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ABSTRACT

The large-scale real-time sequencing of SARS-CoV-2 genomes has allowed for rapid
identification of concerning variants through phylogenetic analysis. However, the nature of
phylogenetic reconstruction is typically static, in that the relationships between taxonomic units,
once defined, are not subject to alterations. Furthermore, most phylogenetic methods are
intrinsically batch-mode in nature, requiring the presence of the entire data set. Finally, the
emphasis of phylogenetics is on relating taxonomical units. These characteristics complicate the
application of classical phylogenetics methods to represent relationships in molecular data
collected from rapidly evolving strains of an etiological agent, such as SARS-CoV-2, since the
molecular landscape is updated continuously as samples are collected. In such settings, variant

definitions are subject to epistemological constraints and may change as data accumulates.



Furthermore, representing within-variant molecular relationships may be as important as
representing between variant relationships. This paper describes a novel data representation
framework called dynamic epidemiological networks along with algorithms that underpin its
construction to address these issues. The proposed representation is applied to study the
molecular development underlying the spread of the COVID-19 pandemic in two countries:
Israel and Portugal spanning a two-year period from February 2020 to April 2022. The results
demonstrate how this framework could be used to provide a multiscale representation of the data
by capturing molecular relationships between samples as well as those between variants,
automatically identifying the emergence of high frequency variants (lineages), including variants
of concern such as Alpha and Delta, and tracking their growth. Additionally, we show how
analyzing the evolution of the dynamic epidemiological network can help identify changes in the

viral population that could not be readily inferred from phylogenetic analysis.



1. INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of
Coronavirus disease 2019 (Covid-19), has had a significant impact on the state-of-the-art in
molecular epidemiology. From its first recorded outbreak in December 2019, the viral genome of
SARS-CoV-2 has been sequenced and made publicly available (Wu et al., 2020). As of
September 2022, almost 13 million genomes have been sequenced globally (Khare et al., 2021),
providing a detailed view of the genetic variation accrued by the virus over time. Tools such as
Pango (Rambaut et al., 2020) and Nextstrain (Hadfield et al., 2018) have utilized this data to
reconstruct the evolution of the virus through phylogenetic analysis and has provided a
nomenclature for emerging, genetically distinct iterations of the virus, also known as “lineages”,
“clades” or “variants”. Phylogenetics has also contributed to the World Health Organization’s
(WHO) working definitions for variants of interest (VOIs) and concern (VOCs) (Konings ef al.,
2021). However, a classical phylogenetics-based approach may not always be sufficient for
specifying lineages or variants of epidemiological importance, particularly for a rapidly evolving
disease where information about variants is collected (and stabilizes) over time. For instance,
evidence of onward transmission, persistence in a host population, and phenotypic changes are
all examples of factors used to define variants by the aforementioned groups, that have been
subject to change as the pandemic has progressed (Konings et al., 2021; Roemer et al., 2022).

A Network is a powerful representation to model evolving phenomena. Among others,
networks have been used to model transmissions in viruses, such as the human
immunodeficiency virus (HIV) and the Hepatitis C virus (HCV) (Longmire et al., 2017; Poon et
al., 2016). In a network representation, vertices represent viral intra-host sequences and edges

connect genetically similar samples. Thus, possible transmission events can be represented in



terms of the network connectivity (Little et al., 2014; Longmire et al., 2017). Building on this
idea, this paper describes a novel data representation called dynamic epidemiological networks
(DEN) for modeling and molecular tracking of evolving disease variants along with the
algorithms for constructing such a representation. A DEN is defined in a data-driven manner
from the molecular constitution of the pathogen samples collected over time in a population.
Consequently, the DEN is explicitly parameterized by time. At a particular time-point, in a DEN,
vertices represent sampled genomes and edges are defined between samples that are deemed to
be genetically close. Furthermore, vertices are grouped into clusters (communities), with each
cluster corresponding to a variant. As one proceeds from a particular time point to the next, the
DEN represents correspondences between clusters occurring at the successive time points as
determined by their genomic contents. If one or more samples at a particular time point are found
to significantly differ from existing samples in the DEN, then these new samples are represented
by a cluster of vertices that have no prior correspondences. Thus, a DEN can be used for: (1)
identification of epidemiologically relevant variants through analysis of the clusters in the
network, (2) tracking the evolution of variants, including the emergence of new variants and
cessation of old ones by considering the changes in the number and constitution of clusters
across time, and (3) obtaining insights about the evolving viral landscape by analyzing the
cluster correspondences. Furthermore, by describing within- and between-cluster relationships,
DENs support a multiscale data representation. This paper describes the algorithmic
underpinnings of DENs and applies this formalism to analyze the spread of COVID-19 in Israel
and Portugal based on over 15,000 sequenced viral samples collected from each of the respective
populations during February 2020-April 2022. This data spans the initial wave of the pandemic

along with the subsequent Alpha and Delta waves. We show how the DEN framework identified



the variants of concern Alpha, Beta, and Delta, along with other region specific, high frequency
lineages in these two countries. Furthermore, we compare the results from representing and
analyzing the aforementioned data using DEN with those obtained using phylogenetic analysis.
It can be seen that unlike in phylogenetic representations, samples have the freedom to “move”
between clusters over time in a DEN and thus the variant assignment of a genome is responsive
to changes in the overall viral population. Further, through tracking changes in the clusters of the
DEN, emergent variants of importance can be found. For instance, the Omicron variant could be
noted even when only one Omicron sample had been added to the network, due to its connection

to the Alpha cluster.

2. RELATED WORK
The proposed method can be contrasted with other work in the area from two primary
perspectives: data representation, and variant identification. From the data representation
perspective, technically, the DEN differs from prior work in the area in two crucial ways. The
first of these relates to the formulation for determining of network connectivity. Prior techniques
for reconstructing HIV and HCV contact networks have employed (static) genetic distance-based
thresholds to connect hosts, for example, as in (Campo ef al., 2016; Wertheim et al., 2017). Such
an approach is however, unsuitable for variant detection due to differences in the genetic
diversity of different variant populations (Weng et al., 2022). For example, a distance threshold
that successfully clusters one genetically diverse variant population may also place two distinct
homogenous variants into one cluster. To avoid this, we create a connected network using
relative similarity obtained via k-nearest neighbor (k~-NN) computations. Nearest neighbor-based
grouping allows samples to be connected based on genetic similarity relative to all other samples

in the dataset rather than the connectivity being defined by a static threshold. Second, networks



representations for studying viral populations (Little et al., 2014; Longmire et al., 2017,
Ramachandran et al., 2018; Zarrabi et al., 2012) tend to be static in that the network structure is
typically computed in batch-mode using the entire genomic data. Phylodynamic techniques can
model the growth of a viral variant population (Attwood et al., 2022). However, such methods
are often batch-mode and typically require re-computing if new samples are added. Clearly, the
prevalence of a variant in a population varies with time. Consequently, a representation obtained
using a static approach may obfuscate temporal information. Moreover, our understanding of the
genetic composition of a variant can also change as more samples are collected and sequenced.
For instance, the WHO definitions for variants correspond to an initial Pango lineage and the
subsequently discovered sub-lineages (World Health Organization (WHO), 2022). The
representation proposed by us, on the other hand, is based on creating a dynamic (i.e., temporally
evolving) network, where the communities representing sample groupings can change over time
- providing thereby an evolving perspective on the composition of variants and interactions
between them. We conclude our review of the prior research in data representation by noting that
modelling time-varying epidemiological dynamics through temporal networks, is as of yet,
underutilized compared to static network models (Enright and Kao, 2018). Currently in
infectious disease epidemiology, temporal networks have been applied to agent-based contact
and transmission networks (Lentz et al., 2016; Ruget ef al., 2021), in epidemiological models
(Leitch et al., 2019; Nunner et al., 2021; Valdano et al., 2015), and for determining (local)
topological patterns in contact networks (Senchyna and Singh, 2022). However, their use for
variant identification and tracking has, to the best of our knowledge, not occurred prior to the

current work.



From the perspective of variant identification, we note that in phylogenetics, relatedness of
viral genomes is determined by computing their hypothetical most-recent common ancestor. The
output of phylogenetic analysis is therefore represented as a branched tree where the tips are the
sampled genomes, and the internal nodes are the hypothetical ancestors. The lengths of branches
(if determined) represent the genetic distance or the time from coalescence of samples. In a
phylogenetic representation, clades are sub-trees within the larger tree and include all samples
that are the descendant of one common ancestor. Therefore, clades are used to classify a virus
into genetically distinct “strains” or “variants” or “lineages”. Phylogenetic Assignment of Named
Global Outbreak (PANGO) has emerged as the prominent tool for tracking evolution and naming
of SARS-CoV-2 lineages (Rambaut et al., 2020). Their hierarchical naming system is based on
the relative position of sampled genomes in a global SARS-CoV-2 phylogeny. All lineages are
descendants of the two founder lineages: A and B. Descendent lineages are assigned a number,
and each subsequent generation is separated with a ‘.” notation. For example, B.1.17 is a
descendant of B.1, which is a descendant of B. Given the volume of possible evolutionary
changes, lineages are manually curated and only named if they meet certain epidemiological and
biological criteria, such as evidence of onward transmission and at least one shared mutation
within the lineage (O’Toole ef al., 2021). Other established phylogenetic-based nomenclature for
SARS-CoV-2 include those maintained by Nextstrain (Hadfield et al., 2018) and GISAID (Khare
et al., 2021). Outside the techniques discussed above, methods for determining variant
nomenclature have grouped variants by using co-mutating nucleotides and clustering (Melnyk et
al., 2021; Qin et al., 2021). These methods are limited in their ability to model the changing

variant population over time. Variant identification and tracking are a dynamic process. Variants

emerge and spread in a population for a period of time, and then may secede due to human



imposed factors (e.g., vaccinations and social distancing measures) or the emergence of a new
more potent variant. As phylogenetic trees are static and preclude cycles, they are incapable of
capturing such dynamics. This leads to the additional reliance on external criteria for identifying
variants, as mentioned above. These criteria have undergone several revisions as the pandemic
has progressed (Roemer et al., 2022; Villabona-Arenas et al., 2020), reflecting a distinction
between estimating evolution (as is the original purpose of a phylogenetic tree) and tracking of
epidemiologically relevant variants.
3. METHODS
3.1. Genomic data collection and preprocessing
SARS-CoV-2 genomes were downloaded from the GISAID database (Khare ef al., 2021) for
two countries, Israel and Portugal. The sequences were filtered for completeness, high
coverage, and known dates of collection, (till April 5, 2022). This resulted in 16,929
genomes for the Israel dataset (IDS), and 19,325 genomes for the Portugal dataset (PDS). A
reference sequence (originating from the first recorded outbreak in Wuhan, China) was
downloaded from GenBank (https://www.ncbi.nlm.nih.gov/genbank/, accession number
MN908947). To ensure that all sequences were of the same length, the genomes for each
dataset were aligned to the reference sequence with MAFFT (Katoh er al., 2019).
Subsequently, the first and last 100bp nucleotides in non-coding regions were removed from
sequences due to the number of gaps after alignment (the mean proportion of gaps in this
region per sequence was 38.9%). If the number of ambiguous nucleotides and/or gaps in a
sequence was greater than 1% of the abbreviated sequence length, then corresponding sample
was removed from further downstream analysis. Insertions and deletions (indels) were

ignored due to lack of clarity between indels and ambiguous nucleotides. After these filtering
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steps, 16,526 and 19,097 samples remained in the IDS and PDS sets, respectively. All these
sequences had a nucleotide length of 29,703. Further description of these data sets,
particularly in terms of the viral lineages present, is provided in Section 4. Next, pairwise
genetic distances were calculated as the number of sites where pairs of sequences differ in
their nucleotide composition, divided by the total length of the sequence (hamming distance).
Gaps in sequences were replaced with the nucleotide present in the same position in the
reference sequence so that the hamming distance satisfied the triangle inequality. Israel and
Portugal were chosen as sample countries due to their moderate population and geographic
size, along with the volume of genomes that have been sequenced and made publicly
available from each country. Additionally, the pandemic has been well documented in Israel
due to their early mass vaccination program (Goldberg et al., 2021; Saban et al., 2022), while
Portugal gives a snapshot of the SARS-CoV-2 spread in Europe, which was initially one of
the hardest hit regions. The complete list of downloaded sequences and associated metadata

are available through GISAID (DOI for dataset: 10.55876/gi1s8.221011cm).

3.2. Data representation and sampling in the DEN

The goal of sampling is to reduce the numerosity of the samples being considered for
subsequent analysis without altering the fundamental patterns in the data. Subsequent to
sequence alignment and pairwise distance calculation, a NXN distance matrix D was
computed where each sample was characterized by its Hamming distance to all other samples
in the dataset. Next, we used classical multidimensional scaling (CMDS) to embed D in a
low dimensional space while minimally perturbing the inter-sample distance distribution

(Torgerson, 1952). The dimension of the low-dimensional representation space was chosen



to be 10 based on analyzing the eigenvalue distribution underlying CMDS (supplementary
Figure 1), except for the first week in the PDS and for the first two weeks in the IDS. In both
cases, due to low number of samples, CMDS led to an embedding with fewer than 10
dimensions. The modes of the data distribution were then determined, and the data was
sampled using the mean-shift algorithm. Mean shift is a mode finding algorithm used for
empirically identifying the maxima of the data density function (Fukunaga and Hostetler,
1975). The only parameter in the method is the bandwidth h, of a weight determining
function - called the kernel, making the algorithm particularly useful in problems where the
number of clusters is not known a priori. In the following, we outline the key steps of the
mean shift-based sampling process as used by us.

Let X = {x, ..., x,}, where x; € R'® be the positional representation of genome samples
after CMDS. The mean shift algorithm starts by randomly selecting a sample x;, and

iteratively performs the following steps until all samples are assigned to a cluster.

1) Weighting of each point: We employ the flat kernel, K(x; - x;), to determine the
weight of each point, x; € X. The point x; is given a weight of 1 if the distance
between x; and x; is less than or equal to the bandwidth 4, and 0 otherwise.

Lif llx; — x| <h

1

2) Conditional expectation: The weighted mean of X, m(x), is calculated by conditional

expectation determined using kernel regression estimate.

Yxjex K (i = x7)x; @
Lxjex K(xp — x5)
3) Kernel shifting: The kernel is shifted to center around m(x), such that x; = m(x), and

m(x) =

steps 1) and 2) are repeated until there is convergence, i.e., x; = m(x).



4) Iteration: The procedure is repeated on another randomly selected point until all
points have converged to their local maxima. Points with the same maxima are
grouped in the same cluster.

The sampled sequences S = {sy, ..., s,}, selected by us are defined to be the sequences whose
representation in X are the shortest Euclidean distance to their respective cluster modes. If
multiple sequences are closest to the mode, then the sample collected earliest in time is
chosen. This step ensures that the selected samples are either the modes or the closest data
point(s) to the mode(s). For the viral genomic space, samples centered in locally dense
regions represent sequences that are closely related to many other sequences. To capture
these mutations with high resolution, a small value for # would result in many sequences
sampled, some in sample dense regions. However, the mean shift also identifies sample from
low-density regions if there are samples whose distance to all others is greater than /4. These
regions are of comparatively lesser interest to us since the sequences lying there often contain
random low frequency mutations. Therefore, clusters that represent less than a fraction, f, of
the dataset at time ¢ are removed from the sampled set. CMDS and mean shift were
performed at each time point = {1, ..., T} and S(¢) represents the sampled sequences at each
t. In our studies a weekly temporal resolution was used to analyze the data.

To determine the appropriate values for 4 and f, the above method was separately applied
to each of the IDS and PDS datasets in their entirety. A range of values for 2 = {1 x 107,
2 x107° 3 x 107> 4 x 107° 5 x 107°,6 x 107>, 7 x 107°, 8 x 107>, 9 x
107°,1 x 107*}, and £ ={0,0.001, 0.0001} were tested. The values # = 2 X 1075, and f
= 0.0001 were empirically chosen based on sample size and inspection of sampling in a two-

dimensional space (supplementary table 1). With the chosen value for f, filtering out of low-



density sampled genomes only occurs once 10,000 samples have been collected. An
illustration of the sequence sampling is shown in Figure 1 using data from both the IDS and

PDS.

Figure 1. Illustration of the data sampling process using a two-dimensional projection of
the data. The two largest eigenvectors from CMDS are used as the X- and Y-axes respectively.
The mean-shift procedure is subsequently employed to select the representative samples.
Sampled genomes are represented in the figures as red dots and unsampled genomes are shown
as black crosses. The top two figures are of IDS on A) July 11", 2021 (#=9,095), and B) March
27" 2022 (n=16,526). The bottom two figures are PDS on C) June 20" 2021 (n=8,422), and D)
April 3 2022. (n=19,097). Filtering of low-density clusters occurs in B) and D) but not in A)

and C) as the number of samples in the two former figures is greater than 10,000.



3.3. Modeling the evolution of variants
The DEN can be thought of as a “network of networks” consisting of two-levels at which the

data and relationships within it are represented (figure 2).
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Figure 2. Visualization of network formation, graph cuts and clustering, and vertex
correspondence over time. Each network represents a week of samples from the IDS collected
during the consecutive weeks of March 8" - March 29" 2020. The blue vertices are the
persisting vertices (i.e., they were present in the previous week). The green are the new vertices
(i.e., they were not present in the previous week), and the gray are the non-persisting vertices
(i.e., they will not be present in the following week). Red edges denote those edges that were cut
when partitioning the graph into clusters. These clusters are outlined with the gray dashed
circles, which are also the vertices in the DEN. Black arrows are the directed edges in the DEN.
For contextualization across time, two persisting samples are labeled: EPI ISL 649099 and
EPI ISL 649101. These two samples were in two separate clusters on March 150 (2“d network

in the figure).

At the first level, for each time-point ¢, the undirected network G(?) = (S(¢), E(¢)) captures the

similarity of samples. In G(¢), the set of vertices, S(f), represents the samples and E(¢)



represents the set of edges that connect samples whose genomes are deemed to be similar. In
a network, an important notion is that of a community: a cluster of (connected) vertices that
are more similar to each other than to other vertices. For our data, samples of the same
variant form a community, and at each time-point te [1, 7], the samples s € S(t) are
partitioned into a set of disjoint clusters, C(¢) = {ci(, ..., Cns}. Tracking cluster dynamics in
temporal networks is a challenging problem (Alotaibi and Rhouma, 2022; Cazabet and
Rossetti, 2019); with the passage of time, these clusters can grow, shrink, split, merge,
appear, and disappear. To computationally track the evolution of variants in a data-driven
manner, a correspondence between clusters occurring at successive points in time is
established and constitutes the second level of the network representation. The
correspondence between clusters, is represented as a mapping between two sets of clusters at
consecutive points in time: C(f) and C(¢+1) with an edge connecting the pair of clusters (cx),
cie+1)), Where ci»)eC(?) and cy+1) €C(¢+1) if a correspondence can be established between
them. Let x denote the set of all such correspondences between clusters at consecutive time
points C(f) and C(t+1), te [1, T]. Then the dynamic epidemiological network DEN for the
entire set of sampled sequences S collected over time ze [1, 7] is defined as given in Eq. (3).
The set of correspondences in the DEN are represented as edges between the corresponding
clusters:

DEN(S)= G(f) U K (3)

In the following we identify and discuss four issues that are important for modeling the

dynamics how variants evolve in our proposed framework.



3.3.1 Temporal sample selection. As CMDS and mean shift operations are performed
independently at every time-point #, the sets S(¢) and S(z+1) may differ due both to the
addition of new samples as well as the different eigenvectors defining the representation
space. Consider two time-points ¢ and #+1; compared to S(¢), new samples may be added to
S(t+1) as additional modes are found, and samples may be removed when modes cease to
exist or if the corresponding cluster is small (of size less than f). Additionally, a sample in
S(t+1) may replace another present in S(¢) due to a shift in the mode. It’s necessary to
formally specify these changes and account for them prior to downstream analysis.

Consider the sample sets S(7) and S(#+1) and a sample s; € S(¢) such that |s; — s,y 1| > h
for all 5,41 € S(#+1). Then the vertex, v, corresponding to s; is deemed a non-persisting vertex
and is present in V(¢) but not in V(#+1). From a biological perspective, this implies that the
genotype corresponding to vertex v, did not propagate to time z. If there exists a 5,41 € S(¢#+1)
such that |s; — s.1|> A for all s, € S(¢+1), then, the vertex v, representing s,;is called a
new vertex since it is present in V(#+1) but not V(z). Biologically, such vertex represents a
genotype not observed earlier. Finally, a persisting vertex, v;v1, present in both V(f) and
V(t+1) exists if there is a s, € S(¢) and s, € S(¢+1) such that |s;, — s.41| < A. In this case, the
persisting vertex, v+, represents the sample s, rather than s,.;. It should be noted that samples
Si+1 € S(#+1) that satisfy the constraint |s, — s.41| < & with 5, € S(¢) but do not constitute the
closest neighbors at time-points ¢ and #+1 represent non-persisting (new) vertices. For
example, if there are two samples, s+1(;) and s;+1(), whose distance from the sample s, < 4, but
|s; — se10)] > |80 — sm+1(7)], then the persisting vertex will be represented by s, and s;+1(;) will
represent a new vertex at time #+1. The exception to this analysis being when ¢ =1, as there is

no prior time-point and therefore S; = V; at the first time-point.



3.3.2. Network formation. We seek to define the connectivity of G(f) in a manner that
captures the neighborhood (proximity) relationships amongst viral variants. The approach
described in this paper draws upon work in defining representation spaces for evolving
phenotypic responses of parasites causing the disease schistosomiasis (Singh et al., 2018).
Specifically, we employ parameterized neighborhood graphs, where vertices correspond to
samples and the neighborhood relationships are represented by connecting the corresponding
vertices to indicate relative genetic similarity. In particular, we use the family of k-nearest
neighbor graph (NNG), with the parameter & characterizing each network as described below.

For a fixed ¢, consider G(¢) comprising n samples {si, sz, ... s,}. Let ¢; denote the NNG
for scale parameter k. ¢, is defined as shown in Eq. (4), where for each sample s;, d,(s;)
denotes the m;, closest sample in terms of their genetic distance. That is, d(s;) denotes the
closest genotype to s;, da(s;) denotes the second closest genotype to s; and so on.

o = WV,E):V ={s,..,sp} n(5;,5)) EE, if s =d(s;) 4
The complete connectivity structure for G(¢) at a time point ¢ can therefore be obtained by
considering all possible k-nearest neighbor graphs as shown in Eq. (5). The reader may note
that such a representation would be multi-scale and capture the entirety of the neighborhood
information present between the samples. In practice, we iterate up to the nearest neighbor
value n, at which the number of connected components in G(f) equals 1.
P =p1U@U..Uqy )

We note that the nearest neighbor relationship may be computed either directly using the
genetic distances or via Euclidean distances between the corresponding points in the low-
dimensional CMDS embedding. To empirically assess and best preserve consistency in k

across time, we evaluated the network formation using both these options. Comparing the



former to the latter, the median for & increased from 21 (interquartile range, IQR, 4-71) to 31
(IQR, 8-302) in IDS, and from 50 (IQR, 11-74.75) to 99 (IQR, 84.25-214) in PDS. The
substantially higher variation associated with the lower dimensional embedding led to the use

of the original distance matrix for network formation.

3.3.3 Cluster identification. We use Laplacian spectral partitioning for detecting
communities. This method does not assume prior knowledge of the number of communities
in the data. For each graph, G(¢), community detection via spectral clustering is performed by
recursively splitting the graph through Laplacian eigendecomposition. The graph Laplacian
L(G) for the graph G, is calculated as follows:
L(G) = D(G) — A(G) (6)

In Eq. (6), D(G) is the diagonal degree matrix of G(¢) and A(G) is the adjacency matrix. The
eigendecomposition of L(G) clusters vertices into two subgraphs g; and g, with the
approximate minimum cut (Fiedler, 1973). By taking the eigenvector corresponding to the
second smallest eigenvalue, the vertices are split such that those with an eigenvector value
greater than a partition value, in this case 0, are placed in g; and the remaining vertices are
placed in g,. Each of the subgraphs g; and g, can be recursively cut (subdivided) following
the same procedure until the resultant subgraphs contain only one vertex. However, this
would be uninformative for community detection. Therefore, to stop the recursive division
process at the point at which communities are well clustered together, certain cuts can be
rejected based on their quality (i.e., the proportion of edges removed). This can be assessed

by the normalized cut value, nc:



_ IPC(91, 92) N IPC(91, 92)
vol(g1) vol(gz)

(7)

In Eq. (7), the inter-partition connectivity (IPC) of g; and g5 is the number of edges needed to

be removed to partition the graph and vol(g,) denotes the number of edges connected to the

vertices in g, before the cut. The value of nc increases as the proportion of edges needing to

be removed increases. Therefore, a cut threshold 7, is used to reject cuts with large values of

nc. The network formation and community detection procedure can be summarized in terms

of the following four steps:

1) The network, G(¢), is formed (Algorithm 1).

2) Spectral clustering splits G(#) into g; and g».

3) If the nc of G(¢) > r the cut is rejected, and no communities within G(#) are found.

4) If the normalized cut of G(¢) < r, the graphs g and g, are each recursively split using
spectral partitioning until no further cuts meet the acceptability threshold 7.

The subgraphs found with this procedure are the clusters, C(¢), within G(t). Several values

were tested for » (0.001, 0.005, 0.01, 0.05, 0.1, 0.5), and » = 0.1 was chosen for its better

overall performance (Supplementary table 2 and 3). A list of all parameters and values used

for network formation are given in table 1.

Table 1. Parameters for data sampling, network formation, and community detection

Parameter (symbol, if used) Section Applied Value
Number of eigenvectors Dimensionality of mean shift sampling 10
Bandwidth (/) Mean shift sampling and node selection 2 x 107
Filter () Mean shift sampling 1 x 10"

Cut threshold (7) Community detection 0.1



Laplacian Threshold Community detection 0

3.3.4. Determining correspondences between clusters over time. For each pair of clusters, cx
and c;+1), where ¢y € C(¢) and c;;+1)€ C(¢+1), if there are sampled genomes in common,
then the two clusters are defined to have a correspondence. Such a cluster correspondence is

represented by a directed edge between the two clusters in the DEN.

3.3.5. Analyzing the network evolution process. With the above methodology, the DEN can
characterize the evolution of the disease in terms of the appearance, disappearance, and
merging/splitting of viral genotype clusters over time. If only a single viral lineage were to
persist over time, then the DEN would consist of a series of vertices having a one-to-one
relationship across time. In other words, every vertex in the network would have an indegree
and outdegree no greater than 1 with the corresponding clusters putatively increasing in size
over time. However, during real-world outbreaks as a virus spreads, mutations are
accumulated. In some cases, certain mutations translate to an evolutionary advantage,
resulting in increased spread and thus an increase in the observed frequency of this
mutation(s). Eventually, accumulated changes can lead to a new variant. In our directed
network, this phenomenon is represented by a “split” in a cluster, where a vertex at time ¢ has
an outdegree greater than one connecting it to multiple vertices at time #+1. It can also be the
case that a variant fails to grow, or that it does not become sufficiently distinct from the rest
of the viral population. In such a case, the cluster containing this variant at time ¢ may
“merge” into another cluster at time #+1. A merging of clusters is represented as a vertex at

time #+1 with an in-degree greater than one. Clearly, the difference between S(¢) and S(#+1)



due to sampling may lead to splitting and merging events. For instance, the nearest neighbors
of a sample can change with the removal and/or addition of samples in the network.
Moreover, sampling can also indirectly cause splitting and merging events. This occurs when
a change in sampling leads to a change the value of k in the k-nearest neighbors network
formation. The readers may recall that the value used for £ is the minimum number of nearest
neighbors a sample is required to form an edge with, in order to create a connected graph. In
the viral networks considered by us, it is often the case that groups of samples share the same
nearest neighbors, and so as the group increases in size, k must be increased in order to
connect a group to the remainder of the samples in the network. This change in &k can cause
groups to merge and split, even if there is no change in sampling in the group itself. This
situation has parallels in phylogenetic analysis and more generally in clustering: a group of
samples that are a distinct clade at time # may appear as a small sub-clade at time 7+1 with the
addition of new samples that form a much larger subsuming clade. Further analysis of the

approach using the entire IDS and PDS are presented in Section 4.

4. EXPERIMENTS AND RESULTS

4.1. Description of datasets

4.1.1. IDS. Samples were collected for 97 non-consecutive weeks between February 23",
2020, and March 27th, 2020. There were 227 distinct lineages present in the dataset. The
majority (52.75%, 8,717/16,526) were the B.1.617.2 and descendant lineages (Delta), with
descendant lineages comprising 95.98% (8,367/8,717) of the B.1.617.2 group. Lineage
B.1.1.7 (Alpha) followed B.1.617.2 by prevalence (31.54%, 5,213/16,526). B.1.1.7
descendant lineages were less than 1% (49/5,213) of the B.1.1.7 group. The WHO classified

variants, Beta (lineage B.1.351 and descendants) and Omicron (B.1.1.529 and descendants)



were found to be approximately 0.8% (131/16,526) and 0.8% (132/16,526) of the dataset,
respectively. Other lineages of notable frequency, including their respective descendants,
were B.1.1.50 (5.97%, 987/16,526), B.1.362 (2.27%, 375/16,526), and B.1.1.294 (0.5%,
90/16,526). Of the remaining lineages, B.1.1 was 0.5% (86/16,256), B.1 was 1.8%
(293/16,526), and B was less than 0.01% (6/16,526). Lastly, 0.08% (13/16,526) of samples
were within the A lineage group, and the remaining samples comprised of 77 B sub-lineages
not outlined here (3.5%, 574/16,526). The relative frequency of these lineages over time can
be seen in figure 3A. As many lineages were low frequency, sub-lineages were grouped with
their ancestral lineages unless otherwise stated. In the initial year of the pandemic, B.1 was
the most frequent lineage, followed by B.1.1, B, and A. By December 2020, lineage B.1.1.7,

B.1.1.50, and B.1.362 began to emerge and grow until approximately September 2021, when

B.1.617.2 became dominant.
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Figure 3. Changes in the proportions of each lineage group in the dataset and cluster sizes
in the DEN, over the period of analysis. Actual proportions of the entire datasets are shown in

(A) IDS and (B) PDS. The cluster sizes in the DEN over the entire tracked period are shown in



(C) IDS and (D) PDS. The color-coding of each lineage group in (A) and (B) and the
corresponding cluster in (C) and (D) is shown in the figure legend. Clusters are numbered in the
order of their emergence and the color of a cluster corresponds to the majority lineage of that
cluster. Clusters that are not predominantly one lineage group are called “heterogenous”.
Changing cluster sizes in (C) and (D) approximately follow the growth of the lineage groups in
(A) and (B), respectively. A major exception being B.1.1.50 in IDS, which fails to becomes a
cluster (A and C). The size of the heterogeneous cluster is also approximately equivalent to the

combined size of those lineages that are in decline (e.g., lineages A, B, B.1).

4.1.2. PDS. The first sample collected was on March 1%, 2020, after which samples were
collected for 99 non-consecutive weeks until April 1%, 2022. The dataset contained 254
distinct lineages. Lineage B.1.617.2 and descendants comprised 60.6% (11,574/19,097);
98.12% (11,357/11,574) of which were descendant lineages. B.1.1.7 and descendants were
20% (3,825/19,097) of the dataset. The majority of this group was the B.1.1.7 lineage itself
(99.4%, 3,802/3,825), with only 0.6% (23/3,825) being descendants of the B.1.1.7 lineage.
The lineages B.1.177 and B.1.160 along with their descendants were 6.53% (1,247/19,097)
and 1.6% (307/19,097) of the dataset, respectively. Other WHO defined variants Omicron
(B.1.1.529 and descendants), Gamma (P.1 and descendants), and Beta (B.1.351 and
descendants) only reached 0.43% (83/19,097), 0.81% (154/19,097), and 0.41% (78/19,097)
of the collected samples by the end of the tracked period, respectively. Of the ancestral
lineages, the B lineage comprised 0.2% (24/19,097) of the dataset, while B.1 comprised 1.7%
(321/19,097) and B.1.1 comprised 3.3% (635/19,097). In addition to the B lineages already
mentioned, there were 77 more lineages which, when combined, comprised 4.2%

(810/19,097) of the dataset. The remaining samples were within the A lineage (0.3%,



55/19,097). B.1.1 was found to be the dominant lineage in the first months of the pandemic
(Figure 3B). Subsequently, B.1.1.7, B.1.177, and B.1.160 grew in frequency from late 2020
onward, until the emergence and dominance of the B.1.617.2 strain beginning in the latter
half of 2021. Like IDS, sub-lineages were grouped with their ancestral lineage unless stated

otherwise in the figure caption.

4.2. Assessment of clustering by graph cuts

4.2.1. Cluster Correspondences. The DEN for each dataset can be seen in figures 4 (IDS) and
5 (PDS). Vertices are represented as pie charts which shows the Pango lineage-composition
of each cluster. The numbers overlayed on the vertices identify the clusters they represent in
the network. Obviously, a cluster propagates in time if it has a one-to-one correspondence
with another cluster across time. However, clusters may also merge and/or split.
Additionally, there are instances where a merge is immediately followed by a split, such as
on February 7th, 2021, in figure 4. In such cases, determining the similarity of clusters in
terms of their sample composition before and after a split/merge may be of interest. Such
similarity is difficult to determine by considering the edges of the directed network alone.
Therefore, to find cluster correspondence in the absence of a one-to-one relationship, we
determine the Jaccard index between all previously identified clusters and the merged or split

cluster. The Jaccard index measures the similarity between two sets, Cy and Cy, as the size of
their intersection divided by the size of their union:

J(€uCy) = (I 0 Gyl/|Cc U G]) ®)
The range of the Jaccard index, J (Cx, Cy), is a number between 0 and 1, where 0 implies the

absence of the sets being compared overlapping while 1 implies a complete overlap between

the two sets. To assess if there was a correspondence between a cluster, A4, at time ¢ and a



previously identified cluster, the Jaccard index is calculated between the set of persisting
samples in cluster 4 and the set of persisting samples in all previously identified clusters.
Cluster A4 is said to corresponded with a previous cluster if it (a) has a maximum overlap with
the cluster in question (as given by the Jaccard index) among all other candidate clusters, and
(b) the value of the Jacquard index exceeds the (empirically set) threshold of 0.6 (i.e., the
majority of persisting samples moved into cluster A4). This resulted in 15 cluster

correspondences in IDS and 11 in PDS.

4.2.2. Cluster correlation with Pango lineages. Many clusters were found to approximately
align with Pango lineage-groups. In IDS, cluster 2 contained a majority of B lineage samples,
cluster 3 contained samples of lineage B.1.1, cluster 5 and 6 were mostly lineage B.1, cluster
7 and 10 comprised lineage B.1.1.7, and clusters 12, 13, 14, and 15 aligned with lineage
B.1.617.2, with cluster 15 comprising completely of the descendant lineage, AY.121 (alias of
B.1.617.2.121). Cluster 1 and cluster 4 were less specific; cluster 4 in particular occurred due
to the merging of other clusters (figure 4). Similarly, in PDS, cluster 1 corresponded to the
lineage B.1.1, cluster 2 to lineage B.1, cluster 3 to lineage B, cluster 4 to lineage A.2, cluster
5 to lineage B.1.160, cluster 6 to lineage B.1.177, cluster 9 to lineage B.1.1.7 and cluster 11
to lineage B.1.617.2 respectively. Clusters 7, 8, and 10 were a combination of multiple
merged clusters (Figure 5). The cluster formation underlying the DEN can be assessed in
terms of precision, recall and accuracy. To explain the logic underlying such an assessment,
let a lineage group simply imply a lineage and all those descendants that are not a majority
lineage in another cluster at the same time-point. Then, for each cluster ¢, € C(?), 5(/) € cx)

are the samples in ¢y corresponding to the samples of the majority lineage group of cluster



cx (true positives), s(I') € ¢y are the samples in ¢, corresponding to the samples that are
not the majority lineage group of cluster ¢, (false positives), s(/) € cy;' are the samples not
in ¢y whose lineage is the majority lineage group of ¢ (false negatives) and s(/') € ¢, are
the samples not ¢ and whose lineage are not the majority lineage of ¢y (true negatives).

The measures of cluster assessment can now be defined as follows:

2s() €Ecxe

Precision (P) = Sseonm )

_ 2s(D) Ecxy
Recall (R) = 550 € exey + 25D € cnyr (10)
Accuracy (4) = Y s() € cxry + s € cx(ey (11)

Y seG(t)

The average results over all time points and clusters of the same lineage groups can be
found in table 2 and table 3. There was a low average precision for clustering the B lineage in
both datasets (0.74 in IDS and 0.78 in PDS) as it was clustered with the A lineage. Lineage
B.1 clustering had a high precision in both datasets (0.96 in IDS and 0.98 in PDS) but a low
recall (0.63) in IDS due to its split between the two clusters 4 and 5 and subsequently 5 and
6. Clustering B.1.1 lineage (IDS and PDS) and A.2 lineage (PDS) were at least 0.97 in all
measures. The average precision, recall, and accuracy for clustering B.1.1.7 was above 0.99
in both datasets. These measures remained high for B.1.1.7 in IDS as even though there were
two B.1.1.7 clusters present in the DEN at the same time (cluster 7 and 10), cluster 10 was
very small, comparatively, and only lasted one week. However, the multiple clusters (clusters
12, 13, and 14) over multiple weeks did have an impact on the recall (0.78) and accuracy
(0.94) for clustering B.1.617.2 in IDS, while these measures were all 1 for B.1.617.2 in PDS.
Precision, recall, and accuracy were all 1 for lineage AY.121 in IDS, and all measures were

at least 0.96 for the region-specific clusters of B.1.362 (cluster 9) and B.1.351 (cluster 11) in



IDS, and B.1.160 (cluster 5) and B.1.177 (cluster 6) in PDS. Clustering of B.1.1.294 in IDS
had a slightly lower precision (0.91), recall (0.84), and accuracy (0.95) as a portion of

B.1.1.294 samples were in cluster 4.

4.2.3. Normalized cuts. The normalized cut values obtained during the initial cluster
identification can be seen in figure 6A. The median values are 4 X 1073 (interquartile
range, IQR, 3 x 107 —2 x 1072%)and 5 x 1073 (IQR, 8 x 107> —3 x 1072) in IDS
and PDS, respectively. As the vast majority of these cuts are well below the 0.1 threshold,
this indicates that the clusters are not an artefact of the normalized cut threshold parameter
but represent fundamental patterns in the data. To further assess the quality of the clustering,
the normalized cut values were investigated for each of the cluster correspondences,
separately, in both datasets (figures 6B and C). Given that the normalized cuts were initially
obtained recursively (i.e., they may have been calculated over a subnetwork rather than the
entire network), equation (5) was repeated for each cluster with g; as the cluster of interest
and g, as the remainder of the network. Figures 6B and 6C show that the clusters with the
highest median normalized cut value either 1) had a short temporal duration in the DEN or 2)
split and merged with another cluster several times. In IDS, clusters 2, 3, 5, 6, 10, and 15 had
the highest median normalized cuts, those being 0.05 (IQR, 0.04-0.05), 0.08, 0.03 (IQR,
0.03-0.03), 0.07 (IQR, 0.06-0.08), 0.05, and 0.09 (0.08-0.09), respectively. Clusters 2 and 15
split and merged from clusters 4 and 12, respectively, on at least two occasions. While
clusters 3, 4, 6, and 10 were only present in the network for at most two weeks. Similarly,
cluster 4 in PDS split and merged from cluster 3 on three occasions and had the highest

median normalized cut 0.06 (IQR, 0.06 — 0.06), equal only with cluster 8 (0.06, IQR, 0.06 —



0.06). Cluster 8 was present in the directed network for only 2 weeks (January 3™ — 10,
2021), the shortest duration of any cluster in PDS.

Conversely, those cluster correspondences present in the directed network for the longest
duration had some of the lowest median normalized cuts in the dataset. Specifically, the
clusters that were large in size and specific for one variant. This included cluster 7, the
B.1.1.7 majority cluster, and cluster 12, the B.1.617.2 majority cluster, in IDS, which had the
median normalized cuts 9 x 1075 (IQR, 5 x 107% -5 x 1073), and 9 x 10™* (IQR,
3 x 107* -2 x 1073), respectively. In PDS, also, it was the clusters corresponding to the
lineage groups B.1.1.7 (cluster 9) and B.1.617.2 (cluster 11) that had the lowest median cut
vale of 4 X 107> (IQR, 3 X 107> -6 x 1073) and 4 x 10~ (IQR, 2 x 1073
8 X 1073), respectively, along with cluster 10, which had a median normalized cut of

4 x 1073 (IQR,5 X 1075 -7 x 1073).



Table 2. Precision, recall, accuracy, and proportion of active period covered by clusters for a specific lineage group in the IDS.
The column “Cluster week(s)” lists the specific weeks a given cluster was found to be present in the network. The column titled
“Proportion collected at splitting” represents the proportion of total samples of a lineage collected before it became a cluster. The
proportion of samples of a lineage collected while the cluster was present in the network is given by the difference between the

corresponding proportion collected at splitting values and proportion collected at merging values.

Proportion Proportion
Lineage Clusters Precision Recall Accuracy Cluster week(s) collected at collected at
splitting (n/N) merging (n/N)
Mar 151-22™ 2020 0.33 (8/24) 0.75 (18/24)
B 2 0.74 1.00 0.93 Apr 5™ 2020 0.88 (21/24) 1.00 (24/24)
Apr 19"-Jul 20™, 2020 1.00 (24/24) 1.00 (24/24)
Mar 151-22™ 2020 0.03 (20/612) 0.14 (88/612)
th
B 0.96 0.63 0.68 AgrS 20310 0.24 (148/612) 0.27 (166/612)
5 Apr 19"-Jul 20", 2020  0.32 (196/612) 0.37 (228/612)
Dec 7™-13"™, 2020 0.41 (252/612) 0.4 (246/612)
B.1.1 3 1.00 1.00 1.00 Mar 15™ 2020 0.01 (12/1350) 0.02 (23/1350)
th st
Dec 20 ’22(?22?4”3 P oass213) 0.34 (1749/5213)
B.1.1.7  7&10 1.00 0.99 1.00 Feb 14" 2021 0.42 (2168/5213)  0.45 (2364/5213)
Feb 28™, 2021-Mar
27 2022 0.54 (2825/5213)  1.00 (5213/5213)
th st
B.1.1.294 8 0.91 0.84 095  Dec27 ,22(?2210-Aug1 *0.06 (5/90) 1.00 (90/90)
th
B.1.362 9 1.00 1.00 1.00 Dec lzgth’ 58%” an 0.13 (50/375) 0.76 (285/375)
Feb 14", 2021 0.69 (91/131) 360.71 (93/131)
B.1.351 1.00 1.00 1.00 ’
11 Feb 28"-Aug 1%, 2021 0.8 (105/131) 1.00 (131/131)
12, 13, May 16", 2021-Mar
BLOI72 | s 1.00 0.78 0.94 27" 2022 0.01 (63/8717)  1.00 (8717/8717)
Feb 1%, 2022 1.00 (1055/1 1.00 (1055/1
AY 101 s 100 100 100 eb 1%, 20 00 (1055/1055) 00 (1055/1055)

Feb 15", 2022

1.00 (1055/1055)

1.00 (1055/1055)




Table 3. Precision, recall, accuracy, and proportion of active period covered by clusters for a specific lineage group in PDS.

Description of column headers is analogous to that in Table 2.

Proportion Proportion
Lineage Clusters Precision Recall Accuracy Cluster week(s) collected at collected at
splitting (n/N) merging (n/N)
B.1 1 0.98 0.98 0.98 Mar 8"-Dec 14™ 2020  0.01 (9/1096) 0.54 (597/1096)
B.1.1 2 0.97 1.00 0.99 Mar 1¥-Dec 14", 2020 0 (0/0) 0.64 (779/1212)
nd th
B 3 0.78 1.00 0.94 Mar 2220';)“ 147, 0.36 (32/88) 1.00 (88/88)
A2 4 1.00 1.00 1.00 Apr 5™, 2020 0.73 (22/30) 0.77 (23/30)
Jul 5™ 2020 0.87 (26/30) 0.87 (26/30)
Aug 23"-Dec 14",
5020 0.87 (26/30) 0.87 (26/30)
B.1.160 5 1.00 1.00 1.00 Nov 8"-Dec 7™, 2020 0 (0/307) 0.12 (36/307)
Jan 3"-Jan 31%, 2021 0.21 (64/307) 0.73 (225/307)
th th
B.1.177 6 0.96 1.00 097  Nov8L 22%22?43“ 177 0 (6/1247) 0.71 (886/1247)
Jan 31°“Feb 21*, 2021  0.75(937/1247)  0.93 (1155/1247)
B.1.1.7 9 1.00 1.00 1.00 Jan 10™-Jan 17" 2021  0.03 (98/3825)  0.05 (201/3825)
st rd
Jan 317, 2021-Apr 3%, 06 (246/3825)  1.00 (3825/3825)
2022
Jun 27", 2021-Apr 3", 0.09 1.00
B.le6l7.2 10 1.00 1.00 1.00 2022 (1088/11574)  (11574/11574)
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Figure 4. The DEN for the IDS and its evolution over time. The sample collection date is
shown every two weeks, with the value of & and number of sampled genomes additionally shown
for every other label. Each vertex in the network represents a uniquely numbered cluster.

Vertices in the network are shown as pie charts, depicting the Pango lineage composition of the



samples in the corresponding cluster. These lineages are color coded as shown at the bottom of

the figure.
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Figure 5. The DEN for the PDS and its evolution over time. The sample collection date is
shown every two weeks, with the value of £ and number of sampled genomes additionally shown

for every other label. Each vertex in the network represents a uniquely numbered cluster.



Vertices in the network are shown as pie charts, depicting the Pango lineage composition of the
samples in the corresponding cluster. These lineages are color coded as shown at the bottom of

the figure.
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Figure 6. Box and whisker plots of normalized cuts from (A) recursive cutting of the

network during initial cluster identification and for each cluster correspondence in (B) IDS



and (C) PDS. Cluster correspondence number is given on the x-axis and normalized cut values
are on the y-axis. The plots demonstrate the observation that the majority of normalized cut
values are well below the normalized cut threshold of 0.1 and therefore the clusters represent

fundamental patterns in the data rather than being artefacts of the clustering algorithm.



4.3. Case studies capturing the dynamics of viral evolution

The period tracked for both the IDS and the PDS (figures 4 and 5) can be conceptually
grouped into three broad stages that characterize the pandemic: 1) the first wave caused by
the spread of the ancestral lineages, 2) the emergence of B.1.1.7 (Alpha) and other, region-
specific lineages, and 3) cessation of previous dominant lineages and rapid spread of lineage
B.1.617.2 (Delta). In the following we examine the network evolution induced by the data in

light of the aforementioned conceptual groupings:

4.3.1. March 2020 — November 2020. Samples split into clusters corresponding to the
ancestral lineages (lineages A, B, B.1, and B.1.1):

A. IDS. Tracking began on February 23™, 2020. For the first three weeks there was only one
cluster: (cluster 1). On the fourth week, cluster 1 split into cluster 2 (lineages A and B),
cluster 3 (lineage B.1.1), and cluster 4 (lineage B.1). In the two subsequent weeks, clusters 2
and cluster 3 merged with cluster 4. By April 19", 2020, cluster 2 and cluster 5 (also a
majority B.1 lineage) split from cluster 4. The median normalized cut value for clusters 2 and
5 was relatively high (figure 6B). Although, the median normalized cut value for cluster 4
was low (6 X 1073), for its first 12 weeks (until its merging with clusters 2 and 5 on July
19", 2020), its normalized cut value was higher (>0.04) than in any subsequent week. The
splitting and merging of these clusters along with their high normalized cut values, indicate
that there was substantial connectivity between them during this period; sufficient
accumulation of mutations had not occurred to support stable clusters.

B. PDS. Clusters were found to mainly split along the lineages B (cluster 3), B.1 (cluster 1),

and B.1.1 (cluster 2). Intermittently, a proportion of lineage A also split from the B cluster,



leading to the cluster 4. Figure 6B shows the relatively higher normalized cut value of cluster

4, indicating its instability as a cluster.

4.3.2. November 2020 — May 2021. Beginning November 2020, a B.1.1.7 cluster and several
other region-specific clusters emerged:

A. IDS. Between December 20™ and 27", 2020, clusters 7 (lineage B.1.1.7), 8 (lincage
B.1.1.294), and 9 (lineage B.1.362) split from cluster 4. Splitting occurred less than 1%
(45/5,213), 6% (5/90) and 13% (50/375) of samples of their respective lineages had been
collected (table 2). Additionally, 87.3% (4,553/5,213), 87.8% (79/90), and 62.7% (235/375)
were collected in this setting (table 2), and the growth of cluster 7 in figure 3C corresponded
with the growth of the B.1.1.7 lineage in figure 3A. Indeed, cluster 7 reaches its peak size on
the same week that B.1.1.7 becomes the most frequent lineage in the dataset (May 16™,
2021). This is important as tracking of lineages is most relevant when the lineages are
“active” in the population (i.e., when samples of a given lineage are being collected). The
exception to this is cluster 11 (lineage B.1.351), which split from cluster 4 on February 21,
2021, when 69.5% (91/131) of the lineage samples had already been collected.

Initially, cluster 7 merged and split with cluster 4 twice (January 17", 2021, and February
7™, 2021). Relatedly, all normalized cut values above the 75™ percentile of cluster 7 occurred
during the first 15 weeks of its existence as a separate cluster (figure 6B). Its straightforward
to conclude that the connectivity between clusters 7 and 4 fluctuated across time; particularly
it decreased when more B.1.1.7 samples were added. An opposite observation can be made
regarding cluster 10 - another B.1.1.7 cluster that split from cluster 7 on January 24™ 2021.

During the following week, cluster 10 was found to have merged with cluster 7 and did not



split-out again. This phenomenon was due to the fact that additional B.1.1.7 samples
increased the connectivity between these two clusters. Generally, the majority of samples
within each lineage that correspond to a specific cluster were collected while the cluster
persisted in the DEN.

B. PDS. Cluster 5 (lineage B.1.160), seen in DEN beginning November 8", 2020, is the only
example of a cluster with an indegree of 0 when time ¢ > 1, i.e., no cluster 5 samples had
propagated from the previous week. This is understandable as the first B.1.160 samples (n =
35) were collected on November 8", 2020. Coalescing of the B.1.160 samples in a cluster of
their own demonstrates the ability of the network evolution model to correctly represent
completely new data that does not conform to the existing organization of the information.
On the same week, cluster 6 (lineage B.1.177), split from cluster 1. Then, on December 20™,
2020, all persisting clusters except for cluster 6 merged into cluster 7. These clusters already
had higher normalized cut values (figure 6B), and their proportion of the overall network
decreased with the growth of cluster 6 (figure 3D). Beginning December 14™ 2020, lineage
B.1.1.7 became its own cluster in two stages. First, cluster 2, the majority B.1.1 cluster, and
cluster 8 split from cluster 7. Then, cluster 9 (lineage B.1.1.7) split from cluster 2 when only
4% (170/3,825) of B.1.1.7 samples had been collected (table 3). Subsequently, cluster 2
merged back with cluster 8. Like IDS, cluster 9 merged with the heterogenous cluster 7 in the
initial weeks of its persistence. As cluster 9 continued to grow and encompassed a larger
proportion of the network, clusters 5 and 6 merged with cluster 7. For lineage collections,
62.9% (193/307) of B.1.160, 73.2% (913/1,247) of B.1.177, and 96.3% (3,683/3,825) of

B.1.1.7 samples were collected while each lineage was as a persisting cluster in DEN. Again,



the week B.1.1.7 was the most frequent in the dataset (May 9", 2021) aligned with the week

cluster 9 was the largest in size (figure 3B and D).

4.3.3. May 2021 — April 2022. Smaller, region-specific clusters merged together and
B.1.617.2 (Delta) became a cluster:

A. IDS. Cluster 12 (lineage B.1.617.2) split from cluster 4 on May 16" 2021, when less than
1% (69/8,717) of B.1.617.2 had been collected. In the weeks following, it split again into two
further clusters: clusters 13 and 14. Both of these clusters were very small, with an average of
72.6 samples in cluster 13 and 30.2 samples in cluster 14 compared to 417 samples in cluster
12. Clusters 13 and 14 did not grow (figure 3C), but instead merged back with cluster 12 as
more B.1.617.2 samples were added. On February 1* and 15", 2022, cluster 15 split twice
from cluster 12. Cluster 15 comprised only of the sub-lincage AY.121 (alias of
B.1.617.2.121). Although this splitting indicates a substantial within connectivity of this sub-
lineage compared to its connectivity to other sub-lineages, its normalized cut value was still
quite high (figure 6B), and so it merged back with cluster 12. Additionally, 100% of samples
of lineage AY.121 had already been collected before the split (table 2), further enforcing that
this cluster was not sustainable as there was no further growth of the corresponding lineage.
B. PDS. Samples of lineage B.1.617.2 split from cluster 10 on June 27" 2021, when 13%
(1,521/11,574) of B.1.617.2 samples had been collected. After this split, the cluster continued
to grow in size to become the dominant cluster (figure 3D), and there were no further

splitting or merging events in the remaining of the tracked period.



With few exceptions, lineage groups that became clusters were also the most frequent
lineages in the dataset. The exception in PDS was lineage B.1.91 (n=207), which reached a
frequency of 0.18 on March 22", 2020, but never became a cluster. The lineage remained
highly connected with other B lineages. On average, a B.1.91 sample had 8.2 neighbors of
the same lineage and 5.2 neighbors of another lineage.

Lineage B.1.1.50, the third largest lineage group in IDS (n=987) also never became a
cluster. Again, this was due to its high connectivity to samples outside its own lineage. For
example, on the week of December 27th, 2020, when B.1.1.50 reached its peak of 33% of the
dataset (n=225), the smaller lineages B.1.362, B.1.1.294, and B.1.1.7 were all clusters. The
latter three lineages had an average of 0.4, 0.05, and 0.3, neighbors outside of their lineage,
respectively, while B.1.1.50 samples had an average of 3.1 neighbors outside their lincage.
This was also seen with the B.1.177 (n=167) lineage in IDS which reached a frequency of
3% on January 17", 2021, higher than the 2% reached by B.1.1.294 (n=90). During its peak
in the dataset, B.1.177 samples had on average 3.63 neighbors outside their lineage compared

to the average of 0.06 in B.1.1.294.

4.4. Comparison with Phylogenetic trees

A DEN models ongoing interactions between viral samples through time and is updated as
new data is gathered. Phylogenetic trees on the other hand need to be recomputed when new
genomes are collected. In phylodynamics, which involves the prediction of epidemic spread
through phylogenetic analysis (Volz ef al., 2013), the aforementioned limitation persists:
when new information is added, predictions or classifications are made solely based on the
recomputed tree, with no explicit incorporation of information from the previous tree. By

definition, a variant is simply a mutational change in the genome. However, in the



epidemiological and public health context, genomes are grouped into a variant by both shared
genotypic and phenotypic traits. Therefore, characterization of variants using mutations is a
dynamic process, putatively changing over time as more genomes are collected and a better
understanding of the molecular basis of the variant is developed. By modeling variant
clustering as dynamic entities, several aspects of variant identification and tracking can be
approached from a new perspective — as we show in the following for the problems of variant

classification and determination of relationships between variants.

4.4.1. Dynamic clustering of samples. Ideally, emerging variants would form a distinct
subgroup, genetically separate from all other samples in the population. In reality, due to
homoplasy, reverse mutations, and lack of complete data, there may exist ambiguity in the
variant designation of some genomes. For example, a genome can be placed on an isolated
branch that is equidistant to multiple clades. The variant designation of this genome is
susceptible to change depending on the addition of genomes sampled with the passage of
time. The phylogenetic approach requires the continual monitoring of clades being formed as
well as the manual upkeep of lineage designations (O’Toole ef al., 2021). Another approach,
as enacted by us, is to model such movement(s) between clades or clusters as a function of
the known viral genomic landscape at that time. Therefore, analysis is focused on the
changing viral landscape rather than the classification of each genome. In the directed
network, such movement of samples between clusters occurs when a vertex at time ¢ is the
receiver of samples from both a split and a merge; that is, the vertex has an indegree greater
than one and at least one of its connecting vertices from time #-1 has an outdegree greater

than one. This can be seen between the B.1.1.7 cluster and the heterogenous cluster in IDS on



several occasions (January 31%, February 7" March 14" and 21%, April 4™, and July 25",
2021, figure 4). In total, six samples were moved between the two clusters: EPI ISL. 944231
(B.1), EPI ISL 1278513 (B.1.1.50), EPI ISL 944228 (B.1), EPI ISL 944230 (B.1.1.50),
EPI ISL 889113 (B.1.1.50), and EPI ISL 1278514 (B.1.1). The ambiguity of their
clustering is reflected in both the phylogenetic tree (figure 7A), where they share a most
recent common ancestor with the B.1.1.7 clade, and the network (figure 7B), where they
connect to several vertices in both clusters. In PDS, this also occurs once on January l7th,
2021. Sample EPI _ISL 1138825 (B.1) moves from the B.1.160 to the heterogeneous cluster.
Similar to the example in IDS, the sample shares a most recent common ancestor with the
B.1.160 clade (figure 7C) and has connections to both clusters in the network (figure 7D).
Modeling this uncertainty not only gives an accurate description of the position of those
genomes in the genomic space at a given time, but it also provides information on the degree
of separation of the clusters that share samples. Although the relationship of clades or
clusters can be inferred by the hierarchical structure of the phylogenetic tree, it is assumed
that this relationship is not dynamic, i.e., ancestor-descendant clades cannot move closer or

further away from each other in time.



Figure 7. Phylogenetic trees of genomes sampled on July 25", 2021 (A and B) in IDS, and
January 24™, 2021 (C and D) in PDS. The circled and numbered vertices represent samples
that were observed to move between clusters. Samples 1-6 (EPI ISL 944231,
EPI ISL 1278513, EPI ISL 944228, EPI ISL 944230, EPI _ISL 889113, and
EPI ISL 1278514) moved between the B.1.1.7 cluster (cluster 7) and the heterogeneous cluster
(cluster 4) from March 7™ until July 25" 2021. Sample 7 moved from the B.1.160 (cluster 5) to
the heterogeneous cluster (cluster 10) on January 24™ 2021. In each dataset, phylogenetic trees
show the labelled samples are situated between clades of the two corresponding clusters,
respectively (B and D). Maximum Likelihood phylogenetic trees were built with the Nextstrain

CLI (Hadfield et al., 2018).



4.4.2. Dynamic connections between clusters. In Phylogenetics, relationships between clades
are established by estimating their most recent common ancestor, which is represented by an
internal node connecting the clades in the tree. In our method, connecting vertices of
different clusters establish the relationship between them. These vertices represent a “bridge”
between two clusters. They are the vertex or vertices in a cluster, who have at least one k-
nearest neighbor(s) in another cluster. Unlike phylogenetics, the connecting samples are
actual genomes. This is beneficial because connections between clusters can be compared
across time. The distinctions in groupings does lead to distinctions in interpreting the data.
By focusing on the temporal dynamics of the connections between the heterogeneous cluster
and the clusters that derive from it due to splitting events (beginning November 2020),
different patterns emerge. In several instances, there is a temporal delineation between the
connecting samples in the ancestral cluster and the split cluster. Across all time-points, the
heterogeneous cluster samples connected to the B.1.617.2 cluster were collected when less
than 1% (87/8,717) of B.1.617.2 samples were collected in IDS, and before any were
collected in PDS. Lineages B.1.1.294 and B.1.351 became clusters on December 27“‘, 2020,
and February 14™ 2021, respectively, and remained clusters until August 8™ 2021. All the
while, they remained connected to the heterogeneous cluster by samples collected before
May 2020. In other clusters, such as B.1.362, and B.1.160 and B.1.177, samples within each
cluster and those they connected to in the heterogeneous cluster were collected
contemporaneously.

Interestingly, connecting samples in the heterogeneous cluster can also be collected
several months after the last sample in the split cluster was collected. All samples in the

B.1.1.7 cluster were collected by July 11" 2021, and August 8™ 2021, in IDS and PDS,



respectively. Initially, all connecting samples in the heterogeneous cluster were collected
before May (IDS) and July (PDS) 2021. However, in January (PDS) and February (IDS)
2022, this changed. During this time, the first B.1.1.529 (Omicron) genome was sampled and
was added to the heterogeneous cluster. This sample became the sole connecting sample to
B.1.1.7 in both datasets. Up to three additional B.1.1.529 samples were added during the
remaining of the tracked period and connected to the B.1.1.7 cluster. It was found that a
combination of mutations was common to all connecting B.1.1.529 samples and a majority of
samples in the B.1.1.7 clusters. These included C241T, C3037T, and C14408T in ORF1lab,
A23063T, A23403G, and C23604A in the spike protein, and G28881A, G28882A, and
G28883C in the nucleocapsid. The three nucleocapsid mutations, in particular, are
characteristic of B.1.1.7 and are thought to be associated with increased transmissibility (Tao
et al., 2021). Individually, a portion of these mutations are found at a high frequency in both
datasets (>99%). However, in combination, they are in 93.9% (124/132) and 100% (83/83) of
B.1.1.529, 98.8% (5,151/5,213) and 98.8% (3,779/3,825) of B.1.1.7, and less than 0.1%
(5/11,181 and 9/15,189) of the remaining samples of IDS and PDS, respectively. In the
phylogenetic tree, B.1.1.529 forms a distinct clade that shares a most recent common
ancestor with the B.1.1.7 clade approximately at the same time that other B lineages diverged
(figure 8A and C). In actuality, the volume of mutations acquired by Omicron compared to
other variants has made tracing its evolution difficult. Several theories exist, including
recombination, evolution in an isolated population or a long-term infected
immunocompromised individual before spreading through a larger population, and
reintroduction into a human population after an epizootic (Khandia et al., 2022). A Jukes-

Cantor neighbor joining phylogenetic model does show a common ancestor between B.1.17



and B.1.1.529, however, other phylogenetic models do not (Kandeel et al., 2022). An
inherent constraint in modeling a pathogenic viral population through common ancestry is
that connections between samples must be made in a hierarchical manner backward in time.
Thus, the presence of common mutations between Omicron and Alpha may not be obvious
from a tree (figure 8 B and D). Our approach does not rely on estimating common ancestry.
Instead, the viral population is tracked based on changes in connectivity between actual
sampled genomes. In a case such as B.1.1.7, numerous studies have been published on the
increased transmissibility of the lineage by the time the first B.1.1.529 sample was identified
in November 2021 (Fisman and Tuite, 2021; Khandia et al., 2022; Kumar et al., 2021; Salleh
et al., 2021). Consequently, a change in connectivity between B.1.1.7 and the ancestral
cluster by a recently collected sample in early 2022, months after the last connecting sample
was collected, would alert to the new samples as variants to monitor.
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=
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Figure 8. Phylogenetic trees and networks of genomes sampled on February 1%, 2022, in
IDS (A and B) and on January 23", 2022, in PDS (C and D). The chosen dates represent the
first week a B.1.1.529 genome was sampled. The most recently collected samples that connect
clusters are numbered and highlighted with a red circle. In IDS, EPI ISL 12093290 (1) was
found to connect the ancestral cluster to the B.1.1.7 cluster by forming an edge with
EPI ISL 1762234 (2), while EPI ISL 447277 (3) and EPI ISL 7551993 (4) connected the
heterogeneous and larger B.1.617.2 clusters, respectively. In PDS, EPI ISL. 9606418 (5) and
EPI ISL 1116719 (6) connected the heterogeneous cluster with the B.1.1.7 cluster, and
EPI _ISL 453976 (7) and EPI ISL 4107688 (8) connected the heterogeneous cluster with the

B.1.617.2 cluster. Only the most recently collected connecting samples are shown for readability.

5. CONCLUSIONS
The application of phylogenetics analysis to the real-time sequencing of SARS-CoV-2 genomes
has been crucial for the monitoring of potentially concerning variants during the ongoing
pandemic. However, the static and rigid nature of the phylogenetic reconstruction imposes
limitations that can have important consequences as discussed earlier in this paper. We have
described a novel and general-purpose data representation, the dynamic epidemiological network
along with algorithms for its construction, to address this problem. Compared with the batch-
mode nature of most phylogenetic and phylodynamic methods, the proposed representation only
requires incremental computation of the network for new data and its incorporation in the
existing network based on cluster correspondences. As demonstrated by experimental results, the
proposed framework is capable of automatically identifying and tracking variants of interest such

as Alpha and Delta, along with other region-specific lineages. The experimental studies also



illustrated both the dynamic nature of variant assignment (for specific genomes), as well as the
insights that can be gained from observing changes in the spectral partitioning patterns of
temporally adjacent networks.

The proposed approach has certain limitations: large datasets were sub-sampled due to the
computational requirements of spectral partitioning and subsequent network analysis. The effect
of different sampling strategies remains an important question for further research. Currently in
the method, identification of a variant group is based, in part, on the assumption that the variant
grows substantially (in terms of collected samples) over time. This is a straightforward
assumption. However, as the virus becomes endemic, new variant populations may be smaller
than previous ones. One solution could involve preferential treatment of more recently collected
samples as compared to legacy data. Another solution may consider factors such as
infectiousness and virulence of the pathogen. Finally, like any representation method, the
proposed framework critically depends on sample collection quality and coverage. For example,
despite the rapid spread of the Omicron variant globally by early 2022 (Khandia et al., 2022), the
variant is underrepresented in our networks due to the lack of Omicron samples from from Israel
and Portugal at the time of our data collection (April 2022). This final point underscores the

centrality of high-quality disease surveillance and data collection in molecular epidemiology.
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