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Abstract—We propose a one-dimensional convolutional neural
network (1D-CNN) with spatial coupling for post-fault power
grid voltage prediction. Our proposed deep learning framework
was inspired by the celebrated Prony’s method in classical signal
processing. Our spatio-temporal model significantly outperforms
existing benchmarks, including long short-term memory model,
and is applicable to other strong transients in power industries.

Index Terms—Power grid, post-fault prediction, deep learning

I. INTRODUCTION

Accurate power grid prediction and fault detection is cru-

cial for decision making after anomalies (e.g. short circuits,

weather related damages) occur. Computationally, it is chal-

lenging if a large physical system of circuit equations [6]

has to be solved rapidly to produce accurate predictions. An

alternative approach is to learn the system’s response from

short time observations and generate subsequent system re-

sponses. Classical signal processing uses linear time invariant

filters, such as Padé and Prony’s methods [3]. However, these

methods are designed to fit responses with a rational system

function. Besides requiring the user to select the degrees of

numerator and denominator polynomials from observed data,

the prediction is only on a scalar time series and can be

sensitive to the choice of the degrees [5].

Prony’s method is well-known for modeling impulse re-

sponses resembling post-fault responses of a power system.

In this paper, we generalize Prony’s method to 1D-CNN [1]

with additional spatial information (e.g. currents in power lines

near a node/bus). The presence of temporal (1D) convolution

is a common ground of both methods, though 1D-CNN also

contains nonlinear operations such as activation and max-

pooling as well as dense layers. Related work [4] applied

long short-term memory (LSTM) neural network to model

transient dynamics of individual power generator and observed

much faster inference than computational physical simulations

[6]. However, we have not found LSTM to be effective in

modeling post-fault responses. When varying the lookback of

the LSTM model between 1 and 20, we found that the errors

compound far too quickly in prediction, making the model

fairly useless. Compared to the LSTM, a 1D-CNN is much

better at extracting non-local dynamic features for prediction.

Our main contributions are:

1) We trained 1D-CNN to successfully generalize the

Prony’s method to deep learning in the context of power-grid

data, free from choosing integer hyper-parameters location by

location.

2) The input to the 1D-CNN can be a concatenated vector

consisting of node voltage and nearby line currents, consistent

with measurements commonly used in power energy industry.

3) When applied to the prediction of voltage response

shortly after a fault occurs on a realistic power system, 1D-

CNN with neighboring current as joint input outperforms 1D-

CNN with voltage input alone, while the latter improves on

Prony’s method.

The code can be found on github.

II. DATASET AND OUR GOAL

Time-domain simulations using a software tool EPTOOL

[2] generate a library of system dynamic responses to a variety

of disturbances. The simulations are performed on the New

York/New England 16-generator 68-bus power system. The

data consists of 3638 different events (faults), 70 percent of

which are selected as training data, 30 percent as test data.

Each event contains data describing 1000 points of time (1000

ms) for each of the 68 buses. The first 200 points after the

spike (estimated to be around the 105-th point) are used as

input, the last 600 points are used as output. The voltage is

recorded for each node, and the current is recorded for each

line connecting the nodes to one another. Our goal is to predict
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the power grid’s response immediately after the fault occurs

for unseen scenarios, which assists real-time decision-making.

III. MODEL AND TRAINING

Our 1D-CNN model consists of a 1D-convolutional layer, a

max-pooling layer, a 1D flattening layer, and two dense layers,

with 392,466 parameters, of which 387,842 are trainable. For

voltage data, the input is a vector x ∈ R
200, representing the

magnitude of the voltage for the first 200 time steps (200 ms);

the fault occurs approximately 100 ms into the input, so this

reflects the behavior of a node in the power grid immediately

before and after a fault. The 1D-CNN outputs a prediction for

the voltage of the next 600 time steps y ∈ R
600, allowing

us to predict voltage response on the power grid after the

fault occurs. We found that incorporating neighboring current

information can improve the predictions of the network. To

accomplish this, we train a separate 1D-CNN for each node

in the power-grid. The input is a multidimensional vector

(a matrix) x ∈ R
200×(N+1), where N is the number of

neighbors. The first column represents the voltage at the

node, whereas the subsequent columns represent the current

from the neighbors. We train the nodes separately since the

voltage behavior per node is highly independent. To train

the model, we minimize MSE (mean-squares-error) between

predicted voltage and actual voltage for the next 600 points

by a stochastic gradient descent solver in Tensorflow.

IV. EXPERIMENTS

On its own, the 1D-CNN generically outperforms Prony’s

method [3] as seen in comparisons of Fig. 1 on 4 buses.

Prony’s method requires hand-selecting two integer parameters

to fit the observation at each node of the power network. This

is a labor-intensive task that still results in an inconsistent

method; even after optimal parameters are set, the method

still fails to capture the overall voltage trend in many cases.

An advantage of our 1D-CNN approach is that it can model all

nodes without tuning integer hyper-parameters. The 1D-CNN

is further improved by coupling neighboring currents (Table 1

and Fig. 2). Our model inference is fast, e.g. with an average

prediction time of 0.046 seconds on a Tesla T4 machine.

In Table 1, we compare performance of the various models

on voltage prediction. MSE results are grouped based on the

number of neighbors for each node: the maximum number of

neighbors in this graph is 5. The first column is the MSE

when training a separate 1D-CNN for each node utilizing

neighboring current information. The second column repre-

sents the results of the 1D-CNN with only voltage as input,

no additional current information from the neighboring lines.

V. CONCLUSION

Motivated by the classical Prony’s method, we adopted

the 1D-CNN with spatial coupling for real-time long-term

power grid prediction after the fault of the system occurs. Our

proposed algorithm remarkably outperforms existing bench-

mark method, indicating the potential of 1D-CNN with spatial

coupling for power industrial applications.

Fig. 1: Comparing 1D-CNN output (green), Prony’s output [3]

(red), and predictions vs. data (blue). Training/test timestamps:

0-200/201-800; separated by the vertical line at 200 ms.

TABLE I: MSE Comparison between different CNN models.

Neighbors MSE (1D-CNN with neighbors) MSE (1D-CNN)

1 1.6e-4 1.6e-4

2 1.7e-4 2.9e-4

3 1.5e-4 2.3e-4

4 1.9e-4 3.0e-4

5 1.1e-4 2.1e-4

Total 1.6e-4 2.3e-4

Fig. 2: Contrasting the predictions of 1D-CNN coupling 4

neighboring line currents (green) with ground truth data (blue).
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