2022 IEEE 61st Conference on Decision and Control (CDC) | 978-1-6654-6761-2/22/$31.00 ©2022 IEEE | DOI: 10.1109/CDC51059.2022.9992803

2022 IEEE 61st Conference on Decision and Control (CDC)
December 6-9, 2022. Cancuin, Mexico

Physics-guided and Energy-based Learning of Interconnected Systems:
from Lagrangian to Port-Hamiltonian Systems

Yajie Bao, Vaishnavi Thesma, Atul Kelkar, and Javad Mohammadpour Velni

Abstract—This paper presents a framework for physics-
informed energy-based neural network (NN) design to learn
models of interconnected systems under the port-Hamiltonian
(pH) formalism. In particular, this paper focuses on me-
chanical systems and incorporates the physical knowledge of
Lagrangians into the neural networks to facilitate learning of
equations of motion from the data. Moreover, the transfor-
mation from the Lagrangian mechanics to the Hamiltonian
mechanics is incorporated into the NN architecture and learned
from the data such that the learned model is compatible with
the pH framework. Then, the structure of input-state-output pH
models is imposed on the NN, which guarantees the dissipativity
of the learned model. Furthermore, modeling interconnected
systems is facilitated by the compositionality property of the pH
systems. Additionally, the consistency between the Hamiltonian
and Lagrangian is employed for the energy estimation to enable
energy-based control. The proposed approach is shown to be
computationally more efficient than the existing Lagrangian-
based NN design approaches. Furthermore, the learned models
with energy estimation are employed for energy-based model
predictive control (MPC) design purpose. Experimental results
using single (and double) inverted pendulum on carts show
that the proposed learning-based approach can achieve an
improved performance of model identification compared to the
Lagrangian neural networks, accurate estimation of energies
and strong control performance.

I. INTRODUCTION

Data-driven methods have been increasingly employed to
model unknown system dynamics, where the learned models
are compatible with the data in the sense of minimizing
metrics for difference (e.g., mean squared error (MSE)),
and the accuracy of the learned models is subject to the
representativeness of the datasets and the expressiveness
of the models. However, known important properties (e.g.,
dissipativity) of the systems can be missing in the learned
model, which limits the out-of-distribution generalization [1]
and applicability of the learned models. Incorporating the
known knowledge (e.g., physical laws) into learning has
been studied to preserve properties. One typical example
is Hamiltonian neural networks (HNNs) [2] which aim at
training models that respect exact conservation laws.

Authors in [2] proposed to learn Hamiltonians from data
using artificial neural networks (ANNs). However, canon-
ical momenta required by HNNs are generally unknown
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Interconnections of sub-systems:
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connections. The coordinates (g, ) of data for learning the
Euler-Lagrange equations derived from the parameterized
Lagrangian (LNN) are transformed to phase space coor-
dinates (p,q) that are later used for the pH modeling of
interconnected systems with dissipativity guarantees by the
passivity and compositionality properties of the pH systems.

or difficult to compute, and this limits the applicability of
HNNSs. Furthermore, authors in [3] used an autoencoder to
extract phase space coordinates from a collection of obser-
vations and used NN/GPs (Gaussian processes) to model
Hamiltonian. The autoencoder and the Hamiltonian model
were trained jointly, which significantly increases the model
complexity for training. Instead, Lagrangian NNs (LNNs) [4]
do not require canonical coordinates, and do not restrict the
functional form of learned energies. However, LNNs require
computing the inverse Hessian of an NN, which decreases
the computational efficiency. Furthermore, authors in [5] pre-
sented Lagrangian-informed neural networks (LINNs) fused
with a sliding mode control design approach for closed-loop
model identification (and control) of nonlinear systems.
Moreover, interconnection of different physical domains is
ubiquitous in applications. pH systems theory provides a uni-
fied framework for modeling systems belonging to different
physical domains (mechanical, electrical, hydraulic, thermal,
etc.) by recognizing energy as ’lingua franca’ for multiple do-
mains and identifying ideal system components that capture
the main physical characteristics (energy-storage, energy-
dissipation, energy-routing, etc.) [6]. For model identification
of pH systems, authors in [7] first obtained a descriptor
system by interpolating an input-output sequence and then
transformed the system into the pH form. Additionally,
authors in [8] proposed port-Hamiltonian Neural Networks
(pHNNSs) to learn time-varying dynamical systems driven
by time-dependent control forces and experience energy
dissipation. However, pHNNs need momenta data like HNNs
and use an L1 penalty that is equal to the L1-norm of the
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forcing and damping terms to encourage the network for
learning simpler models. Moreover, pHNNs do not consider
state-dependent damping matrix and interconnection matrix
of system models. Instead, in this paper, we will design
an integrated network to incorporate the realizations of pH
systems from LINNs by embedding the structure of pH
models in the architecture of NNs, as shown by Fig. 1.

Furthermore, energy estimation is built into the proposed
approach, which enables energy-based control (EBC). EBC
has been used for controller synthesis of a large class of
under-actuated systems [9], [10] and the pH systems [11].
Moreover, using NNs for EBC of the pH systems has recently
been examined [12], [13]. However, the aforementioned EBC
methods assumed that the system models were given and
did not consider the system constraints. The authors in [14]
learned NN models and embedded the model within an
energy control law which cannot cope with the system con-
straints. Instead, in this work, we utilize energy-based MPC
with the learned models to intrinsically handle the system
constraints. Contribution of this paper lies in the development
of a physics-informed and energy-based approach to learn
models for interconnected systems in the pH framework and
an energy-based MPC design approach using the learned
models. The rest of this paper is organized as follows: Section
IT gives the problem statement and introduces Lagrangian
mechanics and pH framework. Proposed physics-guided and
energy-based modeling and control are introduced in Section
II. Section IV presents pH modeling of interconnected
systems. Results of our experiments on single inverted pen-
dulum (SIP) and double inverted pendulum (DIP) to evaluate
the performance of the proposed methods are presented
in Section V. Finally, Section VI provides the concluding
remarks.

II. PROBLEM STATEMENT AND RELATED PRELIMINARIES

To avoid the requirements for momentum data, we start
with Lagrangians and then learn the transformation from
Lagrangian mechanics to Hamiltonian mechanics, which
facilitates modeling interconnected systems in the pH frame-
work. Lagrangian mechanics is a reformulation of classical
mechanics that is based on the principle of stationary action
with energies used to describe motion. The central quantity
of Lagrangian mechanics is the Lagrangian L, which is a
function of time-dependent ¢ and ¢. A function can be taken
as L if it generates correct dynamics of the entire system
and follows physical laws. There is no unified expression of
L for all physical systems. The expression L =T — V in
[15] where T" and V' denote the kinetic and potential energy,
respectively, can be used for mechanical systems.

Using the calculus of variations, the Euler-Lagrange equa-
tions in vectorized form are as follows

doL, . oL, .
aafq(q,q) = yq(q,q), (1)

where ¢ € R™s are generalized coordinates. Then, the equa-
tions of motion of the system can be derived by substituting
L into (1) and adding the generalized forces 7 € R"~ to the

right-hand side, which results in
0%L 0%L .. OL

afq.Q(q,q')q + @(qu)q - Fq(q’ q) =T (2)

These equations bypass constraint forces.

Suppose the dynamics of a system can be described
by Lagrangian mechanics, a model of the form (2), and
a Lagrangian function (that consists of a kinetic energy
function and a potential energy function when applicable)
will be learned from data D = {(¢®,¢®, ¢®), 7O .
It is noted that the inverse model (2) and the loss function
0= £ 7D — @2, where * refers to an approx-
imation, are employed instead of the forward model ¢ =
LSY 1@ — ¢@|[3, which avoids computing the inverse
Hessian of an NN and thus enhances the training efficiency
of the NN. While the families of functions that L belongs
to are unknown, coarse-grained knowledge exists, including
but not limited to the basis functions of L.

Moreover, Hamiltonian mechanics can be derived directly
from Lagrange mechanics via the Legendre transformation
between the conjugate variables (g, ¢) and (g, p) where p is
the generalized momentum. Specifically,

oL .
p= afq(q, q) 3)
and (1) becomes
. OH 0H
q= 87])’ p= *afq, “4)

where H = p' ¢ — L denotes the Hamiltonian (i.e., the total
energy) of the system.
A. Port-Hamiltonian Framework

An important subclass of pH systems is of the input-state-
output form

b = (@) R@)2 ) + g(z)u
Lo ®

with the input u, the state x € X C R"™, and the output y.
Also, J : R®" — R™*™ is the interconnection matrix with
J(x) = =J"(z), R : R* — R"¥" is the damping matrix
specifying the resistive structure with R(z) = R' (z) = 0.
Moreover, g(x) is the input matrix that describes the distri-
bution of the external power into the system. Additionally,
(5) satisfies the power-balance as

dH OTH

dt (2(t) = Ox

[
__ <‘gf;<x>) RE@) L ) 4y (tpult).

(z)&

(6)

Since R(z) = 0, we have passivity inequality & (x(t)) <
y " (t)u(t). Consequently, power-conservation of Dirac struc-
ture yields passivity of any pH system if H is bounded
from below. In particular, Hamilton’s equations (4) can be
represented in the port-Hamiltonian framework with J(x) =

o I 0
[—I 0] and g(x)u = {T]
0 is the zero matrix with suitable shapes, and x = [g; p].

where I is the identity matrix,

2816

Authorized licensed use limited to: University of Georgia. Downloaded on August 24,2023 at 03:20:01 UTC from IEEE Xplore. Restrictions apply.



The problem addressed in this paper is that of learning
offline dissipative dynamic models in the pH form with en-

ergy estimations for energy-based control, using the dataset
D= {(q(i)7q(i)@(i)),r(i)}g\;l‘

III. PHYSICS-GUIDED ENERGY-BASED MODELING

This section details methods to incorporate the knowledge
into NNs to improve the learning efficiency of modeling
dynamical systems with energy estimation. Moreover, we
present an NN-based approach to transform Euler-Lagrange
equations derived from LINNSs into the equations formulated
by Hamiltonian mechanics that are compatible with the pH
framework.

A. Physics-guided Lagrangian Neural Networks (PLNNs)

Since (2) is derived from L, the representation of equations
of motion depends on the parameterization of L. We use NNs
to represent L for general Lagrangians. However, it is noted
that using fully-connected NNs may not help in learning an
accurate model due to an inductive bias, which motivated us
to further use physical knowledge to improve the learning
efficacy of LNNs.

1) Feature engineering for knowledge embedding: In ma-
chine learning, a feature is an individual measurable property
or characteristic of a phenomenon being observed [16], and
hence choosing features is crucial for the effectiveness of
the learning algorithms. Since the typical knowledge for
mechanical systems is that sine and cosine functions of the
generalized coordinates exist in the Lagrangians, we can use
[¢; ¢; cos(q); sin(q)] as features for ANNs [5] to improve
learning efficiency. Moreover, the set of features (aka basis
functions) is supposed to contain the basis functions of the
true functions to approximate. Then, Lasso regression can
be employed for basis function selection. To summarize, the
NNs aim to solve the following optimization problem

X
min {4y : = N Z H’T(i)

— 7|2 + Apla] + Av|B] (Ta)

N2 L 2L L
~(1) — (@) 4(2))5(2) FORFOMNIO
.t =23
st 92 (", ¢")§" + 9 8(]( )d
oL .
_OE 6 0 b
aq(q .4") (7b)
where L(q®,¢®) = T(¢M,¢D) — V(gD ¢?) =

Zj\;’l a;Ti(q™, @) — Z;VV Vi(q™, ¢ with ; and
B; denoting the j-th elements of vectors o and 3; Az and
Av are the regularization parameters; 17, € 7 := {1} :
X = T} and V; € V= {V; : X — V}Y with T
and V denotlng the set of values of 7" and V are the basis
functions of the kinetic and potential energy, respectively.
However, the inverse model with small prediction errors does
not necessarily provide accurate energy estimation that is key
to energy-based control. Since the equation of motion by
Hamiltonian mechanics determine H only up to an additive
constant, the authors in [3] assumed the knowledge of Hy =
H(qo,po) at a single point (qg, po) in the phase space. Then,
H, introduces another constraint F (go,po) = Ho where H
is the Hamiltonian estimated by HNNSs, to the loss function.

q,q q q

(Vv L)+ (Vv L)g — VoL = 7
p=vil(g,4,t)
Fig. 2: Architecture of PLNN and regularizers, in which

the dashed arrows show the calculus of variations by auto-
differentiation.

Moreover, the assumption is not impractical, as Hy and
(go,po) can be chosen arbitrarily. However, the constraint
cannot ensure accurate energy estimates, as shown by the
experiments. Instead, by the conservation of energy law,
we can collect data with Hamiltonians Dy by simulating
the system without external forces from the initial state
(go,po). Then, we train the model on Dy with the loss
function ¢y = {4 + ﬁZNDH |Ho — H®|2 where

H® = T(¢® 4D + V(g™ §D). 1t is noted that there is
distribution discrepancy between Dy without external forces
and D with external forces as discussed in [17]. To learn an
accurate model with external forces, we fine-tune the trained
model on D using stochastic gradient descent.

2) Architecture design: Based on (3), the estimate p(*) =
%—s(q(i), ¢®) of p can be obtained from the PLNN by auto-
differentiation. Additionally, we can directly use an NN to
represent the transformation from ¢ to p. In particular, the
transformation for mechanical systems follows p = M (q)q.
Therefore, we use an NN denoted by M(q) to represent
M(q) and have another estimate pyan = M (q)¢, as shown
by Fig. 2. Then, a regularization term

Z 155 — 5113 ®)

is added to the loss functlons to have accurate estimation of
p. It is noted that Qy,, can be made arbitrarily small using
a deep NN. Basis functions can be selected for M (q) to
incorporate knowledge.

Qtram -

B. Energy-based Control

The energy functions learned by PLNNs enable energy-
based control which can be advantageous over classical set-
point tracking.We use the energy functions for the formula-
tion of a model predictive controller. At each time step k,
the following problem is solved

NP
XO:N:Eli}/‘l-lO:Np m(zn,+1) + ;l(f ), V(zi),u;)  (9a)
S.t. Umin < U < Umax (9b)
(zi,ui) = i1 2 (7Tb) %0
g(x;) <0, Vi=1,--- ,Ny+1, (9d)

2817

Authorized licensed use limited to: University of Georgia. Downloaded on August 24,2023 at 03:20:01 UTC from IEEE Xplore. Restrictions apply.



dy 0 0
“[0 0 0
Al@) = |+ 0 0 Loa(z)= 1|, "-. ¢
L« 0 * K dy,
a "a2 Q ng(ng—1) ll lg e l-;Lm(nr]) d1 dz dn
x x x

Fig. 3: Architectures of NNs to represent J(x) and R(x).
Three NNs are used to learn functions of the off-diagonal
elements of A(z) and Ly, and the diagonal elements of
Ly, respectively. d; are ensured to be positive by using
non-negative activation functions, e.g., ReLu or Softplus.

where N, is the prediction horizon, and (9d) represents the
state constraints. Then, the control input is u; = uj where
u* is the optimal solution to (9). Other types of energy-based
control are also compatible with PLNNSs.

IV. PH MODELING OF INTERCONNECTED SYSTEMS

To further impose the structure of pH model (5) onto
the NNs, we enforce the skew-symmetry of J(x) and the
positive semidefiniteness of R(z) in the architecture of NNs,
as shown in Fig. 3. Since the set of all skew-symmetric
matrices of a given size n X n forms a vector space with
dimension ”("271), we use an NN with =Y units in
the output layer to represent the elements below the main
diagonal of A,,_. The elements above the main diagonal and

the diagonal elements of A, are all 0’s. Then,

J(z) = A(z) — A(z)T = —J(2)".

(10)

Moreover, as in [15], we use an NN to represent the entries
below the main diagonal and another NN to represent the
non-negative diagonal entries, to assemble a lower triangular
matrix L, (z) with a non-negative diagonal. Then

R(z) = Lina(2) L (x) = 0. (11)

In particular, for mechanical systems, we have R(z) =
0 0
0 C(z

similar to (11).

)| where C(z) = 0 can be represented by NNs,

Theorem 1: The NN model with J(z) approximated by
(10) and R(x) by (11) is passive throughout the training
process.

Proof: Since J = —jT, R > 0and H > 0 for any x
and weights of the NNs, then, the NN model that represents
(5) satisfies the passivity inequality by (6). |

Theorem 1 guarantees the passivity of the NN model
in the pH form, which provides a useful regularization for
modeling passive systems by architecture design, while NNs
that approximate the ordinar% differential equations (ODEs)
by minimizing ¢ = £ >7;0, [¢®) — ¢?||3 may not be
passive.

Furthermore, by the compositionality of pH systems, the
interconnection of pH systems with Dirac structure through

power-conserving interconnection is again pH [6]. Addition-
ally, the Hamiltonian of the interconnected pH system will
be the sum of the Hamiltonians of its subsystems while
the energy-dissipation relation of the interconnected system
will be the union of the energy-dissipating relations of
the subsystems. Therefore, we can extend the set of basis
functions with those of all the subsystems to model the
Hamiltonian, and sum the Hamiltonians of the subsystems to
estimate the Hamiltonian of the interconnected pH system.
Additionally, Lagrangian L, as well as J(z) and R(z) can
be learned simultaneously by integrating the sub-networks in
Section III-A and II-A to solve the following problem

Ng
min ; (£1.i + Qransi) (12a)
A [N Ay 8 AI S ApAN —
s.t. x = [J(Z) — R(Z)] 55 () + §(z)a, (12b)

where /; ; and Q. denote the loss in the form of (7a)
and regularizer in the form of (8) for the i-th subsystem,

respectively. Furthermore, 7 = [#1;- -+ ; 2N, ], 21 = [¢i; Pil,
i N

Di = %—g(%qi), and Hy = ;" H;.

Proposition 1: Suppose D is sufficient and the model
architecture is determined to contain the family of models
that can describe the system denoted by S such that the
model f learned from D achieves a generalization error F
that is close to 0. Then, given Dy = {(g¥, ¢, §®), 7 M|
and the model architecture of the interconnected pH system
I where S is a subsystem, the generalization error E{ of the
interconnected system model f{ that incorporates f will not
exceed the error E7 of the interconnected system model f7
only based on D.

It is noted that the accuracy of H é from f will not be
smaller than that of ﬁg from fZ. Using the composition-
ality property of the pH systems, Hi = Hg + Hpr and
T = [zg;xR], where the subscripts I, S and R denote the
interconnected system, the subsystem .S, and the remaining
subsystems, respectively. Then, the accuracy of FIIl = H L+
I:I}% of f{ will not be smaller than that of I:II2 = FI% + PAI}Q%
of f2, as f} and f? share the same model architecture
and are developed based on the same dataset D;. Therefore,
E} < E?, which demonstrates the advantage of learning the
model of interconnected systems by compositionality.

V. EXPERIMENTAL RESULTS AND VALIDATION

The proposed learning methods are validated using simu-
lations of single (and double) inverted pendulums.

A. Validation on a Single Inverted Pendulum (SIP)
The energy functions of the SIP are

1
T = 5(7’)@0 +TT]1)T2

pos T %mlLfH'f + my L} posB1cos(01),
V = —maglicos(6y).
Then, from (2), the equations of motion for SIP are

(mo 4+ m1)Epos + mlLlélcos(el) — mlLléfsin(Gl) =71,

mlLlféposcos(Gl) + mlL%él + mlngsin(Hl) =0. (13)
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This experiment intends to learn a pH model from the
simulation data of the SIP system (13) and then design an
energy-based MPC with the learned pH model to erect the
pendulum at desired positions and to stabilize the pendulum
in the up position while avoiding obstacles. In this experi-
ment, we consider a circle obstacle with center ¢ and radius
r. Table I shows the parameters of the simulations. The initial
state is considered to be [Zpos; 615 Lpos; 1] = [0; ;05 0].

TABLE I: Simulation parameters.

[ Parameter [ Value H Parameter [ Value [
mo 0.6 kg g 9.8 m/s>
mi 0.2 kg c (0,0.6)

L1 0.5 m r 0.3
¥ 4,4 N || mo 0.2 ke

1) Experimental setup: We applied a random input se-
quence drawn from the uniform distribution & (—5, 5) to the
system (13) to generate data. A sampling time of 0.04 s
is used and 100,000 data points were collected. We used
the first 80,000 points for training and the rest 20,000 for
testing. First, we used 71 = {2, 07, @post1cos(61)} and
V; = {cos(61)}. Linear combinations of basis functions in
71 and V; were used to represent 7' and V. Then, we used
T2 = {&pos, 01,c08(61)} as the basis functions of T to test
the effect of basis functions on the modeling performance.
T2 was fed into a fully-connected NN with 2 hidden layers
to represent 7. Each hidden layer consists of 500 units and
uses Softplus as activation functions while output layer has
1 unit without activation functions. For model optimization,
we use Adam optimizer in Keras [18]. The learning rate of
Adam is set to be 0.01 and decay to be 1e — 6. All the other
parameters of Adam are set as default. We trained the model
with 77 and V; for 1,000 epochs and the model with 75 and
V1 for 1,000 epochs with batch size of 2048.

For the formulation of the MPC, we chose N, = 20,
1=V + (Zpos — Tpos,des)?s M = T + V, and considered the
constraint (9d) to be g = 1.057—ds > 0 to avoid the obstacle
where dy is the distance between the pole and the center
of the circle, and r is the radius. To solve (9) with ODEs,
we employed the orthogonal collocation on finite elements
discretization approach with Gauss-Radau collocation points
[19] implemented in [20]. The collocation degree was set to
2 and the number of finite elements for the states within a
time-step to 2.

T T
—— Predictions.
a

T T
—Predictions
8 - -Dat 2 Data
i

. L L . h
300 0 50 100 150 200 250 300
t [samples]

L L h L L
0 50 100 150 200 250
t [samples]

(@) Epos. () 6.

Fig. 4: Validation of the learned models on the testing set.
For the sake of clarity, only the first 300 testing data points
are shown here. MAE; = 0.05 and MAE; = 0.12.

Zpos

2) Results and discussion: The trained LNN model with
71 and V; achieved mean absolute errors (MAE) of MAE; =

Eiin [J1

=)
Epet []]

— -1

7}

25

position [m]

0.0
=2.5

Input force [N]

0 2 4 6 8 10
time [s]

Fig. 5: Control results using 73 and V.

0.42 and MAE; = 4.58 on the testing set, and can be
used for energy-based MPC to achieve the control objectives.
However, with 73 and V), the LNN model achieved MAE; =
3.84 but is too complex for MPC while using less units for
hidden layers results in optimization failure from the inverse
Hessian operation of an NN and larger MAEs. Instead, using
the proposed approach with 75 and Vy, a fully-connected
NN that is composed of 1 hidden layer with 10 hidden
units can be trained efficiently and achieved MAE, = 0.26
and MAE; = 39.39 after training for 5,000 epochs. Fig.
4 shows the comparison between the predictions of the
learned model and the data from the system simulation on the
testing set. Furthermore, the designed MPC with N, = 10,
1 =5V +10(x1 — 1.4e5)%, m = T + 50V using the learned
model successfully avoided the obstacles and erected the
pendulum at the desired position. The control results are
shown in Fig. 5. It is noted that the minimum estimate of
the kinetic energy is not 0, as the data determines 7" only up
to an additive constant.

B. Validation on Double Inverted Pendulum (DIP)

Based on the model of an SIP, we learn the DIP model to
validate the approach described in Section IV. The energy
functions of DIP are

1 .
imoxfm
1 . ) 2 i 2
Ty, = 3 ((96130S +11601c08(61))” + (1161sin(6,)) )

1 .

+ ijlef

1 . . )

sz = §m2 ((xpos + Llﬁlcos(el) —+ ZQQQCOS(QQ))Z

. . 1 .
+(l19151n(01) + 1202Sin(92))2) + §J20§
V = —myglicos(01) — mag (Licos(fy + lacos(6s)) .

Tear =

Since the second pendulum is linked to the first one,
the set of basis functions for L was extended to in-
clude the interactions. Specifically, 7 = F @ F where
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1.0
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r1
0.5
0.0

25

position [m]

o
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Input force [N]

-2.5

0 2 4 6 8 10
time [s]

Fig. 6: Control results for the DIP example.

F = [j7pos§ 91 sin(91); 91008(91); 928in(92); 92008(92); 91; 92]
and () denotes the Kronecker product, and V =
[cos(61); cos(62)].

1) Experimental setting: To collect data of Hamiltonians,
we first simulate DIP without external forces for 10 time
steps from different initial states of the form [0; 01; 02; 0; 0; 0]
where 61,65 are from the 100 uniform grid points in the
range [0.03,3.11] rad. Then, the Hamiltonians are conserved
in the 10 steps and equal to the potential energies that
are easy to evaluate for each initial state. Additionally, the
sampling rate is 0.04s. In this way, we collected a dataset
with Hamiltonian measurements. For learning the model of
DIP, we first train a model on the dataset Dy and then
fine-tune the model using the dataset collected by applying
random inputs drawn from U/(—4,4) to the system as V-A.1.
L1 norm regularization parameter of A = le — 5.

2) Results and discussion: The trained model on Dy
achieved testing error of MAEy = 5.30e — 4 but MAE; =
50.71 on D, which shows the distributions discrepancy
between Dy and D. After fine-tuning for 8,000 epochs,
MAE, = 0.10 and MAE; = 12.35. Furthermore, the
designed MPC with N, = 10, | = V + 10(z1 — 21 ges)?
m = 10T + 10V using the learned model successfully
avoided the obstacle with ¢ = (0,0.6) and » = 0.1, and
erected the pendulum at the desired position. The control
results are shown in Fig. 6.

VI. CONCLUDING REMARKS

In this paper, a physics-guided and energy-based neural
network learning approach was proposed to learn an accurate
model of interconnected systems from data in the pH frame-
work. The proposed approach provided an inverse model, the
transformation from Lagrangian mechanics to Hamiltonian
mechanics, and an accurate energy estimate which was
used later for the interconnected system identification and
energy-based MPC design. The architecture design of the
neural network that represented the interconnected systems
was informed by the Hamiltonian of subsystems and the
compositionality of pH systems. Moreover, the passivity of

learned models was ensured throughout the training process
by enforcing the skew-symmetry/positive semi-definiteness
of matrix functions via neural network architecture design.
The learned energy functions were employed to formulate
the energy-based MPC design. Finally, experiments on single
(and double) inverted pendulum showed that the proposed
methods can learn an accurate model, achieve strong control
performance with bounded plant-model mismatch, and be
applied to interconnected systems of high complexities.
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