PHYSICAL REVIEW D 106, 086007 (2022)

Long-range forces between nonidentical black holes
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Motivated by recent studies of long-range forces between identical black holes, we extend these
considerations by investigating the forces between two nonidentical black holes. We focus on classes of
theories where charged black holes can have extremal limits that are not BPS. These theories, which live in
arbitrary spacetime dimension, comprise gravity coupled to N 2-form field strengths and (N — 1) scalar
fields. In the solutions we consider, each field strength carries an electric charge. The black hole solutions
are governed by the SL(N + 1, R) Toda equations. In four dimensions, the black hole solutions in the
SL(3, R) example are equivalent to the “Kaluza-Klein dyons.” We find that any pair of such extremal black
holes that are not identical (up to overall scaling) will repel one another. We also show that there can exist
pairs of non-extremal, nonidentical black holes which obey a zero-force condition. Finally, we find
indications of similar results in the higher examples, such as SL(4, R).

DOI: 10.1103/PhysRevD.106.086007

I. INTRODUCTION

There has been a considerable interest recently in finding
detailed ways to quantify the idea that gravity is the
weakest force. Such attempts have led to a number of
conjectures, with the weak gravity conjecture (WGC) [1]
thus far on the strongest footing (see Ref. [2] for a
comprehensive review). A natural way to examine the
strength of gravity in a given theory is to study the force
between well-separated particles and ask whether the
gravitational attraction is indeed overwhelmed by the
repulsive interactions in the theory. This idea has been
made more precise by the repulsive force conjecture (RFC),
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which was originally stated in Ref. [1] and describes the
simple notion that long-range repulsive gauge forces
(between identical charged particles) should be at least
as strong as all long-range attractive forces. The RFC
was reemphasized more recently in Ref. [3], and stronger
versions were put forth by Ref. [4]. Moreover, in Ref. [5] it
was shown that the RFC can also be understood using the
timelike reduction formalism of Ref. [6].

In its weakest form, the RFC argues that effective
field theories (EFTs) consistent with quantum gravity must
have a state which is “self-repulsive,” whether the state is
a fundamental particle or a black hole. When multiple
charges are present, this requirement must then hold along
each direction in charge space.' While the WGC and the
RFC are clearly related to each other, they are distinct in the
presence of scalars [4]. Moreover, studies of black holes in
theories with higher derivatives make the difference even
more manifest [7] and suggest that the RFC cannot be

'"The strongest form of the RFEC [4] states that in every
direction in charge space, there should be a strongly self-repulsive
multiparticle state—i.e., a multiparticle state where each con-
stituent state repels every other state, including itself.
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satisfied by the black hole spectrum alone—unlike the
WGC, which can [8]. Taking these considerations into
account, it is valuable to better understand what else we can
extract from the behavior of long-range forces, in order to
eventually clarify to what extent the RFC is a useful
criterion for constraining EFTs.

Within the context of the RFC, the interest thus far has
been focused on long-range forces between two identical
copies of the same object. Two identical black holes at rest
and asymptotically far from each other will generically
attract, except at extremality, when the net force between
them will vanish [9]. This is true even in theories with
moduli, which mediate new long-range interactions and
affect the balance of forces between the black holes.” In the
simple case of a black hole of mass M and electric charge O
in theories in four dimensions with a single light scalar, the
force between two identical copies is’

Q2 22
F - - 1= _
(}’) 4 r2 + r2 },.2 + ’

(1.1)

where X denotes the scalar charge (to be defined precisely
later). The contribution of the scalar field precisely offsets
the gravitational and electrostatic forces between the black
holes, ensuring that all interactions cancel.

Such a no-force condition, which here applies to any
pair of identical, extremal black holes, is also well known
from studies of supersymmetric Bogomol nyi-Prasad-
Sommerfield (BPS) black holes in supergravity, where
there exist multi-black-hole solutions where the individual
black holes sit in static equilibrium with zero force between
them. However, in the case of extremal BPS black holes in
supergravity, the no-force condition holds regardless of
whether the black holes are identical or they instead carry
different charges. This simple observation motivates us to
examine more generally the behavior of long-range forces
between two black holes that carry different charges and are
therefore not identical, working with configurations which
are not BPS solutions. We are particularly interested in
identifying any generic features of such interactions and
under which conditions the force can vanish. As we shall
see, for nonidentical black holes, the behavior of the long-
range force is quite rich and can still lead to zero-force
conditions, albeit in a different manner from the BPS cases
arising in supergravity.

A well-known example of a configuration which is not
BPS is provided by the so-called “Kaluza-Klein dyon,”
which is a solution of four-dimensional ungauged N' = 8
supergravity, in which a single gauge field carries both
electric and magnetic charge. The solution can be described

’In theories with higher-derivative corrections, this is no longer
true. The long-range force between extremal black holes receives
corrections and does not generically vanish [7].

*We are neglecting O(r%) terms, as well as velocity-dependent
forces.

by a consistent truncation of the full N = 8 theory that may
instead be obtained as the Kaluza-Klein reduction of pure
five-dimensional Einstein gravity; hence the nomenclature
“Kaluza-Klein dyon.” This theory is described by the
four-dimensional Lagrangian

Li=R—(ap) —Leviop2, (1.2)
2 4

For our purposes, it will be more convenient to consider a
somewhat different theory comprising gravity, the dilaton,
and two distinct gauge fields rather than just a single gauge
field. Among other things, this has the advantage that we
can describe charged black holes with the feature of having
an extremal but not BPS limit in any arbitrary dimension d.
The d-dimensional Lagrangian is given by [10]

1 1 1
=R —=(09)* —~e"YF —— e~ F2 1.
ﬁ 2 (a¢) 46 1 46 2 ( 3)
where
6(d-3)
=4/ —" 1.4
a P (1.4)

The black hole solutions we shall consider have two
independent electric charges, one carried by each of the
two field strengths. In the special case of d =4, the
solutions will be completely equivalent4 to the dyonic
solutions of the theory described by Eq. (1.2).

For the extremal but non-BPS black holes in the theory
described by Eq. (1.3), we find that if the charges (Q, 0,)
and (0, 0,) of two such black holes are unequal,” then the
force between the two is always repulsive.6 (See Ref. [11]
for some related discussion of black holes that repel one
another.) Combining this with the fact that the force
between identical black holes is attractive if they are
non-extremal (i.e., subextremal), we conclude, by continu-
ity, that that there should exist non-extremal black holes
with unequal charges for which the parameters can be tuned
so that a zero-force condition holds. It does not appear to be
possible to obtain explicit analytic formulas for the general
parameter choices that achieve such a zero-force condition.

4Essentially, the field strength F, in the d = 4 specialization of
the theory [Eq. (1.3)] is acting like the dualization double of the
field strength F;.

Tt will always be understood that we are restricting attention to
cases where the signs of the charges will be the same for the two
black holes. Obviously, there is little of interest to discuss if the
charges of the two black holes are opposite, since then there
would be an attractive electrostatic force that would reinforce the
attractive gravitational force, and there could never be any
question of achieving a zero-force balance. We shall always
assume, without losing generality for the cases that are interesting
to discuss, that the charges are all positive.

To be more_precise, the force between them is repulsive
provided that (Q;, Q,) is not a multiple of (Q;, Q,)—i.e., that

(01.05) # (kQ;.kQ,) for any constant k.
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However, we are able to solve numerically to find examples
of nonidentical, non-extremal black holes which have no
long-range force between them. We also find an explicit
analytical formula for the zero-force condition for a
restricted subfamily of these black holes. This balancing
of forces is interesting and may hint at a deeper structure,
something which we would like to better understand. We
shall come back to this point in the Conclusions.

The equations for black hole solutions in the theory
described by the Lagrangian (1.3) can be recast as SL(3, R)
Toda equations.7 In Ref. [10], extensions of the theory that
give rise to the SL(n,R) Toda equations were also
considered, and the black hole solutions were constructed.
For the SL(n, R) case, there are now (n — 1) field strengths,
each carrying an electric charge, and (n —2) dilatonic
scalar fields. In the present work, we study the black holes
in the SL(4,R) Toda theory, and show that analogous
results to those we found for the SL(3, R) Toda black holes
arise here also.

The paper is organized as follows: In Sec. II, we discuss
the general non-extremal two-charge black holes of the
SL(3,R) Toda theory, and obtain the expression for the
force between two well-separated such black holes.
Specializing to the case where the two black holes are
extremal, we show that the force between them is always
non-negative; that is, it is always either repulsive, or else
it is zero. Specifically, the force vanishes if and only if
the charges (Q;, Q,) and (Q;,Q,) of the black holes are
proportional—i.e., if (Q;,0,) = (kQ,,kQ,). The case
k =1 corresponds to identical black holes. We then turn
to the consideration of two non-extremal black holes. If
they are identical, we find that the force is negative (i.e.,
attractive), in line with standard results in the literature. We
then show, by means of numerical studies, that for two
nonidentical non-extremal black holes, it is possible to
choose the mass and charge parameters so that there is zero
force between them. We also obtain an explicit analytical
formula characterizing the zero-force condition for a
special subset of the non-extremal black holes.

In Sec. III, we extend our discussion to black hole
solutions of the SL(4, R) Toda theory. We demonstrate that
the same general features we found for the SL(3, R) Toda
black holes occur in this case also. Namely, the force
between two nonidentical extremal black holes is in general
repulsive, becoming zero when the black holes are identical
and in certain other special cases. Furthermore, we show
with numerical examples that one can tune the parameters
of two non-extremal black holes such that the force
between them vanishes.

In Sec. IV, we present our conclusions and further
discussion. Appendix A contains some details of the

"See Ref. [12] for a study of the link between the timelike
formulation of Ref. [6] and Toda equations, in the context of
Kaluza-Klein black holes.

calculation of the ADM mass and the scalar and electric
charges, and it gives the relation between our normalizations
for these quantities and the normalizations in Ref. [9]. In
Appendix B, we present a calculation of the force between
widely separated BPS black holes in a wide class of theories,
to illustrate some salient features of the differences between
the BPS and the non-BPS extremal black holes.

IL. SL(3.R) TODA BLACK HOLES

The SL(3, R) Toda Lagrangian (1.3) admits two-charge
static, asymptotically flat black hole solutions, given by [10]

ds* = —(HIHZ)'%fdt2 + (H1H2)2<d]-3>(f‘ldr2 + r2dQ? ),

1 [f3d-2), (H, om
o2\ i)
[d—2 1-pf \/ﬁ 1-pof
A =4 —————dt, As\ | —————dt,
! d—3+/piy.H, ' ? d—=3+/fryH, :
Hy =y (1 =28,f + BiSoS?).
Hy =73 (1 =281 + Bifaf?).

i =1=2p+pip ro=1=28+pp. (2.1)

where m, 3|, and 3, are constants that parametrize the mass
and the two electric charges. Adopting convenient normali-
zation, which we define in Appendix A, the mass M, the

scalar charge X, and the two physical electric charges O and
0O, of the black hole solutions are given by

_200=p) (0 = Bo)(1 = fipr)m

M
Y172
= 2(1+1)<1 ~pip)m,
Y1 72
s _ V3B = Bo)(1 = 1 pa)m
7172 ’
0, = Y% 2/’; llnm, g, =¥ 2’; 22“’". (2.2)

It will be understood in all that follows that the charges Q;
and Q, are assumed to be non-negative, so that the gauge
force between two black holes will always be repulsive.8

*In this section, we always set the asymptotic (i.e., r — ©0)
value of the dilaton to zero in the mass, electric charges, and
scalar charge. The reason for this choice is that the Lagrangian
in Eq. (1.3) has a shift symmetry under ¢ — ¢ + ¢, with F'; —
e~/2F, and F, — ¢“/2F,. Because of this symmetry, we can
scale the physical charges as Q; — ¢™/2Q, and Q, — ¢~“¥/2Q,,
and using this scaling, any expression with zero asymptotic value
for the dilaton can be dressed with a nonzero asymptotic value.
Moreover, since this is a symmetry, it will not change any
conclusion we draw for the long-range force.
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A different parametrization, which will prove useful
for some purposes, is provided by expressing ; and f, in
terms of two new parameters p and ¢, with

(2.3)

In terms of p and ¢, the mass, scalar charge, and electric
charges in Eq. (2.2) become

M=p+gq, Zzg(p—q),
_ [p(p* = m?)]? _ [alg® =mM)]?
Ql_{ (p+q } Q2 [ (p+aq) ] 24

It is useful also to note that the Hawking temperature of the
black hole is given by [10]

(d-3) 4=

T = Ha-3)
drr, (}’1}’2)

(2.5)

where r, is the radius of the outer horizon, given by
473 = m. In terms of the parameters p and ¢ introduced in
Eq. (2.3), this becomes

d=3m[  4p+q? ]

T —
4z |pq(p+m)*(q+m)?

(2.6)

As we remarked earlier, in four dimensions, the black
holes with two electric charges we are discussing here are
equivalent to the KK dyonic black hole solutions of the
theory given in Eq. (1.2), with the electric and magnetic
charges of the single field strength F in Eq. (1.2) corre-
sponding to the two electric charges O and Q, in Eq. (2.4).
In fact, the parametrization using p and ¢ as in Eq. (2.4) is
precisely9 the one used in Ref. [7], where the force between
identical Kaluza-Klein dyons was discussed.

The force between two well-separated such black holes
is given, up to an overall scale that we suppress for now,
by F = Fr~4=2) where

F =00 +Q2Q2—22—%MM, (2.7)
where the untilded and tilded quantities refer to the two
black holes, with the untilded quantities being given in
terms of parameters (m, f3;, 3,), and the tilded quantities in
terms of parameters (77, b, ﬁz) For the explicit relation of
our masses and charges to those defined in Ref. [9] we refer
the reader to Appendix A.

9Note, however, that our extremality parameter m is twice that
used in Ref. [7].

We now examine the nature of the force between the
black holes in two cases: first for extremal black holes, and
then for non-extremal black holes.

A. Extremal SL(3,R) black holes

One way of taking the extremal limit of the SL(3,R)
black hole solutions is by setting [10]

2

22 2 2 2 4
Pr=1-qq, (q; + QE)%m +4q,°q,m*,

2 2
1

2 2 2 2 42
Pr=1=q,"a; (a1 + q3)m+ gy qy'm?, (2.8)
in terms of two new charge parameters g, and ¢,. The
extremal limit is then attained by sending m — 0. In this
limit, the mass, scalar, and electric charges defined in
Eq. (2.2) become

Yoxt =

o7 = qi, 05 = q». (2.9)
In this extremal limit, the (double) horizon is at r = 0.
Inserting Eq. (2.8) into the expression (2.5) for the

Hawking temperature gives

ta=ym [ 2 I35

4z 9192

T = +O(m?),  (2.10)

which goes to zero, as one would expect, in the extremal
limit m — 0.

It is straightforward to verify that if two such extremal
black holes have charges that are multiples of one
another—i.e., if

(21 %2) = (kqi1. kqy), (2.11)
then the force between them, given by substituting Eq. (2.9)
into Eq. (2.7), is zero. This includes the special case k = 1,
corresponding to two identical extremal black holes.
Next, we would like to examine the general case of two
nonidentical extremal black holes. The solutions may be
reparametrized in terms of (¢, ) and (g, @), where

q1 = ¢’ cos’ 0,

| =3cos’0, G, =g sin’ 0. (2.12)

QU

With the understanding that the charges are all non-
negative, we see that we must have

0<0<-mn  0<0<-m (2.13)

N[ =
N[ =
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Plugging Eq. (2.12) into Eq. (2.9), and then these into the
expression (2.7) for the force coefficient, we find

F =4¢'3G, (2.14)
where
3 37 3pe3n O 5 1
G = c0s’60cos’0 + sin’Osin G—ZCOSZHCOSZQ—Z.

(2.15)

As we shall now show, G is non-negative when 6 and 6 lie
anywhere in the square defined by Eq. (2.13).
First, we define 7 = tan$6 and 7 = tan%é, so we have

2t 1-7

sin9:—2, cs9:—2,

I+1 1+1

~ 7 . 17
Sin@zm, Cosezﬁ. (216)

In view of Eq. (2.13), we have 0 <t <1 and 0 <7< 1.
Thus, we can parametrize 7 and 7 as

a - b
t= , f=—ro), 2.17
1+a 1+b ( )
with
0<a< oo, 0<bhb< (2.18)

Plugging these substitutions into the definition of G in
Eq. (2.15), we find

2(a—b)*P(a,b)
G= . (219
(14 2a +2a?)3(1 +2b + 2b%)3 (2.19)

where

P(a,b) =3(a+ b)> +6(a+ b)(a® + 4ab + b?)
+ 2(a* + 20a°b + 36a*b* + 20ab’ + b*)
+ 12ab(a + b)(a* + 4ab + b?)

+ 12a*b*(a + b)*%. (2.20)
Since all the coefficients in P(a, b) are positive, it follows
that P(a, b) > 0 for all a and b in the range (2.18), and thus
we see from Eq. (2.19) that G > 0.

Thus, we have shown that the force between any two
extremal SL(3,R) Toda black holes is always non-
negative, and that it is strictly positive [i.e., repulsive],
provided that the charges of the two black holes are not
proportional [i.e., provided that Eq. (2.11) is not satisfied
for any constant k].

It is worth remarking that taking the extremal limit is
somewhat more straightforward in the parametrization using
p and ¢ as in Eq. (2.3), since one can now simply set m = 0
in the expressions in Eq. (2.4) for the mass, scalar charge,
and electric charges, without the need for taking a delicate
limit. Indeed, at extremality, the electric charges ¢; and g, in
Eq. (2.8) are given in terms of p and g by

E: 7
9 =71 9o =—— 1>

: : (2.21)
(p+aq) (p+q)

as can be seen directly from Eq. (2.4). Note that in this
parametrization, one can directly see that the Hawking
temperature of the black hole becomes zero in the extremal
limit by setting m = 0 in Eq. (2.6).

B. Non-extremal SL(3,R) black holes

Now consider non-extremal black holes, characterized
by the parameters (m, 3y, ;) and (i1, B, 5, ), respectively.
The general expression for the force between two distinct
non-extremal black holes is the following:

= (BB et )t + 2(BaBa) 7 )
Y1Y27172

=31 = B)(1 = p182) (B1 — B2) (1 = B1 )
—(1=p)(1=B2) (1= piB2)(1 = B1)(1 = B2)
x (1 _BIBZ)]'

f

(2.22)

It can be verified easily that if we consider the case where

(,Bl»ﬁz) = (ﬂl’ﬁ2)7

which corresponds to the tilded electric charges being an
overall multiple of the untilded electric charges [see the
expressions in Eq. (2.2) for Q; and Q,], then the force
between the non-extremal black holes will be attractive,
with F given simply by

(2.23)

F = —min. (2.24)

The special case of identical non-extremal black holes
arises when the further condition 771 = m is imposed.10

"It can also be seen that if the black holes obeying Eq. (2.23)
are taken to be extremal, by sending m and /m to zero, then the
force (2.24) between them becomes zero, as already noted for
extremal black holes whose charges are proportional. Note that
one must be careful when taking the extremal limit in this
parametrization, since the f; parameters must be taken to 1 at the
same time, as seen in the limiting procedure in Eq. (2.8). In
particular, having imposed the requirement (2.23), one could not
take the m = 0 extremal limit for the untilded black hole without
also taking the m = 0 limit for the tilded black hole, since
otherwise the tilded charges Q; would become infinite.
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Recall that for the case of two distinct extremal black
holes, we have shown that the long-range force is always
positive. Thus, since the force must presumably be a
continuous function of the parameters, we conclude that
for a general pair of non-extremal black holes, there must
exist some choices of the m and f3; parameters which yield a
zero-force condition. Indeed, here is a numerical example:

We write #; and /3, as in Eq. (2.8), but we do not send m
to zero."" We do likewise for By and f, (taking, for
convenience, m = m). Making a specific choice for the
untilded and tilded ¢; parameters, namely

g1 =1 92 =2, g =3, =1 (225)

we then look at the numerical value of the force coefficient
F, as a function of m. We find that, approximately,

m > 0.066
m < 0.066

F <0,
F>0.

implies
implies (2.26)
In other words, for this example of two black holes whose
charges are not simply an overall multiple of one another,
the force between them is repulsive when they are suffi-
ciently close to being extremal, but it becomes attractive
when they are taken to be sufficiently far from extremality.
The zero-force condition arises when the non-extremality
parameter m is roughly equal to 0.066000632.
As another example, if we take

q1 =1, 9 =2, g =1, 7 =3, (227)
then the crossover between repulsion and attraction occurs

when the non-extremality parameter m is approximately

m = 0.2073984664. (2.28)

Note that it is necessary to check that the constants f3;, 8;, 7;,
and 7; are all non-negative, in order to ensure that the black
holes are regular from the horizon to asymptotic infinity. In
the examples above, these conditions are indeed satisfied.

We may also give an explicit construction of a special
family of nonidentical, non-extremal black holes that obey
the zero-force condition. Using the parametrization in terms
of p and g as in Eq. (2.3), the expression (2.22) for the force
between two non-extremal black holes becomes

At this stage, therefore, we just have a reparametrization of
non-extremal black holes in terms of m, g;, and ¢, rather than m,
1, and f,. Itis a convenient reparametrization to adopt here since
it allows us explore the situation where the black hole is
becoming close to extremality, by taking m to be fairly small
(in comparison to ¢; and/or g,). Note that ¢; and g, are not
simply multiples of the physical charges Q; and Q,, except in the
actual extremal limit where m — 0.

(2.29)

As we saw previously, for two identical non-extremal black
holes, the force becomes F = —m?. Note that in order to
avoid imaginary charges and negative mass, we should
restrict p and ¢ such that p > m and g > m.

Consider now the following specialization: Take

]h =m, 13 — Q? q = p, (2.30)

for which the expression (2.29) becomes

o) R Ay o s
7 WP (P —m*)(g i Yt 2 apg)
p+q 2
(2.31)
For p = g, we find F = —m? (as is to be expected for two

identical non-extremal black holes); the second term is
negative, and it outweighs the first term. If instead p # g,
then under certain circumstances the second term in
Eq. (2.31) will be positive, and so F will be positive.
Thus, within this considerably simplified class of solutions,
we can find explicit expressions for intermediate cases that
achieve a zero-force condition:
Writing

p =xq, (2.32)
we can solve for the ratio g>/m? that makes F in Eq. (2.31)
vanish. This gives

2 4[2x(1+x2):|:\/)—c(1—|—x)\/1—4x—|—10x2—4x3+x4}

m? (x—1)%(1—4x—6x>—4x> +x*)

(2.33)

We must choose x so that we have g> — m? > 0, and also
p>—m?> >0 (i.e., ¢°x*> —m? > 0). This implies that we
should make the upper sign choice in Eq. (2.33), and so,
defining

W(x)

4{2)((1 +x2) +/x(14+x)V1 —dx + 1Ox2—4x3+x4]
(x=1)3(1 —4x—6x> —4x> +x*) '
(2.34)

we shall have
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(2.35)

Since sending x — x~! exchanges the roles of p and ¢,

which corresponds to the symmetry of the SL(3, R) theory
under the reflection of the SL(3, R) Dynkin diagram, we
can, without loss of generality, restrict attention to taking x,
which must be positive, to lie in the interval 1 < x < oo.

In the interval 1 < x < o0, it is evident from Eq. (2.35)
that the conditions p?> > m? and ¢> > m? will be satisfied if
W(x) > 1, and one can see from Eq. (2.34) that this will
hold if

l <x<x,, wherex, 527451, (2.36)

with x, being the larger of the two real roots of

1 —4x — 6x% — 4x> + x* = 0. The function W(x) is strictly

greater than 1 for all x in the interval (2.36), except when

x=2+3~ 3.73205, for which W becomes equal to 1.
As a concrete example, if we take x = 3, then

15 4+ 2v/39

15 +2v/39
23 ’

5 (2.37)

q=m p =3m

This satisfies all the necessary constraints, and indeed gives
F = 0. For this particular example, the temperatures of the
two non-extremal black hole solutions are the same [since,
as one can see from Eq. (2.6), if we denote the temperature
by T(p, g, m), then we have T(p,q,m) = T(q, p,m)]. By
contrast, in each of the previous numerical examples we
presented, the temperatures were unequal for the two non-
extremal black holes for which a no-force condtion held.
While the equality of the temperatures in the example in
Eq. (2.30) is due to the symmetrical parameter choices of
these particular solutions, it may also hint at the existence
of a new multicharge black hole. We will return to this point
in the Conclusions. Finally, we anticipate that there should
not be any obstruction to finding a vanishing force for
parameter choices corresponding to properly quantized
physical charges, once one is more careful with normal-
izations and properly reinstates units.

III. SL(4,R) TODA BLACK HOLES

SL(n, R) Toda black holes are discussed in Ref. [10],
and additional explicit details are given for the SL(4,R)
case. The Lagrangian for the SL(n, R) case is given by

1 N 1 n—1 .
=R—5(00)> =) e"IF? 1

where the (n — 1) dilaton vectors d; satisfy

I d-3 .
ala,:§(n—2)(n2+2n+3)m, (nosumonl),
N 1 d-3
ai‘ai+1:—g(n3—n+]2)m,

. 2(d -3 o, .

d;-d;=— (d_z), i#Fj-1,j,j+1 (32)

There are n — 2 dilatonic scalars, so the dilaton vectors are
(n — 2)-component vectors. For the case of SL(4,R), we
can satisfy the conditions in Eq. (3.2) by choosing

i, = (V8v, V10u),
53 == (\/8_, —\/E),

> = (—V/180,0),

where v = ——.

— (3.3)

The SL(4, R) Toda black hole solutions, involving three
field strengths, each carrying an electric charge, and two
dilatonic scalar fields, were constructed in Ref. [10]. They
are given by

dSz = —(H1H2H3)_éfdt2
+ (HleHs)W(f_ld”z +r7dQy,),

- 1 .
7 Zl—()yzi:ailogHi,

_ 2
BN EREE VRN

1

- Vs VBir2H,y ’
3 1-2p\f + Psfaf?
Ay =)= dt,
’ \/; VP3r2H3 '
A \/El =35 f + 35 (B1 + B3)f* = BiBabaf? dr
? Sv Vhariv3Hs ’
(3.4)
where
Hy =7 (1 =3B1f + 3B15of* = BiBaBs ).
Hy = 73" (1 = 4Bof +36(B1 + B3)f?
—AB\Pafsf? + PSS,
Hy = y3'(1 = 3B5f + 3Bafsf* = BiBabaf?).
f=1 -%, (3.5)
and
vi=1=31+ 365, — 152,
va = 1—=4B, +36:(B1 + B3) — 4B1 5255 + B1B3ps.
v3 =1=303+3pp3 — f152. (3.6)
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The ADM mass of the SL(4, R) Toda black hole is given
in Ref. [10], and it can be written (in our choice of overall
normalization) as.”?

M:(&-F&—f—&)ﬂ, (3.7)
no r r/)S
where

ki =1=p01 = p1p2 + Bi1P2P3s

ky =1 =2, + 25\p2P3 — B1S3P5.

ky =1 =5 — pofps + p12f3. (3.8)

With the overall normalization we are adopting, the three
electric charges are given by [10]

0, :M 0, =" 8far1r3m 0,— 6ﬂ3y2m.
\/571 ’ \/§Y2 ’ \/§y3
(3.9)

The two scalar charges, read off from the coefficients of the
r~4+3 terms in the asymptotic expressions for the dilaton
fields, are given, in our normalization, by the 2-vector

|
T = at;, 3.10
5\/21/21: (3.10)

and hence

26, — 3¢, + 245
5 b

Zzzfl—fs’

V3

—d+3

%, = (3.11)

where #; are the coefficients of the r terms in the

expressions for H; = 1 + rf—,g + -+, and are given by

3 3

¢\ = ﬂyllm(l—Z/ferﬂz/J’s), £y= 'iim(l—2/}z+ﬁ1ﬂz),
4 3

Ch= ,izzm (1—2(,31 +3)+ 3155 —ﬁ1ﬂ2ﬁ3>- (3.12)

The force between two black holes, characterized
by untilded and tilded parameters (m,f;,f,,3) and

(’/’hvﬁl’BZUB?,), is given by

MM.

Mu

(3.13)

FNU

3
F=) 00-%
i=1
If the two black holes are identical, this gives

12Again, we choose to set the asymptotic value of the dilaton to
zero for reasons mentioned in footnote 8.

F=—m? (3.14)

As expected, this vanishes in the extremal case (m = 0)
and is negative—implying an attractive force—in the
subextremal case.

As we also saw in the case of the SL(3, R) Toda system,
studying the force between two nonidentical black holes is
a lot more involved. However, the logic here is similar to
that of the previous section. As we shall discuss in more
detail below, in the case of unequal extremal black holes
the force can be positive, and although we do not have a
general proof in this case, we can expect that it will always
be positive, just as we saw for the SL(3, R) examples.

By continuity, given that the force between identical
non-extremal black holes is negative, we can again expect,
just as for SL(3,R) black holes, that there should exist
nonidentical pairs of non-extremal SL(4, R) black holes for
which a zero-force condition holds. Here, we present one
explicit numerical example. We consider two non-extremal
SL(4, R) black holes with parameters

i, (ﬁl,ﬁz,m)—(l : 1),

3
I

534

5 s 1 1
(B1. 2. P3) = <é+W1§+W,Z+W>. (3.15)

When w = 0, the force is just given by F = —m?, as

mentioned previously. We find that the force becomes zero
if the parameter w is tuned to

w ~ 0.03742503. (3.16)

In the case of extremal SL(4, R) Toda black holes, we
can follow the procedure described in Ref. [10] for taking
the extremal limit, by writing13 the f; in terms of new
parameters a, b, c, as follows:

1
pr=1—am+a*bm?>, p,=1 —am—|—5a3(c— 1m?,

B3 =1—am— a*bm?, (3.17)

and then sending m to zero. Before taking this limit, the
temperature is given by [10]

(3.18)

( o
Tr= (717273)7@,

d-3
4nr,
which implies, using the parametrization in Eq. (3.17), that

BA sign error in Ref. [10] in the expression for /3, is corrected
here.
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(d=3)m

o lal(c = 9p7)(3 4+ 36 - 20)[ET + O(m?),
T

T p—
(3.19)
which indeed vanishes when m = 0.

Using Eq. (3.17) and then sending m to zero gives
charges and mass as follows:

0 — V6(3 +3b* —20) 0, — 2v2v/e? — 9b?

' VBa(c-3b) > VBa(3 +3b2 —2c)
0, — V/6(3 + 36 - 2c)

i V5a(c +3b)

6(9b> — 18b* 4+ 6¢ + 9b*c — Tc* + %)
Z] - P 2 2 )
5a(3 +3b* —2¢)(c* — 9b*)

5, 6b(3 - ¢)

- V5a(c? —9p?)’
v 4(36b%c + 9c — 54b> — 27b* — 3¢% - ¢?)
B 5a(3 +3b* — 2¢)(c? — 9b?)

(3.20)

The parameters b and c¢ are constrained by the requirements
that

0<bh<l, 3b<c<=(1+b%), (3.21)

N W

where we have, without loss of generality, required b to be
non-negative [there is a symmetry of the solution, corre-
sponding to reflecting the SL (4, R) Dynkin diagram, under
sending b — —b and exchanging the “1” and “3” labels on
the electric charges]. It will be convenient to parametrize
the allowed ranges of values for b and ¢ in terms of two
parameters x and y that can independently range over
0<x<oo0and 0 <y < oo by writing

3(1=b)%y po ¥

c=3b+——""—, .
2(1+y) 1+x

(3.22)

From looking at numerous numerical examples, it would
seem that the force between any two unequal-charge
extremal SL(4,R) Toda black holes is positive (i.e.,
replulsive). Since we were able to prove this explicitly
for the analogous SL(3, R) case, it would seem likely that
the force will be always repulsive in this case too. Although
we have not constructed an explicit proof in general, we are
able to show that when the parameters of the two extremal
black holes are close to one another, the force is always
repulsive. Specifically, we may consider the situation where

a=a, b=b+e, ¢=c+e, (3.23)
and then look at the expression for the long-range force at
leading order in the small quantities €; and €,. (Since the

parameters a and & appear only as overall scaling factors
in the expressions for masses and charges, there is no loss
of generality, from the point of view of establishing a
positivity result, in simply taking @ to be equal to a.) The
leading-order terms in the expression for the force arise at
the quadratic order in the e parameters, so F takes the form

f = hl‘jeie]‘ + 0(6'3). (324)

We find that

det(h;;)

_64(1+x)"19(1 +y)3 (1 4 4x + 2x% + 2y + 4xy + 2x%y)
N 225a*y? (4x +4x> +y + dxy +4x2y)?

’

(3.25)

which is non-negative, since 0 < x < oo and 0 <y < o0.
We also find that >, h;; is manifestly non-negative. Thus, it
must be that the two eigenvalues of h;; are non-negative,
and so at least to quadratic order in perturbations around the
case of identical extremal black holes, the force is always
repulsive, as anticipated.

IV. DISCUSSION AND CONCLUSIONS

Motivated quite naturally by studies of the WGC, there
has been recent interest in exploring the relation between
black hole extremality bounds and zero-force conditions.
In particular, the RFC encodes the idea that gravity is
the weakest force by requiring (in its simplest form) the
existence of self-repulsive states. However, while the WGC
has been examined extensively—and partial proofs have
appeared in a variety of contexts—the RFC is thus far
less studied and much less understood. While the two
conjectures are identical in two-derivative theories that
contain only gravity and electromagnetic forces (where a
charged state with Q > M will clearly repel itself), they are
known to be distinct in the presence of scalar fields, which
can mediate new long-range interactions. In this context,
the fact that long-range forces between identical extremal
black holes vanish independently of the complexity of the
matter sector (which may include a variety of scalar and
gauge fields) is quite nontrivial.

The situation is more complicated in the presence of
higher-derivative corrections, where there are examples of
theories in which forces between extremal black holes do
not have definite signs, and of directions in charge space
with no self-repulsive states [7]. Indeed, the analysis of
Ref. [7] suggests that at least the simplest versions of the
RFC may be violated by the black hole spectrum—in stark
contrast with the WGC, which could in principle be
satisfied entirely by black holes. While this does not rule
out the RFC—it simply requires the existence of self-
repulsive fundamental particles—it does highlight the fact
that the conjecture is fundamentally different from the
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WGC, and raises the question of to what extent long-range
forces can be used to constrain low-energy EFTs and
how much nontrivial information they encode. Higher-
derivative corrections to long-range forces were also
studied in Ref. [13], which computed o corrections to
families of heterotic multicenter black hole solutions.
Interestingly, in the cases studied in Ref. [13], the zero-
force condition between extremal black holes was pre-
served even in the presence of higher derivatives, for both
supersymmetric and nonsupersymmetric solutions. Once
again, this raises the question of how to interpret more
generally the implications of the balancing of forces.

Motivated by these issues, in this paper we have
extended the studies of long-range forces to black holes
that are not identical. We were primarily interested in
whether one could identify any generic features in the
behavior of the corresponding forces, and perhaps shed
light on what properties of black hole solutions can be
captured by treating them as widely separated point
particles, working essentially in a nonrelativistic, weak-
field limit. As we have seen, the behavior of the forces is
quite rich and leads to a number of novel results. In
particular, any pair of (non-BPS) extremal black holes that
are not identical (up to overall scaling) repel one another.
We constructed a proof for the case of SL(3, R) Toda black
holes, and similar considerations seemingly apply to the
more complicated example of SL(4, R) Toda black holes.
Since we have restricted our attention to somewhat simple
classes of black holes which carry only two (electric)
charges [in the SL(3, R) Toda case], a natural next step is to
extend our analysis to the most general class of STU black
holes in four dimensions, to see whether the features we
have identified here persist or not for broader classes of
solutions, including magnetic charges. Work in this direc-
tion is in progress [14].

We have also identified pairs of non-extremal, non-
identical black holes which obey a zero-force condition.
While such balancing of forces is well known in the context
of supersymmetric BPS black holes in supergravity, where
it holds even for black holes that carry different charges, it
is unexpected here. Moreover, for multicenter BPS black
holes, the cancellation of the forces holds for arbitrary
relative positions of the centers. On the other hand, in the
theories we have examined, the zero-force condition
applies only to well-separated black holes (i.e., in the
long-range limit) and for specific choices of parameters.
Nonetheless, we wonder whether it may indicate the
existence of new multicenter black hole solutions (perhaps
at nearby points in phase space), especially for cases where
the two black holes have the same temperature. Indeed, it
would be valuable to better understand to what extent no-
force conditions such as the ones we have found in this
paper can be used as a diagnostic tool for identifying and
generating new solutions, aided by suitable constraints on,
e.g., the temperature, regularity properties, and so on.

It would also be interesting to understand this logic in
light of the results of Ref. [13], where both supersymmetric
and nonsupersymmetric black holes, corrected by higher
derivatives, satisfy a no-force condition.

A more challenging question is to understand how to
connect our results to expectations from the RFC. As we
have seen, in the theories we have studied, distinct extremal
black holes repel. If this observation is a generic feature of
top-down theories that support broader classes of black
hole solutions, it may help to identify the kinds of repulsive
multiparticle states that the strong version of the RFC
would call for. We leave these questions to future work.

ACKNOWLEDGMENTS

We are grateful to Tomas Ortin and Timm Wrase for
useful conversations. S. C. is supported in part by NSF
Grant No. PHY-1915038. M. C. is supported in part by
DOE Grant Award No. de-sc0013528 and the Fay R. and
Eugene L. Langberg Endowed Chair. C. N. P. is supported
in part by DOE Grant No. DE-FG02-13ER42020. S. C.
would like to thank the Benasque Center for Science, where
this work was completed.

APPENDIX A: MASS AND CHARGES FOR
STATIC BLACK HOLES

1. Mass

The static d-dimensional black-hole metrics can be
written in the form

ds® = —ufd® + u=as(f'dr? + rdQ3_,). (Al)

where u and f are functions only of r.

We can expand the metric around Minkowski spacetime
by introducing the coordinates

X =1, x; = rn;, Wwhere n;n; =1, (A2)

and the unit vector n; is parametrized in terms of the (d — 2)
angular coordinates on the unit (d — 2)-sphere. We shall
have dn;dn; = dQ3_,. We can now write the metric (A1) as
follows:

ds® = —uf(dx")> + um(f~' = 1)dr?
+um(dr? + Q).

xixj . .
dx'dx’

= —uf(dx")? + w A (f7 - 1)

2

s
i

+ u~a3dx'dx’,

= N dx'dx” + hy,dx"'dx", (A3)

with

086007-10



LONG-RANGE FORCES BETWEEN NONIDENTICAL BLACK ...

PHYS. REV. D 106, 086007 (2022)

XX

hoo = 1= uf. iy = (a5 = 13y + uss(f = 1) ™2,
hoi = 0. (A4)
The metric functions f and u have the form
f=1-mp, u=1-o0p+ O(p?), wherep:rd—l_S,
(AS)

and m and o are constants. If we assume that 7 is very large,
so that the metric is nearly Minkowski, we can focus just on
terms up to linear order in p. We then have

c
hOO:(m+O->p+"'7 hlj:mé ,
(A6)
which implies
Xi
Applying the ADM mass formula, we find
1
Mapym = 167 /s dZ;(0;h;; — 0;hy;)
1
=Ten (d 2)(m +0)dQ»
— (d-2)(m + o) 2422 (A8)
16z

Applied to the SL(3, R) Toda black holes, this gives

M (d=2)Qu, (1= p1)(1 = p)(1 = p1>)
ADM = 167 )

7172

(A9)

in agreement with the expression given in Ref. [10].

In Ref. [9], the black hole mass is calculated using the
fact that in De Donder gauge, the trace-reversed linearized
metric perturbation }_z,w = hy,, — %hn,w, satisfying the gauge
condition d”l_zﬂ,, =0, obeys Dl_zﬂ,, = —16xT,,. In particu-
lar, in Ref. [9], the mass M is read off from the expression
(setting k2 1 to accord with our conventions)

My 1

hgp = 2
007 (4= 3)Qy, ri3

+ e (A10)
The linearized metric i, given in Eq. (A4) is in fact not
in De Donder gauge: We have

20

00+ ii d—3

pt-, (A11)

and since the metric is static, we need only check

mx;

—0h = 4o,

0;hi; = 0;h, =

ij (A12)
which is nonzero at this leading order. We can easily make a
coordinate transformation to put /,,, in De Donder gauge at
the leading order by considering

/’l,w - h;w = hlll/ -+ a(ﬂfv). (A13)
Let us try taking &, to be given by
ax;
S =0, $i= pa-1° (A14)

where a is a constant to be determined. Thus, we shall have

20
and so
ax; [m—(d-3)alx;
0, h - a,h;j = 0jh;; pr = o + -
(A16)

implying that fz;w will be in De Donder gauge at leading

order if we choose a = m(d — 3)~!. Finally, note that this

gives
h =h — Al7
00+d 3.0+ (A17)
and so
- (d-=2)o m
hyy =
00 [m+ 7-3 p+d_3p+
d-2
:%H.., (A18)

Thus, we find that the mass My in Ref. [9] is given by

MH = (d — Z)Qd_z(m + O') = 16”MADM' (A19)

In terms of the rescaled mass M that we defined in
Eq. (2.2), we therefore have

My ==(d—2)Qu M. (A20)

NI>—‘

2. Scalar charge

The role of scalar charge in black hole thermodynamics
was described in Ref. [15]. In Eq. (4.16) of Ref. [9], the
scalar charge u = M'(¢py) is read off from the leading
falloff term in the large-distance expansion of the scalar
field:
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b g CEMG) 1

(d=3)Qqp ri=? (A21)

If we write the large-distance forms of the two functions H,
and H, in the solution (2.1) as
H=1+¢p+---, (A22)

then we see from the expression for ¢ in Eq. (2.1) that

3(d —2)

?=2\20a=3)

(Gr=C)p+---,  (A23)

N[ =

and therefore the scalar charge is

n=M1(po) = \/ wgd—z(?fﬂz —-71). (A24)

Now, for the solution (2.1), we have

_ 2 =pm 251 = pom
71 ’ ? 72 '

2y (A25)

and so the scalar charge is given by

U= M/(¢O) _ /3(d_ 2;(d_ 3) (ﬁ2 _ﬁl)y(llyz_ ﬂlﬂZ)m )

(A26)

In terms of the rescaled scalar charge X that we defined in
Eq. (2.2), we therefore have

w=mige) =[x (a2r)

3. Electric charges

In Eq. (4.14) of Ref. [9], the electric charge Q is read
off from the asymptotic form of the electromagnetic
potential A = —®dt, with

On 1

O=Py+—=H "
o+ (d—3)Qu_, r1=3

+o. (A28)

(We have set ¢ = 1 to accord with our conventions, and
also we have allowed for a possible constant term @, in the
potential at infinity.) Writing the gauge potentials A; and A,
in our Eq. (2.1) as A; = ®;dt, we have

[Bim = (1=p1)¢1] [d-2
®,; = const. — P+
1 VB2 d-3
d=2+/p
= const. + {/—— llhm—l—---, (A29)
d-3 Y1

with an equivalent expression for @, obtained by exchang-
ing the 1 and 2 subscripts. Thus, we have the charges QO
given by

0l = \/[d-2)(d-3)Qu., —ﬁ;?’“ ,
0% = /(d-2)(d~- 3>Qd_z%.

(A30)

In terms of the rescaled electric charges O and Q, defined
in Eq. (2.2), the charges are therefore given by

(d-2)(d-3)

of = Q0.

(d-2)(d-3)

oy = Q0. (A31)

4. Force between widely separated black holes

From Eq. (4.17) in Ref. [9], we will have, in our SL(3, R)
Toda case, F, = Fy/ri=2, with

1
Qqr

(d-3)

MyMy|.
2d-2) A

Fu

[Q{'Q{f - OHOY — i
(A32)

Expressed in terms of the rescaled masses and charges of
our Eq. (2.2), we therefore have

1
Fu= 3 (d=2)(d—-3)Qu,F, (A33)
with the force coefficient given by
~ ~ -~ 1 -
F=001+ 0,0, -2 - MM, (A34)

as given earlier in Eq. (2.7).

APPENDIX B: BPS BLACK HOLES

For comparison with the results for the forces between
the non-BPS extremal black holes that we have been
considering in this paper, it is interesting to look at
examples of BPS extremal black holes. A convenient
and rather general class of examples can be constructed
as solutions for the following theories, which were dis-
cussed in Ref. [16]. The d-dimensional Lagrangian is

1 N

L=R- % 0h)? == el d 2 (B1)

a=1

where QZ denotes an (N — 1)-vector of dilatonic scalar
fields, and the constant vectors ¢, describing the couplings
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of these scalars to the N 2-form gauge fields F, obey
the relation

2(d-3)

-2 (B2)

E a " E ﬂ = 45aﬂ -
In dimensions d < 10, these Lagrangians arise as consistent
truncations of the maximal supergravities obtained by the
toroidal reductions of d = 11 supergravity. One can also
consider theories of the form (B1) more generally, in any
arbitrary dimension.
The extremal N-charge black hole solutions of the
theory (B1) are given by [16]

_d=3
—<HHQ> T + <HH )" (dr* + r2dQ2_,).

F,=dt NdH7', = 5(2156, log H,, (B3)
where
_ 9a
Hy =1+ 5%5. (B4)

Calculating the ADM mass as discussed in Appendix A,
we find

d—3)Q,
Mapm = %Z% (B5)

The mass M, scalar charges ji and electric charges Q¥,

calculated as described in Appendix A, are therefore
given by

(B6)

The force between two distant BPS black holes, defined as
in the formula (A32), gives

ZC Cﬁ%‘]/}

ap

Fr=(d=3)Qq |:an6~1,5

d-3 -
- mgﬂ:%%} .

(B7)

After making use of the relation (B2), we see that the force
between any pair of BPS black holes is equal to zero. This
should be contrasted with the situation for the SL(3,R)
extremal black holes, which are not BPS, where the force
is zero only if the electric charges of one black hole are
an overall multiple of the electric charges of the other
black hole.

It can easily be verified that more generally, one can
consider configurations of the form

- (HHL,> Py <HH{,> Cdyiay,
CZ = %Za:ga IOg Haa

where y' are coordinates on the Euclidean (d — 1)-
dimensional transverse space, and the functions H, depend
on the y’ coordinates. The equations of motion following
from the Lagrangian (Bl) are satisfied if the H, are
arbitrary harmonic functions on the (d — 1)-dimensional
Euclidean space. Multi-black-hole solutions are obtained
by taking the H, to be sums of elementary harmonic
functions of the form

qaa
H J—
Z ¥ = Vaal

(Global considerations impose certain constraints on the
strengths ¢,, of the elementary functions located at the
mass centers y,,.) It should be emphasized that the ability
to construct multicenter solutions of this form is intimately
related to the fact that the force between any pair of single-
center black holes is zero. This is very different from the
situation for the non-BPS extremal black holes we have
been considering in this paper.

F,=dt A dH', (B8)
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