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Motivated by recent studies of long-range forces between identical black holes, we extend these
considerations by investigating the forces between two nonidentical black holes. We focus on classes of
theories where charged black holes can have extremal limits that are not BPS. These theories, which live in
arbitrary spacetime dimension, comprise gravity coupled to N 2-form field strengths and (N − 1) scalar
fields. In the solutions we consider, each field strength carries an electric charge. The black hole solutions
are governed by the SLðN þ 1; RÞ Toda equations. In four dimensions, the black hole solutions in the
SLð3; RÞ example are equivalent to the “Kaluza-Klein dyons.”We find that any pair of such extremal black
holes that are not identical (up to overall scaling) will repel one another. We also show that there can exist
pairs of non-extremal, nonidentical black holes which obey a zero-force condition. Finally, we find
indications of similar results in the higher examples, such as SLð4; RÞ.
DOI: 10.1103/PhysRevD.106.086007

I. INTRODUCTION

There has been a considerable interest recently in finding
detailed ways to quantify the idea that gravity is the
weakest force. Such attempts have led to a number of
conjectures, with the weak gravity conjecture (WGC) [1]
thus far on the strongest footing (see Ref. [2] for a
comprehensive review). A natural way to examine the
strength of gravity in a given theory is to study the force
between well-separated particles and ask whether the
gravitational attraction is indeed overwhelmed by the
repulsive interactions in the theory. This idea has been
made more precise by the repulsive force conjecture (RFC),

which was originally stated in Ref. [1] and describes the
simple notion that long-range repulsive gauge forces
(between identical charged particles) should be at least
as strong as all long-range attractive forces. The RFC
was reemphasized more recently in Ref. [3], and stronger
versions were put forth by Ref. [4]. Moreover, in Ref. [5] it
was shown that the RFC can also be understood using the
timelike reduction formalism of Ref. [6].
In its weakest form, the RFC argues that effective

field theories (EFTs) consistent with quantum gravity must
have a state which is “self-repulsive,” whether the state is
a fundamental particle or a black hole. When multiple
charges are present, this requirement must then hold along
each direction in charge space.1 While the WGC and the
RFC are clearly related to each other, they are distinct in the
presence of scalars [4]. Moreover, studies of black holes in
theories with higher derivatives make the difference even
more manifest [7] and suggest that the RFC cannot be
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1The strongest form of the RFC [4] states that in every
direction in charge space, there should be a strongly self-repulsive
multiparticle state—i.e., a multiparticle state where each con-
stituent state repels every other state, including itself.
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satisfied by the black hole spectrum alone—unlike the
WGC, which can [8]. Taking these considerations into
account, it is valuable to better understand what else we can
extract from the behavior of long-range forces, in order to
eventually clarify to what extent the RFC is a useful
criterion for constraining EFTs.
Within the context of the RFC, the interest thus far has

been focused on long-range forces between two identical
copies of the same object. Two identical black holes at rest
and asymptotically far from each other will generically
attract, except at extremality, when the net force between
them will vanish [9]. This is true even in theories with
moduli, which mediate new long-range interactions and
affect the balance of forces between the black holes.2 In the
simple case of a black hole of massM and electric chargeQ
in theories in four dimensions with a single light scalar, the
force between two identical copies is3

FðrÞ ¼ −
1

4

M2

r2
þQ2

r2
−
Σ2

r2
þ � � � ; ð1:1Þ

where Σ denotes the scalar charge (to be defined precisely
later). The contribution of the scalar field precisely offsets
the gravitational and electrostatic forces between the black
holes, ensuring that all interactions cancel.
Such a no-force condition, which here applies to any

pair of identical, extremal black holes, is also well known
from studies of supersymmetric Bogomol’nyi-Prasad-
Sommerfield (BPS) black holes in supergravity, where
there exist multi-black-hole solutions where the individual
black holes sit in static equilibrium with zero force between
them. However, in the case of extremal BPS black holes in
supergravity, the no-force condition holds regardless of
whether the black holes are identical or they instead carry
different charges. This simple observation motivates us to
examine more generally the behavior of long-range forces
between two black holes that carry different charges and are
therefore not identical, working with configurations which
are not BPS solutions. We are particularly interested in
identifying any generic features of such interactions and
under which conditions the force can vanish. As we shall
see, for nonidentical black holes, the behavior of the long-
range force is quite rich and can still lead to zero-force
conditions, albeit in a different manner from the BPS cases
arising in supergravity.
A well-known example of a configuration which is not

BPS is provided by the so-called “Kaluza-Klein dyon,”
which is a solution of four-dimensional ungauged N ¼ 8
supergravity, in which a single gauge field carries both
electric and magnetic charge. The solution can be described

by a consistent truncation of the fullN ¼ 8 theory that may
instead be obtained as the Kaluza-Klein reduction of pure
five-dimensional Einstein gravity; hence the nomenclature
“Kaluza-Klein dyon.” This theory is described by the
four-dimensional Lagrangian

L4 ¼ R −
1

2
ð∂ϕÞ2 − 1

4
e

ffiffi
3

p
ϕF2: ð1:2Þ

For our purposes, it will be more convenient to consider a
somewhat different theory comprising gravity, the dilaton,
and two distinct gauge fields rather than just a single gauge
field. Among other things, this has the advantage that we
can describe charged black holes with the feature of having
an extremal but not BPS limit in any arbitrary dimension d.
The d-dimensional Lagrangian is given by [10]

L ¼ R −
1

2
ð∂ϕÞ2 − 1

4
eaϕF2

1 −
1

4
e−aϕF2

2; ð1:3Þ

where

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðd − 3Þ
d − 2

r
: ð1:4Þ

The black hole solutions we shall consider have two
independent electric charges, one carried by each of the
two field strengths. In the special case of d ¼ 4, the
solutions will be completely equivalent4 to the dyonic
solutions of the theory described by Eq. (1.2).
For the extremal but non-BPS black holes in the theory

described by Eq. (1.3), we find that if the charges ðQ1; Q2Þ
and ðQ̃1; Q̃2Þ of two such black holes are unequal,5 then the
force between the two is always repulsive.6 (See Ref. [11]
for some related discussion of black holes that repel one
another.) Combining this with the fact that the force
between identical black holes is attractive if they are
non-extremal (i.e., subextremal), we conclude, by continu-
ity, that that there should exist non-extremal black holes
with unequal charges for which the parameters can be tuned
so that a zero-force condition holds. It does not appear to be
possible to obtain explicit analytic formulas for the general
parameter choices that achieve such a zero-force condition.

2In theories with higher-derivative corrections, this is no longer
true. The long-range force between extremal black holes receives
corrections and does not generically vanish [7].

3We are neglecting Oð 1r3Þ terms, as well as velocity-dependent
forces.

4Essentially, the field strength F2 in the d ¼ 4 specialization of
the theory [Eq. (1.3)] is acting like the dualization double of the
field strength F1.

5It will always be understood that we are restricting attention to
cases where the signs of the charges will be the same for the two
black holes. Obviously, there is little of interest to discuss if the
charges of the two black holes are opposite, since then there
would be an attractive electrostatic force that would reinforce the
attractive gravitational force, and there could never be any
question of achieving a zero-force balance. We shall always
assume, without losing generality for the cases that are interesting
to discuss, that the charges are all positive.

6To be more precise, the force between them is repulsive
provided that ðQ̃1; Q̃2Þ is not a multiple of ðQ1; Q2Þ—i.e., that
ðQ̃1; Q̃2Þ ≠ ðkQ1; kQ2Þ for any constant k.
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However, we are able to solve numerically to find examples
of nonidentical, non-extremal black holes which have no
long-range force between them. We also find an explicit
analytical formula for the zero-force condition for a
restricted subfamily of these black holes. This balancing
of forces is interesting and may hint at a deeper structure,
something which we would like to better understand. We
shall come back to this point in the Conclusions.
The equations for black hole solutions in the theory

described by the Lagrangian (1.3) can be recast as SLð3; RÞ
Toda equations.7 In Ref. [10], extensions of the theory that
give rise to the SLðn; RÞ Toda equations were also
considered, and the black hole solutions were constructed.
For the SLðn; RÞ case, there are now (n − 1) field strengths,
each carrying an electric charge, and (n − 2) dilatonic
scalar fields. In the present work, we study the black holes
in the SLð4; RÞ Toda theory, and show that analogous
results to those we found for the SLð3; RÞ Toda black holes
arise here also.
The paper is organized as follows: In Sec. II, we discuss

the general non-extremal two-charge black holes of the
SLð3; RÞ Toda theory, and obtain the expression for the
force between two well-separated such black holes.
Specializing to the case where the two black holes are
extremal, we show that the force between them is always
non-negative; that is, it is always either repulsive, or else
it is zero. Specifically, the force vanishes if and only if
the charges ðQ1; Q2Þ and ðQ̃1; Q̃2Þ of the black holes are
proportional—i.e., if ðQ̃1; Q̃2Þ ¼ ðkQ1; kQ2Þ. The case
k ¼ 1 corresponds to identical black holes. We then turn
to the consideration of two non-extremal black holes. If
they are identical, we find that the force is negative (i.e.,
attractive), in line with standard results in the literature. We
then show, by means of numerical studies, that for two
nonidentical non-extremal black holes, it is possible to
choose the mass and charge parameters so that there is zero
force between them. We also obtain an explicit analytical
formula characterizing the zero-force condition for a
special subset of the non-extremal black holes.
In Sec. III, we extend our discussion to black hole

solutions of the SLð4; RÞ Toda theory. We demonstrate that
the same general features we found for the SLð3; RÞ Toda
black holes occur in this case also. Namely, the force
between two nonidentical extremal black holes is in general
repulsive, becoming zero when the black holes are identical
and in certain other special cases. Furthermore, we show
with numerical examples that one can tune the parameters
of two non-extremal black holes such that the force
between them vanishes.
In Sec. IV, we present our conclusions and further

discussion. Appendix A contains some details of the

calculation of the ADM mass and the scalar and electric
charges, and it gives the relation between our normalizations
for these quantities and the normalizations in Ref. [9]. In
Appendix B, we present a calculation of the force between
widely separated BPS black holes in a wide class of theories,
to illustrate some salient features of the differences between
the BPS and the non-BPS extremal black holes.

II. SLð3;RÞ TODA BLACK HOLES

The SLð3; RÞ Toda Lagrangian (1.3) admits two-charge
static, asymptotically flat black hole solutions, given by [10]

ds2 ¼ −ðH1H2Þ−1
2fdt2 þ ðH1H2Þ

1
2ðd−3Þðf−1dr2 þ r2dΩ2

d−2Þ;

ϕ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðd − 2Þ
2ðd − 3Þ

s
log

�
H1

H2

�
; f ¼ 1 −

m
rd−3

;

A1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
d − 2

d − 3

r
1 − β1fffiffiffiffiffiffiffiffiffi
β1γ2

p
H1

dt; A2

ffiffiffiffiffiffiffiffiffiffiffi
d − 2

d − 3

r
1 − β2fffiffiffiffiffiffiffiffiffi
β2γ1

p
H2

dt;

H1 ¼ γ−11 ð1 − 2β1f þ β1β2f2Þ;
H2 ¼ γ−12 ð1 − 2β2f þ β1β2f2Þ;
γ1 ¼ 1 − 2β1 þ β1β2; γ2 ¼ 1 − 2β2 þ β1β2; ð2:1Þ

where m, β1, and β2 are constants that parametrize the mass
and the two electric charges. Adopting convenient normali-
zation, which we define in Appendix A, the mass M, the
scalar charge Σ, and the two physical electric chargesQ1 and
Q2 of the black hole solutions are given by

M ¼ 2ð1 − β1Þð1 − β2Þð1 − β1β2Þm
γ1γ2

¼ 2

�
1

γ1
þ 1

γ2

�
ð1 − β1β2Þm;

Σ ¼
ffiffiffi
3

p ðβ1 − β2Þð1 − β1β2Þm
γ1γ2

;

Q1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2β1γ2

p
m

γ1
; Q2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2β2γ1

p
m

γ2
: ð2:2Þ

It will be understood in all that follows that the charges Q1

and Q2 are assumed to be non-negative, so that the gauge
force between two black holes will always be repulsive.8

7See Ref. [12] for a study of the link between the timelike
formulation of Ref. [6] and Toda equations, in the context of
Kaluza-Klein black holes.

8In this section, we always set the asymptotic (i.e., r → ∞)
value of the dilaton to zero in the mass, electric charges, and
scalar charge. The reason for this choice is that the Lagrangian
in Eq. (1.3) has a shift symmetry under ϕ → ϕþ ϕ̄, with F1 →
e−aϕ̄=2F1 and F2 → eaϕ̄=2F2. Because of this symmetry, we can
scale the physical charges asQ1 → eaϕ̄=2Q1 andQ2 → e−aϕ̄=2Q2,
and using this scaling, any expression with zero asymptotic value
for the dilaton can be dressed with a nonzero asymptotic value.
Moreover, since this is a symmetry, it will not change any
conclusion we draw for the long-range force.
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A different parametrization, which will prove useful
for some purposes, is provided by expressing β1 and β2 in
terms of two new parameters p and q, with

β1 ¼
ðp −mÞq
ðqþmÞp ; β2 ¼

ðq −mÞp
ðpþmÞq : ð2:3Þ

In terms of p and q, the mass, scalar charge, and electric
charges in Eq. (2.2) become

M ¼ pþ q; Σ ¼
ffiffiffi
3

p

2
ðp − qÞ;

Q1 ¼
�
pðp2 −m2Þ
ðpþ qÞ

�1
2

; Q2 ¼
�
qðq2 −m2Þ
ðpþ qÞ

�1
2

: ð2:4Þ

It is useful also to note that the Hawking temperature of the
black hole is given by [10]

T ¼ ðd − 3Þ
4πrþ

ðγ1γ2Þ
d−2

4ðd−3Þ; ð2:5Þ

where rþ is the radius of the outer horizon, given by
rd−3þ ¼ m. In terms of the parameters p and q introduced in
Eq. (2.3), this becomes

T ¼ ðd − 3Þm
4π

�
4ðpþ qÞ2

pqðpþmÞ2ðqþmÞ2
� d−2

4ðd−3Þ
: ð2:6Þ

As we remarked earlier, in four dimensions, the black
holes with two electric charges we are discussing here are
equivalent to the KK dyonic black hole solutions of the
theory given in Eq. (1.2), with the electric and magnetic
charges of the single field strength F in Eq. (1.2) corre-
sponding to the two electric chargesQ1 andQ2 in Eq. (2.4).
In fact, the parametrization using p and q as in Eq. (2.4) is
precisely9 the one used in Ref. [7], where the force between
identical Kaluza-Klein dyons was discussed.
The force between two well-separated such black holes

is given, up to an overall scale that we suppress for now,
by F ¼ Fr−ðd−2Þ, where

F ¼ Q1Q̃1 þQ2Q̃2 − ΣΣ̃ −
1

4
MM̃; ð2:7Þ

where the untilded and tilded quantities refer to the two
black holes, with the untilded quantities being given in
terms of parameters ðm; β1; β2Þ, and the tilded quantities in
terms of parameters ðm̃; β̃1; β̃2Þ. For the explicit relation of
our masses and charges to those defined in Ref. [9] we refer
the reader to Appendix A.

We now examine the nature of the force between the
black holes in two cases: first for extremal black holes, and
then for non-extremal black holes.

A. Extremal SLð3;RÞ black holes

One way of taking the extremal limit of the SLð3; RÞ
black hole solutions is by setting [10]

β1 ¼ 1 − q
−2
3

1 q
−2
3

2 ðq2
3

1 þ q
2
3

2Þ
1
2mþ q

−2
3

1 q
−4
3

2 m2;

β2 ¼ 1 − q
−2
3

1 q
−2
3

2 ðq2
3

1 þ q
2
3

2Þ
1
2mþ q

−4
3

1 q
−2
3

2 m2; ð2:8Þ

in terms of two new charge parameters q1 and q2. The
extremal limit is then attained by sending m → 0. In this
limit, the mass, scalar, and electric charges defined in
Eq. (2.2) become

Mext ¼ ðq2
3

1 þ q
2
3

2Þ
3
2;

Σext ¼
ffiffiffi
3

p

2
ðq2

3

1 − q
2
3

2Þðq
2
3

1 þ q
2
3

2Þ
1
2;

Qext
1 ¼ q1; Qext

2 ¼ q2: ð2:9Þ

In this extremal limit, the (double) horizon is at r ¼ 0.
Inserting Eq. (2.8) into the expression (2.5) for the
Hawking temperature gives

T ¼ ðd − 3Þm
4π

�
2

q1q2

� d−2
2ðd−3Þ þOðm2Þ; ð2:10Þ

which goes to zero, as one would expect, in the extremal
limit m → 0.
It is straightforward to verify that if two such extremal

black holes have charges that are multiples of one
another—i.e., if

ðq̃1; q̃2Þ ¼ ðkq1; kq2Þ; ð2:11Þ

then the force between them, given by substituting Eq. (2.9)
into Eq. (2.7), is zero. This includes the special case k ¼ 1,
corresponding to two identical extremal black holes.
Next, we would like to examine the general case of two

nonidentical extremal black holes. The solutions may be
reparametrized in terms of ðq; θÞ and ðq̃; θ̃Þ, where

q1 ¼ q3 cos3 θ; q2 ¼ q3 sin3 θ;

q̃1 ¼ q̃3 cos3 θ̃; q̃2 ¼ q̃3 sin3 θ̃: ð2:12Þ

With the understanding that the charges are all non-
negative, we see that we must have

0 ≤ θ ≤
1

2
π; 0 ≤ θ̃ ≤

1

2
π: ð2:13Þ9Note, however, that our extremality parameter m is twice that

used in Ref. [7].
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Plugging Eq. (2.12) into Eq. (2.9), and then these into the
expression (2.7) for the force coefficient, we find

F ¼ q3q̃3G; ð2:14Þ

where

G ¼ cos3θcos3θ̃ þ sin3θsin3θ̃ −
3

4
cos 2θ cos 2θ̃ −

1

4
:

ð2:15Þ

As we shall now show, G is non-negative when θ and θ̃ lie
anywhere in the square defined by Eq. (2.13).
First, we define t ¼ tan 1

2
θ and t̃ ¼ tan 1

2
θ̃, so we have

sin θ ¼ 2t
1þ t2

; cos θ ¼ 1 − t2

1þ t2
;

sin θ̃ ¼ 2t̃
1þ t̃2

; cos θ̃ ¼ 1 − t̃2

1þ t̃2
: ð2:16Þ

In view of Eq. (2.13), we have 0 ≤ t ≤ 1 and 0 ≤ t̃ ≤ 1.
Thus, we can parametrize t and t̃ as

t ¼ a
1þ a

; t̃ ¼ b
1þ b

; ð2:17Þ

with

0 ≤ a ≤ ∞; 0 ≤ b ≤ ∞: ð2:18Þ

Plugging these substitutions into the definition of G in
Eq. (2.15), we find

G ¼ 2ða − bÞ2Pða; bÞ
ð1þ 2aþ 2a2Þ3ð1þ 2bþ 2b2Þ3 ; ð2:19Þ

where

Pða; bÞ ¼ 3ðaþ bÞ2 þ 6ðaþ bÞða2 þ 4abþ b2Þ
þ 2ða4 þ 20a3bþ 36a2b2 þ 20ab3 þ b4Þ
þ 12abðaþ bÞða2 þ 4abþ b2Þ
þ 12a2b2ðaþ bÞ2: ð2:20Þ

Since all the coefficients in Pða; bÞ are positive, it follows
that Pða; bÞ ≥ 0 for all a and b in the range (2.18), and thus
we see from Eq. (2.19) that G ≥ 0.

Thus, we have shown that the force between any two
extremal SLð3; RÞ Toda black holes is always non-
negative, and that it is strictly positive [i.e., repulsive],
provided that the charges of the two black holes are not
proportional [i.e., provided that Eq. (2.11) is not satisfied
for any constant k].

It is worth remarking that taking the extremal limit is
somewhat more straightforward in the parametrization using
p and q as in Eq. (2.3), since one can now simply set m ¼ 0
in the expressions in Eq. (2.4) for the mass, scalar charge,
and electric charges, without the need for taking a delicate
limit. Indeed, at extremality, the electric charges q1 and q2 in
Eq. (2.8) are given in terms of p and q by

q1 ¼
p

3
2

ðpþ qÞ12 ; q2 ¼
q

3
2

ðpþ qÞ12 ; ð2:21Þ

as can be seen directly from Eq. (2.4). Note that in this
parametrization, one can directly see that the Hawking
temperature of the black hole becomes zero in the extremal
limit by setting m ¼ 0 in Eq. (2.6).

B. Non-extremal SLð3;RÞ black holes

Now consider non-extremal black holes, characterized
by the parameters ðm; β1; β2Þ and ðm̃; β̃1; β̃2Þ, respectively.
The general expression for the force between two distinct
non-extremal black holes is the following:

F ¼ mm̃
γ1γ2γ̃1γ̃2

½2ðβ1β̃1Þ12ðγ2γ̃2Þ32 þ 2ðβ2β̃2Þ12ðγ1γ̃1Þ32

− 3ðβ1 − β2Þð1 − β1β2Þðβ̃1 − β̃2Þð1 − β̃1β̃2Þ
− ð1 − β1Þð1 − β2Þð1 − β1β2Þð1 − β̃1Þð1 − β̃2Þ
× ð1 − β̃1β̃2Þ�: ð2:22Þ

It can be verified easily that if we consider the case where

ðβ̃1; β̃2Þ ¼ ðβ1; β2Þ; ð2:23Þ

which corresponds to the tilded electric charges being an
overall multiple of the untilded electric charges [see the
expressions in Eq. (2.2) for Q1 and Q2], then the force
between the non-extremal black holes will be attractive,
with F given simply by

F ¼ −mm̃: ð2:24Þ

The special case of identical non-extremal black holes
arises when the further condition m̃ ¼ m is imposed.10

10It can also be seen that if the black holes obeying Eq. (2.23)
are taken to be extremal, by sending m and m̃ to zero, then the
force (2.24) between them becomes zero, as already noted for
extremal black holes whose charges are proportional. Note that
one must be careful when taking the extremal limit in this
parametrization, since the βi parameters must be taken to 1 at the
same time, as seen in the limiting procedure in Eq. (2.8). In
particular, having imposed the requirement (2.23), one could not
take the m ¼ 0 extremal limit for the untilded black hole without
also taking the m̃ ¼ 0 limit for the tilded black hole, since
otherwise the tilded charges Q̃i would become infinite.
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Recall that for the case of two distinct extremal black
holes, we have shown that the long-range force is always
positive. Thus, since the force must presumably be a
continuous function of the parameters, we conclude that
for a general pair of non-extremal black holes, there must
exist some choices of them and βi parameters which yield a
zero-force condition. Indeed, here is a numerical example:
We write β1 and β2 as in Eq. (2.8), but we do not send m

to zero.11 We do likewise for β̃1 and β̃2 (taking, for
convenience, m̃ ¼ m). Making a specific choice for the
untilded and tilded qi parameters, namely

q1 ¼ 1; q2 ¼ 2; q̃1 ¼ 3; q̃2 ¼ 7; ð2:25Þ

we then look at the numerical value of the force coefficient
F , as a function of m. We find that, approximately,

m > 0.066 implies F < 0;

m < 0.066 implies F > 0: ð2:26Þ

In other words, for this example of two black holes whose
charges are not simply an overall multiple of one another,
the force between them is repulsive when they are suffi-
ciently close to being extremal, but it becomes attractive
when they are taken to be sufficiently far from extremality.
The zero-force condition arises when the non-extremality
parameter m is roughly equal to 0.066000632.
As another example, if we take

q1 ¼ 1; q2 ¼ 2; q̃1 ¼ 1; q̃2 ¼ 3; ð2:27Þ

then the crossover between repulsion and attraction occurs
when the non-extremality parameter m is approximately

m ¼ 0.2073984664: ð2:28Þ

Note that it is necessary to check that the constants βi, β̃i, γi,
and γ̃i are all non-negative, in order to ensure that the black
holes are regular from the horizon to asymptotic infinity. In
the examples above, these conditions are indeed satisfied.
We may also give an explicit construction of a special

family of nonidentical, non-extremal black holes that obey
the zero-force condition. Using the parametrization in terms
of p and q as in Eq. (2.3), the expression (2.22) for the force
between two non-extremal black holes becomes

F ¼ −
1

4
½ðpþ qÞðp̃þ q̃Þ þ 3ðp − qÞðp̃ − q̃Þ�

þ
�
pp̃ðp2 −m2Þðp̃2 − m̃2Þ

ðpþ qÞðp̃þ q̃Þ
�1

2

þ
�
qq̃ðq2 −m2Þðq̃2 − m̃2Þ

ðpþ qÞðp̃þ q̃Þ
�1

2

: ð2:29Þ

As we saw previously, for two identical non-extremal black
holes, the force becomes F ¼ −m2. Note that in order to
avoid imaginary charges and negative mass, we should
restrict p and q such that p ≥ m and q ≥ m.

Consider now the following specialization: Take

m̃ ¼ m; p̃ ¼ q; q̃ ¼ p; ð2:30Þ

for which the expression (2.29) becomes

F ¼ 2
ffiffiffiffiffiffi
pq

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 −m2Þðq2 −m2Þ

p
pþ q

þ 1

2
ðp2 þ q2 − 4pqÞ:

ð2:31Þ

For p ¼ q, we find F ¼ −m2 (as is to be expected for two
identical non-extremal black holes); the second term is
negative, and it outweighs the first term. If instead p ≠ q,
then under certain circumstances the second term in
Eq. (2.31) will be positive, and so F will be positive.
Thus, within this considerably simplified class of solutions,
we can find explicit expressions for intermediate cases that
achieve a zero-force condition:
Writing

p ¼ xq; ð2:32Þ

we can solve for the ratio q2=m2 that makes F in Eq. (2.31)
vanish. This gives

q2

m2
¼−

4
h
2xð1þx2Þ� ffiffiffi

x
p ð1þxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4xþ10x2−4x3þx4

p i
ðx−1Þ2ð1−4x−6x2−4x3þx4Þ :

ð2:33Þ

We must choose x so that we have q2 −m2 > 0, and also
p2 −m2 > 0 (i.e., q2x2 −m2 > 0). This implies that we
should make the upper sign choice in Eq. (2.33), and so,
defining

WðxÞ

≡−
4
h
2xð1þx2Þþ ffiffiffi

x
p ð1þxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4xþ10x2−4x3þx4

p i
ðx−1Þ2ð1−4x−6x2−4x3þx4Þ ;

ð2:34Þ

we shall have

11At this stage, therefore, we just have a reparametrization of
non-extremal black holes in terms of m, q1, and q2 rather than m,
β1, and β2. It is a convenient reparametrization to adopt here since
it allows us explore the situation where the black hole is
becoming close to extremality, by taking m to be fairly small
(in comparison to q1 and/or q2). Note that q1 and q2 are not
simply multiples of the physical chargesQ1 andQ2, except in the
actual extremal limit where m → 0.
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q2

m2
¼ WðxÞ; p2

m2
¼ x2WðxÞ ¼ W

�
1

x

�
: ð2:35Þ

Since sending x → x−1 exchanges the roles of p and q,
which corresponds to the symmetry of the SLð3; RÞ theory
under the reflection of the SLð3; RÞ Dynkin diagram, we
can, without loss of generality, restrict attention to taking x,
which must be positive, to lie in the interval 1 ≤ x ≤ ∞.
In the interval 1 ≤ x ≤ ∞, it is evident from Eq. (2.35)

that the conditions p2 ≥ m2 and q2 ≥ m2 will be satisfied if
WðxÞ ≥ 1, and one can see from Eq. (2.34) that this will
hold if

1 < x < xþ; where xþ ≈ 5.27451; ð2:36Þ

with xþ being the larger of the two real roots of
1 − 4x − 6x2 − 4x3 þ x4 ¼ 0. The functionWðxÞ is strictly
greater than 1 for all x in the interval (2.36), except when
x ¼ 2þ ffiffiffi

3
p

≈ 3.73205, for which W becomes equal to 1.
As a concrete example, if we take x ¼ 3, then

q ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15þ 2

ffiffiffiffiffi
39

p

23

s
; p ¼ 3m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15þ 2

ffiffiffiffiffi
39

p

23

s
: ð2:37Þ

This satisfies all the necessary constraints, and indeed gives
F ¼ 0. For this particular example, the temperatures of the
two non-extremal black hole solutions are the same [since,
as one can see from Eq. (2.6), if we denote the temperature
by Tðp; q;mÞ, then we have Tðp; q;mÞ ¼ Tðq; p;mÞ]. By
contrast, in each of the previous numerical examples we
presented, the temperatures were unequal for the two non-
extremal black holes for which a no-force condtion held.
While the equality of the temperatures in the example in
Eq. (2.30) is due to the symmetrical parameter choices of
these particular solutions, it may also hint at the existence
of a new multicharge black hole. Wewill return to this point
in the Conclusions. Finally, we anticipate that there should
not be any obstruction to finding a vanishing force for
parameter choices corresponding to properly quantized
physical charges, once one is more careful with normal-
izations and properly reinstates units.

III. SLð4;RÞ TODA BLACK HOLES

SLðn; RÞ Toda black holes are discussed in Ref. [10],
and additional explicit details are given for the SLð4; RÞ
case. The Lagrangian for the SLðn; RÞ case is given by

L ¼ R −
1

2
ð∂  ϕÞ2 − 1

4

Xn−1
i¼1

e  ai·  ϕF2
i ; ð3:1Þ

where the (n − 1) dilaton vectors  ai satisfy

 ai ·  ai ¼
1

3
ðn − 2Þðn2 þ 2nþ 3Þ d − 3

d − 2
; ðno sumon iÞ;

 ai ·  aiþ1 ¼ −
1

6
ðn3 − nþ 12Þ d − 3

d − 2
;

 ai ·  aj ¼ −
2ðd − 3Þ
d − 2

; i ≠ j − 1; j; jþ 1: ð3:2Þ

There are n − 2 dilatonic scalars, so the dilaton vectors are
(n − 2)-component vectors. For the case of SLð4; RÞ, we
can satisfy the conditions in Eq. (3.2) by choosing

 a1 ¼ ð
ffiffiffiffiffi
8ν

p
;

ffiffiffiffiffiffiffiffi
10ν

p
Þ;  a2 ¼ ð−

ffiffiffiffiffiffiffiffi
18ν

p
; 0Þ;

 a3 ¼ ð
ffiffiffiffiffi
8ν

p
;−

ffiffiffiffiffiffiffiffi
10ν

p
Þ; where ν≡ d − 3

d − 2
: ð3:3Þ

The SLð4; RÞ Toda black hole solutions, involving three
field strengths, each carrying an electric charge, and two
dilatonic scalar fields, were constructed in Ref. [10]. They
are given by

ds2 ¼ −ðH1H2H3Þ−1
5fdt2

þ ðH1H2H3Þ
1

5ðd−3Þðf−1dr2 þ r2dΩ2
d−2Þ;

 ϕ ¼ 1

10ν

X
i

 ai logHi;

A1 ¼
ffiffiffiffiffi
3

5ν

r
1 − 2β1f þ β1β2f2ffiffiffiffiffiffiffiffiffi

β1γ2
p

H1

dt;

A3 ¼
ffiffiffiffiffi
3

5ν

r
1 − 2β1f þ β3β2f2ffiffiffiffiffiffiffiffiffi

β3γ2
p

H3

dt;

A2 ¼
ffiffiffiffiffi
4

5ν

r
1 − 3β2f þ 3

2
β2ðβ1 þ β3Þf2 − β1β2β3f3ffiffiffiffiffiffiffiffiffiffiffiffiffi

β2γ1γ3
p

H2

dt;

ð3:4Þ

where

H1 ¼ γ−11 ð1 − 3β1f þ 3β1β2f2 − β1β2β3f3Þ;
H2 ¼ γ−12 ð1 − 4β2f þ 3β2ðβ1 þ β3Þf2

− 4β1β2β3f3 þ β1β
2
2β3f

4Þ;
H3 ¼ γ−13 ð1 − 3β3f þ 3β2β3f2 − β1β2β3f3Þ;
f ¼ 1 −

m
rd−3

; ð3:5Þ

and

γ1 ¼ 1 − 3β1 þ 3β1β2 − β1β2β3;

γ2 ¼ 1 − 4β2 þ 3β2ðβ1 þ β3Þ − 4β1β2β3 þ β1β
2
2β3;

γ3 ¼ 1 − 3β3 þ 3β2β3 − β1β2β3: ð3:6Þ

LONG-RANGE FORCES BETWEEN NONIDENTICAL BLACK … PHYS. REV. D 106, 086007 (2022)

086007-7



The ADMmass of the SLð4; RÞ Toda black hole is given
in Ref. [10], and it can be written (in our choice of overall
normalization) as.12

M ¼
�
3k1
γ1

þ 4k2
γ2

þ 3k3
γ3

�
m
5
; ð3:7Þ

where

k1 ¼ 1 − β1 − β1β2 þ β1β2β3;

k2 ¼ 1 − 2β2 þ 2β1β2β3 − β1β
2
2β3;

k3 ¼ 1 − β3 − β2β3 þ β1β2β3: ð3:8Þ

With the overall normalization we are adopting, the three
electric charges are given by [10]

Q1¼
ffiffiffiffiffiffiffiffiffiffiffi
6β1γ2

p
mffiffiffi

5
p

γ1
; Q2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8β2γ1γ3

p
mffiffiffi

5
p

γ2
; Q3¼

ffiffiffiffiffiffiffiffiffiffiffi
6β3γ2

p
mffiffiffi

5
p

γ3
:

ð3:9Þ

The two scalar charges, read off from the coefficients of the
r−dþ3 terms in the asymptotic expressions for the dilaton
fields, are given, in our normalization, by the 2-vector

 Σ ¼ 1

5
ffiffiffiffiffi
2ν

p
X
i

 aili; ð3:10Þ

and hence

Σ1 ¼
2l1 − 3l2 þ 2l3

5
; Σ2 ¼

l1 − l3ffiffiffi
5

p ; ð3:11Þ

where li are the coefficients of the r−dþ3 terms in the
expressions for Hi ¼ 1þ li

rd−3
þ � � �, and are given by

l1¼
3β1m
γ1

ð1−2β2þβ2β3Þ; l3¼
3β3m
γ3

ð1−2β2þβ1β2Þ;

l2¼
4β2m
γ2

�
1−

3

2
ðβ1þβ3Þþ3β1β3−β1β2β3

�
: ð3:12Þ

The force between two black holes, characterized
by untilded and tilded parameters ðm; β1; β2; β3Þ and
ðm̃; β̃1; β̃2; β̃3Þ, is given by

F ¼
X3
i¼1

QiQ̃i −  Σ ·  Σ̃ −
1

4
MM̃: ð3:13Þ

If the two black holes are identical, this gives

F ¼ −m2: ð3:14Þ

As expected, this vanishes in the extremal case (m ¼ 0)
and is negative—implying an attractive force—in the
subextremal case.
As we also saw in the case of the SLð3; RÞ Toda system,

studying the force between two nonidentical black holes is
a lot more involved. However, the logic here is similar to
that of the previous section. As we shall discuss in more
detail below, in the case of unequal extremal black holes
the force can be positive, and although we do not have a
general proof in this case, we can expect that it will always
be positive, just as we saw for the SLð3; RÞ examples.
By continuity, given that the force between identical

non-extremal black holes is negative, we can again expect,
just as for SLð3; RÞ black holes, that there should exist
nonidentical pairs of non-extremal SLð4; RÞ black holes for
which a zero-force condition holds. Here, we present one
explicit numerical example. We consider two non-extremal
SLð4; RÞ black holes with parameters

m ¼ m̃; ðβ1; β2; β3Þ ¼
�
1

5
;
1

3
;
1

4

�
;

ðβ̃1; β̃2; β̃3Þ ¼
�
1

5
þ w;

1

3
þ w;

1

4
þ w

�
: ð3:15Þ

When w ¼ 0, the force is just given by F ¼ −m2, as
mentioned previously. We find that the force becomes zero
if the parameter w is tuned to

w ≈ 0.03742503: ð3:16Þ

In the case of extremal SLð4; RÞ Toda black holes, we
can follow the procedure described in Ref. [10] for taking
the extremal limit, by writing13 the βi in terms of new
parameters a, b, c, as follows:

β1 ¼ 1 − amþ a2bm2; β2 ¼ 1 − amþ 1

2
a3ðc − 1Þm3;

β3 ¼ 1 − am − a2bm2; ð3:17Þ

and then sending m to zero. Before taking this limit, the
temperature is given by [10]

T ¼ ðd − 3Þ
4πrþ

ðγ1γ2γ3Þ
d−2

10ðd−3Þ; ð3:18Þ

which implies, using the parametrization in Eq. (3.17), that

12Again, we choose to set the asymptotic value of the dilaton to
zero for reasons mentioned in footnote 8.

13A sign error in Ref. [10] in the expression for β2 is corrected
here.
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T ¼ ðd− 3Þm
4π

½a10ðc2 − 9b2Þð3þ 3b2 − 2cÞ� d−2
10ðd−3Þ þOðm2Þ;

ð3:19Þ

which indeed vanishes when m ¼ 0.
Using Eq. (3.17) and then sending m to zero gives

charges and mass as follows:

Q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð3þ 3b2 − 2cÞ

p
ffiffiffi
5

p
aðc − 3bÞ ; Q2 ¼

2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 9b2

p
ffiffiffi
5

p
að3þ 3b2 − 2cÞ ;

Q3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð3þ 3b2 − 2cÞ

p
ffiffiffi
5

p
aðcþ 3bÞ ;

Σ1 ¼
6ð9b2 − 18b4 þ 6cþ 9b2c − 7c2 þ c3Þ

5að3þ 3b2 − 2cÞðc2 − 9b2Þ ;

Σ2 ¼
6bð3 − cÞffiffiffi
5

p
aðc2 − 9b2Þ ;

M ¼ 4ð36b2cþ 9c − 54b2 − 27b4 − 3c2 − c3Þ
5að3þ 3b2 − 2cÞðc2 − 9b2Þ : ð3:20Þ

The parameters b and c are constrained by the requirements
that

0 ≤ b ≤ 1; 3b ≤ c ≤
3

2
ð1þ b2Þ; ð3:21Þ

where we have, without loss of generality, required b to be
non-negative [there is a symmetry of the solution, corre-
sponding to reflecting the SLð4; RÞ Dynkin diagram, under
sending b → −b and exchanging the “1” and “3” labels on
the electric charges]. It will be convenient to parametrize
the allowed ranges of values for b and c in terms of two
parameters x and y that can independently range over
0 ≤ x ≤ ∞ and 0 ≤ y ≤ ∞ by writing

c ¼ 3bþ 3ð1 − bÞ2y
2ð1þ yÞ ; b ¼ x

1þ x
: ð3:22Þ

From looking at numerous numerical examples, it would
seem that the force between any two unequal-charge
extremal SLð4; RÞ Toda black holes is positive (i.e.,
replulsive). Since we were able to prove this explicitly
for the analogous SLð3; RÞ case, it would seem likely that
the force will be always repulsive in this case too. Although
we have not constructed an explicit proof in general, we are
able to show that when the parameters of the two extremal
black holes are close to one another, the force is always
repulsive. Specifically, we may consider the situation where

ã ¼ a; b̃ ¼ bþ ϵ1; c̃ ¼ cþ ϵ2; ð3:23Þ

and then look at the expression for the long-range force at
leading order in the small quantities ϵ1 and ϵ2. (Since the

parameters a and ã appear only as overall scaling factors
in the expressions for masses and charges, there is no loss
of generality, from the point of view of establishing a
positivity result, in simply taking ã to be equal to a.) The
leading-order terms in the expression for the force arise at
the quadratic order in the ϵ parameters, so F takes the form

F ¼ hijϵiϵj þOðϵ3Þ: ð3:24Þ

We find that

detðhijÞ

¼ 64ð1þ xÞ10ð1þ yÞ5ð1þ 4xþ 2x2 þ 2yþ 4xyþ 2x2yÞ
225a4y2ð4xþ 4x2 þ yþ 4xyþ 4x2yÞ2 ;

ð3:25Þ

which is non-negative, since 0 ≤ x ≤ ∞ and 0 ≤ y ≤ ∞.
We also find that

P
i hii is manifestly non-negative. Thus, it

must be that the two eigenvalues of hij are non-negative,
and so at least to quadratic order in perturbations around the
case of identical extremal black holes, the force is always
repulsive, as anticipated.

IV. DISCUSSION AND CONCLUSIONS

Motivated quite naturally by studies of the WGC, there
has been recent interest in exploring the relation between
black hole extremality bounds and zero-force conditions.
In particular, the RFC encodes the idea that gravity is
the weakest force by requiring (in its simplest form) the
existence of self-repulsive states. However, while the WGC
has been examined extensively—and partial proofs have
appeared in a variety of contexts—the RFC is thus far
less studied and much less understood. While the two
conjectures are identical in two-derivative theories that
contain only gravity and electromagnetic forces (where a
charged state with Q > M will clearly repel itself), they are
known to be distinct in the presence of scalar fields, which
can mediate new long-range interactions. In this context,
the fact that long-range forces between identical extremal
black holes vanish independently of the complexity of the
matter sector (which may include a variety of scalar and
gauge fields) is quite nontrivial.
The situation is more complicated in the presence of

higher-derivative corrections, where there are examples of
theories in which forces between extremal black holes do
not have definite signs, and of directions in charge space
with no self-repulsive states [7]. Indeed, the analysis of
Ref. [7] suggests that at least the simplest versions of the
RFC may be violated by the black hole spectrum—in stark
contrast with the WGC, which could in principle be
satisfied entirely by black holes. While this does not rule
out the RFC—it simply requires the existence of self-
repulsive fundamental particles—it does highlight the fact
that the conjecture is fundamentally different from the

LONG-RANGE FORCES BETWEEN NONIDENTICAL BLACK … PHYS. REV. D 106, 086007 (2022)

086007-9



WGC, and raises the question of to what extent long-range
forces can be used to constrain low-energy EFTs and
how much nontrivial information they encode. Higher-
derivative corrections to long-range forces were also
studied in Ref. [13], which computed α0 corrections to
families of heterotic multicenter black hole solutions.
Interestingly, in the cases studied in Ref. [13], the zero-
force condition between extremal black holes was pre-
served even in the presence of higher derivatives, for both
supersymmetric and nonsupersymmetric solutions. Once
again, this raises the question of how to interpret more
generally the implications of the balancing of forces.
Motivated by these issues, in this paper we have

extended the studies of long-range forces to black holes
that are not identical. We were primarily interested in
whether one could identify any generic features in the
behavior of the corresponding forces, and perhaps shed
light on what properties of black hole solutions can be
captured by treating them as widely separated point
particles, working essentially in a nonrelativistic, weak-
field limit. As we have seen, the behavior of the forces is
quite rich and leads to a number of novel results. In
particular, any pair of (non-BPS) extremal black holes that
are not identical (up to overall scaling) repel one another.
We constructed a proof for the case of SLð3; RÞ Toda black
holes, and similar considerations seemingly apply to the
more complicated example of SLð4; RÞ Toda black holes.
Since we have restricted our attention to somewhat simple
classes of black holes which carry only two (electric)
charges [in the SLð3; RÞ Toda case], a natural next step is to
extend our analysis to the most general class of STU black
holes in four dimensions, to see whether the features we
have identified here persist or not for broader classes of
solutions, including magnetic charges. Work in this direc-
tion is in progress [14].
We have also identified pairs of non-extremal, non-

identical black holes which obey a zero-force condition.
While such balancing of forces is well known in the context
of supersymmetric BPS black holes in supergravity, where
it holds even for black holes that carry different charges, it
is unexpected here. Moreover, for multicenter BPS black
holes, the cancellation of the forces holds for arbitrary
relative positions of the centers. On the other hand, in the
theories we have examined, the zero-force condition
applies only to well-separated black holes (i.e., in the
long-range limit) and for specific choices of parameters.
Nonetheless, we wonder whether it may indicate the
existence of new multicenter black hole solutions (perhaps
at nearby points in phase space), especially for cases where
the two black holes have the same temperature. Indeed, it
would be valuable to better understand to what extent no-
force conditions such as the ones we have found in this
paper can be used as a diagnostic tool for identifying and
generating new solutions, aided by suitable constraints on,
e.g., the temperature, regularity properties, and so on.

It would also be interesting to understand this logic in
light of the results of Ref. [13], where both supersymmetric
and nonsupersymmetric black holes, corrected by higher
derivatives, satisfy a no-force condition.
A more challenging question is to understand how to

connect our results to expectations from the RFC. As we
have seen, in the theories we have studied, distinct extremal
black holes repel. If this observation is a generic feature of
top-down theories that support broader classes of black
hole solutions, it may help to identify the kinds of repulsive
multiparticle states that the strong version of the RFC
would call for. We leave these questions to future work.
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APPENDIX A: MASS AND CHARGES FOR
STATIC BLACK HOLES

1. Mass

The static d-dimensional black-hole metrics can be
written in the form

ds2 ¼ −ufdt2 þ u−
1

d−3ðf−1dr2 þ r2dΩ2
d−2Þ; ðA1Þ

where u and f are functions only of r.
We can expand the metric around Minkowski spacetime

by introducing the coordinates

x ¼ t; xi ¼ rni; where nini ¼ 1; ðA2Þ

and the unit vector ni is parametrized in terms of the (d − 2)
angular coordinates on the unit (d − 2)-sphere. We shall
have dnidni ¼ dΩ2

d−2. We can now write the metric (A1) as
follows:

ds2 ¼ −ufðdx0Þ2 þ u−
1

d−3ðf−1 − 1Þdr2
þ u−

1
d−3ðdr2 þ r2dΩ2

d−2Þ;
¼ −ufðdx0Þ2 þ u−

1
d−3ðf−1 − 1Þ xixj

r2
dxidxj

þ u−
1

d−3dxidxi;

¼ ημνdxμdxν þ hμνdxμdxν; ðA3Þ

with
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h00 ¼ 1− uf; hij ¼ ðu− 1
d−3 − 1Þδij þ u−

1
d−3ðf−1 − 1Þxixj

r2
;

h0i ¼ 0: ðA4Þ

The metric functions f and u have the form

f ¼ 1 −mρ; u ¼ 1 − σρþOðρ2Þ; where ρ ¼ 1

rd−3
;

ðA5Þ

andm and σ are constants. If we assume that r is very large,
so that the metric is nearly Minkowski, we can focus just on
terms up to linear order in ρ. We then have

h00 ¼ ðmþ σÞρþ � � � ; hij ¼
σ

d− 3
δijρþmρ

xixj
r2

þ � � � ;
ðA6Þ

which implies

∂jhij ¼ ðm − σÞ xi
rd−1

þ � � � : ðA7Þ

Applying the ADM mass formula, we find

MADM ¼ 1

16π

Z
Σ
dΣið∂jhij − ∂ihjjÞ

¼ 1

16π

Z
Σ
ðd − 2Þðmþ σÞdΩd−2

¼ ðd − 2Þðmþ σÞΩd−2

16π
: ðA8Þ

Applied to the SLð3; RÞ Toda black holes, this gives

MADM ¼ ðd − 2ÞΩd−2

16π

ð1 − β1Þð1 − β2Þð1 − β1β2Þ
γ1γ2

; ðA9Þ

in agreement with the expression given in Ref. [10].
In Ref. [9], the black hole mass is calculated using the

fact that in De Donder gauge, the trace-reversed linearized
metric perturbation h̄μν ≡ hμν − 1

2
hημν, satisfying the gauge

condition ∂
μh̄μν ¼ 0, obeys □h̄μν ¼ −16πTμν. In particu-

lar, in Ref. [9], the massMH is read off from the expression
(setting κ2 ¼ 1

2
to accord with our conventions)

h̄00 ¼
MH

ðd − 3ÞΩd−2

1

rd−3
þ � � � : ðA10Þ

The linearized metric hμν given in Eq. (A4) is in fact not
in De Donder gauge: We have

h ¼ −h00 þ hii ¼
2σ

d − 3
ρþ � � � ; ðA11Þ

and since the metric is static, we need only check

∂jh̄ij ¼ ∂jhij − ∂ih ¼ mxi
rd−1

þ � � � ; ðA12Þ

which is nonzero at this leading order. We can easily make a
coordinate transformation to put hμν in De Donder gauge at
the leading order by considering

hμν → h0μν ¼ hμν þ ∂ðμξνÞ: ðA13Þ

Let us try taking ξμ to be given by

ξ0 ¼ 0; ξi ¼
αxi
rd−1

; ðA14Þ

where α is a constant to be determined. Thus, we shall have

h → h0 ¼ hþ 2α

rd−3
; ðA15Þ

and so

∂jh̄ij → ∂jh̄0ij ¼ ∂jh̄ij −
αxi
rd−1

¼ ½m − ðd − 3Þα�xi
rd−1

þ � � � ;
ðA16Þ

implying that h̄0μν will be in De Donder gauge at leading
order if we choose α ¼ mðd − 3Þ−1. Finally, note that this
gives

h̄000 ¼ h̄00 þ
m

d − 3
ρþ � � � ; ðA17Þ

and so

h̄000 ¼
�
mþ ðd − 2Þσ

d − 3

�
ρþ m

d − 3
ρþ � � �

¼ ðd − 2Þðmþ σÞ
d − 3

ρþ � � � : ðA18Þ

Thus, we find that the mass MH in Ref. [9] is given by

MH ¼ ðd − 2ÞΩd−2ðmþ σÞ ¼ 16πMADM: ðA19Þ

In terms of the rescaled mass M that we defined in
Eq. (2.2), we therefore have

MH ¼ 1

2
ðd − 2ÞΩd−2M: ðA20Þ

2. Scalar charge

The role of scalar charge in black hole thermodynamics
was described in Ref. [15]. In Eq. (4.16) of Ref. [9], the
scalar charge μ ¼ M0ðϕ0Þ is read off from the leading
falloff term in the large-distance expansion of the scalar
field:
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ϕ ¼ ϕ0 −
G−1

ϕϕM
0ðϕ0Þ

ðd − 3ÞΩd−2

1

rd−3
þ � � � : ðA21Þ

If we write the large-distance forms of the two functionsH1

and H2 in the solution (2.1) as

Hi ¼ 1þ liρþ � � � ; ðA22Þ

then we see from the expression for ϕ in Eq. (2.1) that

ϕ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðd − 2Þ
2ðd − 3Þ

s
ðl2 − l1Þρþ � � � ; ðA23Þ

and therefore the scalar charge is

μ ¼ M0ðϕ0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðd − 2Þðd − 3Þ

8

r
Ωd−2ðl2 − l1Þ: ðA24Þ

Now, for the solution (2.1), we have

l1 ¼
2β1ð1 − β2Þm

γ1
; l2 ¼

2β2ð1 − β1Þm
γ2

; ðA25Þ

and so the scalar charge is given by

μ ¼ M0ðϕ0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðd − 2Þðd − 3Þ

2

r
ðβ2 − β1Þð1 − β1β2Þm

γ1γ2
:

ðA26Þ

In terms of the rescaled scalar charge Σ that we defined in
Eq. (2.2), we therefore have

μ ¼ M0ðϕ0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 2Þðd − 3Þ

2

r
Ωd−2Σ: ðA27Þ

3. Electric charges

In Eq. (4.14) of Ref. [9], the electric charge QH is read
off from the asymptotic form of the electromagnetic
potential A ¼ −Φdt, with

Φ ¼ Φ0 þ
QH

ðd − 3ÞΩd−2

1

rd−3
þ � � � : ðA28Þ

(We have set e ¼ 1 to accord with our conventions, and
also we have allowed for a possible constant term Φ0 in the
potential at infinity.) Writing the gauge potentials A1 and A2

in our Eq. (2.1) as Ai ¼ Φidt, we have

Φ1 ¼ const: −
½β1m − ð1 − β1Þl1�ffiffiffiffiffiffiffiffiffi

β1γ2
p

ffiffiffiffiffiffiffiffiffiffiffi
d − 2

d − 3

r
ρþ � � �

¼ const:þ
ffiffiffiffiffiffiffiffiffiffiffi
d − 2

d − 3

r ffiffiffiffiffiffiffiffiffi
β1γ2

p
m

γ1
þ � � � ; ðA29Þ

with an equivalent expression for Φ2 obtained by exchang-
ing the 1 and 2 subscripts. Thus, we have the charges QH

i
given by

QH
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 2Þðd − 3Þ

p
Ωd−2

ffiffiffiffiffiffiffiffiffi
β1γ2

p
m

γ1
;

QH
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 2Þðd − 3Þ

p
Ωd−2

ffiffiffiffiffiffiffiffiffi
β2γ1

p
m

γ2
: ðA30Þ

In terms of the rescaled electric charges Q1 and Q2 defined
in Eq. (2.2), the charges are therefore given by

QH
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 2Þðd − 3Þ

2

r
Ωd−2Q1;

QH
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 2Þðd − 3Þ

2

r
Ωd−2Q2: ðA31Þ

4. Force between widely separated black holes

From Eq. (4.17) in Ref. [9], wewill have, in our SLð3; RÞ
Toda case, FH

12 ¼ FH=rd−2, with

FH ¼ 1

Ωd−2

�
QH

1 Q̃
H
1 þQH

2 Q̃
H
2 − μμ̃ −

ðd − 3Þ
2ðd − 2ÞMHM̃H

�
:

ðA32Þ

Expressed in terms of the rescaled masses and charges of
our Eq. (2.2), we therefore have

FH ¼ 1

2
ðd − 2Þðd − 3ÞΩd−2F ; ðA33Þ

with the force coefficient given by

F ¼ Q1Q̃1 þQ2Q̃2 − ΣΣ̃ −
1

4
MM̃; ðA34Þ

as given earlier in Eq. (2.7).

APPENDIX B: BPS BLACK HOLES

For comparison with the results for the forces between
the non-BPS extremal black holes that we have been
considering in this paper, it is interesting to look at
examples of BPS extremal black holes. A convenient
and rather general class of examples can be constructed
as solutions for the following theories, which were dis-
cussed in Ref. [16]. The d-dimensional Lagrangian is

L ¼ R −
1

2
ð∂  ϕÞ2 − 1

4

XN
α¼1

e  cα·  ϕF2
α; ðB1Þ

where  ϕ denotes an (N − 1)-vector of dilatonic scalar
fields, and the constant vectors  cα describing the couplings
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of these scalars to the N 2-form gauge fields Fα obey
the relation

 cα ·  cβ ¼ 4δαβ −
2ðd − 3Þ
d − 2

: ðB2Þ

In dimensions d ≤ 10, these Lagrangians arise as consistent
truncations of the maximal supergravities obtained by the
toroidal reductions of d ¼ 11 supergravity. One can also
consider theories of the form (B1) more generally, in any
arbitrary dimension.
The extremal N-charge black hole solutions of the

theory (B1) are given by [16]

ds2 ¼ −
�Y

α

Hα

�
−d−3
d−2
dt2 þ

�Y
α

Hα

� 1
d−2ðdr2 þ r2dΩ2

d−2Þ;

Fα ¼ dt ∧ dH−1
α ;  ϕ ¼ 1

2

X
α

 cα logHα; ðB3Þ

where

Hα ¼ 1þ qα
rD−3 : ðB4Þ

Calculating the ADM mass as discussed in Appendix A,
we find

MADM ¼ ðd − 3ÞΩd−2

16π

X
α

qα: ðB5Þ

The mass MH, scalar charges  μ and electric charges QH
α ,

calculated as described in Appendix A, are therefore
given by

MH ¼ ðd − 3ÞΩd−2

X
α

qα;

 μ ¼ 1

2
ðd − 3ÞΩd−2

X
α

 cαqα;

QH
α ¼ ðd − 3ÞΩd−2qα: ðB6Þ

The force between two distant BPS black holes, defined as
in the formula (A32), gives

FH ¼ ðd − 3Þ2Ωd−2

�X
α

qαq̃β −
1

4

X
α;β

 cα ·  cβqαq̃β

−
d − 3

2ðd − 2Þ
X
α;β

qαq̃β

�
: ðB7Þ

After making use of the relation (B2), we see that the force
between any pair of BPS black holes is equal to zero. This
should be contrasted with the situation for the SLð3; RÞ
extremal black holes, which are not BPS, where the force
is zero only if the electric charges of one black hole are
an overall multiple of the electric charges of the other
black hole.
It can easily be verified that more generally, one can

consider configurations of the form

ds2 ¼ −
�Y

α

Hα

�
−d−3
d−2
dt2 þ

�Y
α

Hα

� 1
d−2
dyidyi;

Fα ¼ dt ∧ dH−1
α ;  ϕ ¼ 1

2

X
α

 cα logHα; ðB8Þ

where yi are coordinates on the Euclidean (d − 1)-
dimensional transverse space, and the functions Hα depend
on the yi coordinates. The equations of motion following
from the Lagrangian (B1) are satisfied if the Hα are
arbitrary harmonic functions on the (d − 1)-dimensional
Euclidean space. Multi-black-hole solutions are obtained
by taking the Hα to be sums of elementary harmonic
functions of the form

Hα ¼
X
a

qαa
j  y −  yαajd−3

: ðB9Þ

(Global considerations impose certain constraints on the
strengths qαa of the elementary functions located at the
mass centers  yαa.) It should be emphasized that the ability
to construct multicenter solutions of this form is intimately
related to the fact that the force between any pair of single-
center black holes is zero. This is very different from the
situation for the non-BPS extremal black holes we have
been considering in this paper.
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