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ABSTRACT 

The large-scale real-time sequencing of SARS-CoV-2 genomes has allowed for rapid 

identification of concerning variants through phylogenetic analysis. However, the nature of 

phylogenetic reconstruction is typically static, in that the relationships between taxonomic units, 

once defined, are not subject to alterations. Furthermore, most phylogenetic methods are 

intrinsically batch-mode in nature, requiring the presence of the entire data set. Finally, the 

emphasis of phylogenetics is on relating taxonomical units. These characteristics complicate the 

application of classical phylogenetics methods to represent relationships in molecular data 

collected from rapidly evolving strains of an etiological agent, such as SARS-CoV-2, since the 

molecular landscape is updated continuously as samples are collected. In such settings, variant 

definitions are subject to epistemological constraints and may change as data accumulates. 



Furthermore, representing within-variant molecular relationships may be as important as 

representing between variant relationships. This paper describes a novel data representation 

framework called dynamic epidemiological networks along with algorithms that underpin its 

construction to address these issues. The proposed representation is applied to study the 

molecular development underlying the spread of the COVID-19 pandemic in two countries: 

Israel and Portugal spanning a two-year period from February 2020 to April 2022. The results 

demonstrate how this framework could be used to provide a multiscale representation of the data 

by capturing molecular relationships between samples as well as those between variants, 

automatically identifying the emergence of high frequency variants (lineages), including variants 

of concern such as Alpha and Delta, and tracking their growth. Additionally, we show how 

analyzing the evolution of the dynamic epidemiological network can help identify changes in the 

viral population that could not be readily inferred from phylogenetic analysis.   



1. INTRODUCTION 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of 

Coronavirus disease 2019 (Covid-19), has had a significant impact on the state-of-the-art in 

molecular epidemiology. From its first recorded outbreak in December 2019, the viral genome of 

SARS-CoV-2 has been sequenced and made publicly available (Wu et al., 2020). As of 

September 2022, almost 13 million genomes have been sequenced globally (Khare et al., 2021), 

providing a detailed view of the genetic variation accrued by the virus over time. Tools such as 

Pango (Rambaut et al., 2020) and Nextstrain (Hadfield et al., 2018) have utilized this data to 

reconstruct the evolution of the virus through phylogenetic analysis and has provided a 

nomenclature for emerging, genetically distinct iterations of the virus, also known as “lineages”, 

“clades” or “variants”. Phylogenetics has also contributed to the World Health Organization’s 

(WHO) working definitions for variants of interest (VOIs) and concern (VOCs) (Konings et al., 

2021). However, a classical phylogenetics-based approach may not always be sufficient for 

specifying lineages or variants of epidemiological importance, particularly for a rapidly evolving 

disease where information about variants is collected (and stabilizes) over time. For instance, 

evidence of onward transmission, persistence in a host population, and phenotypic changes are 

all examples of factors used to define variants by the aforementioned groups, that have been 

subject to change as the pandemic has progressed (Konings et al., 2021; Roemer et al., 2022).  

A Network is a powerful representation to model evolving phenomena. Among others, 

networks have been used to model transmissions in viruses, such as the human 

immunodeficiency virus (HIV) and the Hepatitis C virus (HCV) (Longmire et al., 2017; Poon et 

al., 2016). In a network representation, vertices represent viral intra-host sequences and edges 

connect genetically similar samples. Thus, possible transmission events can be represented in 



terms of the network connectivity (Little et al., 2014; Longmire et al., 2017). Building on this 

idea, this paper describes a novel data representation called dynamic epidemiological networks 

(DEN) for modeling and molecular tracking of evolving disease variants along with the 

algorithms for constructing such a representation. A DEN is defined in a data-driven manner 

from the molecular constitution of the pathogen samples collected over time in a population. 

Consequently, the DEN is explicitly parameterized by time. At a particular time-point, in a DEN, 

vertices represent sampled genomes and edges are defined between samples that are deemed to 

be genetically close. Furthermore, vertices are grouped into clusters (communities), with each 

cluster corresponding to a variant. As one proceeds from a particular time point to the next, the 

DEN represents correspondences between clusters occurring at the successive time points as 

determined by their genomic contents. If one or more samples at a particular time point are found 

to significantly differ from existing samples in the DEN, then these new samples are represented 

by a cluster of vertices that have no prior correspondences. Thus, a DEN can be used for: (1) 

identification of epidemiologically relevant variants through analysis of the clusters in the 

network, (2) tracking the evolution of variants, including the emergence of new variants and 

cessation of old ones by considering the changes in the number and constitution of clusters 

across time, and (3) obtaining insights about the evolving viral landscape by analyzing the 

cluster correspondences. Furthermore, by describing within- and between-cluster relationships, 

DENs support a multiscale data representation. This paper describes the algorithmic 

underpinnings of DENs and applies this formalism to analyze the spread of COVID-19 in Israel 

and Portugal based on over 15,000 sequenced viral samples collected from each of the respective 

populations during February 2020-April 2022. This data spans the initial wave of the pandemic 

along with the subsequent Alpha and Delta waves. We show how the DEN framework identified 



the variants of concern Alpha, Beta, and Delta, along with other region specific, high frequency 

lineages in these two countries. Furthermore, we compare the results from representing and 

analyzing the aforementioned data using DEN with those obtained using phylogenetic analysis. 

It can be seen that unlike in phylogenetic representations, samples have the freedom to “move” 

between clusters over time in a DEN and thus the variant assignment of a genome is responsive 

to changes in the overall viral population. Further, through tracking changes in the clusters of the 

DEN, emergent variants of importance can be found. For instance, the Omicron variant could be 

noted even when only one Omicron sample had been added to the network, due to its connection 

to the Alpha cluster.  

 

2. RELATED WORK 

The proposed method can be contrasted with other work in the area from two primary 

perspectives: data representation, and variant identification. From the data representation 

perspective, technically, the DEN differs from prior work in the area in two crucial ways. The 

first of these relates to the formulation for determining of network connectivity. Prior techniques 

for reconstructing HIV and HCV contact networks have employed (static) genetic distance-based 

thresholds to connect hosts, for example, as in (Campo et al., 2016; Wertheim et al., 2017). Such 

an approach is however, unsuitable for variant detection due to differences in the genetic 

diversity of different variant populations (Weng et al., 2022). For example, a distance threshold 

that successfully clusters one genetically diverse variant population may also place two distinct 

homogenous variants into one cluster. To avoid this, we create a connected network using 

relative similarity obtained via k-nearest neighbor (k-NN) computations. Nearest neighbor-based 

grouping allows samples to be connected based on genetic similarity relative to all other samples 

in the dataset rather than the connectivity being defined by a static threshold. Second, networks 



representations for studying viral populations (Little et al., 2014; Longmire et al., 2017; 

Ramachandran et al., 2018; Zarrabi et al., 2012) tend to be static in that the network structure is 

typically computed in batch-mode using the entire genomic data. Phylodynamic techniques can 

model the growth of a viral variant population (Attwood et al., 2022). However, such methods 

are often batch-mode and typically require re-computing if new samples are added. Clearly, the 

prevalence of a variant in a population varies with time. Consequently, a representation obtained 

using a static approach may obfuscate temporal information. Moreover, our understanding of the 

genetic composition of a variant can also change as more samples are collected and sequenced. 

For instance, the WHO definitions for variants correspond to an initial Pango lineage and the 

subsequently discovered sub-lineages (World Health Organization (WHO), 2022). The 

representation proposed by us, on the other hand, is based on creating a dynamic (i.e., temporally 

evolving) network, where the communities representing sample groupings can change over time 

- providing thereby an evolving perspective on the composition of variants and interactions 

between them. We conclude our review of the prior research in data representation by noting that 

modelling time-varying epidemiological dynamics through temporal networks, is as of yet, 

underutilized compared to static network models (Enright and Kao, 2018). Currently in 

infectious disease epidemiology, temporal networks have been applied to agent-based contact 

and transmission networks (Lentz et al., 2016; Ruget et al., 2021), in epidemiological models 

(Leitch et al., 2019; Nunner et al., 2021; Valdano et al., 2015), and for determining (local) 

topological patterns in contact networks (Senchyna and Singh, 2022). However, their use for 

variant identification and tracking has, to the best of our knowledge, not occurred prior to the 

current work. 



From the perspective of variant identification, we note that in phylogenetics, relatedness of 

viral genomes is determined by computing their hypothetical most-recent common ancestor. The 

output of phylogenetic analysis is therefore represented as a branched tree where the tips are the 

sampled genomes, and the internal nodes are the hypothetical ancestors. The lengths of branches 

(if determined) represent the genetic distance or the time from coalescence of samples. In a 

phylogenetic representation, clades are sub-trees within the larger tree and include all samples 

that are the descendant of one common ancestor.  Therefore, clades are used to classify a virus 

into genetically distinct “strains” or “variants” or “lineages”. Phylogenetic Assignment of Named 

Global Outbreak (PANGO) has emerged as the prominent tool for tracking evolution and naming 

of SARS-CoV-2 lineages (Rambaut et al., 2020). Their hierarchical naming system is based on 

the relative position of sampled genomes in a global SARS-CoV-2 phylogeny. All lineages are 

descendants of the two founder lineages: A and B. Descendent lineages are assigned a number, 

and each subsequent generation is separated with a ‘.’ notation. For example, B.1.17 is a 

descendant of B.1, which is a descendant of B. Given the volume of possible evolutionary 

changes, lineages are manually curated and only named if they meet certain epidemiological and 

biological criteria, such as evidence of onward transmission and at least one shared mutation 

within the lineage (O’Toole et al., 2021). Other established phylogenetic-based nomenclature for 

SARS-CoV-2 include those maintained by Nextstrain (Hadfield et al., 2018) and GISAID (Khare 

et al., 2021). Outside the techniques discussed above, methods for determining variant 

nomenclature have grouped variants by using co-mutating nucleotides and clustering (Melnyk et 

al., 2021; Qin et al., 2021). These methods are limited in their ability to model the changing 

variant population over time. Variant identification and tracking are a dynamic process. Variants 

emerge and spread in a population for a period of time, and then may secede due to human 



imposed factors (e.g., vaccinations and social distancing measures) or the emergence of a new 

more potent variant. As phylogenetic trees are static and preclude cycles, they are incapable of 

capturing such dynamics. This leads to the additional reliance on external criteria for identifying 

variants, as mentioned above. These criteria have undergone several revisions as the pandemic 

has progressed (Roemer et al., 2022; Villabona-Arenas et al., 2020), reflecting a distinction 

between estimating evolution (as is the original purpose of a phylogenetic tree) and tracking of 

epidemiologically relevant variants. 

3. METHODS 

3.1. Genomic data collection and preprocessing 

SARS-CoV-2 genomes were downloaded from the GISAID database (Khare et al., 2021) for 

two countries, Israel and Portugal. The sequences were filtered for completeness, high 

coverage, and known dates of collection, (till April 5, 2022). This resulted in 16,929 

genomes for the Israel dataset (IDS), and 19,325 genomes for the Portugal dataset (PDS). A 

reference sequence (originating from the first recorded outbreak in Wuhan, China) was 

downloaded from GenBank (https://www.ncbi.nlm.nih.gov/genbank/, accession number 

MN908947). To ensure that all sequences were of the same length, the genomes for each 

dataset were aligned to the reference sequence with MAFFT (Katoh et al., 2019). 

Subsequently, the first and last 100bp nucleotides in non-coding regions were removed from 

sequences due to the number of gaps after alignment (the mean proportion of gaps in this 

region per sequence was 38.9%). If the number of ambiguous nucleotides and/or gaps in a 

sequence was greater than 1% of the abbreviated sequence length, then corresponding sample 

was removed from further downstream analysis. Insertions and deletions (indels) were 

ignored due to lack of clarity between indels and ambiguous nucleotides. After these filtering 

https://www.ncbi.nlm.nih.gov/genbank/


steps, 16,526 and 19,097 samples remained in the IDS and PDS sets, respectively. All these 

sequences had a nucleotide length of 29,703. Further description of these data sets, 

particularly in terms of the viral lineages present, is provided in Section 4. Next, pairwise 

genetic distances were calculated as the number of sites where pairs of sequences differ in 

their nucleotide composition, divided by the total length of the sequence (hamming distance). 

Gaps in sequences were replaced with the nucleotide present in the same position in the 

reference sequence so that the hamming distance satisfied the triangle inequality. Israel and 

Portugal were chosen as sample countries due to their moderate population and geographic 

size, along with the volume of genomes that have been sequenced and made publicly 

available from each country. Additionally, the pandemic has been well documented in Israel 

due to their early mass vaccination program (Goldberg et al., 2021; Saban et al., 2022), while 

Portugal gives a snapshot of the SARS-CoV-2 spread in Europe, which was initially one of 

the hardest hit regions. The complete list of downloaded sequences and associated metadata 

are available through GISAID (DOI for dataset: 10.55876/gis8.221011cm). 

 

3.2. Data representation and sampling in the DEN 

The goal of sampling is to reduce the numerosity of the samples being considered for 

subsequent analysis without altering the fundamental patterns in the data. Subsequent to 

sequence alignment and pairwise distance calculation, a N×N distance matrix D was 

computed where each sample was characterized by its Hamming distance to all other samples 

in the dataset. Next, we used classical multidimensional scaling (CMDS) to embed D in a 

low dimensional space while minimally perturbing the inter-sample distance distribution 

(Torgerson, 1952). The dimension of the low-dimensional representation space was chosen 



to be 10 based on analyzing the eigenvalue distribution underlying CMDS (supplementary 

Figure 1), except for the first week in the PDS and for the first two weeks in the IDS. In both 

cases, due to low number of samples, CMDS led to an embedding with fewer than 10 

dimensions. The modes of the data distribution were then determined, and the data was 

sampled using the mean-shift algorithm. Mean shift is a mode finding algorithm used for 

empirically identifying the maxima of the data density function (Fukunaga and Hostetler, 

1975). The only parameter in the method is the bandwidth ℎ, of a weight determining 

function - called the kernel, making the algorithm particularly useful in problems where the 

number of clusters is not known a priori. In the following, we outline the key steps of the 

mean shift-based sampling process as used by us. 

Let X = {x1, …, xn}, where xi  R
10

 be the positional representation of genome samples 

after CMDS. The mean shift algorithm starts by randomly selecting a sample xi, and 

iteratively performs the following steps until all samples are assigned to a cluster. 

1) Weighting of each point: We employ the flat kernel, K(xi – xj), to determine the 

weight of each point, xj ∈ X. The point xj is given a weight of 1 if the distance 

between xi and xj is less than or equal to the bandwidth h, and 0 otherwise.  

𝐾(𝑥𝑖 − 𝑥𝑗) = {
1 𝑖𝑓 ‖𝑥𝑖 − 𝑥𝑗‖ ≤ ℎ

0 𝑖𝑓 ‖𝑥𝑖 − 𝑥𝑗‖ > ℎ
 (1) 

 

2) Conditional expectation: The weighted mean of X, m(x), is calculated by conditional 

expectation determined using kernel regression estimate. 

𝑚(𝑥) =
∑ 𝐾(𝑥𝑖 − 𝑥𝑗)𝑥𝑗𝑥𝑗∈𝑋

∑ 𝐾(𝑥𝑖 − 𝑥𝑗)𝑥𝑗∈𝑋
 (2) 

3) Kernel shifting: The kernel is shifted to center around m(x), such that xi → m(x), and 

steps 1) and 2) are repeated until there is convergence, i.e., xi = m(x). 



4) Iteration: The procedure is repeated on another randomly selected point until all 

points have converged to their local maxima. Points with the same maxima are 

grouped in the same cluster. 

The sampled sequences S = {s1, …, sn}, selected by us are defined to be the sequences whose 

representation in 𝑋 are the shortest Euclidean distance to their respective cluster modes. If 

multiple sequences are closest to the mode, then the sample collected earliest in time is 

chosen. This step ensures that the selected samples are either the modes or the closest data 

point(s) to the mode(s). For the viral genomic space, samples centered in locally dense 

regions represent sequences that are closely related to many other sequences. To capture 

these mutations with high resolution, a small value for h would result in many sequences 

sampled, some in sample dense regions. However, the mean shift also identifies sample from 

low-density regions if there are samples whose distance to all others is greater than h. These 

regions are of comparatively lesser interest to us since the sequences lying there often contain 

random low frequency mutations. Therefore, clusters that represent less than a fraction, f, of 

the dataset at time t are removed from the sampled set. CMDS and mean shift were 

performed at each time point t = {1, …, T} and S(t) represents the sampled sequences at each 

t.  In our studies a weekly temporal resolution was used to analyze the data. 

To determine the appropriate values for h and f, the above method was separately applied 

to each of the IDS and PDS datasets in their entirety. A range of values for h = {1 × 10−5, 

2 × 10−5, 3 ×  10−5, 4 ×  10−5, 5 × 10−5, 6 ×  10−5, 7 ×  10−5, 8 × 10−5, 9 ×

 10−5, 1 ×  10−4}, and  f = {0, 0.001, 0.0001} were tested. The values h = 2 × 10−5, and f 

= 0.0001 were empirically chosen based on sample size and inspection of sampling in a two-

dimensional space (supplementary table 1). With the chosen value for f, filtering out of low-



density sampled genomes only occurs once 10,000 samples have been collected. An 

illustration of the sequence sampling is shown in Figure 1 using data from both the IDS and 

PDS. 

 

Figure 1. Illustration of the data sampling process using a two-dimensional projection of 

the data. The two largest eigenvectors from CMDS are used as the X- and Y-axes respectively. 

The mean-shift procedure is subsequently employed to select the representative samples. 

Sampled genomes are represented in the figures as red dots and unsampled genomes are shown 

as black crosses. The top two figures are of IDS on A) July 11
th

, 2021 (n=9,095), and B) March 

27
th

, 2022 (n=16,526). The bottom two figures are PDS on C) June 20
th

, 2021 (n=8,422), and D) 

April 3
rd

, 2022. (n=19,097). Filtering of low-density clusters occurs in B) and D) but not in A) 

and C) as the number of samples in the two former figures is greater than 10,000.  



 

 

3.3. Modeling the evolution of variants 

The DEN can be thought of as a “network of networks” consisting of two-levels at which the 

data and relationships within it are represented (figure 2).  

 

Figure 2. Visualization of network formation, graph cuts and clustering, and vertex 

correspondence over time. Each network represents a week of samples from the IDS collected 

during the consecutive weeks of March 8
th

 - March 29
th

, 2020. The blue vertices are the 

persisting vertices (i.e., they were present in the previous week). The green are the new vertices 

(i.e., they were not present in the previous week), and the gray are the non-persisting vertices 

(i.e., they will not be present in the following week). Red edges denote those edges that were cut 

when partitioning the graph into clusters. These clusters are outlined with the gray dashed 

circles, which are also the vertices in the DEN. Black arrows are the directed edges in the DEN. 

For contextualization across time, two persisting samples are labeled: EPI_ISL_649099 and 

EPI_ISL_649101. These two samples were in two separate clusters on March 15
th

 (2
nd

 network 

in the figure). 

 

At the first level, for each time-point t, the undirected network G(t) = (S(t), E(t)) captures the 

similarity of samples. In G(t), the set of vertices, S(t), represents the samples and E(t) 

EPI_ISL_649101

EPI_ISL_649099

EPI_ISL_649099
EPI_ISL_649101

EPI_ISL_649099

EPI_ISL_649101EPI_ISL_649101

EPI_ISL_649099



represents the set of edges that connect samples whose genomes are deemed to be similar. In 

a network, an important notion is that of a community: a cluster of (connected) vertices that 

are more similar to each other than to other vertices. For our data, samples of the same 

variant form a community, and at each time-point t [1, T], the samples s ∈ S(t) are 

partitioned into a set of disjoint clusters, C(t) = {c1(t), …, cn(t)}. Tracking cluster dynamics in 

temporal networks is a challenging problem (Alotaibi and Rhouma, 2022; Cazabet and 

Rossetti, 2019); with the passage of time, these clusters can grow, shrink, split, merge, 

appear, and disappear. To computationally track the evolution of variants in a data-driven 

manner, a correspondence between clusters occurring at successive points in time is 

established and constitutes the second level of the network representation. The 

correspondence between clusters, is represented as a mapping between two sets of clusters at 

consecutive points in time: C(t) and C(t+1) with an edge connecting the pair of clusters (ck(t), 

cl(t+1)), where ck(t)C(t) and cl(t+1) C(t+1) if a correspondence can be established between 

them. Let  denote the set of all such correspondences between clusters at consecutive time 

points C(t) and C(t+1), t [1, T]. Then the dynamic epidemiological network DEN for the 

entire set of sampled sequences S collected over time t [1, T] is defined as given in Eq. (3). 

The set of correspondences in the DEN are represented as edges between the corresponding 

clusters: 

DEN(S)= G(t)    (3) 

 

In the following we identify and discuss four issues that are important for modeling the 

dynamics how variants evolve in our proposed framework.  

 



3.3.1 Temporal sample selection. As CMDS and mean shift operations are performed 

independently at every time-point t, the sets S(t) and S(t+1) may differ due both to the 

addition of new samples as well as the different eigenvectors defining the representation 

space. Consider two time-points t and t+1; compared to S(t), new samples may be added to 

S(t+1) as additional modes are found, and samples may be removed when modes cease to 

exist or if the corresponding cluster is small (of size less than f). Additionally, a sample in 

S(t+1) may replace another present in S(t) due to a shift in the mode. It’s necessary to 

formally specify these changes and account for them prior to downstream analysis.  

Consider the sample sets S(t) and S(t+1) and a sample st ∈ S(t) such that |𝑠𝑡 −  𝑠𝑡+1| > ℎ 

for all st+1 ∈ S(t+1). Then the vertex, vt,, corresponding to 𝑠𝑡 is deemed a non-persisting vertex 

and is present in V(t) but not in V(t+1). From a biological perspective, this implies that the 

genotype corresponding to vertex vt did not propagate to time z. If there exists a st+1 ∈ S(t+1) 

such that |st − st+1|> h for all st+1 ∈ S(t+1), then, the vertex vt+1 representing st+1is called a 

new vertex since it is present in V(t+1) but not V(t). Biologically, such vertex represents a 

genotype not observed earlier. Finally, a persisting vertex, vt+1, present in both V(t) and 

V(t+1) exists if there is a st ∈ S(t) and st+1 ∈ S(t+1) such that |st − st+1| ≤ h. In this case, the 

persisting vertex, vt+1, represents the sample st rather than st+1. It should be noted that samples 

st+1 ∈ S(t+1) that satisfy the constraint |st − st+1| ≤ h with st ∈ S(t) but do not constitute the 

closest neighbors at time-points t and t+1 represent non-persisting (new) vertices. For 

example, if there are two samples, st+1(i) and st+1(j), whose distance from the sample st ≤ h, but 

|st − st+1(i)| > |st − st+1(j)|, then the persisting vertex will be represented by st, and st+1(i) will 

represent a new vertex at time t+1. The exception to this analysis being when t =1, as there is 

no prior time-point and therefore St = Vt at the first time-point. 



 

3.3.2. Network formation. We seek to define the connectivity of G(t) in a manner that 

captures the neighborhood (proximity) relationships amongst viral variants. The approach 

described in this paper draws upon work in defining representation spaces for evolving 

phenotypic responses of parasites causing the disease schistosomiasis (Singh et al., 2018). 

Specifically, we employ parameterized neighborhood graphs, where vertices correspond to 

samples and the neighborhood relationships are represented by connecting the corresponding 

vertices to indicate relative genetic similarity. In particular, we use the family of k-nearest 

neighbor graph (NNG), with the parameter k characterizing each network as described below. 

For a fixed t, consider G(t) comprising n samples {s1, s2, … sn}. Let 𝜑𝑘 denote the NNG 

for scale parameter k. 𝜑𝑘 is defined as shown in Eq. (4), where for each sample si, dm(si) 

denotes the 𝑚𝑡ℎ closest sample in terms of their genetic distance. That is, d1(si) denotes the 

closest genotype to si, d2(si) denotes the second closest genotype to si and so on.  

𝜑𝑘 = (𝑉, 𝐸): 𝑉 = {𝑠, … , 𝑠𝑛} ˄ (𝑠𝑖, 𝑠𝑗) ∈ 𝐸, 𝑖𝑓 𝑠 = 𝑑𝑘(𝑠𝑖) (4) 

The complete connectivity structure for G(t) at a time point t can therefore be obtained by 

considering all possible k-nearest neighbor graphs as shown in Eq. (5). The reader may note 

that such a representation would be multi-scale and capture the entirety of the neighborhood 

information present between the samples. In practice, we iterate up to the nearest neighbor 

value n, at which the number of connected components in G(t) equals 1.  

𝜑 = 𝜑1 ∪ 𝜑2 ∪ … ∪ 𝜑𝑛 (5) 

We note that the nearest neighbor relationship may be computed either directly using the 

genetic distances or via Euclidean distances between the corresponding points in the low-

dimensional CMDS embedding. To empirically assess and best preserve consistency in k 

across time, we evaluated the network formation using both these options. Comparing the 



former to the latter, the median for k increased from 21 (interquartile range, IQR, 4-71) to 31 

(IQR, 8-302) in IDS, and from 50 (IQR, 11-74.75) to 99 (IQR, 84.25-214) in PDS. The 

substantially higher variation associated with the lower dimensional embedding led to the use 

of the original distance matrix for network formation. 

 

3.3.3 Cluster identification. We use Laplacian spectral partitioning for detecting 

communities. This method does not assume prior knowledge of the number of communities 

in the data. For each graph, G(t), community detection via spectral clustering is performed by 

recursively splitting the graph through Laplacian eigendecomposition. The graph Laplacian 

L(G) for the graph G, is calculated as follows:  

𝐿(𝐺) = 𝐷(𝐺) − 𝐴(𝐺)  (6) 

In Eq. (6), D(G) is the diagonal degree matrix of G(t) and A(G) is the adjacency matrix. The 

eigendecomposition of L(G) clusters vertices into two subgraphs g1 and g2, with the 

approximate minimum cut (Fiedler, 1973). By taking the eigenvector corresponding to the 

second smallest eigenvalue, the vertices are split such that those with an eigenvector value 

greater than a partition value, in this case 0, are placed in g1 and the remaining vertices are 

placed in g2. Each of the subgraphs g1 and g2 can be recursively cut (subdivided) following 

the same procedure until the resultant subgraphs contain only one vertex. However, this 

would be uninformative for community detection. Therefore, to stop the recursive division 

process at the point at which communities are well clustered together, certain cuts can be 

rejected based on their quality (i.e., the proportion of edges removed). This can be assessed 

by the normalized cut value, nc:  



𝑛𝑐 =
𝐼𝑃𝐶(𝑔1, 𝑔2) 

𝑣𝑜𝑙(𝑔1)
+  

𝐼𝑃𝐶(𝑔1, 𝑔2) 

𝑣𝑜𝑙(𝑔2)
 (7) 

In Eq. (7), the inter-partition connectivity (IPC) of g1 and g2 is the number of edges needed to 

be removed to partition the graph and vol(gx) denotes the number of edges connected to the 

vertices in gx before the cut. The value of nc increases as the proportion of edges needing to 

be removed increases. Therefore, a cut threshold r, is used to reject cuts with large values of 

nc. The network formation and community detection procedure can be summarized in terms 

of the following four steps: 

1) The network, G(t), is formed (Algorithm 1). 

2) Spectral clustering splits G(t) into g1 and g2. 

3) If the nc of G(t) > r the cut is rejected, and no communities within G(t) are found. 

4) If the normalized cut of G(t) ≤ r, the graphs g1 and g2 are each recursively split using 

spectral partitioning until no further cuts meet the acceptability threshold r. 

The subgraphs found with this procedure are the clusters, C(t), within G(t). Several values 

were tested for r (0.001, 0.005, 0.01, 0.05, 0.1, 0.5), and r = 0.1 was chosen for its better 

overall performance (Supplementary table 2 and 3). A list of all parameters and values used 

for network formation are given in table 1. 

 Table 1. Parameters for data sampling, network formation, and community detection 

Parameter (symbol, if used)  Section Applied Value 

Number of eigenvectors Dimensionality of mean shift sampling 10 

Bandwidth (h) Mean shift sampling and node selection 2 × 10
-5 

Filter (f) Mean shift sampling 1 × 10
-4

 

Cut threshold (r) Community detection 0.1 



Laplacian Threshold Community detection  0 

 

3.3.4. Determining correspondences between clusters over time. For each pair of clusters, ck(t) 

and cl(t+1), where ck(t) ∈ C(t) and cl(t+1)∈ C(t+1), if there are sampled genomes in common, 

then the two clusters are defined to have a correspondence. Such a cluster correspondence is 

represented by a directed edge between the two clusters in the DEN.  

 

3.3.5. Analyzing the network evolution process. With the above methodology, the DEN can 

characterize the evolution of the disease in terms of the appearance, disappearance, and 

merging/splitting of viral genotype clusters over time. If only a single viral lineage were to 

persist over time, then the DEN would consist of a series of vertices having a one-to-one 

relationship across time. In other words, every vertex in the network would have an indegree 

and outdegree no greater than 1 with the corresponding clusters putatively increasing in size 

over time. However, during real-world outbreaks as a virus spreads, mutations are 

accumulated. In some cases, certain mutations translate to an evolutionary advantage, 

resulting in increased spread and thus an increase in the observed frequency of this 

mutation(s). Eventually, accumulated changes can lead to a new variant. In our directed 

network, this phenomenon is represented by a “split” in a cluster, where a vertex at time t has 

an outdegree greater than one connecting it to multiple vertices at time t+1. It can also be the 

case that a variant fails to grow, or that it does not become sufficiently distinct from the rest 

of the viral population. In such a case, the cluster containing this variant at time t may 

“merge” into another cluster at time t+1. A merging of clusters is represented as a vertex at 

time t+1 with an in-degree greater than one. Clearly, the difference between S(t) and S(t+1) 



due to sampling may lead to splitting and merging events. For instance, the nearest neighbors 

of a sample can change with the removal and/or addition of samples in the network. 

Moreover, sampling can also indirectly cause splitting and merging events. This occurs when 

a change in sampling leads to a change the value of k in the k-nearest neighbors network 

formation. The readers may recall that the value used for k is the minimum number of nearest 

neighbors a sample is required to form an edge with, in order to create a connected graph. In 

the viral networks considered by us, it is often the case that groups of samples share the same 

nearest neighbors, and so as the group increases in size, k must be increased in order to 

connect a group to the remainder of the samples in the network. This change in k can cause 

groups to merge and split, even if there is no change in sampling in the group itself. This 

situation has parallels in phylogenetic analysis and more generally in clustering: a group of 

samples that are a distinct clade at time t may appear as a small sub-clade at time t+1 with the 

addition of new samples that form a much larger subsuming clade. Further analysis of the 

approach using the entire IDS and PDS are presented in Section 4.  

 

4. EXPERIMENTS AND RESULTS 

4.1. Description of datasets 

4.1.1. IDS. Samples were collected for 97 non-consecutive weeks between February 23
rd

, 

2020, and March 27
th

, 2020. There were 227 distinct lineages present in the dataset. The 

majority (52.75%, 8,717/16,526) were the B.1.617.2 and descendant lineages (Delta), with 

descendant lineages comprising 95.98% (8,367/8,717) of the B.1.617.2 group. Lineage 

B.1.1.7 (Alpha) followed B.1.617.2 by prevalence (31.54%, 5,213/16,526). B.1.1.7 

descendant lineages were less than 1% (49/5,213) of the B.1.1.7 group. The WHO classified 

variants, Beta (lineage B.1.351 and descendants) and Omicron (B.1.1.529 and descendants) 



were found to be approximately 0.8% (131/16,526) and 0.8% (132/16,526) of the dataset, 

respectively. Other lineages of notable frequency, including their respective descendants, 

were B.1.1.50 (5.97%, 987/16,526), B.1.362 (2.27%, 375/16,526), and B.1.1.294 (0.5%, 

90/16,526). Of the remaining lineages, B.1.1 was 0.5% (86/16,256), B.1 was 1.8% 

(293/16,526), and B was less than 0.01% (6/16,526). Lastly, 0.08% (13/16,526) of samples 

were within the A lineage group, and the remaining samples comprised of 77 B sub-lineages 

not outlined here (3.5%, 574/16,526). The relative frequency of these lineages over time can 

be seen in figure 3A. As many lineages were low frequency, sub-lineages were grouped with 

their ancestral lineages unless otherwise stated. In the initial year of the pandemic, B.1 was 

the most frequent lineage, followed by B.1.1, B, and A. By December 2020, lineage B.1.1.7, 

B.1.1.50, and B.1.362 began to emerge and grow until approximately September 2021, when 

B.1.617.2 became dominant.  

 

Figure 3. Changes in the proportions of each lineage group in the dataset and cluster sizes 

in the DEN, over the period of analysis. Actual proportions of the entire datasets are shown in 

(A) IDS and (B) PDS. The cluster sizes in the DEN over the entire tracked period are shown in 

1

2

4

5

4



(C) IDS and (D) PDS. The color-coding of each lineage group in (A) and (B) and the 

corresponding cluster in (C) and (D) is shown in the figure legend. Clusters are numbered in the 

order of their emergence and the color of a cluster corresponds to the majority lineage of that 

cluster. Clusters that are not predominantly one lineage group are called “heterogenous”. 

Changing cluster sizes in (C) and (D) approximately follow the growth of the lineage groups in 

(A) and (B), respectively. A major exception being B.1.1.50 in IDS, which fails to becomes a 

cluster (A and C). The size of the heterogeneous cluster is also approximately equivalent to the 

combined size of those lineages that are in decline (e.g., lineages A, B, B.1).  

 

4.1.2. PDS. The first sample collected was on March 1
st
, 2020, after which samples were 

collected for 99 non-consecutive weeks until April 1
st
, 2022. The dataset contained 254 

distinct lineages. Lineage B.1.617.2 and descendants comprised 60.6% (11,574/19,097); 

98.12% (11,357/11,574) of which were descendant lineages. B.1.1.7 and descendants were 

20% (3,825/19,097) of the dataset. The majority of this group was the B.1.1.7 lineage itself 

(99.4%, 3,802/3,825), with only 0.6% (23/3,825) being descendants of the B.1.1.7 lineage. 

The lineages B.1.177 and B.1.160 along with their descendants were 6.53% (1,247/19,097) 

and 1.6% (307/19,097) of the dataset, respectively. Other WHO defined variants Omicron 

(B.1.1.529 and descendants), Gamma (P.1 and descendants), and Beta (B.1.351 and 

descendants) only reached 0.43% (83/19,097), 0.81% (154/19,097), and 0.41% (78/19,097) 

of the collected samples by the end of the tracked period, respectively. Of the ancestral 

lineages, the B lineage comprised 0.2% (24/19,097) of the dataset, while B.1 comprised 1.7% 

(321/19,097) and B.1.1 comprised 3.3% (635/19,097). In addition to the B lineages already 

mentioned, there were 77 more lineages which, when combined, comprised 4.2% 

(810/19,097) of the dataset. The remaining samples were within the A lineage (0.3%, 



55/19,097). B.1.1 was found to be the dominant lineage in the first months of the pandemic 

(Figure 3B). Subsequently, B.1.1.7, B.1.177, and B.1.160 grew in frequency from late 2020 

onward, until the emergence and dominance of the B.1.617.2 strain beginning in the latter 

half of 2021. Like IDS, sub-lineages were grouped with their ancestral lineage unless stated 

otherwise in the figure caption. 

 

4.2. Assessment of clustering by graph cuts  

4.2.1. Cluster Correspondences. The DEN for each dataset can be seen in figures 4 (IDS) and 

5 (PDS). Vertices are represented as pie charts which shows the Pango lineage-composition 

of each cluster. The numbers overlayed on the vertices identify the clusters they represent in 

the network. Obviously, a cluster propagates in time if it has a one-to-one correspondence 

with another cluster across time. However, clusters may also merge and/or split. 

Additionally, there are instances where a merge is immediately followed by a split, such as 

on February 7
th

, 2021, in figure 4. In such cases, determining the similarity of clusters in 

terms of their sample composition before and after a split/merge may be of interest. Such 

similarity is difficult to determine by considering the edges of the directed network alone. 

Therefore, to find cluster correspondence in the absence of a one-to-one relationship, we 

determine the Jaccard index between all previously identified clusters and the merged or split 

cluster. The Jaccard index measures the similarity between two sets, 𝐶𝑥 and 𝐶𝑦, as the size of 

their intersection divided by the size of their union: 

𝐽(𝐶𝑥, 𝐶𝑦) = (|𝐶𝑥  ∩  𝐶𝑦| |𝐶𝑥 ∪ 𝐶𝑦|⁄ ) (8) 

The range of the Jaccard index, 𝐽(𝐶𝑥, 𝐶𝑦), is a number between 0 and 1, where 0 implies the 

absence of the sets being compared overlapping while 1 implies a complete overlap between 

the two sets. To assess if there was a correspondence between a cluster, A, at time t and a 



previously identified cluster, the Jaccard index is calculated between the set of persisting 

samples in cluster A and the set of persisting samples in all previously identified clusters. 

Cluster A is said to corresponded with a previous cluster if it (a) has a maximum overlap with 

the cluster in question (as given by the Jaccard index) among all other candidate clusters, and 

(b) the value of the Jacquard index exceeds the (empirically set) threshold of 0.6 (i.e., the 

majority of persisting samples moved into cluster A). This resulted in 15 cluster 

correspondences in IDS and 11 in PDS.  

 

4.2.2. Cluster correlation with Pango lineages. Many clusters were found to approximately 

align with Pango lineage-groups. In IDS, cluster 2 contained a majority of B lineage samples, 

cluster 3 contained samples of lineage B.1.1, cluster 5 and 6 were mostly lineage B.1, cluster 

7 and 10 comprised lineage B.1.1.7, and clusters 12, 13, 14, and 15 aligned with lineage 

B.1.617.2, with cluster 15 comprising completely of the descendant lineage, AY.121 (alias of 

B.1.617.2.121). Cluster 1 and cluster 4 were less specific; cluster 4 in particular occurred due 

to the merging of other clusters (figure 4). Similarly, in PDS, cluster 1 corresponded to the 

lineage B.1.1, cluster 2 to lineage B.1, cluster 3 to lineage B, cluster 4 to lineage A.2, cluster 

5 to lineage B.1.160, cluster 6 to lineage B.1.177, cluster 9 to lineage B.1.1.7 and cluster 11 

to lineage B.1.617.2 respectively. Clusters 7, 8, and 10 were a combination of multiple 

merged clusters (Figure 5). The cluster formation underlying the DEN can be assessed in 

terms of precision, recall and accuracy. To explain the logic underlying such an assessment, 

let a lineage group simply imply a lineage and all those descendants that are not a majority 

lineage in another cluster at the same time-point. Then, for each cluster cx(t) ∈ C(t), s(l) ∈ cx(t)  

are the samples in cx(t) corresponding to the samples of the majority lineage group of cluster 



cx(t) (true positives), s(l) ∈ cx(t) are the samples in cx(t) corresponding to the samples that are 

not the majority lineage group of cluster cx(t) (false positives), s(l) ∈ cx(t) are the samples not 

in cx(t) whose lineage is the majority lineage group of cx(t) (false negatives) and s(l) ∈ cx(t) are 

the samples not cx(t) and whose lineage are not the majority lineage of cx(t) (true negatives). 

The measures of cluster assessment can now be defined as follows:  

Precision (P) =  
∑ 𝑠(𝑙) ∈ 𝑐𝑥(𝑡)

∑ 𝑠 ∈ 𝑐𝑥(𝑡) 
 (9) 

Recall (R) =  
∑ 𝑠(𝑙) ∈ 𝑐𝑥(𝑡)

∑ 𝑠(𝑙) ∈ 𝑐𝑥(𝑡) + ∑ 𝑠(𝑙) ∈ 𝑐𝑥(𝑡)′
 (10) 

Accuracy (A) =  
∑ 𝑠(𝑙) ∈ 𝑐𝑥(𝑡) + ∑ 𝑠(𝑙′) ∈ 𝑐𝑥(𝑡)′ 

∑ 𝑠 ∈ 𝐺(𝑡)
 (11) 

The average results over all time points and clusters of the same lineage groups can be 

found in table 2 and table 3. There was a low average precision for clustering the B lineage in 

both datasets (0.74 in IDS and 0.78 in PDS) as it was clustered with the A lineage. Lineage 

B.1 clustering had a high precision in both datasets (0.96 in IDS and 0.98 in PDS) but a low 

recall (0.63) in IDS due to its split between the two clusters 4 and 5 and subsequently 5 and 

6. Clustering B.1.1 lineage (IDS and PDS) and A.2 lineage (PDS) were at least 0.97 in all 

measures. The average precision, recall, and accuracy for clustering B.1.1.7 was above 0.99 

in both datasets. These measures remained high for B.1.1.7 in IDS as even though there were 

two B.1.1.7 clusters present in the DEN at the same time (cluster 7 and 10), cluster 10 was 

very small, comparatively, and only lasted one week. However, the multiple clusters (clusters 

12, 13, and 14) over multiple weeks did have an impact on the recall (0.78) and accuracy 

(0.94) for clustering B.1.617.2 in IDS, while these measures were all 1 for B.1.617.2 in PDS. 

Precision, recall, and accuracy were all 1 for lineage AY.121 in IDS, and all measures were 

at least 0.96 for the region-specific clusters of B.1.362 (cluster 9) and B.1.351 (cluster 11) in 



IDS, and B.1.160 (cluster 5) and B.1.177 (cluster 6) in PDS. Clustering of B.1.1.294 in IDS 

had a slightly lower precision (0.91), recall (0.84), and accuracy (0.95) as a portion of 

B.1.1.294 samples were in cluster 4. 

 

4.2.3. Normalized cuts. The normalized cut values obtained during the initial cluster 

identification can be seen in figure 6A. The median values are 4 × 10−3 (interquartile 

range, IQR, 3 × 10−4 − 2 × 10−2) and 5 ×  10−3 (IQR, 8 ×  10−5 − 3 ×  10−2) in IDS 

and PDS, respectively. As the vast majority of these cuts are well below the 0.1 threshold, 

this indicates that the clusters are not an artefact of the normalized cut threshold parameter 

but represent fundamental patterns in the data. To further assess the quality of the clustering, 

the normalized cut values were investigated for each of the cluster correspondences, 

separately, in both datasets (figures 6B and C). Given that the normalized cuts were initially 

obtained recursively (i.e., they may have been calculated over a subnetwork rather than the 

entire network), equation (5) was repeated for each cluster with g1 as the cluster of interest 

and g2 as the remainder of the network. Figures 6B and 6C show that the clusters with the 

highest median normalized cut value either 1) had a short temporal duration in the DEN or 2) 

split and merged with another cluster several times. In IDS, clusters 2, 3, 5, 6, 10, and 15 had 

the highest median normalized cuts, those being 0.05 (IQR, 0.04-0.05), 0.08, 0.03 (IQR, 

0.03-0.03), 0.07 (IQR, 0.06-0.08), 0.05, and 0.09 (0.08-0.09), respectively. Clusters 2 and 15 

split and merged from clusters 4 and 12, respectively, on at least two occasions. While 

clusters 3, 4, 6, and 10 were only present in the network for at most two weeks. Similarly, 

cluster 4 in PDS split and merged from cluster 3 on three occasions and had the highest 

median normalized cut 0.06 (IQR, 0.06 – 0.06), equal only with cluster 8 (0.06, IQR, 0.06 – 



0.06). Cluster 8 was present in the directed network for only 2 weeks (January 3
rd

 – 10
th

, 

2021), the shortest duration of any cluster in PDS. 

Conversely, those cluster correspondences present in the directed network for the longest 

duration had some of the lowest median normalized cuts in the dataset. Specifically, the 

clusters that were large in size and specific for one variant. This included cluster 7, the 

B.1.1.7 majority cluster, and cluster 12, the B.1.617.2 majority cluster, in IDS, which had the 

median normalized cuts 9 × 10−5  (IQR, 5 ×  10−5  - 5 ×  10−3),  and 9 ×  10−4  (IQR, 

3 × 10−4  - 2 × 10−3), respectively. In PDS, also, it was the clusters corresponding to the 

lineage groups B.1.1.7 (cluster 9) and B.1.617.2 (cluster 11) that had the lowest median cut 

vale of 4 ×  10−5 (IQR, 3 × 10−5  - 6 × 10−3) and 4 ×  10−3  (IQR, 2 ×  10−3  - 

8 × 10−3), respectively, along with cluster 10, which had a median normalized cut of  

4 × 10−3  (IQR, 5 × 10−5  - 7 ×  10−3).  



Table 2. Precision, recall, accuracy, and proportion of active period covered by clusters for a specific lineage group in the IDS. 
The column “Cluster week(s)” lists the specific weeks a given cluster was found to be present in the network. The column titled 

“Proportion collected at splitting” represents the proportion of total samples of a lineage collected before it became a cluster. The 

proportion of samples of a lineage collected while the cluster was present in the network is given by the difference between the 

corresponding proportion collected at splitting values and proportion collected at merging values. 

Lineage Clusters Precision Recall Accuracy Cluster week(s) 

 Proportion 

collected at 

splitting (n/N) 

Proportion 

collected at 

merging (n/N) 

B 

  

0.74 1.00 0.93 

Mar 15
th

-22
nd

, 2020 0.33 (8/24) 0.75 (18/24) 

2 Apr 5
th

, 2020 0.88 (21/24) 1.00 (24/24) 

  Apr 19
th

-Jul 20
th

, 2020 1.00 (24/24) 1.00 (24/24) 

B.1 

  

0.96 0.63 0.68 

Mar 15
th

-22
nd

, 2020 0.03 (20/612) 0.14 (88/612) 

  Apr 5
th

 2020 0.24 (148/612) 0.27 (166/612) 

5 Apr 19
th

-Jul 20
th

, 2020 0.32 (196/612) 0.37 (228/612) 

  Dec 7
th

-13
th

, 2020 0.41 (252/612) 0.4 (246/612) 

B.1.1 3 1.00 1.00 1.00 Mar 15
th

, 2020 0.01 (12/1350) 0.02 (23/1350) 

B.1.1.7 

  

1.00 0.99 1.00 

Dec 20
th

, 2020-Jan 31
st
, 

2021 
0 (1/5213) 0.34 (1749/5213) 

7 & 10 Feb 14
th

, 2021 0.42 (2168/5213) 0.45 (2364/5213) 

  
Feb 28

th
, 2021-Mar 

27
th

, 2022 
0.54 (2825/5213) 1.00 (5213/5213) 

B.1.1.294 8 0.91 0.84 0.95 
Dec 27

th
, 2020-Aug 1

st
, 

2021 
0.06 (5/90) 1.00 (90/90) 

B.1.362 9 1.00 1.00 1.00 
Dec 27

th
, 2020-Jan 

10
th

, 2021 
0.13 (50/375) 0.76 (285/375) 

B.1.351 
  

1.00 1.00 1.00 
Feb 14

th
, 2021 0.69 (91/131) 360.71 (93/131) 

11 Feb 28
th

-Aug 1
st
, 2021 0.8 (105/131) 1.00 (131/131) 

B.1.617.2 
12, 13, 

14, & 15 
1.00 0.78 0.94 

May 16
th

, 2021-Mar 

27
th

, 2022 
0.01 (63/8717) 1.00 (8717/8717) 

AY.121 15 1.00 1.00 1.00 
Feb 1

st
, 2022 1.00 (1055/1055)  1.00 (1055/1055) 

Feb 15
th

, 2022 1.00 (1055/1055) 1.00 (1055/1055) 



 

 

Table 3. Precision, recall, accuracy, and proportion of active period covered by clusters for a specific lineage group in PDS. 
Description of column headers is analogous to that in Table 2.  

Lineage Clusters Precision Recall Accuracy Cluster week(s) 

 Proportion 

collected at 

splitting (n/N) 

Proportion 

collected at 

merging (n/N) 

B.1 1 0.98 0.98 0.98 Mar 8
th

-Dec 14
th

, 2020 0.01 (9/1096) 0.54 (597/1096) 

B.1.1 2 0.97 1.00 0.99 Mar 1
st
-Dec 14

th
, 2020 0 (0/0) 0.64 (779/1212) 

B 3 0.78 1.00 0.94 
Mar 22

nd
-Dec 14

th
, 

2020 
0.36 (32/88) 1.00 (88/88) 

A.2 4 1.00 1.00 1.00 Apr 5
th

, 2020 0.73 (22/30) 0.77 (23/30) 

          Jul 5
th

, 2020 0.87 (26/30) 0.87 (26/30) 

          
Aug 23

rd
-Dec 14

th
, 

2020 
0.87 (26/30) 0.87 (26/30) 

B.1.160 5 1.00 1.00 1.00 Nov 8
th

-Dec 7
th

, 2020 0 (0/307) 0.12 (36/307) 

          Jan 3
rd

-Jan 31
st
, 2021 0.21 (64/307) 0.73 (225/307) 

B.1.177 6 0.96 1.00 0.97 
Nov 8

th
, 2020-Jan 17

th
, 

2021 
0 (6/1247) 0.71 (886/1247) 

          Jan 31
st
-Feb 21

st
, 2021 0.75 (937/1247) 0.93 (1155/1247) 

B.1.1.7 9 1.00 1.00 1.00 Jan 10
th

-Jan 17
th

, 2021 0.03 (98/3825) 0.05 (201/3825) 

          
Jan 31

st
, 2021-Apr 3

rd
, 

2022 
0.06 (246/3825) 1.00 (3825/3825) 

B.1.617.2 10 1.00 1.00 1.00 
Jun 27

th
, 2021-Apr 3

rd
, 

2022 

0.09 

(1088/11574) 

1.00 

(11574/11574) 



 

 

Figure 4. The DEN for the IDS and its evolution over time. The sample collection date is 

shown every two weeks, with the value of k and number of sampled genomes additionally shown 

for every other label. Each vertex in the network represents a uniquely numbered cluster. 

Vertices in the network are shown as pie charts, depicting the Pango lineage composition of the 
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samples in the corresponding cluster.  These lineages are color coded as shown at the bottom of 

the figure.  

 

Figure 5. The DEN for the PDS and its evolution over time. The sample collection date is 

shown every two weeks, with the value of k and number of sampled genomes additionally shown 

for every other label. Each vertex in the network represents a uniquely numbered cluster. 
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Vertices in the network are shown as pie charts, depicting the Pango lineage composition of the 

samples in the corresponding cluster. These lineages are color coded as shown at the bottom of 

the figure.  

 

Figure 6.  Box and whisker plots of normalized cuts from (A) recursive cutting of the 

network during initial cluster identification and for each cluster correspondence in (B) IDS 
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and (C) PDS. Cluster correspondence number is given on the x-axis and normalized cut values 

are on the y-axis. The plots demonstrate the observation that the majority of normalized cut 

values are well below the normalized cut threshold of 0.1 and therefore the clusters represent 

fundamental patterns in the data rather than being artefacts of the clustering algorithm. 



4.3. Case studies capturing the dynamics of viral evolution 

The period tracked for both the IDS and the PDS (figures 4 and 5) can be conceptually 

grouped into three broad stages that characterize the pandemic: 1) the first wave caused by 

the spread of the ancestral lineages, 2) the emergence of B.1.1.7 (Alpha) and other, region-

specific lineages, and 3) cessation of previous dominant lineages and rapid spread of lineage 

B.1.617.2 (Delta). In the following we examine the network evolution induced by the data in 

light of the aforementioned conceptual groupings: 

 

4.3.1. March 2020 – November 2020. Samples split into clusters corresponding to the 

ancestral lineages (lineages A, B, B.1, and B.1.1): 

A. IDS. Tracking began on February 23
rd

, 2020. For the first three weeks there was only one 

cluster: (cluster 1). On the fourth week, cluster 1 split into cluster 2 (lineages A and B), 

cluster 3 (lineage B.1.1), and cluster 4 (lineage B.1). In the two subsequent weeks, clusters 2 

and cluster 3 merged with cluster 4. By April 19
th

, 2020, cluster 2 and cluster 5 (also a 

majority B.1 lineage) split from cluster 4. The median normalized cut value for clusters 2 and 

5 was relatively high (figure 6B). Although, the median normalized cut value for cluster 4 

was low (6 ×  10−3), for its first 12 weeks (until its merging with clusters 2 and 5 on July 

19
th

, 2020), its normalized cut value was higher (>0.04) than in any subsequent week. The 

splitting and merging of these clusters along with their high normalized cut values, indicate 

that there was substantial connectivity between them during this period; sufficient 

accumulation of mutations had not occurred to support stable clusters.  

B. PDS. Clusters were found to mainly split along the lineages B (cluster 3), B.1 (cluster 1), 

and B.1.1 (cluster 2). Intermittently, a proportion of lineage A also split from the B cluster, 



leading to the cluster 4. Figure 6B shows the relatively higher normalized cut value of cluster 

4, indicating its instability as a cluster.  

 

4.3.2. November 2020 – May 2021. Beginning November 2020, a B.1.1.7 cluster and several 

other region-specific clusters emerged: 

A. IDS. Between December 20
th 

and 27
th

, 2020, clusters 7 (lineage B.1.1.7), 8 (lineage 

B.1.1.294), and 9 (lineage B.1.362) split from cluster 4. Splitting occurred less than 1% 

(45/5,213), 6% (5/90) and 13% (50/375) of samples of their respective lineages had been 

collected (table 2). Additionally, 87.3% (4,553/5,213), 87.8% (79/90), and 62.7% (235/375) 

were collected in this setting (table 2), and the growth of cluster 7 in figure 3C corresponded 

with the growth of the B.1.1.7 lineage in figure 3A. Indeed, cluster 7 reaches its peak size on 

the same week that B.1.1.7 becomes the most frequent lineage in the dataset (May 16
th

, 

2021). This is important as tracking of lineages is most relevant when the lineages are 

“active” in the population (i.e., when samples of a given lineage are being collected). The 

exception to this is cluster 11 (lineage B.1.351), which split from cluster 4 on February 21
st
, 

2021, when 69.5% (91/131) of the lineage samples had already been collected. 

Initially, cluster 7 merged and split with cluster 4 twice (January 17
th

, 2021, and February 

7
th

, 2021). Relatedly, all normalized cut values above the 75
th

 percentile of cluster 7 occurred 

during the first 15 weeks of its existence as a separate cluster (figure 6B). Its straightforward 

to conclude that the connectivity between clusters 7 and 4 fluctuated across time; particularly 

it decreased when more B.1.1.7 samples were added. An opposite observation can be made 

regarding cluster 10 - another B.1.1.7 cluster that split from cluster 7 on January 24
th

, 2021. 

During the following week, cluster 10 was found to have merged with cluster 7 and did not 



split-out again. This phenomenon was due to the fact that additional B.1.1.7 samples 

increased the connectivity between these two clusters. Generally, the majority of samples 

within each lineage that correspond to a specific cluster were collected while the cluster 

persisted in the DEN.  

B. PDS. Cluster 5 (lineage B.1.160), seen in DEN beginning November 8
th

, 2020, is the only 

example of a cluster with an indegree of 0 when time t > 1, i.e., no cluster 5 samples had 

propagated from the previous week. This is understandable as the first B.1.160 samples (n = 

35) were collected on November 8
th

, 2020. Coalescing of the B.1.160 samples in a cluster of 

their own demonstrates the ability of the network evolution model to correctly represent 

completely new data that does not conform to the existing organization of the information. 

On the same week, cluster 6 (lineage B.1.177), split from cluster 1. Then, on December 20
th

, 

2020, all persisting clusters except for cluster 6 merged into cluster 7. These clusters already 

had higher normalized cut values (figure 6B), and their proportion of the overall network 

decreased with the growth of cluster 6 (figure 3D). Beginning December 14
th

, 2020, lineage 

B.1.1.7 became its own cluster in two stages. First, cluster 2, the majority B.1.1 cluster, and 

cluster 8 split from cluster 7. Then, cluster 9 (lineage B.1.1.7) split from cluster 2 when only 

4% (170/3,825) of B.1.1.7 samples had been collected (table 3). Subsequently, cluster 2 

merged back with cluster 8. Like IDS, cluster 9 merged with the heterogenous cluster 7 in the 

initial weeks of its persistence. As cluster 9 continued to grow and encompassed a larger 

proportion of the network, clusters 5 and 6 merged with cluster 7. For lineage collections, 

62.9% (193/307) of B.1.160, 73.2% (913/1,247) of B.1.177, and 96.3% (3,683/3,825) of 

B.1.1.7 samples were collected while each lineage was as a persisting cluster in DEN. Again, 



the week B.1.1.7 was the most frequent in the dataset (May 9
th

, 2021) aligned with the week 

cluster 9 was the largest in size (figure 3B and D).  

 

4.3.3. May 2021 – April 2022. Smaller, region-specific clusters merged together and 

B.1.617.2 (Delta) became a cluster:  

A. IDS. Cluster 12 (lineage B.1.617.2) split from cluster 4 on May 16
th

, 2021, when less than 

1% (69/8,717) of B.1.617.2 had been collected. In the weeks following, it split again into two 

further clusters: clusters 13 and 14. Both of these clusters were very small, with an average of 

72.6 samples in cluster 13 and 30.2 samples in cluster 14 compared to 417 samples in cluster 

12. Clusters 13 and 14 did not grow (figure 3C), but instead merged back with cluster 12 as 

more B.1.617.2 samples were added. On February 1
st
 and 15

th
, 2022, cluster 15 split twice 

from cluster 12. Cluster 15 comprised only of the sub-lineage AY.121 (alias of 

B.1.617.2.121). Although this splitting indicates a substantial within connectivity of this sub-

lineage compared to its connectivity to other sub-lineages, its normalized cut value was still 

quite high (figure 6B), and so it merged back with cluster 12. Additionally, 100% of samples 

of lineage AY.121 had already been collected before the split (table 2), further enforcing that 

this cluster was not sustainable as there was no further growth of the corresponding lineage.  

B. PDS. Samples of lineage B.1.617.2 split from cluster 10 on June 27
th

, 2021, when 13% 

(1,521/11,574) of B.1.617.2 samples had been collected. After this split, the cluster continued 

to grow in size to become the dominant cluster (figure 3D), and there were no further 

splitting or merging events in the remaining of the tracked period.  

 



With few exceptions, lineage groups that became clusters were also the most frequent 

lineages in the dataset. The exception in PDS was lineage B.1.91 (n=207), which reached a 

frequency of 0.18 on March 22
nd

, 2020, but never became a cluster. The lineage remained 

highly connected with other B lineages. On average, a B.1.91 sample had 8.2 neighbors of 

the same lineage and 5.2 neighbors of another lineage.  

Lineage B.1.1.50, the third largest lineage group in IDS (n=987) also never became a 

cluster. Again, this was due to its high connectivity to samples outside its own lineage. For 

example, on the week of December 27
th

, 2020, when B.1.1.50 reached its peak of 33% of the 

dataset (n=225), the smaller lineages B.1.362, B.1.1.294, and B.1.1.7 were all clusters. The 

latter three lineages had an average of 0.4, 0.05, and 0.3, neighbors outside of their lineage, 

respectively, while B.1.1.50 samples had an average of 3.1 neighbors outside their lineage. 

This was also seen with the B.1.177 (n=167) lineage in IDS which reached a frequency of 

3% on January 17
th

, 2021, higher than the 2% reached by B.1.1.294 (n=90). During its peak 

in the dataset, B.1.177 samples had on average 3.63 neighbors outside their lineage compared 

to the average of 0.06 in B.1.1.294. 

 

4.4. Comparison with Phylogenetic trees 

A DEN models ongoing interactions between viral samples through time and is updated as 

new data is gathered. Phylogenetic trees on the other hand need to be recomputed when new 

genomes are collected. In phylodynamics, which involves the prediction of epidemic spread 

through phylogenetic analysis (Volz et al., 2013), the aforementioned limitation persists: 

when new information is added, predictions or classifications are made solely based on the 

recomputed tree, with no explicit incorporation of information from the previous tree. By 

definition, a variant is simply a mutational change in the genome. However, in the 



epidemiological and public health context, genomes are grouped into a variant by both shared 

genotypic and phenotypic traits. Therefore, characterization of variants using mutations is a 

dynamic process, putatively changing over time as more genomes are collected and a better 

understanding of the molecular basis of the variant is developed. By modeling variant 

clustering as dynamic entities, several aspects of variant identification and tracking can be 

approached from a new perspective – as we show in the following for the problems of variant 

classification and determination of relationships between variants. 

 

4.4.1. Dynamic clustering of samples. Ideally, emerging variants would form a distinct 

subgroup, genetically separate from all other samples in the population. In reality, due to 

homoplasy, reverse mutations, and lack of complete data, there may exist ambiguity in the 

variant designation of some genomes. For example, a genome can be placed on an isolated 

branch that is equidistant to multiple clades. The variant designation of this genome is 

susceptible to change depending on the addition of genomes sampled with the passage of 

time. The phylogenetic approach requires the continual monitoring of clades being formed as 

well as the manual upkeep of lineage designations (O’Toole et al., 2021). Another approach, 

as enacted by us, is to model such movement(s) between clades or clusters as a function of 

the known viral genomic landscape at that time. Therefore, analysis is focused on the 

changing viral landscape rather than the classification of each genome. In the directed 

network, such movement of samples between clusters occurs when a vertex at time t is the 

receiver of samples from both a split and a merge; that is, the vertex has an indegree greater 

than one and at least one of its connecting vertices from time t-1 has an outdegree greater 

than one. This can be seen between the B.1.1.7 cluster and the heterogenous cluster in IDS on 



several occasions (January 31
st
, February 7

th
, March 14

th
, and 21

st
, April 4

th
, and July 25

th
, 

2021, figure 4). In total, six samples were moved between the two clusters: EPI_ISL_944231 

(B.1), EPI_ISL_1278513 (B.1.1.50), EPI_ISL_944228 (B.1), EPI_ISL_944230 (B.1.1.50), 

EPI_ISL_889113 (B.1.1.50), and EPI_ISL_1278514 (B.1.1). The ambiguity of their 

clustering is reflected in both the phylogenetic tree (figure 7A), where they share a most 

recent common ancestor with the B.1.1.7 clade, and the network (figure 7B), where they 

connect to several vertices in both clusters. In PDS, this also occurs once on January 17
th

, 

2021. Sample EPI_ISL_1138825 (B.1) moves from the B.1.160 to the heterogeneous cluster. 

Similar to the example in IDS, the sample shares a most recent common ancestor with the 

B.1.160 clade (figure 7C) and has connections to both clusters in the network (figure 7D). 

Modeling this uncertainty not only gives an accurate description of the position of those 

genomes in the genomic space at a given time, but it also provides information on the degree 

of separation of the clusters that share samples. Although the relationship of clades or 

clusters can be inferred by the hierarchical structure of the phylogenetic tree, it is assumed 

that this relationship is not dynamic, i.e., ancestor-descendant clades cannot move closer or 

further away from each other in time. 



 

Figure 7. Phylogenetic trees of genomes sampled on July 25
th

, 2021 (A and B) in IDS, and 

January 24
th

, 2021 (C and D) in PDS. The circled and numbered vertices represent samples 

that were observed to move between clusters. Samples 1-6 (EPI_ISL_944231, 

EPI_ISL_1278513, EPI_ISL_944228, EPI_ISL_944230, EPI_ISL_889113, and 

EPI_ISL_1278514) moved between the B.1.1.7 cluster (cluster 7) and the heterogeneous cluster 

(cluster 4) from March 7
th

 until July 25
th

, 2021. Sample 7 moved from the B.1.160 (cluster 5) to 

the heterogeneous cluster (cluster 10) on January 24
th

, 2021. In each dataset, phylogenetic trees 

show the labelled samples are situated between clades of the two corresponding clusters, 

respectively (B and D). Maximum Likelihood phylogenetic trees were built with the Nextstrain 

CLI (Hadfield et al., 2018).  
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4.4.2. Dynamic connections between clusters. In Phylogenetics, relationships between clades 

are established by estimating their most recent common ancestor, which is represented by an 

internal node connecting the clades in the tree. In our method, connecting vertices of 

different clusters establish the relationship between them. These vertices represent a “bridge” 

between two clusters. They are the vertex or vertices in a cluster, who have at least one k-

nearest neighbor(s) in another cluster. Unlike phylogenetics, the connecting samples are 

actual genomes. This is beneficial because connections between clusters can be compared 

across time. The distinctions in groupings does lead to distinctions in interpreting the data. 

By focusing on the temporal dynamics of the connections between the heterogeneous cluster 

and the clusters that derive from it due to splitting events (beginning November 2020), 

different patterns emerge. In several instances, there is a temporal delineation between the 

connecting samples in the ancestral cluster and the split cluster. Across all time-points, the 

heterogeneous cluster samples connected to the B.1.617.2 cluster were collected when less 

than 1% (87/8,717) of B.1.617.2 samples were collected in IDS, and before any were 

collected in PDS. Lineages B.1.1.294 and B.1.351 became clusters on December 27
th

, 2020, 

and February 14
th

, 2021, respectively, and remained clusters until August 8
th

, 2021. All the 

while, they remained connected to the heterogeneous cluster by samples collected before 

May 2020. In other clusters, such as B.1.362, and B.1.160 and B.1.177, samples within each 

cluster and those they connected to in the heterogeneous cluster were collected 

contemporaneously. 

Interestingly, connecting samples in the heterogeneous cluster can also be collected 

several months after the last sample in the split cluster was collected. All samples in the 

B.1.1.7 cluster were collected by July 11
th

, 2021, and August 8
th

, 2021, in IDS and PDS, 



respectively. Initially, all connecting samples in the heterogeneous cluster were collected 

before May (IDS) and July (PDS) 2021. However, in January (PDS) and February (IDS) 

2022, this changed. During this time, the first B.1.1.529 (Omicron) genome was sampled and 

was added to the heterogeneous cluster. This sample became the sole connecting sample to 

B.1.1.7 in both datasets. Up to three additional B.1.1.529 samples were added during the 

remaining of the tracked period and connected to the B.1.1.7 cluster. It was found that a 

combination of mutations was common to all connecting B.1.1.529 samples and a majority of 

samples in the B.1.1.7 clusters. These included C241T, C3037T, and C14408T in ORF1ab, 

A23063T, A23403G, and C23604A in the spike protein, and G28881A, G28882A, and 

G28883C in the nucleocapsid. The three nucleocapsid mutations, in particular, are 

characteristic of B.1.1.7 and are thought to be associated with increased transmissibility (Tao 

et al., 2021). Individually, a portion of these mutations are found at a high frequency in both 

datasets (>99%). However, in combination, they are in 93.9% (124/132) and 100% (83/83) of 

B.1.1.529, 98.8% (5,151/5,213) and 98.8% (3,779/3,825) of B.1.1.7, and less than 0.1% 

(5/11,181 and 9/15,189) of the remaining samples of IDS and PDS, respectively. In the 

phylogenetic tree, B.1.1.529 forms a distinct clade that shares a most recent common 

ancestor with the B.1.1.7 clade approximately at the same time that other B lineages diverged 

(figure 8A and C). In actuality, the volume of mutations acquired by Omicron compared to 

other variants has made tracing its evolution difficult. Several theories exist, including 

recombination, evolution in an isolated population or a long-term infected 

immunocompromised individual before spreading through a larger population, and 

reintroduction into a human population after an epizootic (Khandia et al., 2022). A Jukes-

Cantor neighbor joining phylogenetic model does show a common ancestor between B.1.17 



and B.1.1.529, however, other phylogenetic models do not (Kandeel et al., 2022). An 

inherent constraint in modeling a pathogenic viral population through common ancestry is 

that connections between samples must be made in a hierarchical manner backward in time. 

Thus, the presence of common mutations between Omicron and Alpha may not be obvious 

from a tree (figure 8 B and D). Our approach does not rely on estimating common ancestry. 

Instead, the viral population is tracked based on changes in connectivity between actual 

sampled genomes. In a case such as B.1.1.7, numerous studies have been published on the 

increased transmissibility of the lineage by the time the first B.1.1.529 sample was identified 

in November 2021 (Fisman and Tuite, 2021; Khandia et al., 2022; Kumar et al., 2021; Salleh 

et al., 2021). Consequently, a change in connectivity between B.1.1.7 and the ancestral 

cluster by a recently collected sample in early 2022, months after the last connecting sample 

was collected, would alert to the new samples as variants to monitor.  
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Figure 8. Phylogenetic trees and networks of genomes sampled on February 1
st
, 2022, in 

IDS (A and B) and on January 23
rd

, 2022, in PDS (C and D). The chosen dates represent the 

first week a B.1.1.529 genome was sampled. The most recently collected samples that connect 

clusters are numbered and highlighted with a red circle. In IDS, EPI_ISL_12093290 (1) was 

found to connect the ancestral cluster to the B.1.1.7 cluster by forming an edge with 

EPI_ISL_1762234 (2), while EPI_ISL_447277 (3) and EPI_ISL_7551993 (4) connected the 

heterogeneous and larger B.1.617.2 clusters, respectively. In PDS, EPI_ISL_9606418 (5) and 

EPI_ISL_1116719 (6) connected the heterogeneous cluster with the B.1.1.7 cluster, and 

EPI_ISL_453976 (7) and EPI_ISL_4107688 (8) connected the heterogeneous cluster with the 

B.1.617.2 cluster. Only the most recently collected connecting samples are shown for readability.  

 

5. CONCLUSIONS 

The application of phylogenetics analysis to the real-time sequencing of SARS-CoV-2 genomes 

has been crucial for the monitoring of potentially concerning variants during the ongoing 

pandemic. However, the static and rigid nature of the phylogenetic reconstruction imposes 

limitations that can have important consequences as discussed earlier in this paper. We have 

described a novel and general-purpose data representation, the dynamic epidemiological network 

along with algorithms for its construction, to address this problem. Compared with the batch-

mode nature of most phylogenetic and phylodynamic methods, the proposed representation only 

requires incremental computation of the network for new data and its incorporation in the 

existing network based on cluster correspondences. As demonstrated by experimental results, the 

proposed framework is capable of automatically identifying and tracking variants of interest such 

as Alpha and Delta, along with other region-specific lineages. The experimental studies also 



illustrated both the dynamic nature of variant assignment (for specific genomes), as well as the 

insights that can be gained from observing changes in the spectral partitioning patterns of 

temporally adjacent networks. 

The proposed approach has certain limitations: large datasets were sub-sampled due to the 

computational requirements of spectral partitioning and subsequent network analysis. The effect 

of different sampling strategies remains an important question for further research. Currently in 

the method, identification of a variant group is based, in part, on the assumption that the variant 

grows substantially (in terms of collected samples) over time. This is a straightforward 

assumption. However, as the virus becomes endemic, new variant populations may be smaller 

than previous ones. One solution could involve preferential treatment of more recently collected 

samples as compared to legacy data. Another solution may consider factors such as 

infectiousness and virulence of the pathogen. Finally, like any representation method, the 

proposed framework critically depends on sample collection quality and coverage. For example, 

despite the rapid spread of the Omicron variant globally by early 2022 (Khandia et al., 2022), the 

variant is underrepresented in our networks due to the lack of Omicron samples from from Israel 

and Portugal at the time of our data collection (April 2022). This final point underscores the 

centrality of high-quality disease surveillance and data collection in molecular epidemiology. 
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