned task. This is an essential 
field in robotics that can enable robots to efficiently learn from 
a human teacher and mimic the action to provide a desired 
output. 
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