


forcing and damping terms to encourage the network for

learning simpler models. Moreover, pHNNs do not consider

state-dependent damping matrix and interconnection matrix

of system models. Instead, in this paper, we will design

an integrated network to incorporate the realizations of pH

systems from LINNs by embedding the structure of pH

models in the architecture of NNs, as shown by Fig. 1.

Furthermore, energy estimation is built into the proposed

approach, which enables energy-based control (EBC). EBC

has been used for controller synthesis of a large class of

under-actuated systems [9], [10] and the pH systems [11].

Moreover, using NNs for EBC of the pH systems has recently

been examined [12], [13]. However, the aforementioned EBC

methods assumed that the system models were given and

did not consider the system constraints. The authors in [14]

learned NN models and embedded the model within an

energy control law which cannot cope with the system con-

straints. Instead, in this work, we utilize energy-based MPC

with the learned models to intrinsically handle the system

constraints. Contribution of this paper lies in the development

of a physics-informed and energy-based approach to learn

models for interconnected systems in the pH framework and

an energy-based MPC design approach using the learned

models. The rest of this paper is organized as follows: Section

II gives the problem statement and introduces Lagrangian

mechanics and pH framework. Proposed physics-guided and

energy-based modeling and control are introduced in Section

III. Section IV presents pH modeling of interconnected

systems. Results of our experiments on single inverted pen-

dulum (SIP) and double inverted pendulum (DIP) to evaluate

the performance of the proposed methods are presented

in Section V. Finally, Section VI provides the concluding

remarks.

II. PROBLEM STATEMENT AND RELATED PRELIMINARIES

To avoid the requirements for momentum data, we start

with Lagrangians and then learn the transformation from

Lagrangian mechanics to Hamiltonian mechanics, which

facilitates modeling interconnected systems in the pH frame-

work. Lagrangian mechanics is a reformulation of classical

mechanics that is based on the principle of stationary action

with energies used to describe motion. The central quantity

of Lagrangian mechanics is the Lagrangian L, which is a

function of time-dependent q and q̇. A function can be taken

as L if it generates correct dynamics of the entire system

and follows physical laws. There is no unified expression of

L for all physical systems. The expression L = T − V in

[15] where T and V denote the kinetic and potential energy,

respectively, can be used for mechanical systems.

Using the calculus of variations, the Euler-Lagrange equa-

tions in vectorized form are as follows

d

dt

∂L

∂q̇
(q, q̇) =

∂L

∂q
(q, q̇), (1)

where q ∈ R
nq are generalized coordinates. Then, the equa-

tions of motion of the system can be derived by substituting

L into (1) and adding the generalized forces τ ∈ R
nτ to the

right-hand side, which results in

∂2L

∂q̇2
(q, q̇)q̈ +

∂2L

∂q∂q̇
(q, q̇)q̇ −

∂L

∂q
(q, q̇) = τ (2)

These equations bypass constraint forces.

Suppose the dynamics of a system can be described

by Lagrangian mechanics, a model of the form (2), and

a Lagrangian function (that consists of a kinetic energy

function and a potential energy function when applicable)

will be learned from data D = {(q(i), q̇(i), q̈(i)), τ (i)}Ni=1.

It is noted that the inverse model (2) and the loss function

ℓ = 1
N

∑N

i=1 ∥τ
(i) − τ̂ (i)∥22, where ·̂ refers to an approx-

imation, are employed instead of the forward model ℓ =
1
N

∑N

i=1 ∥q̈
(i) − ˆ̈q(i)∥22, which avoids computing the inverse

Hessian of an NN and thus enhances the training efficiency

of the NN. While the families of functions that L belongs

to are unknown, coarse-grained knowledge exists, including

but not limited to the basis functions of L.

Moreover, Hamiltonian mechanics can be derived directly

from Lagrange mechanics via the Legendre transformation

between the conjugate variables (q, q̇) and (q, p) where p is

the generalized momentum. Specifically,

p =
∂L

∂q̇
(q, q̇) (3)

and (1) becomes

q̇ =
∂H

∂p
, ṗ = −

∂H

∂q
, (4)

where H = p⊤q̇−L denotes the Hamiltonian (i.e., the total

energy) of the system.

A. Port-Hamiltonian Framework

An important subclass of pH systems is of the input-state-

output form
{

ẋ = [J(x)−R(x)]∂H
∂x

(x) + g(x)u
y = g⊤(x)∂H

∂x
(x)

(5)

with the input u, the state x ∈ X ⊆ R
n, and the output y.

Also, J : Rn → R
n×n is the interconnection matrix with

J(x) = −J⊤(x), R : Rn → R
n×n is the damping matrix

specifying the resistive structure with R(x) = R⊤(x) ⪰ 0.

Moreover, g(x) is the input matrix that describes the distri-

bution of the external power into the system. Additionally,

(5) satisfies the power-balance as

dH

dt
(x(t)) =

∂⊤H

∂x
(x)ẋ

=−

(

∂H

∂x
(x)

)⊤

R(x)
∂H

∂x
(x) + y⊤(t)u(t).

(6)

Since R(x) ⪰ 0, we have passivity inequality dH
dt
(x(t)) ≤

y⊤(t)u(t). Consequently, power-conservation of Dirac struc-

ture yields passivity of any pH system if H is bounded

from below. In particular, Hamilton’s equations (4) can be

represented in the port-Hamiltonian framework with J(x) =
[

0 I

−I 0

]

and g(x)u =

[

0

τ

]

where I is the identity matrix,

0 is the zero matrix with suitable shapes, and x = [q; p].
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This experiment intends to learn a pH model from the

simulation data of the SIP system (13) and then design an

energy-based MPC with the learned pH model to erect the

pendulum at desired positions and to stabilize the pendulum

in the up position while avoiding obstacles. In this experi-

ment, we consider a circle obstacle with center c and radius

r. Table I shows the parameters of the simulations. The initial

state is considered to be [xpos; θ1; ẋpos; θ̇1] = [0;π; 0; 0].

TABLE I: Simulation parameters.

Parameter Value Parameter Value

m0 0.6 kg g 9.8 m/s2

m1 0.2 kg c (0, 0.6)
L1 0.5 m r 0.3
f [−4, 4] N m2 0.2 kg

1) Experimental setup: We applied a random input se-

quence drawn from the uniform distribution U(−5, 5) to the

system (13) to generate data. A sampling time of 0.04 s

is used and 100, 000 data points were collected. We used

the first 80, 000 points for training and the rest 20, 000 for

testing. First, we used T1 = {ẋ2
pos, θ̇

2
1, ẋposθ̇1cos(θ1)} and

V1 = {cos(θ1)}. Linear combinations of basis functions in

T1 and V1 were used to represent T and V . Then, we used

T2 = {ẋpos, θ̇1, cos(θ1)} as the basis functions of T̂ to test

the effect of basis functions on the modeling performance.

T2 was fed into a fully-connected NN with 2 hidden layers

to represent T . Each hidden layer consists of 500 units and

uses Softplus as activation functions while output layer has

1 unit without activation functions. For model optimization,

we use Adam optimizer in Keras [18]. The learning rate of

Adam is set to be 0.01 and decay to be 1e−6. All the other

parameters of Adam are set as default. We trained the model

with T1 and V1 for 1, 000 epochs and the model with T2 and

V1 for 1, 000 epochs with batch size of 2048.

For the formulation of the MPC, we chose Np = 20,

l = V̂ + (xpos − xpos,des)
2, m = T̂ + V̂ , and considered the

constraint (9d) to be g = 1.05r−d2 ≥ 0 to avoid the obstacle

where d2 is the distance between the pole and the center

of the circle, and r is the radius. To solve (9) with ODEs,

we employed the orthogonal collocation on finite elements

discretization approach with Gauss-Radau collocation points

[19] implemented in [20]. The collocation degree was set to

2 and the number of finite elements for the states within a

time-step to 2.

(a) ẋpos. (b) θ̇1.

Fig. 4: Validation of the learned models on the testing set.

For the sake of clarity, only the first 300 testing data points

are shown here. MAEẋpos
= 0.05 and MAEθ̇1

= 0.12.

2) Results and discussion: The trained LNN model with

T1 and V1 achieved mean absolute errors (MAE) of MAEq̈ =

Fig. 5: Control results using T2 and V1.

0.42 and MAEL = 4.58 on the testing set, and can be

used for energy-based MPC to achieve the control objectives.

However, with T2 and V1, the LNN model achieved MAEq̈ =
3.84 but is too complex for MPC while using less units for

hidden layers results in optimization failure from the inverse

Hessian operation of an NN and larger MAEs. Instead, using

the proposed approach with T2 and V1, a fully-connected

NN that is composed of 1 hidden layer with 10 hidden

units can be trained efficiently and achieved MAEτ = 0.26
and MAEL = 39.39 after training for 5, 000 epochs. Fig.

4 shows the comparison between the predictions of the

learned model and the data from the system simulation on the

testing set. Furthermore, the designed MPC with Np = 10,

l = 5V̂ + 10(x1 − x1,des)
2, m = T̂ + 50V̂ using the learned

model successfully avoided the obstacles and erected the

pendulum at the desired position. The control results are

shown in Fig. 5. It is noted that the minimum estimate of

the kinetic energy is not 0, as the data determines T only up

to an additive constant.

B. Validation on Double Inverted Pendulum (DIP)

Based on the model of an SIP, we learn the DIP model to

validate the approach described in Section IV. The energy

functions of DIP are

Tcart =
1

2
m0ẋ

2
pos

Tp
1
=

1

2
m1

(

(ẋpos + l1θ̇1cos(θ1))
2 + (l1θ̇1sin(θ1))

2
)

+
1

2
J1θ̇

2
1

Tp
2
=

1

2
m2

(

(ẋpos + L1θ̇1cos(θ1) + l2θ̇2cos(θ2))
2

+(l1θ̇1sin(θ1) + l2θ̇2sin(θ2))
2
)

+
1

2
J2θ̇

2
2

V = −m1gl1cos(θ1)−m2g (L1cos(θ1 + l2cos(θ2)) .

Since the second pendulum is linked to the first one,

the set of basis functions for L̂ was extended to in-

clude the interactions. Specifically, T = F
⊗

F where
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Fig. 6: Control results for the DIP example.

F = [ẋpos; θ̇1sin(θ1); θ̇1cos(θ1); θ̇2sin(θ2); θ̇2cos(θ2); θ̇1; θ̇2]
and

⊗

denotes the Kronecker product, and V =
[cos(θ1); cos(θ2)].

1) Experimental setting: To collect data of Hamiltonians,

we first simulate DIP without external forces for 10 time

steps from different initial states of the form [0; θ1; θ2; 0; 0; 0]
where θ1, θ2 are from the 100 uniform grid points in the

range [0.03, 3.11] rad. Then, the Hamiltonians are conserved

in the 10 steps and equal to the potential energies that

are easy to evaluate for each initial state. Additionally, the

sampling rate is 0.04s. In this way, we collected a dataset

with Hamiltonian measurements. For learning the model of

DIP, we first train a model on the dataset DH and then

fine-tune the model using the dataset collected by applying

random inputs drawn from U(−4, 4) to the system as V-A.1.

L1 norm regularization parameter of λT = 1e− 5.

2) Results and discussion: The trained model on DH

achieved testing error of MAEH = 5.30e− 4 but MAEL =
50.71 on D, which shows the distributions discrepancy

between DH and D. After fine-tuning for 8, 000 epochs,

MAEτ = 0.10 and MAEL = 12.35. Furthermore, the

designed MPC with Np = 10, l = V̂ + 10(x1 − x1,des)
2,

m = 10T̂ + 10V̂ using the learned model successfully

avoided the obstacle with c = (0, 0.6) and r = 0.1, and

erected the pendulum at the desired position. The control

results are shown in Fig. 6.

VI. CONCLUDING REMARKS

In this paper, a physics-guided and energy-based neural

network learning approach was proposed to learn an accurate

model of interconnected systems from data in the pH frame-

work. The proposed approach provided an inverse model, the

transformation from Lagrangian mechanics to Hamiltonian

mechanics, and an accurate energy estimate which was

used later for the interconnected system identification and

energy-based MPC design. The architecture design of the

neural network that represented the interconnected systems

was informed by the Hamiltonian of subsystems and the

compositionality of pH systems. Moreover, the passivity of

learned models was ensured throughout the training process

by enforcing the skew-symmetry/positive semi-definiteness

of matrix functions via neural network architecture design.

The learned energy functions were employed to formulate

the energy-based MPC design. Finally, experiments on single

(and double) inverted pendulum showed that the proposed

methods can learn an accurate model, achieve strong control

performance with bounded plant-model mismatch, and be

applied to interconnected systems of high complexities.
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