
Mathematical Biosciences 359 (2023) 108996

A
a

b

Contents lists available at ScienceDirect

Mathematical Biosciences

journal homepage: www.elsevier.com/locate/mbs

Original Research Article

Epidemic spread on patch networks with community structure
Brandon Lieberthal a,∗, Aiman Soliman b, Shaowen Wang b, Sandra De Urioste-Stone a,
llison M. Gardner a
University of Maine, Orono, ME, USA
University of Illinois, Urbana-Champaign, IL, USA

A R T I C L E I N F O

Keywords:
Community networks
Patch networks
Metapopulation SIR
Disease epidemics
Super-spreader events

A B S T R A C T

Predicting and preparing for the trajectory of disease epidemics relies on a knowledge of environmental and
socioeconomic factors that affect transmission rates on local and global spatial scales. This article discusses
the simulation of epidemic outbreaks on human metapopulation networks with community structure, such
as cities within national boundaries, for which infection rates vary both within and between communities.
We demonstrate mathematically, through next-generation matrices, that the structures of these communities,
setting aside all other considerations such as disease virulence and human decision-making, have a profound
effect on the reproduction rate of the disease throughout the network. In high modularity networks, with high
levels of separation between neighboring communities, disease epidemics tend to spread rapidly in high-risk
communities and very slowly in others, whereas in low modularity networks, the epidemic spreads throughout
the entire network as a steady pace, with little regard for variations in infection rate. The correlation between
network modularity and effective reproduction number is stronger in population with high rates of human
movement. This implies that the community structure, human diffusion rate, and disease reproduction number
are all intertwined, and the relationships between them can be affected by mitigation strategies such as
restricting movement between and within high-risk communities. We then test through numerical simulation
the effectiveness of movement restriction and vaccination strategies in reducing the peak prevalence and spread
area of outbreaks. Our results show that the effectiveness of these strategies depends on the structure of the
network and the properties of the disease. For example, vaccination strategies are most effective in networks
with high rates of diffusion, whereas movement restriction strategies are most effective in networks with high
modularity and high infection rates. Finally, we offer guidance to epidemic modelers as to the ideal spatial
resolution to balance accuracy and data collection costs.
Author summary

Predicting and preparing for the trajectory of disease epidemics
relies on a knowledge of environmental and socioeconomic factors that
affect transmission rates on local and global spatial scales. This article
discusses the simulation of epidemic outbreaks on human metapopu-
lation networks with community structure, such as cities within na-
tional boundaries, for which infection rates vary both within and
between communities. We demonstrate mathematically, through next-
generation matrices, that the structures of these communities, setting
aside all other considerations such as disease virulence and human
decision-making, have a profound effect on the reproduction rate of
the disease throughout the network. This implies that the community
structure, human diffusion rate, and disease reproduction number are
all intertwined, and the relationships between them can be affected by
mitigation strategies such as restricting movement between and within
high-risk communities. We then test through numerical simulation
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the effectiveness of movement restriction and vaccination strategies in
reducing the peak prevalence and spread area of outbreaks. Finally, we
offer guidance to epidemic modelers as to the ideal spatial resolution
to balance accuracy and data collection costs.

1. Introduction

Predicting and explaining spatial patterns of infectious disease
spread is a complex challenge in part due to the significant geographic,
demographic, economic, and social heterogeneity that exists in human
populations, which can alter the spatiotemporal trajectory of an epi-
demic [1–3]. In addition to physical factors that enhance or inhibit
disease spread, such as climate, landscape configuration, and land use,
the distribution of human host populations at local, national, and global
scales may profoundly influence transmission dynamics [4,5]. Analysis
of epidemics across multiple spatial scales is useful, for example, to
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assess whether the drivers of disease spread are the same at local versus
national scales [6] or to compare the contributions of different modes
of transportation to spreading disease [7].

Several modeling techniques exist to study these multi-scale prob-
lems. One such technique is the community metapopulation network,
which consists of a graph of nodes, each representing a population
center, that are connected by mobility pathways [8]. These nodes are
grouped into communities, which are abstract structures defined by
having significantly more connections among themselves compared
to connections with neighboring communities, where connections can
represent physical adjacency or transportation routes [9]. The commu-
nity network has several available algorithms for design and numerous
practical applications, including the simulation of cities divided by
political boundaries, children and adults who attend the same schools
and workplaces, or even users of a social network grouped abstractly
by a common interest [10–12]. Due to the increasing urbanization of
human population centers, the community network is an extremely im-
portant model for studying epidemics and pandemics, and considerable
research has addressed the effects of community structure on disease
spread [13–17]. Prior research has shown that a strong, well-connected
community structure, contrary to common wisdom, actually reduces
the danger of epidemics as the disease stays less isolated in high-risk
communities [18].

Scientific research into community networks typically focuses on
the number of bridges between connected communities, the rate of host
movement between communities, or the modularity of the network,
and how these factors affect the trajectory of an epidemic [19–21].
Recent research has also explored the disease epidemic threshold and
optimal control strategies in community networks [22–25]. This re-
search is more often theoretical than empirical, and has found no
straightforward relationships between community structure and epi-
demic reproduction rates. Community networks are typically described
mathematically using generating functions [26], but generating func-
tions are only applicable to the specific case in which the disease
infection rate is constant across the network. In general, prior research
concerning community networks assumes that each community in the
network has qualitatively similar graph structures and human popula-
tions, as well as the same infection rate, and there is considerable room
to improve upon the applicability of these models.

Another modeling technique, the patch network, is useful in epi-
demiological cases in which the rate of infection varies either spatially
or among different susceptible host groups in the same population
center. Examples include diseases for which vector habitat suitability
varies with climate or land cover [27–29], and diseases for which
exposure and infection rates vary between demographic groups [30,
31]. Patch networks are also useful when different segments of the
population experience different policies to mitigate the impact of an
ongoing epidemic [32,33]. Numerous studies have attempted to pre-
dict the spatial distribution of infection rates for specific diseases
as a product of environmental and socioeconomic factors, and patch
networks are of considerable importance for diseases with multiple
host species, since they can accurately model interactions within and
between species [34,35]. The next-generation matrix, a mathematical
construct that is computed by the infection rates of individual host
populations and the contact rate between these populations, is com-
monly used to compute the reproduction rate of epidemics in patch
networks [36].

An accurate and robust epidemiological model across a large spatial
extent should ideally integrate elements of the community network and
the patch network techniques, and a key question in designing these
models is the scale at which host populations should be considered.
There is a trade-off between the precision offered by fine scale data
and the lower costs of obtaining coarse scale data, but additionally
the values of some simulation parameters may fundamentally change
depending on the spatial scale under consideration [37,38]. Climate

data, for example, are typically collected at very fine scales and vary
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continuously with space, so the scale at which the data are rendered
is not critical to their precision [39]. Several other data types, such
as population density, urbanicity, and socioeconomic factors, can vary
significantly within a small region. If a given geographical region
contains both substantial urban and rural populations, for example,
the network graph of a human mobility model will look very different
depending on the spatial granularity of the region [40]. This issue
is related to the ecological fallacy, in which inferences about smaller
population centers are made from the properties of the community
at large [41], and to the modifiable areal unit problem, in which
the arbitrary drawing of political boundaries can affect the statistical
analysis of natural phenomena [42]. These issues compound with the
additional complication of a patch network, because if the infection
rate depends both on natural and human factors, as is the case for most
diseases [43], then an epidemiological model can be expected to exhibit
variation on multiple scales.

To this end, this manuscript builds upon previous research by
combining these two modeling approaches, the patch network and the
community network, and studies in tandem the effects of community
network structure and heterogeneous infection rates on several metrics
of epidemic severity, such as reproduction rate, peak infection rate,
and the area of disease spread. We address two questions: (1) how
does community structure in patch networks affect the outcome of
epidemiological simulations? (2) what are the consequences of the
choice to represent a host population region as either a community or
a single node? We hypothesize that infection rates, host diffusion, and
community structure are primary, secondary, and tertiary effects on
the reproduction rate of the epidemic, respectively, and a similar order
of importance applies to the peak prevalence, the area of spread, and
super-spreader capacity [44]. We explore these questions through an-
alytical models and through simulation models of randomly generated
networks, and we discuss how the modularity of the network, as well as
the properties of individual communities, affect the scale-dependence
of reproduction rate (𝑅), the number of individuals infected, and the
spatial extent of the epidemic.

The first part of this manuscript features an analytical model that
applies next-generation matrix algorithms to patch networks with com-
munity structure. This model, which assumes homogeneous mobility
between nodes, proves mathematically that the community structure
of the network has a direct effect on the basic reproduction number
throughout the population. We show through equations and examples
that with all other factors held constant, the modularity of the commu-
nity network can nearly double the 𝑅 value of the disease, or reduce
it by about half. In the second part, we use Monte Carlo simulations
to study an expanded model that considers asymptomatic and non-
traveling infected individuals, as well as heterogeneous host mobility.
We use these simulations to study how community structure affects
the peak infection rate and super-spreader capacity of the network,
and we demonstrate the level of error that may be introduced to
the simulation as a result of neglecting community structure when
designing an empirical epidemic model.

2. Methods

2.1. SEIIIR model with traveler behavior and asymptomatic transmission

A metapopulation network is defined by a series of nodes, rep-
resenting subpopulations, that are connected by edges, representing
mobility routes. The most common metapopulation network used in
epidemiology is a map of cities connected by roads, air routes, and
sea routes, but a metapopulation network can be used to model a
population of disease hosts at any spatial scale through any means of
interpersonal connection. Mathematically speaking, a metapopulation
network with 𝑛 nodes is represented by an 𝑛-vector 𝐍 and an 𝑛 × 𝑛
adjacency matrix 𝐀. The value 𝑁𝑖 represents the population of node 𝑖

in the network, and the matrix 𝐀 is a square symmetric matrix in which
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𝐴𝑖𝑗 = 1 if nodes 𝑖 and 𝑗 are connected, and 𝐴𝑖𝑗 = 0 if they are not. There
is no mathematical significance to the order in which the nodes are
listed, nor to their geometrical coordinates on a visual representation
of the network. When modeling an empirical disease outbreak for a
broad audience, nodes are typically placed on a map corresponding to
their geographical locations.

A community network is mathematically identical in structure to a
metapopulation network, except the nodes are characterized as being
concentrated into subnetworks, or communities. Community structure
is typically quantified by network modularity, a value ranging from
−0.5 to 1, where a higher modularity indicates a greater ratio of nodal
connections within communities than between them [19]. Communities
are connected by bridge connections, which connect two nodes in
different communities. In this paper, nodes within the same commu-
nity are sorted together, so the adjacency matrix has a pseudo-block
diagonal structure, where non-zero values outside the blocks represent
bridge connections.

The metapopulation SIR (Susceptible–Infected–Recovered) model is
useful for next-generation matrix analysis in the early outbreak limit,
when infection case growth is exponential, but to simulate the effects
of traveler behavior and mitigation measures on reproduction rates,
a more complex model is necessary. Therefore, we utilize an SEIIIR
(Susceptible–Exposed–Infected (Asymptomatic, Traveling, Not Travel-
ing), Recovered) model, in which the infected group is decomposed
into asymptomatic individuals, symptomatic individuals who continue
to travel, and symptomatic individuals who cease to travel [45]. The
differential equations that govern this system are as follows:
d𝑆𝑖
d𝑡 = − 𝛽𝑖𝑆𝑖

𝑁𝑖

(

𝑟𝛽𝐼𝑎𝑖 + 𝐼 𝑡𝑖 + 𝐼𝑛𝑡𝑖
)

−
∑

𝑗
𝑀𝑖𝑗𝑆𝑖 +

∑

𝑗
𝑀𝑗𝑖𝑆𝑗

d𝐸𝑖
d𝑡 = 𝛽𝑖𝑆𝑖

𝑁𝑖

(

𝑟𝛽𝐼𝑎𝑖 + 𝐼 𝑡𝑖 + 𝐼𝑛𝑡𝑖
)

− 𝜖𝐸𝑖 −
∑

𝑗
𝑀𝑖𝑗𝐸𝑖 +

∑

𝑗
𝑀𝑗𝑖𝐸𝑗

d𝐼𝑎𝑖
d𝑡 = 𝜖𝐸𝑖𝑝𝑎 − 𝜇𝐼𝑎𝑖 −

∑

𝑗
𝑀𝑖𝑗𝐼

𝑎
𝑖 +

∑

𝑗
𝑀𝑗𝑖𝐼

𝑎
𝑗

d𝐼 𝑡𝑖
d𝑡 = 𝜖𝐸𝑖(1 − 𝑝𝑎)𝑝𝑡 − 𝜇𝐼 𝑡𝑖 −

∑

𝑗
𝑀𝑖𝑗𝐼

𝑡
𝑖 +

∑

𝑗
𝑀𝑗𝑖𝐼

𝑡
𝑗

d𝐼𝑛𝑡𝑖
d𝑡 = 𝜖𝐸𝑖(1 − 𝑝𝑎)(1 − 𝑝𝑡) − 𝜇𝐼𝑛𝑡𝑖
d𝑅𝑖
d𝑡 = 𝜇

(

𝐼𝑎𝑖 + 𝐼 𝑡𝑖 + 𝐼𝑛𝑡𝑖
)

−
∑

𝑗
𝑀𝑖𝑗𝑅𝑖 +

∑

𝑗
𝑀𝑗𝑖𝑅𝑗

(1)

here 𝑆𝑖, 𝐸𝑖, 𝑅𝑖, 𝑁𝑖 represent the number of susceptible, exposed, re-
overed, and total population sizes, respectively, of node 𝑖. Infected
ndividuals are grouped into asymptomatic individuals (𝐼𝑎𝑖 ) with prob-
bility 𝑝𝑎, and symptomatic individuals are further divided into those
ho continue to travel (𝐼 𝑡𝑖 ) with probability 𝑝𝑡, or cease to travel (𝐼𝑛𝑡𝑖 ).

The variable 𝛽𝑖 is the infection rate for node 𝑖, 𝑟𝛽 is an infection rate
adjustment factor for asymptomatic individuals, 𝜖 is the rate at which
exposed individuals become infected, 𝜇 is the recovery rate, and 𝑀𝑖𝑗 is
the mobility matrix for the network.

Assuming birth and death rates are negligible over short time scales,
the basic reproduction rate for an individual node is given by 𝑅0 =
𝛽𝑖
𝜇 [1 + (𝑟𝛽 − 1)𝑝𝑎]. We define the traffic-dependent mobility model as:

𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑝
(𝑘𝑖𝑘𝑗 )𝜃

𝐶𝑘1+𝜃𝑖
if 𝑖 ≠ 𝑗

0 if 𝑖 = 𝑗
, (2)

here 𝑝 is the diffusion rate (a value between 0 and 1, indicating the
raction of the population that migrates outside their home node per
nit time), and 𝐶 is a calibration factor [46]. This model represents
system in which the rate of movement between two neighboring
odes is proportional to the product of their respective degrees of
onnectivity. The variable 𝜃 represents heterogeneity of movement, the
hape of the curve that relates a node’s degree of connectivity to its
ate of movement. If 𝜃 = 0 then movement is completely homogeneous,
eaning all individuals in all nodes have the same movement rate. A
 e

3

ypical value of 𝜃 in empirical case studies is 0.5 [47]. More complex
obility models may account for different spatial and temporal scales
f commuters [48], or between origin-driven and destination-driven
ontact [49], but for this analysis we choose a mobility model that is
roadly applicable.

.2. Community network generation

For our Monte Carlo simulations, we generate a series of random
etapopulation community networks with the Girvan–Newman algo-
ithm, which generates a random network with a specified size and
egree distribution, then removes edges between nodes with a high
etweenness factor until the desired community structure emerges [50,
1]. We specify a network of 30 communities, with 30 nodes within
ach community, and with the average number of edges, between and
ithin communities, randomly selected from 1 to 5.
This algorithm creates community networks with modularities rang-

ng from 0 to 0.9. The majority of nodes have degree of connectivity
ess than 5, with hub nodes ranging from 20 to 140. About one third
f networks have an average clustering coefficient of nearly 0, the rest
re distributed between 0 and 0.5, with most networks between 0.25
nd 0.4. The average centrality among networks ranges from 0.35 to
.65, with a peak at 0.5. This algorithm allows for the rapid generation
f human mobility networks that bear a resemblance to real-world
ase studies and is frequently used in the study of infectious dis-
ases [19,52–54]. Mathematically speaking, the code that executes the
IR simulation treats mobility between nodes in the same community
nd between nodes identically. There is no mathematical distinction
etween them.

.3. Monte Carlo method

After a network has been constructed, a random value of diffusion
is assigned, ranging from 0.1 to 0.5, and movement heterogeneity
is assigned as 0.5. A population of about 500,000 individuals is
ssigned to the network, such that the population of each node 𝑁 is
roportional to 𝑘1+𝜃𝑖 , where 𝑘𝑖 is the node’s degree of connectivity. All
ndividuals are initially classified as Susceptible. The mobility matrix is
hen defined based on a traffic-dependent model. The recovery rate 𝜇
s set to 0.1, the disease latency time is set to 1/2, the fraction percent
f individuals who are asymptomatic, or are symptomatic and continue
o travel, are set to 0.2 and 0.5, respectively, and the infection rates of
symptomatic individuals were multiplied by 0.5. The infection rate 𝛽 is
ssigned over a spatial field with an exponential distribution with mean
.15, to mimic spatial variability in the reproduction rate of seasonal
nfluenza [55]. In order to ensure that the spatial field is continuous, we
pply smoothing and despiking algorithms over the domain to remove
ny discontinuities [56]. This results in a spatial field with the same
xponential distribution, but with a degree of cross-correlation between
djacent points.
Infection rate spatial fields generated with this method tend to

eature a few hot spots with multiple incidences of spatial clustering.
ased on this spatial field, an infection rate value 𝛽𝑖 is assigned to each
ode.
The epidemic is triggered by the appearance of one infected individ-

al in a random node in the network, weighted by population and the
ourse of the epidemic is simulated using the SEIIIR model described
bove, using the ODE45 function in MATLAB [57]. In this analysis we

xplore three different scenarios:
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1. The base case, in which the epidemic proceeds unimpeded
as per the parameters given in this section.

2. The mitigation case, in which the effective 𝑅 score (𝑅𝑡
value) of all communities is measured using a Next-
Generation matrix. Communities with an 𝑅 score greater
than 1.1 have all mobility within and between adjacent
communities reduced by 90%.

3. The vaccination case, in which before the epidemic out-
break begins, a randomly selected 10% of the population,
uniformly distributed, is moved from the Susceptible con-
dition to the Recovered condition. A value of 10% is
chosen because preliminary research shows that even a
small number of vaccinated individuals can have profound
effects on the dynamics of the epidemic outbreak under the
conditions described above.

Numerical relationships between community structure and a vari-
ty of epidemic parameters, such as 𝑅0 value, peak prevalence, and
epidemic duration, are evaluated through the Random Forest package
in R v4.2.1 [58]. Random Forest is a type of regression model in
which decision trees are used to predict a continuous independent
variable based on a set of permuted predictor variables. For this project,
our Random Forest decision trees consisted of 500 decision branches,
at which two variables were considered at each branch to minimize
overfitting.

3. Results

3.1. Next-generation matrix for community networks

We begin with a basic metapopulation SIR model, on the assumption
that infection rate 𝛽 varies between nodes but recovery rate 𝜇 does not.

d𝑆𝑖
d𝑡 = −𝛽𝑖

𝑆𝑖𝐼𝑖
𝑁𝑖

+
∑

𝑗
𝑀𝑗𝑖𝑆𝑗 −

∑

𝑗
𝑀𝑖𝑗𝑆𝑖

d𝐼𝑖
d𝑡 = 𝛽𝑖

𝑆𝑖𝐼𝑖
𝑁𝑖

− 𝜇𝐼𝑖 +
∑

𝑗
𝑀𝑗𝑖𝐼𝑗 −

∑

𝑗
𝑀𝑖𝑗𝐼𝑖

d𝑅𝑖
d𝑡 = 𝜇𝐼𝑖 +

∑

𝑗
𝑀𝑗𝑖𝑅𝑗 −

∑

𝑗
𝑀𝑖𝑗𝑅𝑖

(3)

where 𝑆𝑖, 𝐼𝑖, 𝑅𝑖, 𝑁𝑖, are the susceptible, infected, recovered, and total
population of node 𝑖, 𝛽𝑖 is the infection rate in node 𝑖, and 𝑀𝑖𝑗 is
the mobility rate from node 𝑖 to node 𝑗. Consider the early epidemic
outbreak, assuming 𝑆𝑖𝐼𝑖

𝑁𝑖
∼ 𝐼𝑖, and define the diffusion rate 𝑝𝑖 =

∑

𝑗 𝑀𝑖𝑗 .
Then the differential equation for 𝐼𝑖 can be linearly approximated as
d𝐼𝑖
d𝑡 =

(

𝛽𝑖 − 𝜇
)

𝐼𝑖 +
∑

𝑗
𝑀𝑗𝑖𝐼𝑗 − 𝑝𝑖𝐼𝑖 (4)

Next, consider a metapopulation network with community struc-
ture, consisting of 𝑛 nodes divided into 𝑚 communities. It is assumed,
but not required, that each community contains roughly the same
number of nodes. Assume that the network graph is strongly connected,
meaning there exists a path connecting every pair of nodes, and assume
that for every pair of nodes in a community, there exists a path within
the community that connects those nodes. Also assume that each node
has a non-zero population, mobility rate, and infection rate. Then 𝑀 is
a square block matrix of 𝑚×𝑚 blocks and 𝑛×𝑛 elements. Let the matrix
𝑀𝑖 represent movement within each community, and 𝑁𝑖𝑗 represent
movement from community 𝑖 to community 𝑗:

𝑀 =

⎡

⎢

⎢

⎢

⎢

𝑀1 𝑁12 𝑁13 …
𝑁21 𝑀2 𝑁23 …
𝑁31 𝑁32 𝑀3 …

⎤

⎥

⎥

⎥

⎥

(5)
⎣

⋮ ⋮ ⋮ ⋱
⎦

b

4

The calculation of the next-generation matrix involves decomposing
the infection rate into local infection growth and the transfer of infected
individuals between groups [59]. Here we define each node as a group,
and we write the infection rate equation as
𝑑𝐼𝑖
𝑑𝑡

= 𝐹𝑖 − 𝑉𝑖 (6)

where 𝐼𝑖 is the vector of infected individuals by node, and 𝐹𝑖 and 𝑉𝑖 are
vectors defined as 𝐹𝑖 = diag (𝛽) 𝐼𝑖 and 𝑉𝑖 = diag (𝜇) 𝐼𝑖 −

∑

𝑗 𝑀𝑗𝑖𝐼𝑗 + 𝑝𝑖𝐼𝑖.
The Jacobian matrices of 𝐹 and 𝑉 , therefore, are

𝐹𝑖𝑗 =
𝜕𝐹𝑖
𝜕𝐼𝑗

= diag (𝛽) (7)

𝑉𝑖𝑗 =
𝜕𝑉𝑖
𝜕𝐼𝑗

= diag (𝜇𝟏 + 𝐩) −𝑀𝑗𝑖 , (8)

where 𝐩 is the vector of nodal diffusion rates in the network. Note
that the matrix M has no diagonal elements, since it only represents
movement between nodes. Therefore, we can decompose the matrix V
into its diagonal and off-diagonal parts:

𝑉 = 𝐷 −𝑀𝑇 , where 𝐷 = diag (𝜇𝟏 + 𝐩) (9)

Given a next-generation matrix, the reproduction number 𝑅 for the
entire network is defined as 𝜌

(

𝐹𝑉 −1), where 𝜌 represents the spectral
radius function. Assuming all nodes have a diffusion rate greater than
0, then 𝐷 is invertible, with inverse matrix

𝐷−1 = diag (𝜇𝟏 + 𝐩)−1 . (10)

Let us assume that 𝑉 , but not necessarily 𝑀𝑇 , is invertible. Then
according to matrix perturbation theory [60], 𝑉 −1 can be calculated
to second-order approximation as:

𝑉 −1 =
(

𝐷 −𝑀𝑇 )−1

𝑉 −1 = 𝐷−1 +𝐷−1𝑀𝑇𝐷−1 +
(

𝐷−1𝑀𝑇 )2 𝐷−1 +⋯

𝑉 −1 = diag (𝜇𝟏 + 𝐩)−1 + diag (𝜇𝟏 + 𝐩)−1 𝑀𝑇 diag (𝜇𝟏 + 𝐩)−1

+
[

diag (𝜇𝟏 + 𝐩)−1 𝑀𝑇 ]2 diag (𝜇𝟏 + 𝐩) +⋯

(11)

Then the next-generation matrix is computed to second-order approxi-
mation as

𝐹𝑉 −1 = diag (𝛽)
[

diag (𝜇𝟏 + 𝐩)−1 + diag (𝜇𝟏 + 𝐩)−1 𝑀𝑇 diag (𝜇𝟏 + 𝐩)−1

+
[

diag (𝜇𝟏 + 𝐩)−1 𝑀𝑇 ]2 diag (𝜇𝟏 + 𝐩) +⋯
]

(12)

If we assume that p is constant, then diag (𝜇𝟏 + 𝐩)−1 = 1
𝜇+𝑝 𝐼 , and

this formula simplifies considerably:

𝐹𝑉 −1 = diag (𝛽)
[

1
𝜇 + 𝑝

𝐼 + 1
(𝜇 + 𝑝)2

𝑀𝑇 + 1
(𝜇 + 𝑝)3

(

𝑀𝑇 )2 +⋯
]

(13)

Consider a homogeneous mobility model, such that 𝑀𝑖𝑗 = 𝑝
𝑘𝑖
𝐴𝑖𝑗 ,

r 𝑀 = 𝑝 diag (𝐤)−1 𝐴, where 𝐴 is the adjacency matrix and 𝑘𝑖 is the
egree of connectivity of node 𝑖. Note that since 𝑀 has a zero diagonal
nd all rows of 𝑀 add to 𝑝, the spectral radius of 𝑀 , and therefore
𝑇 , has an upper limit of 𝑝. Also note that 𝐴 is symmetric. From

his we finally derive a formula for the next-generation matrix that is
ependent only on the infection rates and connections of the network
odes.

𝑉 −1 =diag (𝛽)
[ 1
𝜇 + 𝑝

𝐼 +
𝑝

(𝜇 + 𝑝)2
[

𝐴 diag (𝐤)−1
]

+
𝑝2

(𝜇 + 𝑝)3
[

𝐴 diag (𝐤)−1
]2 +⋯

]

(14)

Unfortunately, the spectral radius of 𝐹𝑉 −1 cannot be directly com-
uted. The diagonal matrices have the unit vectors as eigenvectors,
ut we cannot assume as such for 𝐴. We do know from the Perron–
robenius theorem [61] that the spectral radius of 𝐴 is bounded above
y the maximum nodal degree of connectivity, and we know that the
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eigenvector corresponding to the largest eigenvalue of 𝐴 is a commonly
used metric of nodal centrality [8].

Utilizing the properties of the spectral radius, matrix 2-norm, and
diagonal matrices [62], we can set an upper limit for the spectral radius
of the next-generation matrix:

𝜌
(

𝐹𝑉 −1) ≤ ‖

‖

‖

𝐹𝑉 −1‖
‖

‖

≤ ‖𝐹‖

‖

‖

‖

𝑉 −1‖
‖

‖

= ‖diag(𝛽)‖ ‖‖
‖

1
𝜇+𝑝 𝐼 + 𝑝

(𝜇+𝑝)2
[

𝐴 diag (𝐤)−1
]

+ 𝑝2

(𝜇+𝑝)3
[

𝐴 diag (𝐤)−1
]2 +⋯ ‖

‖

‖

≤ ‖diag(𝛽)‖
[

1
𝜇+𝑝 ‖𝐼‖ +

𝑝
(𝜇+𝑝)2

‖

‖

‖

𝐴 diag (𝐤)−1‖‖
‖

+ 𝑝2

(𝜇+𝑝)3
‖

‖

‖

𝐴 diag (𝐤)−1‖‖
‖

2
+⋯

]

(15)

For this manuscript we are specifically interested in the effects of
community structure on the epidemic reproduction rate of individual
communities. To that end, for a block-diagonally dominant matrix 𝐴,
define the notation [𝐴]𝑖 as the specific submatrix of 𝐴 whose rows
and columns correspond to community 𝑖 [63]. We similarly define the
notation [𝐯]𝑖 for a vector 𝐯. More precisely, we define

𝐴]𝑖 = 𝐸𝑇𝐴𝐸 and [𝐯]𝑖 = 𝐸𝑇 𝐯, where 𝐸 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮
1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1
⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋯ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(16)

here the rows of the identity matrix in 𝐸 corresponds to the nodes
ithin the community of interest.
Finally, we define 𝑅𝑖 as the reproduction number for that specific

ommunity, or

𝑖 = 𝜌
([

𝐹𝑉 −1]
𝑖
)

(17)

tilizing the properties of diagonal matrices, we can evaluate this
eproduction number as:

𝑖 = 𝜌
([

𝐹𝑉 −1]
𝑖
)

= 𝜌
(

diag
(

[𝛽]𝐢
)

[

1
𝜇+𝑝 𝐼 + 𝑝

(𝜇+𝑝)2
[

𝐴 diag (𝐤)−1
]

𝑖

+ 𝑝2

(𝜇+𝑝)3

[

(

𝐴 diag (𝐤)−1
)2]

𝑖
+⋯

])

(18)

and the upper limit of the reproduction number for a specific commu-
nity is given by

𝑅𝑖 ≤ max
(

[𝛽]𝐢
)

[

1
𝜇 + 𝑝

𝐼 +
𝑝

(𝜇 + 𝑝)2
‖

‖

‖

[

𝐴 diag (𝐤)−1
]

𝑖
‖

‖

‖

+
𝑝2

(𝜇 + 𝑝)3
‖

‖

‖

‖

[

(

𝐴 diag (𝐤)−1
)2]

𝑖

‖

‖

‖

‖

+⋯
]

(19)

The question of how community structure affects the reproduction
number for a specific community is reduced to how community struc-
ture affects the matrix norm of

[

(

𝐴 diag (𝐤)−1
)𝑘]

𝑖
for each integer 𝑘.

The submatrix [𝐴]𝑖 is just the adjacency matrix of the nodes within
community 𝑖, therefore the community structure of the broader network
has no effect on it. Multiplying 𝐴 by the matrix diag (𝐤)−1 has the effect
of dividing each row of 𝐴 by the degree of the corresponding node and
oes not affect which elements of the matrix are zero or non-zero.
The square of the adjacency matrix 𝐴2 indicates the number of paths

f length 2 connecting each pair of nodes [64]. The submatrix
[

𝐴2] is
𝑖

5

enerally not equal to the submatrix
[

𝐴𝑖
]2, but they are equal for a

pecific community if there are no paths of length 2 that connect two
odes within that community but pass through a different community.
he same is true for

[

𝐴3]
𝑖, and so on. The matrix

[

(

𝐴 diag (𝐤)−1
)𝑛]

𝑖
may

ave miniscule differences on the rows and columns that correspond
o the bridge nodes of the community, since their degrees of connec-
ivity are reduced when the communities are severed from each other.
owever, numerical tests show that for a sufficiently large community
etwork, this matrix does exhibit the property

[

(

𝐴 diag (𝐤)−1
)𝑛]

𝑖
=

[𝐴]𝑖 diag
(

[𝐤]𝑖
)−1

)𝑛
within numerical error if adjacent communities

have only one bridge connection between them.
This brings us to our main result. We quantify the effect of commu-

nity structure on the reproduction rate of a community by comparing
the difference between the actual value of 𝑅𝑖 and the theoretical value
f 𝑅𝑖 if all links to neighboring communities were severed. Then for
a specific community, let 𝑛 be the length of the shortest path that
connects two nodes within the same community but passes through
an adjacent community. Then the community structure of the network
causes a perturbation of max

(

[𝛽]𝐢
)

(

𝑝𝑛

(𝜇+𝑝)𝑛+1

)

on the upper limit of the

reproduction rate of that community. It is important to note that this
conclusion only applies in the short-term after the introduction of the
disease outbreak. If any node in the network has an 𝑅0 value greater
than 1, infection cases will eventually rise everywhere due solely to
the migration of infected individuals. However, in highly modular
community networks this may not occur until herd immunity has taken
affect in some regions of the network.

Adapting this formula to the SEIIIR model is straightforward. It is
sufficient to replace 𝛽 in the above equation with 𝛽(1+

(

𝑟𝛽 − 1
)

𝑝𝑎) and
any instances of 𝑝 with 𝑝[1 −

(

1 − 𝑝𝑎
) (

1 − 𝑝𝑡
)

].

3.2. Numerical demonstration of community structure and spectral radius

To demonstrate the effect of network modularity on the spectral
radius of the next-generation matrix, we start with the scale-free net-
work of 30 communities, each community consisting of a scale-free
network of 30 nodes, for a total of 900 nodes [65]. An example of
this type of network is shown in Fig. 1a. Infection rates are assigned
to each node independently as a Weibull(1.2,1) distribution, to mimic
spatial variability in the reproduction rate of seasonal influenza [55].
Recovery rates are set to 1, diffusion rates are set to either 0.05, 0.1,
0.5, or 1.0, and all nodal pairs demonstrate homogeneous mobility.
The next-generation matrix and its spectral radius 𝑅𝑖 is computed
for each individual community, which for a weakly connected, highly
modular network we expect to be equal to the highest 𝛽∕𝜇 value in
each community. After computing these values, we subsequently add
one bridge connection to each adjacent community pair and recompute
the 𝑅𝑖 values (Fig. 1b). We repeat this until the modularity of the
network converges to a value close to zero. In addition, we ran multiple
metapopulation SIR simulations on these networks and used a expo-
nential curve fitting method to verify that the actual reproduction rate
of the epidemic is equal to the computed 𝑅𝑖 values, within numerical
error [66]. We also validated the main result of the previous section
by comparing the 𝑅𝑖 values of the original community networks to
the modified networks with additional bridge connections. We ran a
sensitivity analysis to ensure that our choices of parameters did not
significantly impact the outcome of these results.

Fig. 2 shows the results of this analysis. Without modifying the
infection rates of any nodes, or the connections within communities,
the number of bridge connections between communities has a strong
inverse correlation to the median and maximum reproduction rates
among the communities. In fact, the addition of bridge connections,
or the reduction of community modularity, can decrease the median
𝑅𝑖 value from nearly 1.5 to below 1, bringing several communities

below the threshold of an epidemic outbreak. The relationship between
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Fig. 1. (a) A scale-free community of scale-free networks, with each adjacent community connected by a single bridge. (b) The same community network but with five bridges
per adjacent community. Each community is highlighted in a different color, connections within communities are indicated by black edges, and connections between communities
are indicated by red edges. Note that a metapopulation SIR simulation treats each node as its own unit of population, and communities arise naturally from how the nodes are
connected.
Fig. 2. A box plot of reproduction rate 𝑅 for all 30 communities in the network. Infection rates are assigned as a Weibull distribution with mean 0.12 and shape factor 2, and
ecovery rates are set at 0.1. The 𝑥-axis indicates the number of bridge connections per community pair, and each subplot represents a different host diffusion rate. Note that a
ommunity with more bridge connections tends to have a lower modularity, and vice versa.
etwork modularity and reproduction rate has a higher correlation
hen diffusion is high. Conversely, when diffusion is less than the
ecovery rate, there is almost no relationship between modularity and
eproduction rate. The reproduction rate of the entire network is equal
o the highest reproduction rate of any individual community, and it
s likewise decreased by the addition of bridge connections and by
ncreased diffusion.
6

It may seem unintuitive that more highly connected, highly mobile
communities tend to have lower epidemic reproduction rates, but it is
consistent with the conclusions of the analytical model shown above
and with previous research [67]. The cause of this phenomenon is that
in high-risk, weakly connected community networks, infected people
tend to stay within their communities, allowing the number of infected
individuals to grow quickly. In highly connected community networks,
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Fig. 3. A box plot of reproduction rate R for all 30 communities in the network. These data represent the same simulation as in Fig. 2, but with a mitigation step included. All
communities with a next-generation matrix R score of 1.1 or greater have movement within the community and between adjacent communities reduced to 10%.
r
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infected individuals tend to distribute themselves evenly across all
communities, and the growth rate for the network is reduced. Note
that the minimum reproduction rate is not significantly affected by the
community structure or by mobility rates. Communities that are not at
risk of an epidemic outbreak will not sustain an outbreak regardless of
connections to neighboring communities.

These results do not imply that closing connections between com-
munities (for example, an interstate travel ban) actually increases the
risk of outbreaks, since these results are only based on the presence
or absence of bridge connections, not how heavily they are trafficked,
and does not consider other preventative behaviors within those com-
munities. Reducing the rate of travel is mathematically analogous to
reducing the diffusion rate out of individual nodes or communities,
not increasing their modularity. A targeted policy that reduces travel
within and out of high-risk communities is still expected to reduce the
reproduction rate of the network.

To demonstrate, we run the same analysis on the same network
with the same allocation of infection and mobility rates, but we now
impose a mitigation strategy. Specifically, communities with an 𝑅𝑖
value greater than 1.1 have their mobility within the community
and among adjacent communities reduced to 10%. The results of this
analysis are shown in Fig. 3. In all cases, the median and maximum 𝑅𝑖
values of communities are reduced, but in the low diffusion models, the
communities with low 𝑅𝑖 values are not affected. This implies that in
low diffusion networks, mitigation techniques are only effective for the
communities in which they are applied. In the high diffusion networks,
on the other hand, all communities show a reduction in 𝑅𝑖 values, even
the communities to which no mitigation was applied.

Mitigation is most effective in networks with few bridge nodes
and high modularity, up to a 66% reduction in 𝑅𝑖 values in the
highest modularity networks. However, mitigation has a negligible
 p

7

effect on networks with several bridge nodes and low modularity. As
a result, there is a positive correlation between the number of bridge
connections and the distribution of 𝑅𝑖 values, a reverse from the case
with no mitigation. The implication of this analysis is that mitigation
techniques, even if they are only targeted at selected communities, can
have wide-reaching benefits over the entire network, but they are most
effective in networks with high diffusion and high modularity.

3.3. Monte Carlo simulations

Next-generation matrices are useful for observing how network
community structure affects the epidemic reproduction rate in individ-
ual communities. Other metrics of interest, including peak prevalence,
the area of the disease spread, and the time for the epidemic to establish
itself in communities, require the use of Monte Carlo simulations for
further study.

We ran three separate scenarios, as described in the Methods sec-
tion, with a range of parameters broad enough to encompass many
different infection and human movement scenarios. We also ran a
sensitivity analysis, not shown, to ensure that the values we chose
for these scenarios did not disproportionately affect the results of this
study. Table 1 gives a description of the variables we tested in these
simulations. Fig. 4 shows the response curves, computed using the
andomForest package in R, of the peak fraction of individuals infected
nd the fraction of nodes that become infected for the entire network,
n response to the network’s maximum 𝑅 value, variance in 𝑅 value,
odularity, diffusion, mean clustering coefficient among communities,
nd mean centrality among communities [68]. The Random Forest
odel processed 500 decision trees with 2 variables randomly sampled
t each branch split, and we configured the algorithm to calculate
roximity on all rows of the tree to ensure that the response curves
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Table 1
A table of network variables used in the Random Forest models shown in Figs. 4–6.
Variable Description

Peak infected Fraction of individuals who become infected over the course of the epidemic
Area of infection Fraction of nodes with at least one local infection case
Maximum R variance of R 𝑅 calculated as 𝛽

𝜇
(1 +

(

𝑟𝛽 − 1
)

𝑝𝑎)

Modularity A measure of the level of separation between communities, ranging from –1/2 to 1.
Equal to the fraction of the edges that fall within each community minus the expected fraction if
edges were assigned at random among all nodes in the network without regard to community.
Inversely related to the average number of bridge connections between neighboring communities
[50].

Diffusion Calculated as 𝑝[1 − (1 − 𝑝𝑎)(1 − 𝑝𝑡)]
Degree Number of adjacent communities
Clustering Fraction of connected communities that are also connected to each other, forming a triangle
Centrality Reciprocal of communities’ mean distance to all other communities in the network
# Bridges Number of bridge connections between each pair of connected communities
Inner degree Average degree of connectivity among all nodes in the community
Inner clustering Average clustering coefficient among all nodes in the community
Inner centrality Average centrality among all nodes in the community
Fig. 4. Response curves of Random Forest model comparing the peak number of individuals infected and the fraction of nodes with at least one local infection case among
community networks. The three scenarios shown are the base case, the mitigation case, and the vaccination case as described in the Methods. Statistically significant predictor
variables (% increase mean-square-error > 40%) are noted with an asterisk. Additional details are included in the Supplement.
ere continuous. Goodness-of-fit data, variable importance plots, and
NOVA data are included in the Supplement, but in general the Ran-
om Forest diagnostics are very favorable, with mean squared errors
f about 0.05. Fig. 5 shows similar response curves of peak infection
revalence, and the area of epidemic spread compared to the properties
f individual communities.
For both peak infected and area of infection response variables,
aximum 𝑅, variance of 𝑅, modularity, and diffusion were all found
o be statistically significant variables. The ranking of variable im-
ortance, in terms of % Increase in mean-square-error (%IncMSE),
epended on the specific epidemic scenario. In the base case and
accination cases, diffusion was the most important variable for peak
revalence, whereas in the mitigation case maximum 𝑅 and modularity
ere tied for most important. For the area of infection, maximum 𝑅

was the most important variable for the base case and mitigation cases,
whereas diffusion was the most important in the vaccination case. The
results for the individual community analysis are similar, except that
inner degree of connectivity is also an important factor. In general,
communities with less inner-connectivity tend to have higher peak
prevalence, although the difference is minuscule. In all cases, clustering
and centrality had no importance in the random forest models.

3.4. Super-spreader capacity and spatial scaling

In [44], a formula is derived to determine the risk that a given
node in a metapopulation network may become a super-spreader event.
A node’s super-spreader capacity is based on the expected number of
neighboring nodes to which it would spread the infection, should an
outbreak occur there. Suppose a certain node, representing a subpopu-
lation, is experiencing an epidemic outbreak. Given the 𝑅 value of this

node, we can estimate the maximum fraction of individuals who will

8

become infected, the peak infection rate, with the function 𝛼(𝑅). This
function is equal to 0 if 𝑅 is less than 1 and equal to 1 + 𝑊 (−𝑅𝑒−𝑅)

𝑅 if
𝑅 is greater than or equal to 1, where 𝑊 () is the Lambert product log
function [69]. Also, given mobility rates between this node and all of its
neighboring nodes, we can compute the probability that any infected
individuals will migrate to a neighboring node, potentially spreading
the epidemic.

Among these neighboring nodes, some of them will have 𝑅 values
significantly less than 1, in which case they have no chance of spreading
the epidemic. Some of these nodes will have 𝑅 values significantly
greater than 1, in which case they will almost definitely spread the
pandemic. For neighboring nodes with 𝑅 values close to 1, the prob-
ability that at least one infected individual will migrate to that node
and spread the infection can be computed. With this in mind, we
can estimate if a given node were to become infected, how many
neighboring nodes will also become infected.

Consider a node with a given reproduction number 𝑅 and degree
of connectivity 𝑘. This node has 𝑘 neighboring nodes, indicated by an
index 𝑗 = 1, 2,… , 𝑘, each of which also have reproduction numbers 𝑅𝑗
and degrees of connectivity 𝑘𝑗 . Assuming a traffic-dependent mobility
model (Eq. (2)) and constant diffusion, the super-spreader capacity for
the population node in question is calculated as:

𝑆𝑆𝐶 =
∑

𝑗,𝑅𝑗≥1

⎡

⎢

⎢

⎣

1 − (𝑅𝑗 )
−𝑝 ⟨𝑘⟩

⟨
𝑘1+𝜃

⟩

2
𝑁̄
𝜇 (𝑘𝑖𝑘𝑗 )𝜃𝛼(𝑅𝑖)⎤

⎥

⎥

⎦

(20)

where 𝑅𝑖 and 𝑘𝑖 are the reproduction rate and degree of connectivity
for the node in question, 𝑅𝑗 and 𝑘𝑗 are the reproduction rate and
degree of connectivity of the neighboring nodes, 𝑝 is diffusion, 𝑁̄ is
the average nodal population, 𝜇 is the recovery rate, and 𝜃 is the
heterogeneity factor (typically equal to 0.5). The series is summed over
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Fig. 5. Response curves of Random Forest model comparing the peak number of individuals infected and the fraction of nodes with at least one local infection case among
individual communities. The three scenarios shown are the base case, the mitigation case, and the vaccination case as described in the Methods. Statistically significant predictor
variables (% increase mean-square-error > 40%) are noted with an asterisk. Additional details are included in the Supplement.
b

ll neighboring nodes 𝑗 whose 𝑅𝑗 value is greater than or equal to 1.
he summation is computed over all neighboring nodes for which 𝑅
values are at least 1.

The advantage of this formula is that because it is dependent on
the average population of each node, it should scale easily with the
spatial resolution of the metapopulation network. In order to test the
precision of this algorithm across spatial scales, we compute the super-
spreader capacity of each node in a community patch network and
assign them a risk index based on percentile, where 1 is the highest risk
of a super-spreader event and 0 is the lowest risk. An example of this
risk map is shown in Fig. 6a. We then run the same algorithm on the
community-scale network, computing their reproduction rates using a
next-generation matrix, as shown in Fig. 6b.

Since the next-generation matrix is based on the maximum infection
rate of each node in the community, the community-scale risk index is
almost always an overestimate of the risk associated with each node
in the network. Typically, the risk index for the community is on
par with the highest risk index node in that community. On average,
the community-scale model overestimated super-spreader capacity by
about 8%, and the overestimation error was highest in communities
with a reproduction rate between 1 and 2. Communities with high
degrees of connectivity and high centrality, that is communities with
a small-world structure, tended to have a higher rate of error [70].
There was a weak correlation between the network modularity and
the overestimation of super-spreader capacity, but error tended to be
greater in networks with a small number of bridge connections and high
modularity.
9

4. Discussion

The analytical and computational results of this study support our
hypothesis, that in order of importance, infection rates are a primary
effect on the magnitude of a disease epidemic, human diffusion is
a secondary effect [71,72], and community structure, measured as
modularity or the number of bridge connections between communities,
is a tertiary effect [73]. According to our results, community structure
is not the most statistically important variable for determining epi-
demic reproduction rates, but it can make a very significant difference
in networks with highly variable infection rates and high diffusion,
even determining whether or not an outbreak occurs [21,74]. These
results build on previous research that compared the heterogeneity of
community networks to the rate of epidemic spread [63,75]. Most inter-
estingly, the modularity of the network may determine the effectiveness
of different mitigation strategies [67,76]. A pre-outbreak vaccination
strategy may be equally effective regardless of the network structure,
but a travel restriction strategy tends to be more effective in high
modularity, low diffusion networks [77,78].

In the base case scenario, the most important variables in deter-
mining peak prevalence were maximum 𝑅, followed by diffusion and
modularity, and the variance of 𝑅 [79]. Note that in the Random Forest
model, the effects of variance of 𝑅 are computed independently of
maximum 𝑅. Therefore, if two networks have the same maximum 𝑅
ut different variance in 𝑅, the network with higher variance of 𝑅 will
result in more infected individuals, which concurs with our analytical
results. On the other hand, clustering and centrality were relatively
insignificant for determining peak prevalence, consistent with previous
research that the structure of individual communities may not affect
peak infection rates [80,81]. The ranking of variable importance was
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Fig. 6. Super-spreader capacity map for a randomly generated community network, computed on (a) the nodal scale, (b) the community scale. The bottom figure shows the
response curves for the root-mean-square error in risk estimate between (a) and (b). Statistically significant predictor variables (% increase mean-square-error > 40%) are noted
with an asterisk. Additional details are included in the Supplement.
the same in the mitigation scenario, but in the vaccination scenario
diffusion was by far the most important predictor variable, followed
by maximum 𝑅 and modularity.

In terms of the area affected by the epidemic, in the base case
and mitigation scenarios maximum 𝑅 and diffusion are still the most
important factors, followed by modularity and variance of 𝑅. In the
vaccination scenario, however, diffusion is significantly more important
than maximum 𝑅. In other words, diffusion, arguably the only factor
that the host population can completely control, is very important for
determining the spatial extent of the epidemic but not as important as
maximum 𝑅 for the number of individuals who become infected [46,
71,82].

The mitigation strategy was most effective at reducing peak in-
fection in networks with a high maximum 𝑅 and high modularity.
Conversely, the vaccination strategy was most effective in networks
with low modularity and high diffusion. This may imply that the
ideal strategy depends on the nature of the epidemic, and whether its
propagation is due to its infectiousness or host mobility rate. Highly
infectious epidemics are better mitigated by restricting movement,
and high movement communities (or diseases with a high rate of
asymptomatic cases) show a greater benefit from vaccination [15,83–
86]. It is important to reiterate that the vaccination model used in this
study is highly idealized, and it shows a remarkably strong effect by
vaccinating 10% of the population before the initial epidemic outbreak.
Additional simulation tests show that if vaccinations were specifically
targeted to 10% of the population in nodes with the highest infection
rates, the results would be qualitatively similar, but with about an
additional 15% reduction in infection cases. We also observe similar
rates of effectiveness in non-idealized cases, such as when vaccination
occurs later in the epidemic outbreak.

Observing individual communities, maximum 𝑅 and diffusion were
again the most significant variables in determining peak prevalence
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and the area of the infection. Community network structure, in terms
of modularity, clustering, and degree of connectivity were somewhat
significant, and the properties of the individual communities, such
as their place in the network and the arrangement of their internal
nodes, had very little effect on the magnitude of the epidemic. The
implication of these results is that the arrangement of communities and
the number of connections between them plays an important role in the
dynamics of the epidemic across the entire network, but the network
structures of individual communities, besides their individual infection
rates, have little bearing on the magnitude of the epidemic within those
communities [87,88].

In terms of measuring super-spreader capacity, the overestimation
of risk at the community-scale resolution is typically no more than
15%, compared to the measure of risk at the node-scale resolution. The
level of error is highest in communities that have an 𝑅 value greater
than 1, as well as communities with low diffusion, low clustering, and
low internal connectivity. This implies that on networks in which the
communities form a small-world network structure, there may be some
merit in dividing the communities into individual nodes. Surprisingly,
super-spreader prediction error did not increase significantly when
there was large variance in 𝑅 among nodes. This means, for example,
that a community that consists of a single high-risk population center
and large low risk surrounding area may still be represented as a single
population node without a significant degree of prediction error [89].

It is often but not always necessary to use the finest possible
spatial-scale resolution when modeling disease epidemics on patch
networks [90–92]. The required resolution depends on the properties
of the human mobility network as well as the variables researchers
is interested in studying, and disparities in resolution can be resolved
through ecological regression models [93]. A network model in which
communities are represented as single, homogeneous nodes is analo-
gous to an extremely high modularity community network, so fine-scale
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models are most necessary in networks with loosely separated com-
munities and a large number of bridge connections [8,94]. When
predicting values of 𝑅, the most used metric of disease magnitude in
epidemiology [95], the community structure is a very important factor
in networks with high rates of mobility and high variance in infection
rates among individual nodes, and in extreme cases the spatial resolu-
tion may affect estimates of 𝑅 by about a factor of two. This only occurs
in very idealized models that do not consider any effects of human
movement mitigation. In more realistic epidemic models, however,
the failure to not consider community structure and heterogeneous
infection rates may cause the researcher to significantly underestimate
the 𝑅 value of their study site.

The definition of a ‘‘high diffusion network’’ is contingent on the
type of mobility involved [45,96]. This study distinguishes between
local and inter-community travel, as well as mobility by uninfected
individuals and asymptomatic and symptomatic infected individuals.
In general, the most effective method of reducing the spread of epi-
demics is to reduce their infection rates, either through vaccinations
or environmental control, but if that is not possible, reducing the
contribution to diffusion by symptomatic individuals is the next most
effective intervention [97,98]. This is especially true in high modularity
communities, where blocking a single route of transportation may
significantly reduce diffusion into and out of a given community.

It is generally not feasible for local government officials to change
the modularity of their network, besides significantly reducing air
travel and interstate commuting, but network modularity should be
an important indicator to epidemic modelers [99,100]. An important
epidemiological conclusion that can be derived from this study is
that higher spatial resolutions are necessary to accurately model low
modularity communities. However, individual community properties
such as clustering and centrality do not generally affect whether it is
necessary to model them as homogeneous nodes or as communities. For
example, in an epidemic model of the United States, the ideal spatial
resolution for every metropolitan area would be the same, and an
individual node in the Chicago and New York City community networks
should represent the same number of people. This also implies that the
ecological fallacy and modifiable areal unit problem need not be major
design considerations, if the spatial resolution of the epidemic model is
kept consistent throughout the course of the scientific study.

The traffic-dependent mobility model used in this analysis is simplis-
tic, and the consideration of various types of movement, human behav-
iors, and mitigation strategies may affect the presented results [101].
This study also assumes a disease with a basic 𝑅0 value close to 1 (such
s influenza, ebola, and tuberculosis), for which there is a statistically
trong correlation between infection rates, infection prevalence, and
pidemic spread area, despite their very different modes of transmission
nd virulence [102]. For a highly infectious disease such as measles or
umps, with 𝑅0 values greater than 10, we would paradoxically expect
iffusion and modularity to play a more important role than infection
ate for determining the magnitude of the outbreak [103]. The same is
lso true if 𝑅0 is much less than 1, although in those cases an outbreak
s very unlikely.

. Conclusion

This study explores the relationships between community networks
nd patch networks in modeling disease epidemics. Through an an-
lytical and computational framework, we explore how community
tructure affects the epidemic reproduction rate and magnitude, as well
s the effectiveness of various mitigation strategies. As a result, we
nform the circumstances in which modeling a community network
dds explanatory power. A key finding of this study is that community
tructure does matter, although generally less so than infection rates
nd human mobility, and it matters most in networks that have low
odularity and a small-world configuration, meaning that communities

re isolated and decentralized. In addition, the decision whether to
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model populations as nodes or as communities, in terms of balancing
numerical accuracy and data collection costs, depends almost entirely
on the properties of the entire community network, rather than the
properties of individual communities. There are no perfect simulations
of real-world phenomena, and researchers will always be required to
make subjective choices when designing a simulation model. The anal-
ysis presented in this article demonstrates that some disease modeling
studies may be improved by gathering fine-scale information during
data collection, and it helps inform under what circumstances this extra
effort would improve epidemic forecasting.
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