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COMPUTING EFFECTIVE DIFFUSIVITIES IN 3D TIME-DEPENDENT

CHAOTIC FLOWS WITH A CONVERGENT LAGRANGIAN NUMERICAL

METHOD

Zhongjian Wang1 , Jack Xin2 and Zhiwen Zhang3,*

Abstract. In this paper, we study the convergence analysis for a robust stochastic structure-preserving
Lagrangian numerical scheme in computing effective diffusivity of time-dependent chaotic flows, which
are modeled by stochastic differential equations (SDEs). Our numerical scheme is based on a splitting
method to solve the corresponding SDEs in which the deterministic subproblem is discretized using
a structure-preserving scheme while the random subproblem is discretized using the Euler-Maruyama
scheme. We obtain a sharp and uniform-in-time convergence analysis for the proposed numerical scheme
that allows us to accurately compute long-time solutions of the SDEs. As such, we can compute the effec-
tive diffusivity for time-dependent chaotic flows. Finally, we present numerical results to demonstrate
the accuracy and efficiency of the proposed method in computing effective diffusivity for the time-
dependent Arnold-Beltrami-Childress (ABC) flow and Kolmogorov flow in three-dimensional space.
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1. Introduction

In this paper, we study the convection-enhanced diffusion phenomenon for particles moving in time-dependent
chaotic flows, which is defined by the following passive tracer model, i.e., a stochastic differential equation
(SDE),

dX(𝑡) = v(𝑡,X)d𝑡 + 𝜎dw(𝑡), X ∈ R𝑑, (1.1)

where X(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑑(𝑡))
𝑇 ∈ R𝑑 is the position of the particle, 𝜎 > 0 is the molecular diffusivity, and

{w(𝑡)}𝑡≥0 is the standard 𝑑-dimensional Brownian motion. The velocity field v(𝑡,x) is time-dependent and
divergence free, i.e., ∇x · v(𝑡,x) = 0, for all 𝑡 ≥ 0. In order to guarantee the existence of the solution to the
SDE (1.1), we also assume that v(𝑡,x) is Lipschitz in x. The passive tracer model (1.1) has many applications
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in physical and engineering sciences, including atmosphere science, ocean science, chemical engineering and
combustion [23].

We will study the long-time large-scale behavior of the particle X(𝑡) in the passive tracer model (1.1), i.e.,
whether the motion of the particle X(𝑡) has a long-time diffusive limit. Let X𝜖(𝑡) ≡ 𝜖X(𝑡/𝜖2) denote the rescaled
process of (1.1). We aim to investigate whether X𝜖(𝑡) converge in law to a Brownian motion with a covariance
matrix 𝐷𝐸 ∈ R𝑑×𝑑 as 𝜖 → 0, where 𝐷𝐸 is called the effective diffusivity matrix. The dependence of 𝐷𝐸 on
the velocity field of the passive tracer model is complicated and highly nontrivial. There are many theoretical
works, where the homogenization theory was applied to study the effective diffusivity matrix 𝐷𝐸 of the passive
tracer model with spatial periodic velocity fields or random velocity fields with short-range correlations; see
e.g., [3, 12,16,28] and references therein.

For many complicated velocity fields of physical interests, one cannot apply the homogenization theory to
compute the corresponding effective diffusivity matrix 𝐷𝐸 , or even determine its existence. Therefore, many
numerical methods were developed to compute 𝐷𝐸 . These results include, among others, for time-independent
Taylor-Green flows, the authors of [29] proposed a stochastic splitting method and calculated effective dif-
fusivity in the limit of vanishing molecular diffusivity. For time-dependent chaotic flows, an efficient model
reduction method based on the spectral method was developed to compute 𝐷𝐸 using the Eulerian framework
[22]. The reader is referred to [23] for an extensive review of many existing mathematical theories and numerical
simulations for the passive tracer model with different velocity fields.

Recently, we developed a robust structure-preserving Lagrangian scheme to compute the effective diffusivity
for chaotic and stochastic flows in [32]. We also obtained a rigorous error estimate for the numerical scheme
in [32]. Specifically, let 𝐷𝐸,num denote the numerical effective diffusivity obtained by our method. We got the
error estimate, ||𝐷𝐸,num − 𝐷𝐸 || ≤ 𝐶𝛥𝑡 + 𝐶(𝑇 )(𝛥𝑡)2, where the computational time 𝑇 should be greater than
the diffusion time (also known as mixing time). This error estimate is not sharp in the sense that the pre-factor
𝐶(𝑇 ) may grow fast with respect to 𝑇 , since the error estimation is based on a Gronwall inequality technique.
Later, we obtained a sharp convergence rate for our numerical scheme and got rid of the term 𝐶(𝑇 ) in the error
estimate in [33]. However, this technique can only be used to study passive tracer models in time-independent
(steady) flows, and cannot be applied to study passive tracer models in time-dependent (unsteady) flows.

In this paper, we aim to obtain a sharp convergence analysis for our numerical scheme in computing effective
diffusivity of passive tracer models in spatial-temporal periodic velocity fields. These types of flow fields are well-
known for exhibiting chaotic streamlines and have many applications in turbulent diffusion [23]. Since in this case
the velocity field depends on the temporal variable, the generator associated with the stochastic process, i.e., the
solution X(𝑡) in equation (1.1) becomes non-autonomous. The generator is now a parabolic-type operator (see
Eq. (2.2)), instead of an elliptic-type operator studied in [33] when the flows are time-independent. The cell problem
is then defined in a space-time periodic domain; see equation (2.4). Hence the extension of the analysis developed
in [33] to time-dependent flows is not straightforward. We will develop new techniques to overcome the difficulty
arising from time dependence; see Theorem 4.3 and Lemma 4.5 in Section 4. We also emphasize that when the flows
are time-independent, one can construct ballistic orbits of the ABC and Kolmogorov flows [17, 24, 34] and study
their dynamic behaviors. When the flows are time-dependent however, their more complicated streamlines make
it challenging to construct and study ballistic orbits even if they persist.

Though there are several prior works on structure-preserving schemes for ODEs and SDEs, see e.g., [1, 14,
15,21,31] and references therein, our work has several novel contributions. The first novelty is the convergence
analysis, where we develop new techniques to deal with time-dependent flows. To handle the parabolic-type
generator, we pile up snapshots of each time step within a single time period together. By viewing the numerical
solutions as a Markov process and exploring the ergodicity of the solution process, we succeed in obtaining a
sharp convergence analysis for our method in computing the effective diffusivity, where the error estimate does
not depend on the computational time. Therefore, we can compute the long-time solutions of passive tracer
models without losing accuracy; see Figures 1 and 2. If we choose the Gronwall inequality in the error estimate, we
cannot get rid of the exponential growth pre-factor in the error term, which makes the convergence analysis not
sharp. Most importantly, our convergence result reveals the equivalence of the definition of effective diffusivity
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using the Eulerian framework and the Lagrangian framework; see Theorem 4.10, which is fundamental and
important. For 3D time-dependent flows, the Eulerian framework has good theoretical value yet the Lagrangian
framework is mesh-free and computationally more accessible.

Another novelty is that the stochastic structure-preserving Lagrangian scheme is robust and quite cheap in
computing the long-time solutions of the passive tracer model (1.1), especially for problems in three-dimensional
space. If one adopts the Eulerian framework to compute the effective diffusivity of the passive tracer model (1.1),
one needs to solve a convection-diffusion-type cell problem; see equation (2.4). When the molecular diffusivity 𝜎
is small and/or the dimension of spatial variables is high, say 𝑑 = 3, it is exorbitantly expensive to solve the cell
problems. As indicated in equation (2.5), the effective diffusivities depend on the integration of the gradient of
the solution to the cell problem. In many cases, e.g., time-dependent ABC flow, the effective diffusivities grow
rapidly as 𝜎 decreases; see Figure 3. In our Lagrangian approach, we can overcome the difficulties of long-time
integration of the SDEs (raised as 𝜎 decreases) by using robust structure-preserving schemes. However, for the
Eulerian approach, one needs to solve a four-dimensional PDE (three variables in spatial dimension and one
variable in the temporal dimension) and solutions have sharp gradients as the diffusivity decreases, which makes
the Eulerian approach expensive for computing effective diffusivities.

Numerical results show that our Lagrangian scheme is insensitive to the molecular diffusivity 𝜎 and compu-
tational cost linearly depends on the dimension 𝑑 of spatial variables in the passive tracer models (1.1). Thus,
we are able to investigate the convection-enhanced diffusion phenomenon for several typical time-dependent
chaotic flows of physical interests, including the time-dependent ABC flow and the time-dependent Kolmogorov
flow in three-dimensional space. We discover that the maximal enhancement is achieved in the former case,
while a submaximal enhancement is observed in the latter case; see Figures 3 and 4b, respectively. In addition,
we find that the level of chaos and the strength of diffusion enhancement seem to compete with each other in
the time-dependent ABC flow; see Figure 5. To the best of our knowledge, our work is the first in the liter-
ature to develop a convergent Lagrangian method to study convection-enhanced diffusion phenomenon in 3D
time-dependent chaotic flows.

The rest of the paper is organized as follows. In Section 2, we give the definition of the effective diffusivity
matrix using the Eulerian framework and the Lagrangian framework. In Section 3, we propose the stochastic
structure-preserving Lagrangian scheme in computing effective diffusivity for the passive tracer model (1.1). In
Section 4, we provide a sharp convergence analysis for the proposed method based on a probabilistic approach.
In addition, we shall show that our method can be used to solve high-dimensional flow problems and the error
estimate can be obtained naturally. In Section 5, we present numerical results to demonstrate the accuracy and
efficiency of our method. We also investigate the convection-enhanced diffusion phenomenon for time-dependent
chaotic flows. Concluding remarks are made in Section 6.

2. Effective diffusivity of the passive tracer models

There are two frameworks to define the effective diffusivity of the passive tracer models. We first discuss the
Eulerian framework. One natural way to study the expectation of the paths for the SDE given by equation (1.1)
is to consider its associated backward Kolmogorov equation [27]. Due to the time-dependence nature of the
velocity field, we need to deal with a space-time ergodic random flow. Specifically, given a sufficiently smooth
function 𝜑(𝜏,x) in R×R𝑑, let 𝑢(𝑡, 𝜏,x) = E

[︀

𝜑(𝑡 + 𝜏,X𝑡+𝜏 )|X𝜏 = x
]︀

and X(𝑡) be the solution to equation (1.1).
Then, 𝑢(𝑡, 𝜏,x) satisfies the following backward Kolmogorov equation

𝑢𝑡 = ℒ𝑢, 𝑢(0, 𝜏,x) = 𝜑(𝜏,x). (2.1)

In equation (2.1), the generator ℒ is defined as

ℒ𝑢 = 𝜕𝜏𝑢 + v · ∇x𝑢 + 𝐷0𝛥x𝑢, (2.2)

where 𝐷0 = 𝜎2/2 is the diffusion coefficient, v is the velocity field, and ∇x and 𝛥x denote the gradient operator
and Laplace operator, respectively.
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Remark 2.1. Let 𝜌(𝑡, 𝜏,x) denote the density function of the particle (𝑡 + 𝜏,X(𝑡 + 𝜏)) of equation (1.1). One
can define the adjoint operator ℒ* as ℒ*𝜌 = −𝜕𝜏𝜌 − ∇ · (v𝜌) + 𝐷0𝛥𝜌. Then, 𝜌 satisfies the Fokker-Planck
equation 𝜌𝑡 = ℒ*𝜌 with the initial density 𝜌(𝑡, 𝜏,x) = 𝜌0(𝜏,x).

When v is incompressible (i.e., ∇x · v(𝑡,x) = 0, ∀𝑡), deterministic and space-time periodic in 𝑂(1) scale,
where we assume the period of v is 1 in each dimension of the physical and temporal space, the formula for the
effective diffusivity matrix is [3, 28]

𝐷𝐸 = 𝐷0𝐼 +
⟨︀

v(𝑡,x) ⊗ 𝜒(𝑡,x)
⟩︀

𝑝
, (2.3)

where we have assumed that the fluid velocity v(𝑡,x) is smooth and the (vector) corrector field 𝜒 satisfies the
cell problem,

ℒ𝜒 = −v(𝑡,y), (𝑡,y) ∈ T × T𝑑, (2.4)

and ⟨·⟩𝑝 denotes temporal and spatial average over T × T𝑑. Since v is incompressible, the solution 𝜒 to the
cell problem (2.4) is unique up to an additive constant by the Fredholm alternative. By multiplying 𝜒 to
equation (2.4), integrating the corresponding result in T×T𝑑 and using the periodic conditions of 𝜒 and v, we
get an equivalent formula for the effective diffusivity as follows:

𝐷𝐸 = 𝐷0𝐼 +
⟨︀

∇𝜒(𝑡,x) ⊗∇𝜒(𝑡,x)
⟩︀

𝑝
. (2.5)

The correction to 𝐷0𝐼 in equation (2.5) is nonnegative definite. We can see that e𝑇 𝐷𝐸e ≥ 𝐷0 for all unit column
vectors e ∈ R𝑑, which is called convection-enhanced diffusion. By using a variational principle for time-periodic
velocity flows, one can find a upper bound for the effective diffusivity, i.e., there exists a nonzero unit column
vector e ∈ R𝑑, such that

e𝑇 𝐷𝐸e ∼ 1

𝐷0
, as 𝐷0 → 0, (2.6)

which is known as the maximal enhancement. More details of the derivation can be found in [4,9,25]. We point
out that many theoretical results were built upon the passive tracer models with time-independent flows. We
are interested in studying the convection-enhanced diffusion phenomenon for time-dependent chaotic flows in
this paper. Especially, whether the time-dependent chaotic flows still have the maximal enhancement.

In practice, the cell problem (2.4) can be solved using numerical methods, such as finite element methods
and spectral methods. However, when 𝐷0 becomes small, the solutions of the cell problem (2.4) develop sharp
gradients and demand a large number of finite element basis or Fourier basis functions to resolve, which makes
the Eulerian framework expensive. In addition, when the dimension of spatial variables is high, say 𝑑 = 3, the
Eulerian framework becomes expensive too.

Alternatively, one can use the Lagrangian framework to compute the effective diffusivity matrix, which is
defined as follows:

𝐷𝐸
𝑖𝑗 = lim

𝑡→∞

⟨

(︀

𝑥𝑖(𝑡) − 𝑥𝑖(0))(𝑥𝑗(𝑡) − 𝑥𝑗(0)
)︀

⟩

2𝑡
, 1 ≤ 𝑖, 𝑗 ≤ 𝑑, (2.7)

where X(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑑(𝑡))
𝑇 is the position of a particle tracer at time 𝑡 and the average ⟨·⟩ is taken over

an ensemble of particles. If the above limit exists, which means the transport of particles is a standard diffusion
process, at least on a long-time scale. For example, when the velocity field is the Taylor-Green velocity field
[9,29], the long-time and large-scale behavior of the passive tracer model is a diffusion process. However, there
are cases showing that the spreading of particles does not grow linearly with time but has a power-law 𝑡𝛾 , where
𝛾 > 1 and 𝛾 < 1 correspond to super-diffusive and sub-diffusive behaviors, respectively; see e.g., [2, 4, 23].

We shall adopt the Lagrangian framework in this paper. The Lagrangian framework has the advantages that:
(1) it is easy to implement; (2) it does not directly suffer from a small molecular diffusion coefficient 𝜎 during
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the computation; and (3) its computational cost only scales linearly with the dimension of spatial variables in
the passive tracer models. However, the major difficulty in solving equation (1.1) is that the computational
time should be long enough to approach the diffusion time scale. To address this challenge, we shall develop
robust numerical schemes, which are structure-preserving and accurate for long-time integration. Moreover, we
aim to develop the convergence analysis of the proposed numerical schemes. Finally, we shall investigate the
relationship between parameters of the time-dependent chaotic flows and the corresponding effective diffusivity.

3. Stochastic structure-preserving schemes

3.1. Derivation of numerical schemes

To demonstrate the main idea, we first construct stochastic structure-preserving schemes for a two-dimensional
passive tracer model. The derivation of the numerical schemes for high-dimensional passive tracer models will
be discussed in Section 4.5. Specifically, let X = (𝑥1, 𝑥2)

𝑇 denote the position of the particle, then the model
can be written as

{︃

d𝑥1 = 𝑣1d𝑡 + 𝜎d𝑤1,𝑡, 𝑥1(0) = 𝑥1,0,

d𝑥2 = 𝑣2d𝑡 + 𝜎d𝑤2,𝑡, 𝑥2(0) = 𝑥2,0,
(3.1)

where 𝑤𝑖,𝑡, 𝑖 = 1, 2 are independent Brownian motions. We assume that v = (𝑣1, 𝑣2)
𝑇 is divergence-free and

mean-zero at any time 𝑡, i.e.,
∇ · v := 𝜕𝑥1

𝑣1 + 𝜕𝑥2
𝑣2 = 0 ∀𝑡, (3.2)

and
{︃

∫︀

T
𝑣1(𝑡, 𝑥1, 𝑥2)d𝑥2 = 0 ∀𝑥1, 𝑡,

∫︀

T
𝑣2(𝑡, 𝑥1, 𝑥2)d𝑥1 = 0 ∀𝑥2, 𝑡,

(3.3)

where T = [0, 1]. We also assume that v is smooth and its first-order derivatives 𝑣𝑖(𝑡, 𝑥1, 𝑥2), 𝑖 = 1, 2 are
bounded. These conditions are necessary to guarantee the existence and uniqueness of solutions of the SDE
(3.1); see [27]. Moreover, we assume that the diagonal of the Jacobian of the velocity field v = (𝑣1, 𝑣2)

𝑇 are all
zeros. A typical example is a Hamiltonian system with a separable Hamiltonian, i.e., there exists 𝐻(𝑡, 𝑥1, 𝑥2) =
𝐻1(𝑡, 𝑥1) + 𝐻2(𝑡, 𝑥2) such that,

𝑣1 = −𝜕𝑥2
𝐻, 𝑣2 = 𝜕𝑥1

𝐻. (3.4)

In this paper, we denote with slightly abuse of notation that 𝑣1(𝑡, 𝑥2) = 𝑣1(𝑡, 𝑥1, 𝑥2) and 𝑣2(𝑡, 𝑥1) =
𝑣2(𝑡, 𝑥1, 𝑥2). These notations simplify our derivation. Whenever a statement corresponds to 𝑣1(𝑡, 𝑥2) (or 𝑣2(𝑡, 𝑥1))
is made, it is equivalent to that for 𝑣1(𝑡, 𝑥1, 𝑥2) (or 𝑣2(𝑡, 𝑥1, 𝑥2)).

In [32], we proposed a stochastic structure-preserving scheme based on a Lie-Trotter splitting scheme to solve
the SDE (3.1). Specifically, we split the problem (3.1) into a deterministic subproblem,

{︃

d𝑥1 = 𝑣1(𝑡, 𝑥2)d𝑡,

d𝑥2 = 𝑣2(𝑡, 𝑥1)d𝑡,
(3.5)

which is solved by using a symplectic-preserving scheme (e.g., the symplectic Euler scheme for deterministic
equations with frozen time), and a stochastic subproblem,

{︃

d𝑥1 = 𝜎d𝑤1,𝑡,

d𝑥2 = 𝜎d𝑤2,𝑡,
(3.6)

which is solved by using the Euler-Maruyama scheme [27]. When 𝜎 is a constant in (3.6), the Euler-Maruyama
scheme exactly solves equation (3.6)

Now we discuss how to discretize equation (3.1). From time 𝑡 = 𝑡𝑛 to time 𝑡 = 𝑡𝑛+1, where 𝑡𝑛+1 = 𝑡𝑛 + 𝛥𝑡,
𝑡0 = 0, and 𝛥𝑡 is the time step, we assume the numerical solution X𝑛 = (𝑥𝑛

1 , 𝑥𝑛
2 )𝑇 is given, which approximates
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the exact solution X(𝑡𝑛) to the SDE (3.1) at time 𝑡𝑛 = 𝑛𝛥𝑡. Then, we apply the Lie-Trotter splitting method
to solve the SDE (3.1) and obtain,

{︃

𝑥𝑛+1
1 = 𝑥𝑛

1 + 𝑣1(𝑡𝑛+ 1
2
, 𝑥𝑛

2 )𝛥𝑡 + 𝜎𝑁𝑛
1 ,

𝑥𝑛+1
2 = 𝑥𝑛

2 + 𝑣2

(︀

𝑡𝑛+ 1
2
, 𝑥𝑛

1 + 𝑣1(𝑡𝑛+ 1
2
, 𝑥𝑛

2 )𝛥𝑡
)︀

𝛥𝑡 + 𝜎𝑁𝑛
2 ,

(3.7)

where 𝑡𝑛+ 1
2

= 𝑡𝑛 + 𝛥𝑡
2 , 𝑁𝑛

1 =
√

𝛥𝑡𝜉1, 𝑁𝑛
2 =

√
𝛥𝑡𝜉2, and 𝜉1, 𝜉2 ∼ 𝒩 (0, 1) are i.i.d. normal random variables.

In this paper, we view the solution sequence X𝑛 = (𝑥𝑛
1 , 𝑥𝑛

2 )𝑇 , 𝑛 = 1, 2, 3, . . ., generated by the scheme (3.7) as
a discrete Markov stochastic process, which enables us to use techniques from stochastic process to obtain a
sharp convergence analysis for the numerical solutions; see Section 4.

In a 2D Hamiltonian system, when the system contains an additive temporal noise, for each path of the
strong solution of SDE (3.1), the additive noise itself is considered to be a symplectic transform [26]. Therefore,
we state that the scheme (3.7) is stochastic symplectic-preserving since it preserves symplecticity. Specifically,
the scheme (3.7) can be viewed as a composition of two symplectic transforms. In addition, we know that the
numerical solution converges to the exact one as the time step 𝛥𝑡 approaches zero. In high-dimensional systems,
a structure-preserving scheme refers to a volume-preserving scheme; see Section 4.5.

3.2. The backward Kolmogorov equation and related results

We first define the backward Kolmogorov equation associated with equation (3.1) as

𝑢𝑡 = ℒ𝑢, 𝑢(0, 𝜏,x) = 𝜑(𝜏,x), (3.8)

where the generator ℒ associated with the Markov process in equation (3.1) is given by

ℒ = 𝜕𝜏 + 𝑣1(𝜏, 𝑥2)𝜕𝑥1
+ 𝑣2(𝜏, 𝑥1)𝜕𝑥2

+
𝜎2

2
(𝜕𝑥1𝑥1

+ 𝜕𝑥2𝑥2
). (3.9)

Recall that the solution 𝑢(𝑡, 𝜏,x) to equation (3.8) satisfies, 𝑢(𝑡, 𝜏,x) = E
[︀

𝜑(𝑡 + 𝜏,X𝑡+𝜏 )|X𝜏 = x
]︀

where X𝑡

is the solution to equation (3.1) and 𝜑 is a smooth function in R1 × R2. In other words, 𝑢(𝑡, 𝜏,x) is the flow
generated by the original SDE (3.1).

Similarly, we can study the flow generated by the stochastic structure-preserving scheme (3.7). According
to the splitting method used in the derivation of the scheme in Section 3.1, we respectively define ℒ1 = 𝜕𝜏 ,
ℒ2 = 𝑣1𝜕𝑥1

, ℒ3 = 𝑣2𝜕𝑥2
, and ℒ4 = 𝜎2

2 (𝜕𝑥1𝑥1
+ 𝜕𝑥2𝑥2

). Starting from 𝑢(0, ·, ·), during one time step 𝛥𝑡, we
compute

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜕𝑡𝑢
1 = ℒ1𝑢

1, 𝑢1(0, ·, ·) = 𝑢(0, ·, ·),
𝜕𝑡𝑢

2 = ℒ2𝑢
2, 𝑢2(0, ·, ·) = 𝑢1(𝛥𝑡

2 , ·, ·),
𝜕𝑡𝑢

3 = ℒ3𝑢
3, 𝑢3(0, ·, ·) = 𝑢2(𝛥𝑡, ·, ·),

𝜕𝑡𝑢
4 = ℒ1𝑢

4, 𝑢4(0, ·, ·) = 𝑢3(𝛥𝑡, ·, ·),
𝜕𝑡𝑢

5 = ℒ4𝑢
5, 𝑢5(0, ·, ·) = 𝑢4(𝛥𝑡

2 , ·, ·).

(3.10)

Then, 𝑢5(𝛥𝑡, ·, ·) will be the flow at time 𝑡 = 𝛥𝑡 generated by our stochastic structure-preserving scheme
(3.7) and it approximates the solution 𝑢(𝛥𝑡, ·, ·) to equation (3.8) well when 𝛥𝑡 is small. It is also worth
mentioning that, 𝑢3(𝛥𝑡, ·, ·) is the exact flow generated by the deterministic symplectic Euler scheme in solving
equation (3.5). We repeat this process to compute the flow equations of our scheme at other time steps, which
approximate the solution 𝑢(𝑛𝛥𝑡, ·, ·), 𝑛 = 2, 3, . . . to equation (3.8) at different time steps.

Remark 3.1. Given the operators ℒ𝑖, 𝑖 = 1, 2, 3, 4, there are many possible choices in setting the coefficients
for each operator ℒ𝑖 and designing the splitting method; see Section 2.5 of [14]. Equation (3.10) is a simple
choice that was used in this paper.
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To analyze the error between the flow operator in equation (3.8) and the composition of operators in
equation (3.10), we shall resort to the Baker–Campbell–Hausdorff (BCH) formula, which is widely used in
non-commutative algebra [13]. For example, in the matrix theory,

exp(𝑡𝐴) exp(𝑡𝐵) = exp

(︂

𝑡(𝐴 + 𝐵) + 𝑡2
[𝐴, 𝐵]

2
+

𝑡3

12

(︁

[︀

𝐴, [𝐴, 𝐵]
]︀

+
[︀

𝐵, [𝐵, 𝐴]
]︀

)︁

+ · · ·
)︂

, (3.11)

where 𝑡 is a scalar, 𝐴 and 𝐵 are two square matrices of the same size, [, ] is the Lie-Bracket, and the remaining
terms on the right hand side are all nested Lie-brackets.

In our analysis, we replace the matrices in equation (3.11) by differential operators and the BCH formula
yields critical insights into the particular structure of the splitting error. Let 𝐼𝛥𝑡 denote the composite flow
operator associated with equation (3.10), i.e.,

𝐼𝛥𝑡𝑢(0, ·, ·) := exp(𝛥𝑡ℒ4) exp(
𝛥𝑡

2
ℒ1) exp(𝛥𝑡ℒ3) exp(𝛥𝑡ℒ2) exp(

𝛥𝑡

2
ℒ1)𝑢(0, ·, ·). (3.12)

After propagating for time 𝑡 = 𝛥𝑡, the exact solution to equation (3.8) started at any 𝜏 can be represented as

𝑢(𝛥𝑡, ·, ·) = exp(𝛥𝑡ℒ)𝑢(0, ·, ·) = exp
(︀

𝛥𝑡(ℒ1 + ℒ2 + ℒ3 + ℒ4)
)︀

𝑢(0, ·, ·). (3.13)

Therefore, we can apply the BCH formula to analyze the error between the original flow and the approximated
flow. Moreover, we find that computing the 𝑘th order modified equation associated with equation (3.1) in the
backward error analysis (BEA) [7, 30] is equivalent to computing the terms of BCH formula up to order (𝛥𝑡)𝑘

in equation (3.12). To show that the solution generated by equation (3.7) follows a perturbed Hamiltonian
system (with divergence-free velocity and additive noise) at any order 𝑘, we only need to consider the (𝑘 + 1)-

nested Lie bracket consisting of
{︀

𝜕𝜏 , 𝑣1𝜕𝑥1
, 𝑣2𝜕𝑥2

, 𝜎2

2 (𝜕𝑥1𝑥1
+ 𝜕𝑥2𝑥2

)
}︀

and we can easily see that they generate
divergence-free fields.

We remark that given any explicit splitting scheme for deterministic systems, by adding additive noise we
shall obtain a similar form of flow propagation. And we shall see in later proof that, the representation of
flow operator in equation (3.12) is very effective in analyzing the order of convergence and volume-preserving
property.

4. Convergence analysis

In this section, we prove the convergence rate of our stochastic structure-preserving schemes in computing
effective diffusivity based on a probabilistic approach, which allows us to get rid of the exponential growth
factor in the error estimate. We first limit our analysis to 2D separable Hamiltonian velocity fields. Then, in
Section 4.5 we will show that all the derivations can be generalized to high-dimensional cases.

4.1. Convergence to an invariant measure

To compute the effective diffusivity of a passive tracer model using a Lagrangian numerical scheme is closely
related to study the limit of a solution sequence (a stochastic process) generated by the numerical scheme.
Therefore, we can apply the results from ergodic theory to study the convergence behaviors of the solution.

Let (𝑆, 𝛴) be a probability space, on which a family 𝑃 (x, 𝐸), x ∈ 𝑆, 𝐸 ∈ 𝛴, of probability measure is defined.
We assume x → 𝑃 (x, 𝐸) is measurable, ∀𝐸 ∈ 𝛴. This corresponds to a linear bounded operator on ℬ(𝑆), which
is the space of bounded measurable functions on 𝑆. This operator, denoted by 𝑃 , is defined by,

𝑃𝜑(x) =

∫︁

𝑆

𝑃 (x,dz)𝜑(z), ∀𝜑 ∈ ℬ(𝑆). (4.1)

Clearly ||𝑃 || ≤ 1. One of the main objectives of ergodic theory is to study the limit of the operator sequence
𝑃𝑛 as 𝑛 → +∞. The result can be summarized into the following proposition, which plays a fundamental role
in our convergence analysis.
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Proposition 4.1 (Thm. 3.3.1 of [3]). We assume that,

1. 𝑆 is a compact metric space and 𝛴 is the Borel 𝜎-algebra;
2. there exists a probability measure 𝜇 on (𝑆, 𝛴) such that 𝑃 (x, 𝐸) =

∫︀

𝐸
𝑝(x,y)𝜇(dy);

3. 𝑝(x,y) : 𝑆 × 𝑆 → R+ is continuous;
4. there exists a ball 𝑈0 such that 𝜇(𝑈0) > 0 and a positive number 𝛿 > 0 (depending on 𝑈0) such that

𝑝(x,y) ≥ 𝛿, x ∈ 𝑆, ∀y ∈ 𝑈0.

Then, there exists one and only one invariant probability measure 𝜋 on (𝑆, 𝛴) and one has,

sup
x∈𝑆

⃒

⃒

⃒
𝑃𝑛𝜑(x) −

∫︁

𝜑𝜋(dx)
⃒

⃒

⃒
≤ 𝐶||𝜑||𝑒−𝜌𝑛, ∀𝜑 ∈ ℬ(𝑆), (4.2)

where 𝜌 = log 1
1−𝛿𝜇(𝑈0)

> 0 and 𝐶 = 2
1−𝛿𝜇(𝑈0)

> 0 are independent of 𝜑.

Now we study the convergence behaviors of the solution generated by our stochastic structure-preserving scheme
(3.7). We first prove a lemma as follows.

Lemma 4.2. Let 𝑌 = R2/Z2 denote the physical torus space and T be the time periodic space. Let 𝐼*𝜏,1+𝜏

denote the transform of the density on 𝑌 during [𝜏, 1 + 𝜏 ] (time period is 1) using the numerical scheme (3.7).
In addition, let 𝐼𝜏,1+𝜏 denote the adjoint operator (i.e., the flow operator) of 𝐼*𝜏,1+𝜏 in the space of ℬ(𝑌 ), which

is the set of bounded measurable functions on 𝑌 . Then, there exists one and only one invariant probability
measure on (𝑌 , 𝛴), denoted by 𝜋𝜏 , satisfying,

sup
x∈𝑌

⃒

⃒

⃒

(︀

(𝐼𝜏,1+𝜏 )𝑛𝜑
)︀

(x) −
∫︁

𝜑(x′)𝜋𝜏 (dx′)
⃒

⃒

⃒
≤ 𝐶||𝜑||𝐿∞

𝑒−𝜌𝑛, ∀𝜑 ∈ ℬ(𝑌 ), (4.3)

where 𝜌 > 0, 𝐶 > 0 are independent of 𝜑(·). Moreover, the kernel space of (𝐼𝑑−𝐼𝜏,1+𝜏 ) is the constant functions
in 𝑌 , where 𝐼𝑑 is the identity operator.

Proof. We shall verify that the transition kernel associated with the numerical scheme (3.7) satisfies the as-
sumptions required by Proposition 4.1. First we know that in the space R2, the integration process associated
with the numerical scheme (3.7) can be expressed as a Markov process with the transition kernel,

𝐾𝑡

(︀

X𝑛,X𝑛+1
)︀

=
1

2𝜋𝜎2𝛥𝑡
·

exp

(︃

−

(︁

𝑥𝑛+1

1
−𝑥𝑛

1 −𝑣1(𝑡+
𝛥𝑡

2
,𝑥𝑛

2 )𝛥𝑡

)︁2

+

(︁

𝑥𝑛+1

2
−𝑥𝑛

2 −𝑣2

(︀

𝑡+ 𝛥𝑡

2
,𝑥𝑛+1

1
−𝑥𝑛

1 −𝑣1(𝑡+
𝛥𝑡

2
,𝑥𝑛

2 )𝛥𝑡
)︀

𝛥𝑡

)︁2

2𝜎2𝛥𝑡

)︃

, (4.4)

where X𝑛 = (𝑥𝑛
1 , 𝑥𝑛

2 )𝑇 and X𝑛+1 = (𝑥𝑛+1
1 , 𝑥𝑛+1

2 )𝑇 are the numerical solutions at time 𝑡 = 𝑡𝑛 and 𝑡 = 𝑡𝑛+1,
respectively.

Then, using the periodicity of v, we directly extend equation (4.4) to the torus space 𝑌 as

𝐾̃𝜏

(︀

X𝑛,X𝑛+1
)︀

=
∑︁

𝑖,𝑗∈Z

1

2𝜋𝜎2𝛥𝑡
·

exp

(︃

−

(︁

𝑥𝑛+1

1
+𝑖−𝑥𝑛

1 −𝑣1(𝜏+ 𝛥𝑡

2
,𝑥𝑛

2 )𝛥𝑡

)︁2

+

(︁

𝑥𝑛+1

2
+𝑗−𝑥𝑛

2 −𝑣2

(︀

𝜏+ 𝛥𝑡

2
,𝑥𝑛+1

1
−𝑥𝑛

1 −𝑣1(𝜏+ 𝛥𝑡

2
,𝑥𝑛

2 )𝛥𝑡
)︀

𝛥𝑡

)︁2

2𝜎2𝛥𝑡

)︃

. (4.5)
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Let K̃𝜏,𝜏+𝑘𝛥𝑡 denote the transition kernel obtained by our scheme with starting time 𝜏 for 𝑘 steps. Then, we
have

K̃𝜏,𝜏+𝑘𝛥𝑡(X
0,X𝑘) =

∫︁

(𝑌 )𝑘−1

𝑘−1
∏︁

𝑚=0

𝐾̃𝜏+𝑚𝛥𝑡(X
𝑚,X𝑚+1)dX1dX2 · · ·dX𝑘−1. (4.6)

We choose 𝑘 = 1
𝛥𝑡

and obtain K̃𝜏,𝜏+1. One can see that the kernel K̃𝜏,𝜏+1 is essentially bounded above zero

since 𝐾̃𝜏+𝑚𝛥𝑡 in (4.6) are all positive. Moreover, if 0 < 𝛥𝑡 ≪ 1, K̃𝜏,𝜏+1 is a continuous function on the domain
𝑌 × 𝑌 . Then by noticing that the domain 𝑌 × 𝑌 is compact, the kernel K̃𝜏,𝜏+1 is strictly positive. Namely,
there exists 𝛿𝜏 > 0 such that K̃𝜏,𝜏+1(X

0,X𝑘) > 𝛿𝜏 , ∀(X0,X𝑘) ∈ 𝑌 × 𝑌 . If we apply Proposition 4.1 to 𝐼𝜏,1+𝜏

(whose kernel is K̃𝜏,𝜏+1), we prove the statement in (4.3).
Finally, we know that the operator 𝐼𝜏,1+𝜏 is compact since it is an integral operator with a continuous kernel.

By using the Fredholm alternative, we know that dimker(𝐼𝑑 − 𝐼𝜏,1+𝜏 ) = dim ker(𝐼𝑑 − 𝐼*𝜏,1+𝜏 ) = 1. Therefore, it
is easy to verify that the constant functions are in the kernel of (𝐼𝑑 − 𝐼𝜏,1+𝜏 ). �

Equipped with the Lemma 4.2, we study the convergence rate of the space-time transition kernel associated
with our numerical scheme (3.7).

Theorem 4.3. Let 𝛥𝑡 = 1
𝑁

, 𝑁 is a positive integer. The following properties hold:

(a) Given 𝛥𝑡, there exists 𝐶 > 0 and 𝜌 > 0, such that,

sup
𝜏,x

⃒

⃒

⃒

(︀

𝐼𝑁
𝛥𝑡

)︀𝑛
𝜑(𝜏,x) −

∫︁

𝜑(𝜏,x′)𝜋𝜏 (dx′)
⃒

⃒

⃒
≤ 𝐶||𝜑||𝐿∞

𝑒−𝜌𝑛, ∀𝜑 ∈ ℬ(T × 𝑌 ), (4.7)

where 𝐶 and 𝜌 do not depend on 𝜑 and 𝜏 .
(b) If

∫︀

𝑌
𝜑𝜋𝜏 = 0, then we get

lim
𝑛→∞

𝑛
∑︁

𝑖=1

E𝜑(𝜏,X𝑁𝜏+𝑖) < ∞, ∀𝜏 ∈ T. (4.8)

(c) The kernel space of (𝐼𝑑 − 𝐼𝑁
𝛥𝑡) is

{︀

𝑐(𝜏) | 𝑐(𝜏) is a periodic function in T with period 1
}︀

.

Proof. By definition of 𝐼𝛥𝑡 and 𝐼𝜏,1+𝜏 in equation (3.12) and Lemma 4.2, we have (𝐼𝛥𝑡)
𝑁𝜑(𝜏, ·) ≡ 𝐼𝜏,1+𝜏𝜑(𝜏, ·).

To prove the property (a), we need to show that the lower bound of the kernel K̃𝜏,𝜏+1, which is defined in the
proof of Lemma 4.2, does not depend on 𝜏 . For all 𝜏 ∈ T, X𝑛 = (𝑥𝑛

1 , 𝑥𝑛
2 )𝑇 ∈ T2 and X𝑛+1 = (𝑥𝑛+1

1 , 𝑥𝑛+1
2 )𝑇 ∈ T2,

we pick 𝑖0 = ⌊−𝑥𝑛+1
1 +𝑥𝑛

1 +𝑣1(𝜏+ 𝛥𝑡
2 , 𝑥𝑛

2 )𝛥𝑡⌋ and 𝑗0 = ⌊−𝑥𝑛+1
2 +𝑥𝑛

2 +𝑣2

(︀

𝜏+ 𝛥𝑡
2 , 𝑥𝑛+1

1 −𝑥𝑛
1−𝑣1(𝜏+ 𝛥𝑡

2 , 𝑥𝑛
2 )𝛥𝑡

)︀

𝛥𝑡⌋,
where ⌊𝑎⌋ denotes the largest integer not greater than 𝑎. From equation (4.5), we can see that

𝐾̃𝜏

(︀

X𝑛,X𝑛+1
)︀

≥ 1

2𝜋𝜎2𝛥𝑡
·

exp

(︃

−

(︁

𝑥𝑛+1

1
+𝑖0−𝑥𝑛

1 −𝑣1(𝜏+ 𝛥𝑡

2
,𝑥𝑛

2 )𝛥𝑡

)︁2

+

(︁

𝑥𝑛+1

2
+𝑗0−𝑥𝑛

2 −𝑣2

(︀

𝜏+ 𝛥𝑡

2
,𝑥𝑛+1

1
−𝑥𝑛

1 −𝑣1(𝜏+ 𝛥𝑡

2
,𝑥𝑛

2 )𝛥𝑡
)︀

𝛥𝑡

)︁2

2𝜎2𝛥𝑡

)︃

≥ 1

2𝜋𝜎2𝛥𝑡
exp

(︀

− 1

𝜎2𝛥𝑡

)︀

> 0. (4.9)

According to the definition of the kernel K̃𝜏,𝜏+1; see equation (4.6), we know the minimal value of K̃𝜏,𝜏+1 is
above zero and is independent of 𝜏 . Now, we apply this observation to Lemma 4.2 and conclude the proof of
the property (a). The property (b) is a simple conclusion of the exponential decay property proved in (a). For
the property (c), we consider the equation 𝐼𝑁

𝛥𝑡𝑤 = 𝑤. Then, for a given time 𝜏 , we have 𝐼𝜏,1+𝜏𝑤(𝜏, ·) = 𝑤(𝜏, ·).
The results in Lemma 4.2 imply that the invariant space of 𝐼𝜏,1+𝜏 is constant in the spatial variable. Thus, we
obtain 𝑤 = 𝑤(𝜏). �
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Before we close this subsection, we provide a convergence result for the inverse of operator sequences, which
will be useful in our convergence analysis.

Proposition 4.4. Let 𝑋, 𝑌 denote two Banach spaces. Assume 𝑇𝑛, 𝑇 are bounded linear operators from 𝑋 to
𝑌 , satisfying lim𝑛→∞ ||𝑇𝑛 − 𝑇 ||ℬ(𝑋,𝑌 ) = 0, and 𝑇−1 ∈ ℬ(𝑌, 𝑋). Given 𝑓 ∈ 𝑌 , if 𝑇−1

𝑛 𝑓 , 𝑛 = 1, 2, . . . uniquely
exist, then we have a convergence estimate as follows:

lim
𝑛→∞

⃒

⃒

⃒

⃒(𝑇−1
𝑛 − 𝑇−1)𝑓

⃒

⃒

⃒

⃒ = 0. (4.10)

The proof is quite standard. It can also be viewed as a modification of Theorem 1.16 in Section IV of [18].

4.2. A discrete cell problem

In the Eulerian framework, the periodic solution of the cell problem (2.4) and the corresponding formula for
the effective diffusivity (2.3) play a key role in studying the behaviors of chaotic and stochastic flows. In the
Lagrangian framework, we shall define a discrete analogue of cell problem that enables us to compute the
effective diffusivity. Let X0 = (𝑥0

1, 𝑥
0
2)

𝑇 be the initial data and X𝑛 = (𝑥𝑛
1 , 𝑥𝑛

2 )𝑇 denote the numerical solution
at 𝑡𝑛 = 𝑛𝛥𝑡 that is generated by the scheme (3.7).

First of all, we show that the solutions 𝑥𝑛
1 and 𝑥𝑛

2 obtained by the scheme (3.7) have bounded expectations
if the initial values are bounded. Taking expectation of the first equation of equation (3.7) on both sides, we
obtain

E𝑥𝑛
1 = E𝑥𝑛−1

1 + 𝛥𝑡E𝑣1(𝑡𝑛− 1
2
, 𝑥𝑛−1

2 ) = E𝑥0
1 + 𝛥𝑡

𝑛−1
∑︁

𝑘=0

E𝑣1(𝑡𝑘+ 1
2
, 𝑥𝑘

2). (4.11)

As a symplectic scheme in 2D, the numerical scheme (3.7) admits the uniform measure as its invariant measure.
Applying the results (a) and (b) of Theorem 4.3 and using the fact that v is a periodic function with zero mean,
we know that,

sup
X0∈𝑌

|E𝑣1(𝑡𝑘+ 1
2
,X𝑘)| ≤ 𝑒−𝜌𝑘𝐶𝑁 sup

𝑚=1,2,...,𝑁, x∈T2

||𝑣1(𝑡𝑚+ 1
2
,x)||∞. (4.12)

Here 𝑣1(𝑡𝑘+ 1
2
,X𝑘) is equivalent to 𝑣1(𝑡𝑘+ 1

2
, 𝑥𝑘

2), since 𝑣1 is independent of 𝑥𝑘
1 . By applying triangle inequalities

in equation (4.11) and using the result in equation (4.12), we arrive at,

|E𝑥𝑛
1 | ≤ |E𝑥0

1| + 𝐶1||𝑣1||∞, (4.13)

where 𝐶1 does not depend on 𝑛. Using the same approach, we know that expectation of the second component
E𝑥𝑛

2 is also bounded.
Now, we are in the position to define the discrete cell problem. Starting at time 𝜏 with time step 𝛥𝑡 = 1

𝑁
,

we denote the starting time index to be 𝑁𝜏 . Then, we define

𝑣1,𝑁 (𝜏,x) = 𝛥𝑡

∞
∑︁

𝑖=0

E
[︀

𝑣1(𝑡𝑖+ 1
2

+ 𝜏,X𝑁𝜏+𝑖)|X𝑁𝜏 = x
]︀

, (4.14)

where the summation is well defined due to the fact stated in equation (4.12). We will show that 𝑣1,𝑁 (𝜏,x)
satisfies the following properties. Namely, 𝑣1,𝑁 (𝜏,x) is the solution of the discrete cell problem defined in
equation (4.15).

Lemma 4.5. According to our assumption on v, we know that 𝑣1 is a periodic function with zero mean on 𝑌 ,
∀𝜏 , i.e.,

∫︀

𝑌
𝑣1 = 0. Therefore, 𝑣1,𝑁 (𝜏,x) is the unique solution in ℬ0(T × 𝑌 ) such that

𝑣1,𝑁 (𝜏,x) = (𝐼𝛥𝑡𝑣1,𝑁 )(𝜏,x) + 𝛥𝑡𝑣1(𝜏 +
𝛥𝑡

2
,x), (4.15)

where 𝛥𝑡 = 1
𝑁

and the operator 𝐼𝛥𝑡 is defined in (3.12). Moreover, 𝑣1,𝑁 (𝜏,x) is smooth.
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Proof. Throughout the proof, we shall use the fact that if 𝑋, 𝑌 are random processes and 𝑌 is measurable
under a filtration ℱ , then with appropriate integrability assumption, we have

E[𝑋𝑌 ] = E
[︁

E[𝑋𝑌 |ℱ ]
]︁

= E
[︁

E[𝑋|ℱ ]𝑌
]︁

. (4.16)

Some simple calculations will give that

𝑣1,𝑁 (𝜏,x) − 𝛥𝑡𝑣1(𝜏 +
𝛥𝑡

2
,x) = 𝛥𝑡

∞
∑︁

𝑖=1

E
[︀

𝑣1(𝑡𝑖+ 1
2

+ 𝜏,X𝑁𝜏+𝑖)|X𝑁𝜏 = x
]︀

= E
[︁

𝛥𝑡

∞
∑︁

𝑖=1

E
[︀

𝑣1(𝑡𝑖+ 1
2

+ 𝜏,X𝑁𝜏+𝑖)|X𝑁𝜏+1
]︀

|X𝑁𝜏 = x
]︁

= E
[︀

𝑣1,𝑁 (𝜏 + 𝛥𝑡,X𝑁𝜏+1)|X𝑁𝜏 = x
]︀

. (4.17)

Recall the definition of the operator 𝐼𝛥𝑡 in (3.12), equation (4.17) implies that

𝑣1,𝑁 (𝜏,x) − 𝛥𝑡𝑣1(𝜏 +
𝛥𝑡

2
,x) = (𝐼𝛥𝑡𝑣1,𝑁 )(𝜏,x). (4.18)

Suppose we have that 𝐼𝛥𝑡𝑤 = 𝑤. Then, we get (𝐼𝛥𝑡)
𝑁𝑤 = 𝑤. According to Theorem 4.3, we know that 𝑤 = 0

if
∫︀

𝑌
𝑤dx = 0, ∀𝑡. So ker(𝐼𝛥𝑡 − 𝐼𝑑) = {0} and 𝑣1,𝑁 is unique. Finally, by the definition of 𝑣1,𝑁 , we obtain that

𝑣1,𝑁 (𝜏,x) = 𝛥𝑡

∞
∑︁

𝑖=0

E
[︀

𝑣1(𝑡𝑖+ 1
2

+ 𝜏,X𝑁𝜏+𝑖)|X𝑁𝜏 = x
]︀

=𝛥𝑡

∞
∑︁

𝑖=0

∫︁

𝑌

𝑣1(𝑡𝑖+ 1
2

+ 𝜏,y)𝐾̃𝜏,𝜏+𝑖𝛥𝑡(x,y)dy, (4.19)

which indicates that 𝑣1,𝑁 has the same regularity as 𝑣1 does. We know that the kernel 𝐾̃𝜏,𝜏+𝑖𝛥𝑡(x,y) has a fast
decay property, which guarantees the order of the differentiation and summation is interchangeable. �

Remark 4.6. 𝑣1 and 𝑣1,𝑁 only depend on the second component of the numerical solution X𝑛 = (𝑥𝑛
1 , 𝑥𝑛

2 )𝑇 .
However, we will write 𝑣1 and 𝑣1,𝑁 as functions of X𝑛 when we view X𝑛 as a Markov process in the convergence
analysis.

Remark 4.7. When the flow is time-independent, we obtain

E[𝑣1,𝑁 (X𝑛+1)|X𝑛] − 𝑣1,𝑁 (X𝑛) = −𝛥𝑡𝑣1(X
𝑛), 𝑎.𝑠. ∀𝑛 ∈ N. (4.20)

Therefore, the discrete cell problem defined in (4.15) is a generalization of the discrete cell problem for time-
independent flow problems studied in our previous work [33], although technically it is more involved.

In the remaining part of this paper, we only need the result that 𝑣1,𝑁 (𝜏,x) is unique in an Hölder space
C

𝑝1,𝑝2,𝛼
0 (T × 𝑌 ) ( ℬ(T × 𝑌 ). To be precise, given a smooth drift function 𝑣1, 𝑣1,𝑁 (𝜏,x) will be in C

𝑝1,𝑝2,𝛼
0 (𝑌 ),

where 𝑝1 ≥ 2, 𝑝2 ≥ 6, 0 < 𝛼 < 1 and the subscript index 0 indicates that it is a subspace with zero-mean
functions.

4.3. Convergence estimate of the discrete cell problem

In this section, we shall prove that the solution 𝑣1,𝑁 (𝜏,x) of the discrete cell problem (i.e., Eq. (4.15)) converges
to the solution of a continuous cell problem in certain subspace. Here, we choose the space C

2,6,𝛼
0 (T1 × 𝑌 ) to

carry out our analysis. However, there is no requirement that we have to choose this one. In fact, any space



1532 Z. WANG ET AL.

that has certain regularity (belongs to the domain of the operator ℒ) will work. The continuous cell problem
(2.4) is defined for a vector function, whose first component satisfies

ℒ𝜒1 = −𝑣1. (4.21)

For the two-dimensional problem, the operator ℒ is defined in equation (3.9). Given the fact that 𝑣1 is a smooth
function defined on T1 × 𝑌 , which satisfies

∫︀

𝑌
𝑣1(𝜏,x)dx = 0, ∀𝜏 ∈ T1. Then, equation (4.21) admits a unique

solution 𝜒1 in C
2,6,𝛼
0 (T1 × 𝑌 ). This is a standard result of parabolic PDEs in Hölder space (see, e.g., the

Thm. 8.7.3 in [19]). The following theorem states that under certain conditions the solution of the discrete cell
problem converges to the solution of the continuous one.

Theorem 4.8. Assume 𝑣1 is a smooth function defined on T1 × 𝑌 , satisfying
∫︀

𝑌
𝑣1(𝜏,x)dx = 0, ∀𝜏 ∈ T1. Let

𝑣1 and 𝜒1 be the solutions of the discrete cell problem (4.15) and continuous cell problem (4.21), respectively.
Then, we have the following convergence estimate,

||𝜒1 − 𝑣1|| = 𝒪(𝛥𝑡), (4.22)

where || · || is a function norm associated with the space C
2,6,𝛼
0 (T1 × 𝑌 ).

Proof. Using Proposition 4.4, one can easily verify that ℒ is a bijection between two Banach spaces C
2,6,𝛼
0 (T1×𝑌 )

and C
1,4,𝛼
0 (T1 × 𝑌 ) and its inverse is bounded. Integrating equation (4.21) along time 𝜏 gives,

exp(𝛥𝑡ℒ)𝜒1 − 𝜒1 = −𝑣1𝛥𝑡 + 𝒪
(︀

(𝛥𝑡)2
)︀

≡ −𝛥𝑡𝑣1, (4.23)

where 𝑣1 = 𝑣1 + 𝑂(𝛥𝑡). Combining equations (4.18) and (4.23), we obtain

exp(𝛥𝑡ℒ)𝜒1 − 𝐼𝛥𝑡𝑣1 − (𝜒1 − 𝑣1) = 𝛥𝑡(𝑣1 − 𝑣1). (4.24)

Equation (4.24) shows the connection between 𝜒1 and 𝑣1. After some simple calculations, we get that

ℒ(𝜒1 − 𝑣1) = (ℒ − 𝐿̃1)(𝜒1 − 𝑣1) + 𝐿̃2𝑣1 + (𝑣1 − 𝑣1), (4.25)

where

𝐿̃1 =
exp(𝛥𝑡ℒ) − 𝐼𝑑

𝛥𝑡
, and 𝐿̃2 =

𝐼𝛥𝑡 − exp(𝛥𝑡ℒ)

𝛥𝑡
. (4.26)

Moreover, we can verify that in the space of bounded linear operators from C
2,6,𝛼
0 (𝑌 ) to C

1,4,𝛼
0 (𝑌 ), there is a

strong convergence in the operator norm || · ||,
||ℒ − 𝐿̃1|| = 𝒪(𝛥𝑡) as 𝛥𝑡 → 0. (4.27)

For the operator 𝐿̃2, noticing that ℒ = ℒ1 +ℒ2 +ℒ3 +ℒ4 and operator 𝐼𝛥𝑡 is defined in (3.12), we can use the
BCH formula and obtain

𝐿̃2 =
exp
(︁

(𝛥𝑡)2

2

(︀

[ℒ4,ℒ3] + [ℒ4,ℒ2] + [ℒ4,ℒ1] + [ℒ3,ℒ2] + [ℒ2,ℒ1] + [ℒ3,ℒ1]
)︀

+ 𝒪(𝛥𝑡)3
)︁

− 𝐼𝑑

𝛥𝑡
· exp(𝛥𝑡ℒ)

→
𝛥𝑡

2

(︀

([ℒ4,ℒ3] + [ℒ4,ℒ2] + [ℒ4,ℒ1] + [ℒ3,ℒ2] + [ℒ2,ℒ1] + [ℒ3,ℒ1]
)︀

+ 𝒪
(︀

(𝛥𝑡)2
)︀

. (4.28)

Denoting 𝐿̃3 ≡ 𝐿̃1 + 𝐿̃2 = 𝐼𝛥𝑡−𝐼𝑑

𝛥𝑡
, we have 𝐿̃3 → ℒ in ℬ

(︀

C
2,6,𝛼
0 (T1 × 𝑌 ), C1,4,𝛼

0 (T1 × 𝑌 )
)︀

as 𝛥𝑡 approaches
zero. Then, applying the Proposition 4.4, we get,

lim
𝛥𝑡→0

𝑣1 = lim
𝛥𝑡→0

𝐿̃−1
3 (−𝑣1) = ℒ−1(−𝑣1) = 𝜒1. (4.29)

In addition, combining the results of equations (4.23), (4.27)–(4.29) for the right hand side of equation (4.25), we
know that when 𝛥𝑡 is small enough, the assertion in (4.22) is proved. The constant in the 𝒪(𝛥𝑡) of (4.22) does
not depend on the total computational time 𝑇 , but may depend on the regularities of 𝑣1, 𝑣2 and the constant
𝜎. �
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4.4. Convergence analysis for the effective diffusivity

This section contains the main results of our convergence analysis. We first prove that the second-order moment
of the solution obtained by using our numerical scheme has an (at most) linear growth rate. Secondly, we provide
the convergence rate of our numerical method in computing the effective diffusivity.

Theorem 4.9. Let X𝑛 = (𝑥𝑛
1 , 𝑥𝑛

2 )𝑇 denote the solution of the two-dimensional passive tracer model (3.1)
obtained by using our numerical scheme (3.7) with time step 𝛥𝑡. If the Hamiltonian function 𝐻(𝑡, 𝑥1, 𝑥2) is
separable, periodic and smooth (in order to guarantee the existence and uniqueness of the solution to the SDE
(3.1)), then we can prove that the second-order moment of the solution X𝑛 (which can be viewed as a discrete
Markov process) grows at most linearly, i.e.,

max
𝑛

{︂

E
||X𝑛||2

𝑛

}︂

is bounded. (4.30)

Proof. We first estimate the second-order moment of the first component of X𝑛 = (𝑥𝑛
1 , 𝑥𝑛

2 )𝑇 , since the other
one can be estimated in the same manner. Simple calculations show that

E[(𝑥𝑛
1 )2|(𝑥𝑛−1

1 , 𝑥𝑛−1
2 )] = E

(︀

𝑥𝑛−1
1 + 𝑣1(𝑡𝑛− 1

2
, 𝑥𝑛−1

2 )𝛥𝑡 + 𝜎𝑁𝑛−1
1

)︀2

= E(𝑥𝑛−1
1 )2 + 𝛥𝑡

(︀

𝜎2 + 2E[𝑥𝑛−1
1 𝑣1(𝑡𝑛− 1

2
, 𝑥𝑛−1

2 )]
)︀

+ (𝛥𝑡)2E𝑣2
1(𝑡𝑛− 1

2
, 𝑥𝑛−1

2 ). (4.31)

The term E[𝑥𝑛−1
1 𝑣1(𝑡𝑛− 1

2
, 𝑥𝑛−1

2 )] corresponds to the strength of the convection-enhanced diffusion. Our goal here
is to prove that it is bounded over 𝑛, though it may depend on 𝑣1, 𝑣2 and 𝜎. Noticing that we are calculating
the expectation of (𝑥𝑛

1 )2, which is not defined in the torus space, however in the following derivation we will
show that it can be decomposed into sums of periodic functions acting on X𝑛 = (𝑥𝑛

1 , 𝑥𝑛
2 )𝑇 . Hence after the

decomposition (see Eq. (4.34)) we can still apply the previous analysis on torus space.
We now directly compute the contribution of the term E[𝑥𝑛−1

1 𝑣1(𝑡𝑛− 1
2
, 𝑥𝑛−1

2 )] to the effective diffusivity with

the help of equation (4.17),

𝛥𝑡

𝑛−1
∑︁

𝑖=0

E[𝑥𝑖
1𝑣1(𝑡𝑖+ 1

2
, 𝑥𝑖

2)] =

𝑛−1
∑︁

𝑖=0

E
[︀

𝑥𝑖
1

(︀

𝑣1(𝑡𝑖,X
𝑖) − E[𝑣1(𝑡𝑖+1,X

𝑖+1)|X𝑖]
)︀]︀

. (4.32)

Let ℱ𝑖 denote the filtration generated by the solution process until X𝑖, for example, 𝑥𝑖
1 ∈ ℱ𝑖. For equation (4.32),

we have

RHS =

𝑛−1
∑︁

𝑖=0

E
[︀

𝑥𝑖
1

(︀

𝑣1(𝑡𝑖,X
𝑖) − 𝑣1(𝑡𝑖+1,X

𝑖+1)
)︀]︀

=

𝑛
∑︁

𝑖=1

E
[︀

𝑣1(𝑡𝑖,X
𝑖)(𝑥𝑖

1 − 𝑥𝑖−1
1 )

]︀

+ 𝑣1(𝑡0,X
0)𝑥0

1 − E[𝑣1(𝑡𝑛,X𝑛)𝑥𝑛
1 ]

=

𝑛
∑︁

𝑖=1

E
[︀

𝑣1(𝑡𝑖,X
𝑖)
(︀

𝑣1(𝑡𝑖− 1
2
, 𝑥𝑖−1

2 )𝛥𝑡 + 𝜎𝑁 𝑖−1
1

)︀]︀

+ 𝑣1(𝑡0,X
0)𝑥0

1 − E[𝑣1(𝑡𝑛,X𝑛)𝑥𝑛
1 ]. (4.33)

Hence, we obtain the following result

1

𝑛
E
[︀

(𝑥𝑛
1 )2|(𝑥0

1, 𝑥
0
2)
]︀

=
1

𝑛
(𝑥0

1)
2 + 𝛥𝑡𝜎2 + 2𝛥𝑡

1

𝑛

𝑛−1
∑︁

𝑖=0

E[𝑥𝑖
1𝑣1(𝑡𝑖+ 1

2
, 𝑥𝑖

2)] + (𝛥𝑡)2
1

𝑛

𝑛−1
∑︁

𝑖=0

E𝑣2
1(𝑡𝑖+ 1

2
, 𝑥𝑖

2)

=
1

𝑛
(𝑥0

1)
2 + 𝛥𝑡𝜎2 + (𝛥𝑡)2

1

𝑛

𝑛−1
∑︁

𝑖=0

E𝑣2
1(𝑡𝑖+ 1

2
, 𝑥𝑖

2)
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+
2

𝑛

𝑛
∑︁

𝑖=1

E
[︀

𝑣1(𝑡𝑖,X
𝑖)
(︀

𝑣1(𝑡𝑖− 1
2
, 𝑥𝑖−1

2 )𝛥𝑡 + 𝜎𝑁 𝑖−1
1

)︀]︀

+
2

𝑛

(︀

𝑣1(𝑡0,X
0)𝑥0

1 − E[𝑣1(𝑡𝑛,X𝑛)𝑥𝑛
1 ]
)︀

. (4.34)

By using the Cauchy–Schwarz inequality, we know the term

2

𝑛

𝑛
∑︁

𝑖=1

E
[︀

𝑣1(𝑡𝑖,X
𝑖)
(︀

𝑣1(𝑡𝑖− 1
2
, 𝑥𝑖−1

2 )𝛥𝑡 + 𝜎𝑁 𝑖−1
1

)︀]︀

≤ 1

𝑛

𝑛
∑︁

𝑖=1

E
[︀

2(𝑣1(𝑡𝑖,X
𝑖))2 +

(︀

(𝑣1(𝑡𝑖− 1
2
, 𝑥𝑖−1

2 )𝛥𝑡)2 + (𝜎𝑁 𝑖−1
1 )2

)︀]︀

=
1

𝑛

𝑛
∑︁

𝑖=1

E
[︀

2(𝑣1(𝑡𝑖,X
𝑖))2 + (𝑣1(𝑡𝑖− 1

2
, 𝑥𝑖−1

2 ))2(𝛥𝑡)2 + 𝜎2𝛥𝑡
]︀

. (4.35)

Noticing that if 𝑣1 and 𝑣1 are bounded in sup norm, right-hand-side of equation (4.35) is bounded for any 𝑛.
Other terms on the right-hand side of equation (4.34) are also bounded, which can be checked easily. Therefore,
we can prove that 1

𝑛
E
[︀

(𝑥𝑛
1 )2|(𝑥0

1, 𝑥
0
2)
]︀

is bounded. Repeat the same trick, we know that 1
𝑛

E
[︀

(𝑥𝑛
2 )2|(𝑥0

1, 𝑥
0
2)
]︀

is
also bounded. Thus, the assertion in equation (4.30) is proved. �

In practice, we shall first choose a time step 𝛥𝑡 and run our numerical scheme (3.7) to compute the effective
diffusivity until the result converges to a constant, which may depend on 𝛥𝑡. As such, we shall prove that
the limit of the constant converges to the exact effective diffusivity of the original passive tracer model as 𝛥𝑡
approaches zero. Namely, we shall prove that our numerical scheme is robust in computing effective diffusivity.
More details on the numerical results will be given in Section 5.

Theorem 4.10. Let 𝑥𝑛
1 , 𝑛 = 0, 1, . . . be the first component of the numerical solution obtained by using the

scheme (3.7) and 𝛥𝑡 be the time step. We have the convergence estimate of the effective diffusivity as

lim
𝑛→∞

E(𝑥𝑛
1 )2

𝑛𝛥𝑡
= 𝜎2 + 2

∫︁

T2

𝜒1𝑣1 + 𝒪(𝛥𝑡), (4.36)

where the constant in 𝒪(𝛥𝑡) may depend on the regularity of 𝑣1, 𝑣2 and the constant 𝜎, but does not depend on
the computational time 𝑇 .

Proof. We will prove the statement by direct computation. We divide both sides of equation (4.34) by 𝛥𝑡 and
obtain

1

𝑛𝛥𝑡
E
[︀

(𝑥𝑛
1 )2|(𝑥0

1, 𝑥
0
2)
]︀

=
1

𝑛𝛥𝑡
(𝑥0

1)
2 + 𝜎2 +

𝛥𝑡

𝑛

𝑛−1
∑︁

𝑖=0

E𝑣2
1(𝑡𝑖+ 1

2
, 𝑥𝑖

2)

+
2

𝑛𝛥𝑡

𝑛
∑︁

𝑖=1

E
[︀

𝑣1(𝑡𝑖,X
𝑖)
(︀

𝑣1(𝑡𝑖− 1
2
, 𝑥𝑖−1

2 )𝛥𝑡 + 𝜎𝑁 𝑖−1
1

)︀]︀

+
2

𝑛𝛥𝑡

(︀

𝑣1(𝑡0,X
0)𝑥0

1 − E[𝑣1(𝑡𝑛,X𝑛)𝑥𝑛
1 ]
)︀

. (4.37)

First, we notice that for a fixed 𝛥𝑡, the terms 1
𝑛𝛥𝑡

(𝑥0
1)

2 and 2
𝑛𝛥𝑡

𝑣1(𝑡0,X
0)𝑥0

1 converge to zero as 𝑛 → ∞,

where we have used the fact that 𝑣1(𝑡0,X
0) is bounded. Also we observe that the term 𝛥𝑡

𝑛

∑︀𝑛−1
𝑖=0 E𝑣2

1(𝑡𝑖+ 1
2
, 𝑥𝑖

2)

is 𝒪(𝛥𝑡), because the term (𝑣1)
2 is bounded. Then, for a fixed 𝛥𝑡, we have

lim
𝑛→∞

2

𝑛𝛥𝑡

⃒

⃒E[𝑣1(X
𝑛)𝑥𝑛

1 ]
⃒

⃒ ≤ lim
𝑛→∞

2√
𝑛𝛥𝑡

||𝑣1||∞E| 𝑥𝑛
1√
𝑛
| ≤ lim

𝑛→∞

1√
𝑛𝛥𝑡

||𝑣1||∞E
[︀ (𝑥𝑛

1 )2

𝑛
+ 1
]︀

= 0, (4.38)
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where the term E[
(𝑥𝑛

1 )2

𝑛
] is bounded due to the Theorem 4.9 and ||𝑣1||∞ → ||𝜒1||∞ < ∞ due to the Theorem 4.8.

Therefore, we only need to focus on the estimate of terms in the second line of equation (4.37), which
corresponds to the convection-enhanced diffusion effect. Noticing that 𝑣1 ∈ C2,6,𝛼, we compute the Ito-Taylor
series approximation of 𝑣1(𝑡𝑖,X

𝑖),

𝑣1(𝑡𝑖,X
𝑖) = 𝑣1(𝑡𝑖−1,X

𝑖−1) + 𝑣1,𝑥1
(𝑡𝑖−1,X

𝑖−1)
(︀

𝑣1(𝑡𝑖− 1
2
, 𝑥𝑖−1

2 )𝛥𝑡 + 𝜎𝑁 𝑖−1
1

)︀

+ 𝑣1,𝑥2
(𝑡𝑖−1,X

𝑖−1)
(︀

𝑣2

(︀

𝑡𝑖− 1
2
, 𝑥𝑖−1

1

)︀

𝛥𝑡 + 𝜎𝑁 𝑖−1
2

)︀

+
1

2

(︀

𝑣1,𝑥1𝑥1
(𝑡𝑖−1,X

𝑖−1) + 𝑣1,𝑥2𝑥2
(𝑡𝑖−1,X

𝑖−1)
)︀

𝜎2𝛥𝑡 + 𝒪
(︀

(𝛥𝑡)2
)︀

, (4.39)

where we have used the fact that 𝑣2

(︀

𝑡𝑖− 1
2
, 𝑥𝑖−1

1 + 𝑣1(𝑡𝑖− 1
2
, 𝑥𝑖−1

2 )𝛥𝑡
)︀

= 𝑣2

(︀

𝑡𝑖− 1
2
, 𝑥𝑖−1

1

)︀

+𝒪(𝛥𝑡), when 𝛥𝑡 is small

and 𝑣2 is smooth. Since 𝑣1 → 𝜒1 in C
2,6,𝛼
0 , the truncated term 𝒪

(︀

(𝛥𝑡)2
)︀

in equation (4.39) is uniformly bounded

when 𝛥𝑡 is small enough. Substituting the Taylor expansion of 𝑣1(𝑡𝑖,X
𝑖) in equation (4.39) into the target term

of our estimate (i.e., terms in the second line of Eq. (4.37)), we get

E
[︀

𝑣1(𝑡𝑖,X
𝑖)(𝑣1(𝑡𝑖− 1

2
, 𝑥𝑖−1

2 )𝛥𝑡 + 𝜎𝑁 𝑖−1
1 )

]︀

= E
[︁(︁

𝑣1(𝑡𝑖− 1
2
, 𝑥𝑖−1

2 )𝛥𝑡 + 𝜎𝑁 𝑖−1
1

)︁

·
(︁

𝑣1(𝑡𝑖−1,X
𝑖−1) + 𝑣1,𝑥1

(𝑡𝑖−1,X
𝑖−1)

(︀

𝑣1(𝑡𝑖− 1
2
, 𝑥𝑖−1

2 )𝛥𝑡 + 𝜎𝑁 𝑖−1
1

)︀

+ 𝑣1,𝑥2
(𝑡𝑖−1,X

𝑖−1)
(︀

𝑣2(𝑡𝑖− 1
2
, 𝑥𝑖−1

1 )𝛥𝑡 + 𝜎𝑁 𝑖−1
2

)︀

+
1

2

(︀

𝑣1,𝑥1𝑥1
(𝑡𝑖−1,X

𝑖−1) + 𝑣1,𝑥2𝑥2
(𝑡𝑖−1,X

𝑖−1)
)︀

𝜎2𝛥𝑡 + 𝒪((𝛥𝑡)2)
)︁]︁

. (4.40)

Combining the terms with the same order of 𝛥𝑡, we obtain

E
[︀

𝑣1(𝑡𝑖,X
𝑖)
(︀

𝑣1(𝑡𝑖− 1
2
, 𝑥𝑖−1

2 )𝛥𝑡 + 𝜎𝑁 𝑖−1
1

)︀]︀

= 𝛥𝑡E
[︀

𝑣1(𝑡𝑖−1,X
𝑖−1)𝑣1(𝑡𝑖− 1

2
, 𝑥𝑖−1

2 ) + 𝜎2𝑣1,𝑥1
(𝑡𝑖−1,X

𝑖−1)
]︀

+ 𝒪((𝛥𝑡)2), (4.41)

where we have used the facts that: (1) X𝑖−1 is independent of 𝑁 𝑖−1
1 and 𝑁 𝑖−1

2 so the expectations of the
corresponding terms vanish; (2) 𝑁 𝑖−1

1 and 𝑁 𝑖−1
2 are independent so E(𝑁 𝑖−1

1 𝑁 𝑖−1
2 ) = 0; and (3) E(𝑁 𝑖−1

1 )2 = 𝛥𝑡.
Finally, by using the Theorem 4.3 and noticing the invariant measure is the uniform measure, we obtain from

equation (4.37) that

lim
𝑛→∞

1

𝑛𝛥𝑡
E
[︀

(𝑥𝑛
1 )2|(𝑥0

1, 𝑥
0
2)
]︀

= 𝜎2 + 2

∫︁

(𝑣1𝑣1 + 𝜎2𝑣1,𝑥1
) + 𝒪(𝛥𝑡). (4.42)

Thus, our statement in equation (4.36) is proved using the facts that 𝑣1 converges to 𝜒1 (see Thm. 4.8) and
∫︀

𝑣1,𝑥1
= 0. �

Remark 4.11. If we divide two on both sides of equation (4.36), we can find that our result recovers the
definition of the effective diffusivity 𝐷𝐸

11 defined in equation (2.3). Recall that 𝐷0 = 𝜎2/2. Theorem 4.10
reveals the connection of the definition of the effective diffusivity using the Eulerian framework and Lagrangian
framework; see equations (2.3) and (2.7), which is fundamental in this context. For 3D time-dependent flow
problems, the Eulerian framework has good theoretical values but the Lagrangian framework is computationally
accessible.

Remark 4.12. For the second component of the numerical solution, i.e., 𝑥𝑛
2 , 𝑛 = 0, 1, . . ., we have similar

convergence result in computing the effective diffusivity. First we define 𝑣2(𝑡, 𝑥1, 𝑥2) := 𝑣2(𝑡, 𝑥1 + 𝑣1(𝑡, 𝑥2)𝛥𝑡)
and obtain

∫︀

T
𝑣2d𝑥1 = 0. Then we define the discrete cell problem ˆ̃𝑣2 as we did in equation (4.14). Calculations of

E[(𝑥𝑛

2 )2]
𝑛𝛥𝑡

are essentially the same as the ones obtained in Theorem 4.10 except that we need to substitute 𝑣1 into
ˆ̃𝑣2 in equation (4.42). Now we consider cell problem ℒ𝜒̃2 = −𝑣2. As 𝑣2−𝑣2 = 𝒪(𝛥𝑡), we have 𝜒̃2−𝜒2 = 𝒪(𝛥𝑡).

Theorem 4.8 extends due to the fact that ||ˆ̃𝑣2 − 𝜒̃2|| = 𝒪(𝛥𝑡) as in Theorem 4.6. The estimation of
E[(𝑥𝑛

1 )(𝑥𝑛

2 )]
𝑛𝛥𝑡

can be obtained in the same manner.
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4.5. Generalizations to high-dimensional cases

To show the essential idea of our probabilistic approach in proving the convergence rate of the numerical
schemes, we have carried out our convergence analysis based on a two-dimensional model problem (3.1). In
fact, the extension of our approach to higher-dimensional problems is straightforward. Now we consider a high-
dimensional problem as follow:

dX = v(𝑡,X)d𝑡 + 𝛴dw(𝑡), (4.43)

where X = (𝑥1, 𝑥2, . . . , 𝑥𝑑)
𝑇 ∈ R𝑑 is the position of a particle, v = (𝑣1, 𝑣2, . . . , 𝑣𝑑)

𝑇 ∈ R𝑑 is the Eulerian
velocity field at position X, 𝛴 is a 𝑑 × 𝑑 constant non-singular matrix, and w(𝑡) is a 𝑑-dimension Brownian
motion vector. In particular, we assume the component 𝑣𝑖 does not depend on 𝑥𝑖, 𝑖 = 1, . . . , 𝑑. Thus, the
incompressible condition for v(𝑡,X) (i.e. ∇X · v(𝑡,X) = 0) is easily guaranteed.

For a deterministic and divergence-free dynamical system, Feng et. al. proposed a volume-preserving method
[10], which splits a 𝑑-dimensional problem into 𝑑 − 1 subproblems with each of them being a two-dimensional
problem and thus being volume-preserving. We shall modify Feng’s method (first-order case) by including the
randomness as the last subproblem to take into account the additive noise, i.e.,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑥*
1 = 𝑥𝑛−1

1 + 𝛥𝑡𝑣1(𝑡𝑛 + 𝛥𝑡
2 , 𝑥𝑛−1

2 , 𝑥𝑛−1
3 , 𝑥𝑛−1

4 , . . . , 𝑥𝑛−1
𝑑−1 , 𝑥𝑛−1

𝑑 ),

𝑥*
2 = 𝑥𝑛−1

2 + 𝛥𝑡𝑣2(𝑡𝑛 + 𝛥𝑡
2 , 𝑥*

1, 𝑥
𝑛−1
3 , 𝑥𝑛−1

4 , . . . , 𝑥𝑛−1
𝑑−1 , 𝑥𝑛−1

𝑑 ),

𝑥*
3 = 𝑥𝑛−1

3 + 𝛥𝑡𝑣3(𝑡𝑛 + 𝛥𝑡
2 , 𝑥*

1, 𝑥
*
2, 𝑥

𝑛−1
4 , . . . , 𝑥𝑛−1

𝑑−1 , 𝑥𝑛−1
𝑑 ),

. . . ,

𝑥*
𝑑 = 𝑥𝑛−1

𝑑 + 𝛥𝑡𝑣𝑑(𝑡𝑛 + 𝛥𝑡
2 , 𝑥*

1, 𝑥
*
2, 𝑥

*
3, 𝑥

*
4, . . . , 𝑥

*
𝑑−1),

X𝑛 = X* + 𝛴(W𝑛 − W𝑛−1),

(4.44)

where X* = (𝑥*
1, 𝑥

*
2, . . . , 𝑥

*
𝑑)

𝑇 , W𝑛−W𝑛−1 is a 𝑑-dimensional independent random vector with each component
of the form

√
𝛥𝑡𝜉𝑖, 𝜉𝑖 ∼ 𝒩 (0, 1), and X𝑛 = (𝑥𝑛

1 , 𝑥𝑛
2 , . . . , 𝑥𝑛

𝑑 )𝑇 is the numerical approximation to the exact
solution X(𝑡𝑛) to the SDE (4.43) at time 𝑡𝑛 = 𝑛𝛥𝑡.

The techniques of the convergence analysis for the two-dimensional problem can be applied to high-
dimensional problems without much difficulty. For the high-dimensional problem (4.43), the smoothness and
strict positivity of the transition kernel in the discrete process can be guaranteed if one assumes that the covari-
ance matrix 𝛴 is non-singular and the scheme (4.44) is explicit. According to our assumption for the velocity
field, the scheme (4.44) is volume-preserving for each step. Thus, the solution to the first-order modified equa-
tion is divergence-free and the invariant measure on the torus (defined by R𝑑/Z𝑑, when the period is 1) remains
uniform for all 𝑡. Finally, the convergence of the cell problem can be studied by using the BCH formula (3.11)
with 𝑑 + 2 differential operators. Recall that in equation (3.12) we have four differential operators when we
study the two-dimensional problem.

Therefore, our numerical methods are robust in computing effective diffusivity for high-dimensional prob-
lems, which will be demonstrated through time-dependent chaotic flow problems in three-dimensional space in
Section 5.

5. Numerical results

In this section, we will present numerical examples to verify the convergence analysis of the proposed method in
computing effective diffusivity for time-dependent chaotic flows. In addition, we will investigate the convection-
enhanced diffusion phenomenon in 3D time-dependent flow, i.e., the time-dependent ABC flow and the time-

dependent Kolmogorov flow. Without loss of generality, we compute the quantity E(𝑥1(𝑇 ))2

2𝑇
, which is used to

approximate 𝐷𝐸
11 in the effective diffusivity matrix (2.3).
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5.1. Verification of the convergence rate

We first consider a two-dimensional passive tracer model. Let (𝑥1, 𝑥2)
𝑇 ∈ R2 denote the position of a particle.

Its motion is described by the following SDE,
{︃

d𝑥1 = sin
(︀

4𝑥2 + 1 + sin(2𝜋𝑡)
)︀

exp
(︀

cos
(︀

4𝑥2 + 1 + sin(2𝜋𝑡)
)︀)︀

d𝑡 + 𝜎d𝑤1,𝑡,

d𝑥2 = cos
(︀

2𝑥1 + sin(2𝜋𝑡)
)︀

exp
(︀

sin
(︀

2𝑥1 + sin(2𝜋𝑡)
)︀)︀

d𝑡 + 𝜎d𝑤2,𝑡,
(5.1)

where 𝜎 =
√

2 × 0.1, 𝑤𝑖,𝑡, 𝑖 = 1, 2 are independent Brownian motions, and the initial data (𝑥0
1, 𝑥

0
2)

𝑇 follows
uniform distributions in [−0.5, 0.5]2. One can easily verify the velocity field in (5.1) is time-dependent and
divergence-free.

In our numerical experiments, we use Monte Carlo samples to discretize the Brownian motions 𝑤1,𝑡 and 𝑤2,𝑡.
The sample number is denoted by 𝑁𝑚𝑐. We choose 𝛥𝑡𝑟𝑒𝑓 = 1

212 and 𝑁𝑚𝑐 = 3 200 000 to solve the SDE (5.1)
to compute the reference solution, i.e., the “exact” effective diffusivity, where the final computational time is
𝑇 = 3000 to guarantee the convergence of the calculated effective diffusivity along time. In fact, we find that
the passive tracer model will enter a mixing stage if the computational time is bigger than 𝑇 = 1000. It takes
about 17 hours to compute the reference solution on a 80-core server (HPC2015 System at HKU). The reference
solution for the effective diffusivity is 𝐷𝐸

11 ≈ 0.219.

In Figure 6a, we plot the convergence results of the effective diffusivity using our method (i.e., E(𝑥1(𝑇 ))2

2𝑇
) with

respective to different time-step 𝛥𝑡 at 𝑇 = 3000. To minimize error involved in Monte Carlo simulation, the
particle number is the same as in computation of reference solution. In addition, we show a fitted straight line
with the slope 1.04, i.e., the convergence rate is about (𝛥𝑡)1.04. This numerical result verifies the convergence
analysis in Theorem 4.10.

To further study the accuracy and robustness of our method for long-time integration, we consider a 3D
time-dependent Kolmogorov flow problem. Let (𝑥1, 𝑥2, 𝑥3)

𝑇 ∈ R3 denote the position of a particle. The motion
of a particle moving in the 3D time-dependent Kolmogorov flow is described by the following SDE,

⎧

⎪

⎨

⎪

⎩

d𝑥1 = sin
(︀

𝑥3 + 𝜖 sin(2𝜋𝑡)
)︀

d𝑡 + 𝜎d𝑤1,𝑡,

d𝑥2 = sin
(︀

𝑥1 + 𝜖 sin(2𝜋𝑡)
)︀

d𝑡 + 𝜎d𝑤2,𝑡,

d𝑥3 = sin
(︀

𝑥2 + 𝜖 sin(2𝜋𝑡)
)︀

d𝑡 + 𝜎d𝑤3,𝑡.

(5.2)

where 𝑤1,𝑡, 𝑤2,𝑡 and 𝑤3,𝑡 are independent Brownian motions. When 𝜖 = 0, the velocity field in (5.2) corresponds
to the Kolmogorov flow [11]. The Kolmogorov flow possesses very chaotic behaviors [6], which brings challenges
for our method.

In our numerical experiment, we choose 𝜖 = 10−1 and 𝜎 =
√

2 × 10−3 in equation (5.2). We choose 𝛥𝑡ref = 1
211

and 𝑁𝑚𝑐 = 480 000 to compute the reference solution for the SDE (5.2), i.e., the “exact” effective diffusivity. In
our numerical tests, we find that the passive tracer model will enter a mixing stage if the computational time is
bigger than 𝑇 = 2000. To show the accuracy and robustness of our numerical scheme, we set 𝑇 = 105 here. It
takes about 59 hours to compute the reference solution on the server and the reference solution for the effective
diffusivity is 𝐷𝐸

11 ≈ 0.693.
In Figure 6b, we plot the convergence results of the effective diffusivity using our method with respect to

different time-step 𝛥𝑡. To minimize error involved in Monte Carlo simulation, the particle number is the same
as in computation of reference solution. In addition, we show a fitted straight line with the slope 1.22, i.e., the
convergence rate is about (𝛥𝑡)1.22. This numerical result again agrees with our error analysis.

5.2. Investigation of the convection-enhanced diffusion phenomenon

As we have already demonstrated in Section 5.1, our method is very accurate and robust for long-time in-
tegration. Here, we will study the dependence of the effective diffusivity 𝐷𝐸

11 on different parameters in the
time-dependent flows. First of all, we solve equation (5.2) and carry out the test for the 3D time-dependent
Kolmogorov flow.
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Figure 1. Time evolution of the E(𝑥1(𝑡))
2

2𝑡
for different 𝐷0’s and 𝜖’s. (a) 𝜖 = 10, (b) 𝜖 = 1, (c)

𝜖 = 0.1, (d) 𝜖 = 0.

In Figure 1, we show the time evolution of E(𝑥1(𝑡))
2

2𝑡
for different 𝐷0’s (here 𝐷0 = 𝜎2/2) and for four different

𝜖’s, where the result in Figure 1d corresponds to the time-independent Kolmogorov flow (see Fig. 6 of [33]).
The parameter 𝜖 in equation (5.2) controls the strength of the time dependence. For each 𝐷0 and 𝜖, we use
𝑁𝑚𝑐 = 240 000 particles to solve the SDE (5.2).

In Figure 4a, we show the time evolution of 𝐸[𝑥1(𝑡)
2]/(2𝑡) for different 𝜖’s with 𝐷0 = 10−5. One can see

that the effective diffusivity 𝐷𝐸
11 converges as 𝜖 approaches zero. Similar convergence behaviors were observed

for other 𝐷0’s, which are not shown here. The convergence of the effective diffusivity with respect to 𝜖 can be
rigorously justified through analysis; see Appendix A.

In addition, in Figure 4b by fixing 𝜖, we observe a certain amount of enhanced diffusion when 𝐷0 decreases.
We find that for each given 𝐷0 as 𝜖 decreases the corresponding effective diffusivity 𝐷𝐸

11 converges to the effective
diffusivity 𝐷𝐸

11 associated with 𝜖 = 0. This means the time dependency of 𝜖 improves the chaotic property of
Kolmorogov flow though, it does not change the pattern of convection-enhanced diffusion in the Kolmogorov
flow. When 𝜖 ≤ 1 the fitted slope within 𝐷0 ∈ [10−5, 10−3] is −0.2, which indicates that 𝐷𝐸

11 ∼ 𝒪(1/𝐷0.2
0 ).

However, the dependency of 𝐷𝐸
11 on 𝐷0 is quite different from the pattern of the time-dependent ABC flow,
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Figure 2. Time evolution of the E(𝑥1(𝑡))
2

2𝑡
for different 𝐷0 and 𝜖. (a) 𝜖 = 10, (b) 𝜖 = 1,

(c) 𝜖 = 0.1, (d) 𝜖 = 0.

which is known as the maximal enhancement and will be discussed later; see Figure 3. We call this behavior a
sub-maximal enhancement, which may be explained by the fact that the Kolmogorov flow is more chaotic than
the ABC flow [11]. The chaotic trajectories in Kolmogorov flow enhance diffusion much less than channel-like
structures such as the ballistic orbits of ABC flows [24,34].

Next, we use our stochastic structure-preserving scheme to solve time-dependent ABC flow problems. Let
(𝑥1, 𝑥2, 𝑥3)

𝑇 ∈ R3 denote the position of a particle in the 3D Cartesian coordinate system. The motion of a
particle moving in the 3D time-dependent ABC flow is described by the following SDE,

⎧

⎪

⎨

⎪

⎩

d𝑥1 = 𝐴 sin
(︀

𝑥3 + 𝜖 sin(2𝜋𝑡)
)︀

d𝑡 + 𝐶 cos
(︀

𝑥2 + 𝜖 sin(2𝜋𝑡)
)︀

d𝑡 + 𝜎d𝑤1,𝑡,

d𝑥2 = 𝐵 sin
(︀

𝑥1 + 𝜖 sin(2𝜋𝑡)
)︀

d𝑡 + 𝐴 cos
(︀

𝑥3 + 𝜖 sin(2𝜋𝑡)
)︀

d𝑡 + 𝜎d𝑤2,𝑡,

d𝑥3 = 𝐶 sin
(︀

𝑥2 + 𝜖 sin(2𝜋𝑡)
)︀

d𝑡 + 𝐵 cos
(︀

𝑥1 + 𝜖 sin(2𝜋𝑡)
)︀

d𝑡 + 𝜎d𝑤3,𝑡,

(5.3)

where 𝑤1,𝑡, 𝑤2,𝑡 and 𝑤3,𝑡 are independent Brownian motions. For 𝜖 = 0 and 𝜎 = 0, the velocity field in (5.3)
corresponds to the standard ABC flow [8]. The ABC flow is a three-dimensional incompressible velocity field
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Figure 3. Convection-enhanced diffusion with a maximal enhancement in the time-dependent
ABC flow.

which is an exact solution to the Euler’s equation. It is notable as a simple example of a fluid flow that can
have chaotic trajectories. In our numerical experiments, we set 𝐴 = 𝐵 = 𝐶 = 1.

In Figure 2, we show the time evolution of the E(𝑥1(𝑡))
2

2𝑡
for different 𝐷0’s (here 𝐷0 = 𝜎2/2) and for four

different 𝜖’s, where the result in Figure 2d corresponds to the time-independent ABC flow (see Fig. 3 of [33]).
Again the parameter 𝜖 controls the strength of the time dependence. For each 𝐷0 and 𝜖, we use 𝑁𝑚𝑐 = 240 000

particles to solve the SDE (5.3). We find that for each given 𝐷0, the time evolution of the E(𝑥1(𝑡))
2

2𝑡
converges

when 𝜖 converges to zero. However, we observe two different patterns compared with the results shown in
Figure 1. First, when we decrease 𝐷0, it takes a longer time for the system to enter a mixing stage. Second, we
observe a large amount of enhanced diffusion when 𝐷0 decreases.

To further investigate the dependence of 𝐷𝐸
11 on 𝐷0 and 𝜖, in Figure 3, we show the dependence of effective

diffusivity 𝐷𝐸
11 on 𝐷0 and 𝜖. We find that for each given 𝐷0, as 𝜖 decreases the corresponding effective diffusivity

𝐷𝐸
11 converges to the effective diffusivity 𝐷𝐸

11 associated with 𝜖 = 0. Thus, the time-dependent ABC flow has
a similar convection-enhanced diffusion behavior as the time-independent ABC flow. The fitted slope within
𝐷0 ∈ [10−5, 10−1] is about −1.0, which indicates that 𝐷𝐸

11 ∼ 𝒪(1/𝐷1
0). This result indicates that the 𝐷𝐸

11

of the time-dependent ABC flow achieves the upper-bound of equation (2.6), i.e. the maximal enhancement.
This maximal enhancement phenomenon may be attributed to the ballistic orbits of the ABC flow, where the
time-independent case was discussed in [24,34].

Moreover, our result for 𝐷0 ∈ [10−3, 10−1] and 𝜖 = 0 recovers the same phenomenon as the Figure 2 in [4],
which was obtained by using the Eulerian framework, i.e., solving a cell problem. In Figure 3, our method
can be easily used to compute the effective diffusivity when 𝐷0 ∈ [10−5, 10−4]. It will be, however, extremely
expensive for the Eulerian framework since one needs to solve a convection-dominated PDE (2.4) in 3D space,
whose Péclet number is proportion to 1

𝐷0
.

Finally, we investigate the dependence of 𝐷𝐸
11 on the frequency of the time-dependent ABC flow. Specifically,

we solve the following SDE,

⎧

⎪

⎨

⎪

⎩

d𝑥1 = 𝐴 sin
(︀

𝑥3 + sin(Ω𝑡)
)︀

d𝑡 + 𝐶 cos
(︀

𝑥2 + sin(Ω𝑡)
)︀

d𝑡 + 𝜎d𝑤1,𝑡,

d𝑥2 = 𝐵 sin
(︀

𝑥1 + sin(Ω𝑡)
)︀

d𝑡 + 𝐴 cos
(︀

𝑥3 + sin(Ω𝑡)
)︀

d𝑡 + 𝜎d𝑤2,𝑡,

d𝑥3 = 𝐶 sin
(︀

𝑥2 + sin(Ω𝑡)
)︀

d𝑡 + 𝐵 cos
(︀

𝑥1 + sin(Ω𝑡)
)︀

d𝑡 + 𝜎d𝑤3,𝑡,

, (5.4)



COMPUTING EFFECTIVE DIFFUSIVITIES IN 3D TIME-DEPENDENT CHAOTIC FLOWS 1541

Figure 4. Convergence in terms of 𝜖 in time-dependent Kolmogorov flow. (a) Time evolution of
E(𝑥1(𝑡))

2

2𝑡
with 𝐷0 = 10−5. (b) Convection-enhanced diffusion with a submaximal enhancement.

Figure 5. Dependence of 𝐷𝐸
11 on the frequency of the time-dependent ABC flow.

where 𝐴 = 𝐵 = 𝐶 = 1 and Ω is the frequency. Here we first choose 𝛥𝑡 = 2−7, 𝑁𝑚𝑐 = 240 000 and 𝑇 = 105.
Then, we choose different Ω and compute the corresponding effective diffusivity 𝐷𝐸

11.
In Figure 5, we show the numerical results. We find that when Ω is near 0.1 the diffusion enhancement is

weak. When Ω is away from 0.1, say Ω < 0.05 or Ω > 0.2, we observe the maximal enhancement phenomenon.
A similar sensitive dependence on the frequency of time-dependent ABC flows was reported in [5], where the
Lyapunov exponent of the deterministic time-dependent ABC flow problem (i.e., 𝜎 = 0 in Eq. (5.3)) was studied
as the indicator of the extent of chaos; see Figures 2 and 3 of [5].

When Ω = 0, the flow of equation (5.4) is the same as that for 𝜖 = 0 case in equation (5.3), which will give
the maximal enhancement phenomenon. When Ω is positive, the flow becomes time-dependent and the regions
of chaos expand until the extent of chaos (i.e. the Lyapunov exponent) appears to reach a maximum, which
is corresponding to Ω = 0.1. It seems that the diffusion enhancement is significantly weakened in this range
of Ω. When Ω continues to grow, the islands of the integrability regrow and the chaotic regions have shrunk
significantly. We again observe the maximal enhancement phenomenon in this range of Ω. Our numerical results
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Figure 6. Error of 𝐷𝐸
11 for two time-dependent flows with different time-steps. (a) 2D time-

dependent chaotic flow, fitted slope ≈1.04; (b) 3D time-dependent Kolmogorov flow, fitted slope
≈1.22.

suggest that the level of chaos and the strength of diffusion enhancement seem to compete with each other.
More intensive theoretic and numerical studies will be reported in our future work.

6. Conclusion

In this paper, we developed a stochastic structure-preserving Lagrangian scheme in computing effective diffu-
sivity of passive tracer models in 3D time-dependent chaotic flows and provided a sharp convergence analysis on
the proposed numerical scheme. Our convergence analysis is based on a probabilistic approach, which interprets
the solution process generated by our numerical scheme as a Markov process. By exploring the ergodicity of the
solution process, we gave a sharp and uniform-in-time error estimate for our numerical scheme, which allows
us to compute the effective diffusivity over infinite time. Numerical results verify that the proposed method is
robust and accurate in computing effective diffusivity of time-dependent chaotic flows. We observed the maxi-
mal enhancement phenomenon in time-dependent ABC flows and the sub-maximal enhancement phenomenon
in time-dependent Kolmogorov flows, respectively. Moreover, we found that the time dependency in the velocity
field improves the chaotic property of ABC flow and Kolmorogov flow though, it does not change the pattern
of convection-enhanced diffusion in both flows.

There are two directions we plan to explore in our future work. First, we intend to study the convection-
enhanced diffusion phenomenon and provide a sharp convergence analysis for general time-dependent chaotic
flows, where the flows have a quasi-periodic property in the time domain. In addition, we shall investigate the
convection-enhanced diffusion phenomenon for general spatial-temporal stochastic flows [20, 23] and develop
convergence analysis for the corresponding numerical methods.

Appendix A. Limit in the parameter 𝜖 for a time-dependent chaotic flow

We shall prove that when 𝜖 approaches zero, the effective diffusivity corresponding to the time-dependent chaotic
flow, e.g., the flow in (5.2) will converge to the one corresponding to the time-independent one, e.g., 𝜖 = 0 in
the flow of (5.2). For notational simplicity, let v = v𝜖 denote the velocity field in (5.2) and v = v0 denote the
velocity field when 𝜖 = 0 in v = v𝜖. Moreover, we denote ℒ𝜖(·) = v𝜖 ·∇𝑥(·)+𝐷0𝛥𝑥(·). Now, the vector corrector
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field 𝜒
𝜖 associated with the velocity field v𝜖 satisfies the following cell problem,

(𝜕𝜏 + ℒ𝜖)𝜒𝜖 = −v𝜖. (A.1)

Let 𝜒
𝜖
0 denote the solution of the following equation

(𝜕𝜏 + ℒ𝜖)𝜒𝜖
0 = −v0. (A.2)

We aim to prove 𝜒
𝜖 converges to 𝜒

𝜖
0 as 𝜖 approaches zero. At the same time we know the vector corrector field

𝜒0 associated with the velocity field v0 satisfies the following cell problem,

ℒ0
𝜒0 = −v0, (A.3)

where ℒ0(·) = v0 · ∇𝑥(·) + 𝐷0𝛥𝑥(·). Now we consider, 𝜒
0
0(𝑡, 𝑥) = 𝜒0(𝑥), which solves,

(𝜕𝜏 + ℒ0)𝜒0
0 = −v0, (A.4)

since 𝜕𝜏𝜒
0
0 = 0. Comparing equations (A.2) and (A.4) and using Proposition 4.4, we know that 𝜒

𝜖
0 converges to

𝜒
0
0 when 𝜖 approaches zero. Finally, comparing equations (A.1) and (A.2), we know 𝜒

𝜖 converges to 𝜒
𝜖
0 when 𝜖

approaches zero. Therefore, we prove 𝜒
𝜖 converges to 𝜒0 when 𝜖 approaches zero.
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