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Introduction

CCI combustion is a form of LTC regime, which is

designed to operate with a mixture of two fuels with

dilerent reactivities. "ese fuels are injected by two
sets of injectors to adjust reactivity levels and control the
combustion process inside the combustion chamber. Port
fuel injectors (PFI) are used to deliver a low reactivity fuel to
the intake airtow while a high reactivity fuel is directly
injected inside the combustion chamber. Combustion in
RCCI engines initiates at high reactivity fuel-air mixture
pockets inside the combustion chamber and then advances
to burn the low reactive regions [4]. Since high reactivity
pocket formation depends on fuel concentration and local
temperature and in-cylinder pressure, it is challenging to
control combustion in RCCI engines to achieve low emission
and high thermal eSciency bene%ts. Inadequately controlled
RCCI engines may generate high carbon monoxide (CO) and
unburned hydrocarbon (UHC) emissions and run with high
cyclic variability (COV ) [5]. Control of combustion in
RCCI and other LTC regimes have been an active area of
research in the past two decades [6, 7, 8, 9, 10, 11]. Moreover,
running RCCI engines at high loads poses another challenge
regarding high maximum pressure rise rate (MPRR) values.
High MPRR occurs at high loads due to fuel mixture homo-
geneity, which causes the formation of simultaneous autoigni-
tions in regions inside the combustion chamber [12]. "is
issue generates high heat release rates and results in high
MPRR values, which creates high combustion noise and high
ringing intensity (RI) [5].

Several studies have been conducted to model MPRR in
internal combustion (IC) engines. Representation of sample
of these methods are presented in Figure 1. "ese studies can
be&categorized into physics-based modelings and data-driven
modelings. Physics-based models describe IC engines’ cycle
through the %rst law of thermodynamics and use calibrated
physical models to represent heat transfer, fuel injection, and
the combustion process. In contrast, data-driven models use
machine learning algorithms to model the relation between
measurable IC engine outputs such as load, combustion
timing, and controllable engine inputs such as fuel quantity
and injection timings [13, 14]. Physics-based modeling studies
can be&subcategorized into multizone models, computational
#uid dynamic (CFD) models, and correlation-based models.
Sjoberg et&al. [15] developed a multizone model of an HCCI
engine and studied the elects of thermal strati%cation and
combustion retardation on MPRR. " ey found that the high-
load operating limit of HCCI engines can be&extended by
adjusting the thermal stratification. Other researchers
including Ozaki et&al. [16], Shirota et&al. [17], and Jung et&al.
[18] also estimated MPRR for HCCI engines through a multi-
zone model and studied the elects of thermal and mixing
strati%cation. " ey con%rmed the positive elect of thermal
strati%cation on reducing MPRR and expanding the opera-
tional range of HCCI engines. Shigetoyo et&al. [19] studied
MPRR in HCCI engines through developing a multizone
model. " ey found that retarding combustion can reduce
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MPRR for HCCI engines, however excessive retardation can
reduce combustion robustness.

Other researchers have developed high-fidelity CFD
combustion models to study MPRR for IC engines. Zheng
et&al.[20] used a CFD simulation to model an n-heptane fueled
HCCI-like engine and studied the elects of charge strati%ca-
tion on MPRR. " ey con%rmed the conclusions obtained by
multizone modeling and found that increasing the ratio of
directinjection to premixed injection creates higher strati%ca-
tion and consequently decreases MPRR for HCCI engines. In
another CFD study, Zoldak et&al. [21] developed a CFD model
of an RCCI engine and compared it with conventional diesel
operation while considering MPRR as operational constraints
for both of them. They found that by satisfying MPRR
constrain, RCCI engines can provide 24% decrease in fuel
consumption compared to conventional diesel operation when
operated at the same rated power, air—fuel ratio (AFR), and
exhaust gas recirculation (EGR) rate. Korkmaz et&al. [22] also
investigated MPRR in RCCI engines using a validated CFD
model. " ey studied to reduce MPRR to less than 1 bar/CAD
in RCCI engines and expand the operational range by imple-
menting optimum injection strategy.

Multizone and CFD model-based MPRR models are
computationally expensive and cannot be&used for high-speed
applications such as feedback controller design. "erefore,
researchers have developed another class of MPRR models,
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which is the correlation-based model. Kugimachi et&al. [23]
represented MPRR for an HCCI engine as a correlation based
upon charge composition, temperature, and volume at the end
of combustion. "ey also developed a discrete control-oriented
model that used a linear quadratic regulator (LQR) strategy to
build a combustion controller. Hikita et&al. [24] also built a
control-oriented model for the HCCI engine and developed a
correlation for MPRR based on the thermodynamic properties
of charge at the end of combustion. " ey used this model to
build a feedforward load controller for the HCCI engine. Yang
et&al. [25] developed a control-oriented model for a gasoline-
fueled partially premixed combustion (PPC) engine and used
it to structure a Pl and an MPC controller to control load and
combustion phasing while considering MPRR and emission
constraints. " ey presented a correlation for MPRR based on
the %rst law of thermodynamics and used a double Wiebe
function to characterize heat release. A similar approach for
representing MPRR is used by Basina et&al. [26] while developing
an LPV-MPC controller for load and combustion phasingin an
RCCl engine. "eir controller was able to track CA50 and IMEP
without violating allowable MPRR values of 5.8 bar/CAD.

" e physics-based MPRR models require characteriza-
tion and calibration of a model to represent thermodynamic
process inside the combustion chamber, which can
be&time-
consuming. Researchers recently employed a new data-driven
approach to model MPRR, which will either reduce modeling
time or increase model accuracy. Pan et&al. [27] developed one
of the %rst data-driven MPRR models and used an unsuper-
vised learning process to estimate pressure trace of a diesel
engine during the combustion rate shaping (CRS) process. In
another work, Basina et&al. [26] developed a data-driven
MPRR model using data obtained from an RCCI engine
model. "ey built their model using linear parameter-varying
(LPV) approach and could estimate transient MPRR with
60&kPa/CAD accuracy. Shin et&al. [30] used a deep learning
approach to train and estimate maximum cylinder pressure,
the crank angle at maximum cylinder pressure, and MPRR
for a gasoline engine. " e i r model consisted of seven hidden
layers and could estimate MPRR with 2 kPa/CAD as the esti-
mation error. Liu et&al. [31] used a backpropagation arti%cial
neural network model to estimate maximum in-cylinder
pressure and pressure rise rate (PRR) for an optical gasoline
engine. "eir goal was to avoid testing conditions with unsafe
maximum pressure and MPRR values for an optical engine.
"ey found that a well-trained arti%cial neural network model
can provide fast and consistent results, making it an easy-to-
use tool for designing future experimental testings for the
optical engine. Huang et&al. [28] used arti%cial neural networks
to model peak cylinder pressure and its location, MPRR, and
indicated mean elective pressure for a heavy-duty natural gas
spark-ignition engine. Mishra et&al. used random forest
machine learning (RFML) approach along a parametrized
double Wiebe function to predict MPRR in an RCCI engine.
"eir model could estimate MPRR with 1.8 kPa/CAD as the
mean estimation error [29]. "ese developed MPRR models
can estimate MPRR very accurately, however, they are compu-
tationally expensive. Moreover, these models are trained based

on steady-state data and plant dynamics was not considered
in their modeling approach. Consequently, they are not appro-
priate for fast control applications due to their high compu-
tational load and lack of plant dynamic at identi%cation [28,
30, 31]. Recent works by Maldonado et&al. on real-time imple-
mentation of spiking neural networks for Sl engine control
show promising results. "is approach is a good candidate for
real-time MPRR control of RCCI engines due to its low
computational load [32, 33, 34].

Extension of high load operation in RCCI engines
requires an active MPRR control strategy based on a fast
control-oriented MPRR model. "is article proposes two new
control-oriented MPRR models in RCCI engines that are
trained with a wide range of experimental transient data.
"ese models can be&used to control MPRR and extend the
high load operation of RCCI engines.

"is article is organized as follows. " e experimental
RCCI engine setup is described in Section Il. "en, the %rst
control-oriented MPRR model using Wiebe-based modeling
is described in Section I1l. Subsequently, the algorithm to
develop a data-driven KCCA-LPV model for MPRR estima-
tion is given in Section IV. Finally, a summary of results and
comparison between the two MPRR models is provided.

Experimental!Setup

"is research utilized a 2.0L GM Ecotec engine in the Energy
Mechatronics Laboratory (EML) at the Michigan Tech’s
Advanced Propulsion Systems (APS) Research Center. " e

experimental setup layout and view are presented in Figure
2. " e speci%cations of the engine are given in Table 1. " e

engine is equipped with PFIl and DI injectors to enable RCCI
operation. " e PFI fuel system is used to deliver iso-octane as
the low reactivity fuel while the DI fuel system is used to
deliver n-heptane as the high reactivity fuel. "e ratio between

low reactive fuel and high reactivity fuel is characterized by
the premixed ratio (PR). It is de%ned based on chemical energy
from the low reactive fuel divided by the total chemical energy
delivered by both fuels and calculated according to Equation 1.

LHV,

misuoctane isooctane

m LHYV, +m

isooctane isooctane nheptane

PR =

Eq. (1
LHYV, o {0

nheptane

where LHV represents lower heating value of fuels and m
represents injected fuel mass per cylinder.

" e engine is connected to a 460 hp AC dynamometer.
A dSPACE MicroAutoBox unit is used as an engine control
unit while a dSPACE RapidPRo unit provides power and
control signals to actuators. Due to the sensitivity of RCCI
operation to intake air temperature, a controllable air heater
isincluded to warm the intake airf#fow to desired temperatures.
" e pressure trace from the engine is collected by a combus-
tion analysis system (CAS) at 0.1 CAD resolution and then
provided to a Xilinx programmed Spartan-6 %eld FPGA unit
to compute real-time MPRR. "e experimental pressure traces
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m RCCI engine experimental setup: (a) layout, (b)

real setup overview.
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from this engine are used to obtain MPRR based on PRRs at
0.1 crank angle intervals. " e computed MPRRs are later

utilized for MPRR model development and validation. Figure

3 presents a sample of experimental data set obtained by oper-
ating the RCCI engine with a series of input fuel quantity
(FQ), the start of injection (SOI), and PR. Iso-octane and
n-heptane were injected based on corresponding FQ, PR, and
SOl values for each cycle, and pressure trace and encoder

output were recorded and used to compute MPRR for the cycle.

Empirical!Wiebe-Based!
MPRR!Model

Empirical Wiebe-driven MPRR modeling is a physics-based

method used to develop a control-oriented MPRR correlation

[25]. "is article develops the %rst MPRR model in RCCI

engines using transient experimental data, which can be&used

to estimate MPRR in RCCI engines based on the control

actions. "is model requires the development of an in-cylinder
PRR model. Pressure rise rate can be&computed using the %rst

law of thermodynamics as presented in Equation 2 [35]

dP 1(0/0 dQ,\ yP dv
@ \d0 ] Vv

Eq. (2)

TABLE 1 Engine specifications.

Make General Motors

Model Ecotec 2.0!L Turbocharged
Engine type 4 stroke, 4 cylinders

Fuel system Direct and port fuel injection
Displaced volume 1998 [cc]

Bore 86 [mm]

Stroke 86 [mm]

Compression ratio 921

Max. engine power 164 at 5300 [kW at rpm]
Max. engine torque 353 at 2400 [Nm at rpm]
Firing order 1-3-4-2

IVO 25.5/-24.5 [°CAD bTDC]
IVC 2/-48 [°CAD bBDC]

EVO 36/-14 [°CAD bBDC]

EVC 22/-28 [°CAD bTDC]
Valve lift 103 [mm]

d . .
where aQ represents the rate of heat release, y is the ratio of

speci%c heats, P is the instantaneous pressure, V is the instan-

d .
taneous volume, and Q, is the heat transfer to the wall

computed through the Woschni heat transfer model [36].
Heat release from the fuel is linearly correlated with mass

fraction burn (MFB) of the fuel. MFB can be&modeled using

a single-term or a double-term Wiebe function presented at

Equations 3 and 4, respectively [35]

0-0, \
ard )

Eq. (3)

X, (0)=1—exp | - (

IGITLEEN Experimental data from RCCI engine at T;, = 333
K, N = 1200 RPM, P,, = 96.5 kPa.
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=M1-exp |- 0 -0, \.ml
——
+(1-A)| 1—exp |- [6 0, 1"

o, AO j Ea. (4)

where X is the mass fraction burned, 0 is the instantaneous
angle, BSOC is the crank angle at the start of combustion, "8 is
the combustion duration, A is the fraction of the mixture that
burns in the fast combustion stage, and a, m, m, m are
calibration parameters.

Figure 4 presents PRR values throughout cycle for the
transient experimental data presented in Figure 3. Mass
fraction burnt data for the same transient data is also presented
in Figure 5. It can be&observed that MPRR happens less than
15 CAD a’er the start of combustion (SOC). Based on the
comparison between the MFB estimation of a single-term and
a double-term Wiebe function, which is presented in Figure
6, the double-term Wiebe function estimates experimental
MFB accurately for the entire combustion process. However,
the single-term Wiebe function’s accuracy is limited to angles
close to the SOC.

Since MPRR happens close to SOC, either a single-term
or a double-term Wiebe function can be&used to represent
experimental MFB. " e single-term Wiebe function as given
in Equation 3 is preferred in this work due to the simplicity
of its calibration compared to a double-term Wiebe function.

" e Wiebe function combined with the LHV of the fuels
is used to present the fuel heat release rate form as

_(0-0,.
o AD j

Eq. (5)

——=lHV,, ——
do T 0 AO

dQ m (e O
ex
AO

" e lower heating value of fuels is denoted by LHV ,and
is calculated by

LHV,; =(1-PR)XLHV,, + PR xLHV,,,

off Eq. (6)

m Experimental pressure rise rate for transient
cycles, N = 1000 RPM, T;, = 333!K.
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where LHV ;, represents the lower heating value of the DI’s
injected fuel, in this case, n-heptane, and LHV ., is the LHV
of the PFI injected fuel, in this case, iso-octane.

Accurate MPRR estimation requires calibration of
Equation 3 as the Wiebe function used for MFB estimation.
Calibration parameters are m as the shape factor and "6 as
the burn duration, which are described by the following
equations [26]

m=C, +C, x(1+K)xSOI + C, xK Eq. (7)
AQ =C, +K (€, % +C; Xy +C, XSOl +C; ) +C, xSOI
Eq. (8)

in which K is as follows:

K =exp[—($0/ —c, )67]. Eq. (9)

Equations 7 to 9 are parameterized using transient exper-
imental data collected from the RCCI engine with 1500
consecutive cycles; 65% of these points, i.e., 975 data points
were used to parametrize the Wiebe function while the rest,

i.e., 525 data points, were used to test the calibrated
Wiebe function.

m Experimental mass fraction burn estimation, FQ
= 17 mg/cycle, SOl = 40 CAD bTDC, N = 1000 RPM, T;, = 333IK.
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m Time histories of FQ and SOl for the test data at
N = 1000 RPM, T;, = 333!K.

m E$ect of unknown states number on KCCA-

driven MPRR model prediction accuracy.
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Calibrated MPRR model was then used to estimate
MPRR for the test dataset. Figure 7 presents time history of
FQ and SOI at test data set. Experimental test dataset and
modeled MPRR for three experimental datasets are presented
in Figure 8. It can be&observed that the MPRR model was able
to predict experimental MPRRs with the root mean squared
error (RMSE) of 87 kPa/CAD. "e Wiebe-based MPRR model
could only estimate the general trend of test data. " i s is due
to the static structure of this model, which does not consider
the elect of engine inputs at previous cycles on the current
cycle MPRR value. "is problem will be&addressed in the next
section by implementing a dynamic state-space
KCCA-LPV structure.

m Performance of the Wiebe-based approach to
model MPRR for the test data at N = 1000 RPM, T, = 333 K, (a)
PR =12 (b) PR=18 (c) PR = 24.
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KCCA-Driven!MPRR!Model

"is section presents the second approach to model MPRR in
RCCI engines using a data-driven approach. Data-driven
modeling approaches can provide a reasonably accurate esti-
mation without prior knowledge. " i s provides signi%cant
modeling #exibility and signi%cantly accelerates the modeling
process for an unknown phenomenon compared to physics-
based models, which require accurate physical understanding
and modeling. "erefore, a data-driven approach based on
kernelized canonical correlation analysis (KCCA) is employed
in this section to obtain data-driven modeling benefits.
Moreover, the KCCA method enables plant states to be&inde-
pendent of the plant outputs, which allows states’ numbers to
be&adjusted to reach the highest accuracy of the data-driven
model. "is study adopts the state estimation approach devel-
oped by Rizvi et&al. [37] and generates KCCA combustion
model based on implemented engine inputs and measured
engine outputs. A state-space dynamic model for a LPV
system can be&presented as

X :A(pk)Xk +B(pk)Uk +K(pk)Ekl Eq. (10a)

Y, =C(p) X, +E., Eq. (10b)
where U, and Y, denotes the inputs and outputs, respectively,
and X, represents unknown states vector at moment k.
Matrices A(p,), B(p,), K(p,), and C(p,) represent LPV state-
space matrices that are generally dependent on scheduling
variables p,; E, denotes additive Gaussian white noise.
Equation 10 can be&rewritten as E, = Y, &C(p,) X, to form the
state-space model as follows

Xen=A(p )X +B(p)U,+K(p,)E,, Eaq.(l1a)
Y, =C(p) X, +E., Eq. (11b)

where A(p,)=B(p,) —K(p,)D(p,) and B(p,)=A(p,) -
K (p. )C (P, )- Identi%cation of A(p,), B(p.), K(p.) and



Khoshbakht Irdmousa et al. / SAE Int. J. Engines / Volume 16, Issue 6, 2023

C(p,) requires estimation of states (X, ) associated with measured
data, i.e, U,, Y,. State-space LPV (LPV-SS) formulation of
Equation 11 can be&used to obtain future outputs as

Y, U,
=(97%), Xc +(Hop),
Vewwan Uy
Y ][ e ]
#(op),| 1 |+ e Eq. (12)
Yiian €hrd+1

in which(©“0p) is the observability matrix at time instant k
along wit fhe $¢heduling trajectory p, (HdOp is a forward
Toeplitz matrix, and ((L‘”Op) is a lower trlangle matrix.
Future measured outputs, inputs, noise, and scheduling
parameter vectors for time instant k are collected to form the
following matrices

Ve, =[viovi] Eq. (13a)
O, =[u] Ul Eq. (13b)
El =[e]..e/ .1, Eq. (13¢)
Pl =pipian] s Eq. (13d)

where d denotes the future data window size. Equation 12 can
be&rewritten using Equation 13 as

Ves =(070p), X, +(H:0p), Uty + (150p), Vs + ELL,.
Eq. (14)

Unknown states at time step k based on future inputs and
outputs are computed from Equation 14 and given as

X =(07%), (- (o), Wi~ (H/%),UL.0 )~(9'0p) EL..

Eqg. (15)

Since E is an independent zero-mean process noise, which

is identically distributed for our experimental data,
((’);’()p) E  is expected to be&zero and can be&eliminated.
State estimation represented by Equation 15 is simpli%ed to

gd
Equation 16 by de%ning Z‘Z+d :L k”’J as the collection of

vd
future inputs and outputs: k+d

X {0,%), | -(H9p),  1-(yop), |22, Eq.(6)
Future mapping matrix can be&de%ned as
o, (L) {0%0), |-(H9p), 1-(gop),] Ea.(7)

and state estimation at time step k can be&simply expressed as

X =04 (f)zm)z:m- Eq. (18)

"i s approach is also applicable to past measurements to
estimate unknown states at time step k based on step-wise
output calculation from past d step measurements as

de ka

X =(X20p), Xe_a + (RIOP), Vi - aa +(Vd<>p) Vo |

u Y,

k-1

Eq. (19)

k-1

Past measured outputs, inputs, noise, and scheduling
parameter vectors for time instant k are denoted by Y*
, U, E?, and P? and can be&computed similar to future
data de%ned at Equation 13. "ese de%nitions can be&used to
rewrite state estimation as

X =(X50p), Xio + (RYOP), U7 +(V/0p) ¥, Eq.(20)
| d ca
Choosingdsuchthat (x Op) ~0and de%nlngZ [ J
P va
state estimation in Equation 20 is expressed as Ye
X, =[(Rfd<>p)k (\4"<>p)k]z;’ : Eq. (21)

State estimation at time step k based on the past data is
simpli%ed to the following by de%ning @ ( ] as the past
mapping matrix

o, (B)=[(R7%), (vor),]

=0, (R)Z.
" e past data-based state estimation approach shown in
Equation 18 can be&employed to obtain a collection of all esti-

mated states at all time steps. " i s collection is named #, and
de%ned as

=[o,(B)Z! o,(R)Z

Eq. (22)

Eq. (23)

0, (R)Z] .
Eq. (24)

Similarly, # is de%ned as the collection of estimated states
atall time steps based on the future data estimation method as

O, =g, (ﬁid )Z:ﬁ-d Py (I;zid )Zg+d

Op (ﬁl\7+d )le+d ]T .

Eqg. (25)

Past data-based estimated states (# ) and future data-
based estimated states (# ) should |deaIIy be& identical.
However, due to measurement uncertainties and modeling
estimations, they tend to be&dilerent. Maximizing correlation
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between # and #can be&accomplished by canonical correla-

tion analysis (CCA) method." e CCA problem for # jand#
can be&formulated as

ThHT
max v/ O/ O w, s.t.

Vi Wi

vio D, =w/ D O w, =1
Eq. (26)

Equation 27 presents the CCA optimization problem in
a regularized setting based on an LS-SVM formulation.

1 1 1 1
Tix] (vj,wj,s,r):yEUskrk—vE $ _VE §7\‘2 Vjvj‘z w'w,

,
i k=1

st. s, :V;(pf (ﬁid)E:m r :W;(‘Pp (Ekd )EZ
Eq. (27)
Solution for the regularized CCA problem can be&obtained
by forming Lagrangian as

L(vj,wj,s,r) =) (vj,wj,s,r)—injk (sk —vj' o, (Ekid )Ezﬂ,)
k=1

N — p—
Yk (svie (B)Z), Eq. (28)
k=1
where n,=[nj. n;"]T and k, =|Kk; ... K].N]T are

Lagrange multipliers. Since the problem is in a convex form,
the global minimum is computed where derivatives for
Lagrangian function variables are zero. "e problem presented
at Equation 26 can be&converted to the following generalized
eigenvalue problem

K, pK; =7”j(Vfof +’)ﬂj; Eqg. (29a)

Koy =2 (VK £ +1 g, Eq. (29b)
where K =® ®"and K, =® @ . Lagrangian multipliers
are the solution of the generalized eigenvalue problem below

T|Fn1-.

Vprp+J LK/'
|

Eg. (30)

Finally, the computed Lagrangian multipliers are used to
calculate the estimated states as

_(Z’ )TI? 'Bldlﬁkd )—||

X =x,; (2; )Tl?h(ﬁzd"skd) |=‘1j

[ o Kk, 1 [n,] [V K +1 0

LKy O|J||_K1|J: Lo

(2L )KL |

(Z, Y k() |
\

(Zio) K (Pi.aPs)
Eq. (31)

(@) RER)]

" e second step in data-driven MPRR modeling is to use
estimated states through the KCCA method along with
measured inputs and outputs to obtain a state-space dynamic
model of the RCCI engine through a LPV identi%cation. " i s

article utilizes least-squared SVM (LS-SVM) to determine
matrices A(pk), B(p,), €(p,), and K(p,) in Equation 11.
"ese state-space matrices are de%ned based on support vector
weighting matrices and feature maps using the equations
presented in Equation 32

A(p)=W,d,(p.); B(p)=W,d,(p,), Eq. (32a)

K(pk):W3q)3(pk)r' C(pk):WA.(D4(pk)l Eq. (32b)

where unknown support vector weighting matrices are shown
by W3, and unknown feature maps are represented by
#,34- An SVM-based discrete-time state-space model can
be&represented by

X = W1(D1(pk)xk +W,®, (pk )Uk +W3q)3(pk)ykl Eqg. (33a)

Y, =W, D, (p) X, Eqg. (33b)

State-space matrices can be&obtained from feature maps
and weighting matrices as follows based on the approach
presented by Rizivi et&al. [38]

A, (x) =W, (x):i:akx;/? (), Eq. (34a)
B, (x) =W,, (x):gaku[ R(p,x),  Eq.(34b)
K. () =W,0, (x)zgaky;/? (P, Eq. (340)
C. (=W, (x):gﬁkx;/?(pk,x), Eq. (34d)

where a and B are Lagrangian multipliers of the LS-SVM
optimization problem, and k' (p/.,pk) is Gaussian kernel
function de%ned as

2
— \
p,—p
" 1262’("2 _' Eq. (35)

k; (pjlpk )ZEXp -
where o, denotes the standard deviation and |||}, is the, norm.
" e de%ned Gaussian function is used in our LPV modeling
approach to perform the so-called kernel trick. Computed
matrices /39(.), B.(.), K,(.), and C,(.) in Equation 34 can
be&substituted into Equation 3 to represent the data-driven
state-space dynamic model of the plant.

" e described data-driven method was implemented on
the experimental data collected from the RCCI engine. " e
input PR, FQ, and n-heptane SOI were varied and MPRR was
computed from acquired pressure traces data. Figure 3
presents a sample of the experimental data obtained from the
RCCI engine. " e collected experimental data were divided
into training and test datasets. " e training dataset, which
consists of 65% of data, is used to train the KCCA-LPV model
and the remaining 35% is reserved as the test data. In this
work, the effect of the number of states at the dynamic
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state-space model on MPRR estimation accuracy is also
studied. Figure 9 presents the elect of unknown state numbers
on estimation accuracy. It can be&observed that by increasing
the number of states, estimation error decreases and reaches
an almost constant value. In this article, the number of
unknown states is selected to be&six where high estimation
accuracy can be&achieved while avoiding the high computa-
tional cost associated with using higher state numbers. " e

state-space dynamic model of the MPRR is structured and
presented in Equation 36. Dependency of the identi%ed Ae and
B, matrices on the FQ as the scheduling parameter is shown
in Figure 10. Elements of these matrices represent an almost
linear trend per FQ variation. " e y also have a relatively large
range of variation. "ese characteristics demonstrates that

m Dependency of the elements of the identified A
and B matrices (of the learned LPV model) on the scheduling
parameter (FQ).
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the identi%ed model is a LPV representation of the MPRR

dynamics in the RCCI engine.

X, | X,
XZ XZ FQ
X X

=A (FQ) +B,(FQ)| sol Eq. (36a)
X, X,

PR,

XS XS )
_X6 d(k+1) _X6 J(k)
[MPRR], ., =C(FQ) [ XX, X; X, XX ],.,,, Eq.(36b)

"e developed KCCA-LPV model is then used to estimate
the experimental MPRR values. Figure 11 presents estimation
results for the learned KCCA model for the test data at three
PR values. It demonstrates that the LPV model can estimate
the experimental MPRRs with an average estimation error of
45 kPa/CAD. Figure 12 presents the comparison between
MPRR estimation of the two models at PR = 14, PR = 20, and
PR =18."e root mean square error of the Wiebe-based model
is 64 kPa/CAD, 67 kPa/CAD, and 87 kPa/CAD for PR = 14,
PR = 20, and PR = 28, respectively. On the other hand, the
data-driven model could estimate the experimental data at
PR =14, PR =20, and PR = 28 with an average error of 28 kPa/
CAD, 29 kPa/CAD, and 48 kPa/CAD.

It can be&observed that the data-driven method can
estimate the measured MPRR values with better accuracy
compared to the Wiebe-based method while requiring less
development time due to its #exible modeling characteristics.

m Performance of the KCCA-driven model to
estimate MPRR for the test data at T;, = 333 K, N = 1200 RPM,
P;,,=96.5 kPa and (a) PR = 12,(b) PR = 18, (c) PR = 24.
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m Estimation performance of the Wiebe-based
and KCCA-driven MPRR models at T;, = 333 K, N = 1200 RPM,
P;, = 96.5 kPa (a) PR = 14, RMSE Wiebe-based = 64 kPa/CAD,
RMSE KCCA-Driven = 28 kPa/CAD (b) PR = 20, RMSE Wiebe-
based = 67 kPa/CAD, RMSE Data-Driven = 29 kPa/CAD. (c) PR
= 28, RMSE Wiebe-based = 88 kPa/CAD, RMSE KCCA-Driven =
48 kPa/CAD.
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Moreover, these models are accurate enough to be&used in
MPRR control applications since MPRR at RCCI engines
should be&below 10 bar/CAD [39] and estimation errors for
Wiebe-based and KCCA-LPV MPRR models are less than 9%
and 4.8% of the allowable MPRR value, respectively.

Summaryl!and!Conclusions

"is article developed and demonstrated two control-oriented
MPRR models for a 2-liter 4-cylinder RCCI engine. " e %rst
MPRR model is developed based on a physics-based Wiebe
method while the second model is obtained through a data-
driven KCCA modeling approach. " e %rst MPRR model
simulated the in-cylinder PRR through the %rst law of ther-
modynamics implementation and calibrated the model by
adjusting a Wiebe function, which represents fuel heat release
rate. Test results showed that the Wiebe-based MPRR model
can estimate experimental MPRR with a mean estimation
error of 87 kPa/CAD. In the second MPRR model, unknown

states are estimated by the KCCA method, and state-space
representations of the RCCIl combustion dynamics are
computed by the LPV method. " e developed KCCA-driven
MPRR model could estimate the experimental MPRR values
with an average error of 47 kPa/CAD.

"is study demonstrated the cycle-by-cycle MPRR in
RCCI engines can be&modeled through empirical modeling
and machine learning approaches. Both of these methods have
a very low computational burden due to their empirical and
state-space structure. Modeling efforts and estimation
accuracy showed that the machine learning algorithm can
provide signi%cantly higher estimation accuracy compared
to empirical modeling. "is superior performance of the data-
driven model is due to the implementation of highly nonlinea
r support vector machines to learn the stochastic behavior of
the MPRR in RCCI engines. " i s research can be&advanced
by employing the proposed MPRR models for developing
MPRR controller and expanding the high load operation of
RCCI engines.
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Definitions/Abbreviations

CA50 - Crank angle for 50% fuel burnt (CAD aTDC)
COV,yep - CoeScient of variation of IMEP (%)

e - Estimation or tracking error

E - Stochastic white noise

EOC - End of combustion (CAD aTDC)

EVC - Exhaust valve closing (CAD aTDC)

FQ - Fuel injected per cycle (mg/cycle)

‘H - Forward Toeplitz matrix

IMEP -
IVC -

IVO -
J - Least-square cost function

Indicated mean elective pressure (kPa)
Inlet valve closing timing (CAD aTDC)

Inlet valve opening timing (CAD aTDC)

k - Gaussian kernel function
LHV - Lower heating value (kJ/kg)
- Injected fuel mass (kg)
MPRR - Maximum pressure rise rate (kPa/CAD)
Q - Heat release (kJ)
PR - Premixed ratio of dual fuels (-)
PRR - Pressure rise rate (kPa/CAD)
‘R - Reachability matrix

SOI - n-heptane injection timing (CAD bTDC)
T;, - Temperature at inlet valve closing (K)

T, - Temperature at start of combustion (K)


bkhoshi@mtu.edu
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U - RCCI engine inputs

W - Support vector weighting matrix

X - RCCI engine states

a, B, K, n - Lagrange multipliers

0 - Crank angle (degree)

y - Heat capacity ratio

A - First-stage Wiebe function fraction

® - Feature map function
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