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Abstract: Integrating the blockchain technology into

mobile-edge computing (MEC) networks with mul-

tiple cooperative MEC servers (MECS) providing a

promising solution to improving resource utilization,

and helping establish a secure reward mechanism

that can facilitate load balancing among MECS. In

addition, intelligent management of service caching

and load balancing can improve the network utility

in MEC blockchain networks with multiple types of

workloads. In this paper, we investigate a learning-

based joint service caching and load balancing pol-

icy for optimizing the communication and computa-

tion resources allocation, so as to improve the re-

source utilization of MEC blockchain networks. We

formulate the problem as a challenging long-term net-

work revenue maximization Markov decision process

(MDP) problem. To address the highly dynamic and

high dimension of system states, we design a joint ser-

vice caching and load balancing algorithm based on

the double-dueling Deep Q network (DQN) approach.

The simulation results validate the feasibility and su-

perior performance of our proposed algorithm over

several baseline schemes.
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load balancing; deep reinforcement learning (DRL)

I. INTRODUCTION

Mobile edge computing (MEC), deployed in prox-

imity to mobile devices (MD), is a promising tech-

nology to deal with latency-critical and computing-

intensive workloads in the prospective Internet of

Things (IoT) [1]. Establishing trust among multi-

ple parties (e.g., edge/cloud providers) in MEC net-

works utilizing multiple servers (MECS) is a chal-

lenge because these parties often have conflicts of in-

terest [2]. Blockchain, as an emerging decentralized

security system [3, 4] and a public ledger of vari-

ous types of transactions [5], has been incorporated

in numerous applications, e.g., bitcoin, IoT, and smart

grid, etc. [6]. Integrating the blockchain technology,

with their advantages of decentralization, trust, and

anonymity, into MEC systems has attracted great in-

terest [7]. Compared with the traditional cooperative

MEC system with a single central authority, the MEC

system empowered by blockchain can enable decen-

tralized, secure communications among cooperative

MECS [8]. Because the MECS have the reputation

records in the MEC Blockchain network, which mo-

tivates the MECS to process more workloads while

meeting the requirements of MDs. This promotes load

balancing among multiple MECS and full utilization

of network computing resources.
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In order to satisfy the service requests for delay-

sensitive workloads and achieve high utilization

of resources in MEC blockchain networks, edge

caching [9, 10] and load balancing among cooperative

MECS [11] were proposed. Edge caching can prestore

the necessary application data at MECS for computing

service, which can reduce the backhaul transmission

delay to the core network and better utilize the ser-

vice capability of MECS [12, 13]. In addition, MEC

blockchain networks usually carry highly dynamic, di-

verse, and computation intensive workloads, which

are difficult for a single MEC server to process [14].

Load balancing can reshape the workload distribution

in MEC blockchain networks and facilitate the appro-

priate use of their limited computing resources [11]. In

addition, the cooperative MEC networks empowered

by blockchain can establish a secure reward mecha-

nism to facilitate load balancing among MECS.

Most existing works are focused on secure work-

load offloading schedules [15, 16], credible data

transmission schemes [17], the cooperation among

MECS [18], and allocation of the limited commu-

nication and computation resources [19±21] in MEC

blockchain networks, which attempted to improve the

service capabilities or maximize the long-term sys-

tem profits. Due to the complex process of solving

these problems, it usually takes a long time for the

iterative procedure to converge to the optimal solu-

tion [22]. In addition, the basis for the blockchain

mechanism is a computing process called mining.

Nevertheless, the mining process (e.g., performing

Delegated Proof of Stake (DPoS)) [23] and workload

computing in MEC systems are generally complicated

and require considerable storage and computing re-

sources [24]. Therefore, developing an intelligent and

self-organizing resource allocation scheme is critical

in MEC blockchain networks with limited service ca-

pabilities. To this end, deep reinforcement learning

(DRL) was introduced to obtain optimal strategies and

maximize long-term rewards [25, 26]. In [27], the

DRL was introduced to optimize the energy alloca-

tion and minimize the system cost under highly dy-

namic and high-dimensional system states. The recent

work in [28] performed task scheduling to maximize

the long-term mining reward with the minimum cost

on resources by leveraging DRL.

In this paper, we investigate the problem of joint

service caching and load balancing for blockchain-

authorized MEC networks with multiple cooperative

MECS and multiple types of workloads. We aim to

establish a secure load balancing mechanism to maxi-

mize the utilization of service resources in the MECS,

and to jointly optimize service caching, workloads of-

floading, and service resources allocation strategies to

achieve a high network revenue as well as meet the

workload requirements. In particular, we present the

main contributions of this work as follows. Firstly,

we consider an MEC blockchain network with mul-

tiple cooperative MECS and MDs, as well as multiple

types of workloads. We establish a secure load bal-

ancing mechanism based on blockchain to improve the

service capability, and maximize the utilization of ser-

vice resources of the network by optimizing the allo-

cation of communication and computation resources.

Secondly, we formulate the long-term network rev-

enue maximization in MEC blockchain networks as an

MDP problem. We then design a double-dueling DQN

based joint service caching and load balancing algo-

rithm to solve the formulated problem, which is char-

acterized by the highly dynamic and high dimensional

system states. Lastly, we analyze the convergence and

performance of the proposed scheme through exten-

sive simulations. Compared with several benchmark

algorithms, the proposed algorithm achieves a greater

network revenue while better satisfying the require-

ments of workloads.

The remainder of this work is organized as follows.

In Sections II and III, we introduce the system model

and problem formulation, respectively. In Section IV,

we present the double-dueling DQN based joint ser-

vice caching and load balancing algorithm. In Sec-

tion V, we discuss the simulation results and perfor-

mance analysis. We conclude the paper in Section VI.

II. SYSTEM MODEL

2.1 MEC Blockchain Networks

As depicted in Figure 1, we propose a blockchain-

enabled mobile edge computing network with multi-

ple cooperative MECS and MDs, which consists of an

MEC system and a blockchain system. We consider

that the MEC blockchain network has M MEC servers

denoted by a set M ≜ {1, 2, ...,M}, and N MDs de-

noted by a set N ≜ {1, 2, ..., N}. The data traffic

between MDs and MECS is transmitted through wire-
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Figure 1. Architecture of the MEC blockchain network considered in this paper.

less channels, and its transmission mechanism is based

on Orthogonal Frequency-Division Multiple Access

(OFDMA) [29]. The cooperative MECS communicate

over a wireline Local Area Network (LAN).

In the MEC system, we denote Nm ⊆ N as the

subset of MDs associated with MEC server m (e.g.,

MD n is the subscribe of the MEC server m, which

is termed the ªassociated relationshipº between MD n

and MEC server m in this paper), and the MEC server

m provides computation services for the MDs in Nm

to obtain payoffs from the system. We assume that

the MDs in the overlapping coverage area of multiple

MECS can transmit workloads directly to the corre-

sponding MEC server. After the computation results

are returned, each MD will provide the corresponding

MEC server a service evaluation score, which is re-

lated to the reputation value of the MEC server.

To ensure the security and privacy of the MEC sys-

tem, we introduce the blockchain technology into the

MEC network. The blockchain system can collect

and store information from the MEC system, such

as workload offloading records and the MEC server’s

reputation value. Such information will be grouped

into data blocks and recorded on the blockchain after

consensus is reached (e.g., the Nakamoto consensus

agreement). The M MEC servers act as miners in the

blockchain system, where the first miner to solve the

consensus problem will obtain the mining reward and

broadcast the verified transaction to other blockchain

nodes in a safe and immutable manner [6].

2.2 Workload Arrival and System Service Ca-

pability

The proposed system operates over discrete time peri-

ods T ≜ {0, 1, ..., T}. In each time slot t, the work-

loads generated by each MD will be offloaded to one

of the associated MEC server for execution. For the

MD n, the types of generated workloads in time slot

t can be modeled as a set K = {1, 2, ...,K}. With-

out loss of generality, we assume that the workloads

from MD n arrive at MEC m follow a Poisson distri-

bution with rate πn,m(t) in time slot t [30]. We de-

note βk
n,m(t) ∈ [0, 1] as the proportion of type k work-

loads to the total workloads generated by MD n, and

βn,m(t) = {βk
n,m(t)}k∈K is the set of workload per-

centages. The execution requirements for the type k

workloads generated by MD n associated with MEC

server m are modeled as a vector of four tuples, which

is denoted by Ikn,m(t) ≜ {ak, dk, hk, τk}. For the type

k workloads, ak (in GB) indicates the required storage

capacity, dk (in Mb/workload) is the data size of each

workload, hk (in CPU cycles/Mb) denotes the required

CPU cycles for workloads execution, and τk (in sec) is
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the maximum execution delay deadline.

We consider the case that the MECS have limited

service capabilities (e.g., computation capability, stor-

age capacity, and communication capability), and the

MEC with a heavier loads can transfer some work-

loads to the MECS that have lighter loads to achieve

load balancing through the LAN. We denote Rm and

Fm as the overall storage capacity and computation

capability of MEC server m, respectively. Since the

different execution requirements of each type of work-

loads, only the MECS that have cached the related ap-

plications data are eligible to provide services for the

corresponding types of workloads.

2.3 Service Caching and Load Balancing

MD n sends service requests to the connected MECS

at each time slot t. The service requests from MD n for

type k workloads can be processed only when MEC m

has cached the corresponding application data and has

sufficient service resources. Let xm(t) = {xk
m(t) ∈

{0, 1}|m ∈ M, k ∈ K} be the set of service caching

decisions of MEC server m at time slot t, which is

used to indicate whether the application data for type k

workloads is cached at MEC server m (when xk
m(t) =

1) or not (when xk
m(t) = 0) at time slot t. Note that

the service caching decisions are constrained by the

overall storage capacity of MEC server m, i.e.,

∑

k∈K

akx
k
m(t) ≤ Rm. (1)

When the service requests of MDs in Nm arrive at

the associated MEC server m at each time slot, the

load balancing among the cooperative MECS will be

implemented by transmitting the redundant workloads

to nearby MECS with low loads. Denote zm(t) =

{zkm,l(t)|l ∈ M, k ∈ K} as the set of load balancing

decisions among MECS for MEC server m at time slot

t, where zkm,l(t) ∈ [0, 1] is the proportion of the k-type

of workloads transmitted from MEC server m to MEC

server l.

Let Nml ⊆ Nm be the set of MDs associ-

ated with MEC server m in the overlapping area

of MEC server m and MEC server l. Note that

{Nml}l∈M,l ̸=m

⋃

Nmm = Nm, where Nmm indicates

the set of MDs associated with MEC server m only

within the coverage area of MEC server m. We de-

note ym(t) = {ykn,m(t) ∈ {0, 1} | n ∈ Nm, k ∈ K}
as the workload offloading decisions for MD n asso-

ciated with MEC server m, where ykn,m(t) = 1 means

that the workloads generated by MD n are offloaded

to MEC server m at time slot t. Similarly, ykn,l(t) = 1

indicates that the workloads are transmitted to MEC

server l from MD n associated with MEC server m

directly. Note that if and only if n ∈ Nml, we have

ykn,l(t) ≥ 0, otherwise ykn,l(t) = 0. In addition, the

workloads can only be processed on the MEC server

m that caches the application data for type k work-

loads. Thus we have

{

ykn,l(t) = 0, zkm,l(t) = 0, if xk
l (t) = 0

ykn,l(t) ≥ 0, zkm,l(t) ≥ 0, if xk
l (t) ̸= 0,

(2)

where {xk
l (t) ∈ {0, 1}|l ∈ M, k ∈ K} is the service

caching decision of MEC server l at time slot t.

2.4 System Cost

In the cooperative MEC system, we mainly consider

the cost related to energy consumption and execution

delay, which is determined by the following processes:

(i) workload offloading to MECS; (ii) load balancing

among MECS; and (iii) workload execution at MECS.

2.4.1 Workload Offloading to MECS

In view of the OFDMA transmission mechanism, in-

terference between multiple MDs is ignored due to

different MDs occupy non-overlapping subcarrier sets.

We assume that there are |S| subcarriers available for

data wireless transmission among MEC server m and

multiple MDs in its service area, which is denoted by

S = {1, 2, ..., s, ...|S|} [29]. And wn,m(t) is the band-

width of one of the subcarrier for the uplink data trans-

missions from MD n to MEC server m. The sum of

occupied bandwidth resource of all MDs in the cover-

age area of MEC server m can not exceed the whole

bandwidth resource of MEC server m, i.e.,

∑

n∈N

wn,m(t) ≤ Wm, (3)

where Wm is the overall available bandwidth resource

of MEC server m.

In each time slot t, the workloads generated by the

MDs associated with MEC server m can be offloaded
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to MEC server m for execution, and then the process-

ing results will be returned to MDs. Without loss of

generality, we focus on the energy consumption of the

uplink data transmission and execution delay. Accord-

ing to Shannon’s theorem, the uplink data transmission

rate between MD n and MEC server m is given by

run,m(t) = wn,m(t) log

(

1 +
P u
n,m(t)Hn,m(t)

σ2

)

,

(4)

where P u
n,m(t) is the transmit power for the uplink data

transmissions from MD n to MEC server m; Hn,m(t)

is the channel gain; and σ2 is the additive white Gaus-

sian noise power. The uplink data transmission de-

lay from MD n to MEC server m for unit workload

of type k can be written as T k
n,m(t) = dk/r

u
n,m(t),

while Ek
n,m(t) = P u

n,m(t)dk/r
u
n,m(t) denotes the cor-

responding energy consumption. Therefore, the over-

all cost for workloads offloading from the MDs asso-

ciated with MEC server m in time slot t is

Co
m(t) =

∑

k∈K

{

Bk
m(t)

[

φT k
n,m(t) + (1− φ)Ek

n,m(t)
]}

,

(5)

where φ is the relative weight between delay and en-

ergy consumption. The Bk
m(t) =

∑

n∈Nmm
βk
n,m(t)

πn,m(t)y
k
n,m(t) +

∑

l∈M,l ̸=m βk
n,m(t)πn,m(t)y

k
n,l(t) is

the overall workloads of type k generated by the MDs

in Nm that need to be offloaded at time slot t. In the

first term (
∑

n∈Nmm
βk
n,m(t)πn,m(t)y

k
n,m(t)) of the ex-

pression Bk
m(t), which means that the overall work-

loads of type k are offloaded by MDs (in Nmm )

to MEC server m at time slot t; The second term

(
∑

l∈M,l ̸=m βk
n,m(t)πn,m(t)y

k
n,l(t)) of the expression

Bk
m(t), which is the overall workloads of type k are of-

floaded by MDs (in {Nml}l∈M,l ̸=m ) associated with

MEC server m to the other MEC servers directly at

time slot t.

2.4.2 Load Balancing Among MECS

Recall that the data transmission among MECS is

through a wireline LAN with limited capacity, which

incurs congestion delay. According to [30], the service

capacity of the LAN is denoted as 1/η, which follows

the negative exponentially distribution. The data trans-

mission among MECS for load balancing is modeled

as an M/M/1 queuing system [31], which can be de-

scribed as:

Tm,g(t) = Bm(t) ·
1

1/η −B(t)
, B(t) <

1

η
, (6)

where Bm(t) =
∑

l∈M,l ̸=m Bm,l(t) is the total amount

of workloads of MEC server m for load balanc-

ing in time slot t, and Bm,l(t) =
∑

k∈K Bk
m,l(t)

is the total amount of workloads of all types trans-

mitted from MEC server m to MEC server l.

Bk
m,l(t) =

∑

n∈Nmm
zkm,l(t)

[

βk
n,m(t)πn,m(t)y

k
n,m(t)

]

is the amount of type k workloads that will be trans-

mitted from MEC server m to MEC server l. And

B(t) =
∑

m∈M Bm(t) is the total data traffic rate

in the LAN for load balancing among the MECS at

time slot t. The energy consumption for load balanc-

ing among MECS in time slot t is given by

Em,g(t) = Pm,g(t)Tm,g(t), (7)

where Pm,g(t) is the energy consumption per unit time

for data transmission. Therefore, we obtain the over-

all system cost of MEC server m for load balancing

among MECS at time slot t, which can be written as:

C l
m(t) = φTm,g(t) + (1− φ)Em,g(t). (8)

2.4.3 Workload Execution at MECS

The total amount of workloads of the type k computed

by MEC server m at time slot t is denoted as λk
m(t),

and it follows the Poisson process with rate λk
m(t),

which can be described as:

λk
m(t) =

∑

n∈Nmm

βk
n,m(t)πn,m(t)y

k
n,m(t)

+
∑

l∈M,l ̸=m

∑

n∈Nlm

βk
n,m(t)πn,m(t)y

k
n,m(t)

+
∑

l∈M,l ̸=m

Bk
l,m(t)−

∑

l∈M,l ̸=m

Bk
m,l(t), (9)

where the first term is for the workloads offloaded

from MDs in Nmm to MEC server m at time slot t.

The second term indicates the workloads transmitted

by MDs in the overlapping areas between MEC server

m and the other MECS, in which {Nlm}l∈M,l ̸=m is

the set of MDs associated with MEC server l in the

overlapping areas of MEC server l and MEC server m,
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and ykn,m(t) means that the workloads are transmitted

to MEC server m from MD n associated with MEC

server l directly. The third and fourth items are the

workloads transmitted by other MECS to MEC server

m and the workloads transmitted by MEC server m to

the other MECS, respectively.

According to the M/M/1 queuing model [31] and

Little’s law [32], we obtain the average execution de-

lay for type k workloads at MEC server m as follows:

T k
m,p(t) =

1

fk
m,p(t)/hk − λk

m(t)
, (10)

where fk
m,p(t) is the allocated computation capability

of MEC server m for the k-type workloads at time slot

t. fk
m,p(t)/hk is the service capacity of MEC server m

for workloads execution related to type k workloads,

which follows a negative exponential distribution [30].

We obtain the average energy consumption computed

by MEC server m for type k workloads in time slot t

as:

Ek
m,p(t) = P k

m,p(t)T
k
m,p(t), (11)

where P k
m,p(t) = κm[f

k
m,p(t)]

3 is the power consump-

tion for processing the workloads at MEC server m in

time slot t, and κm is the constant related to the struc-

ture of the CPU [33]. Thus, the overall system cost for

workload execution at MEC server m in time slot t is

given by

Cp
m(t) =

∑

k∈K

{

λk
m(t)

[

φT k
m,p(t) + (1− φ)Ek

m,p(t)
]

}

.

(12)

Therefore, the total cost of MEC server m in the co-

operative MEC system at time slot t can be written as

Cm(t) = Co
m(t) + C l

m(t) + Cp
m(t), (13)

the total system cost is closely related to the MEC’s

service caching decisions, workload offloading deci-

sions, and load balancing decisions.

2.5 System Reward

In the MEC blockchain network, the MECS can be

rewarded in the following two ways: (i) providing

workload processing services for MDs; (ii) being the

first miner to solve the consensus problem. We next

present the models for the workload execution payoffs

and mining payoffs in detail.

2.5.1 Payoffs for Workload Execution

In order to incentivize load balancing among MECS,

we introduce the payoffs for workloads execution. The

payoff is related to not only the data size of the work-

loads, but also the reputation of each MEC server. Let

ekn,m(t) be the service evaluation results given by MD

n for processing type k workloads at MEC server m in

time slot t. Then em(t) = {ekn,m(t)|n ∈ N , k ∈ K} is

the set of service evaluation results of MDs for MEC

server m for processing all types of workloads.

Denote ckn,m(t) ∈ {0, 1} as the credibility of MEC

server m at time slot t, i.e., if ekn,m(t) is sufficiently

high relative to em(t), we have ckn,m(t) = 1; otherwise

we have ckn,m(t) = 0 [34]. We obtain the credibility

evaluation results of MEC server m by MD n at time

slot t as êkn,m(t) = ckn,m(t)e
k
n,m(t), the reputation of

MEC server m is given by Bayesian inference [35]:

Y k
m(t) = ξ/n1

∑

n∈Nmm

êkn,m(t)

+ (1− ξ)/n2

∑

l∈M,l ̸=m

∑

n∈Nlm

êkn,m(t), (14)

where the first term is the credibility evaluation results

of MEC server m by MDs in Nmm, the second term

means that the credibility evaluation results of MEC

server m by MDs in the overlapping areas between

MEC server m and the other MECS, ξ is the weight

coefficient, and n1 and n2 are the corresponding num-

ber of MDs.

According to the data size computed by MEC server

m and the reputation of MEC server m at time slot t,

we obtain the payoff of MEC server m for processing

type k workloads at time slot t as

Rk
m,p(t) = υY k

m(t)λ
k
m(t), (15)

where υ is the unit system payoff of MEC server m

for executing type k workloads.

In summary, the MEC sever with higher reputa-

tions and processed more workloads will obtain more

payoffs. Thus, the network is more inclined to load

balancing among multiple MECS for maximizing the

utilization of computation resources to process more
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workloads, and each MEC server will also pay more

attention to its own reputation (which is related to

quality of service). Therefore, the MEC system em-

powered by blockchain help us establish a more de-

centralized and secure cooperative MECS network.

2.5.2 Mining Payoffs

In the proposed system, MEC server m also acts as a

miner to process the mining service to obtain the min-

ing payoffs in each time slot t. Let fm,b(t) be the al-

located computation capability by MEC server m for

mining service at time slot t. The ratio of fm,b(t) over

the sum of the computing capability allocated to min-

ing services by other MECS can be expressed as

µm(t) =
fm,b(t)

∑

m∈M fm,b(t)
, (16)

which is directly proportional to the success of mining

competition and satisfies
∑

m∈M µm(t) = 1 [3]. In

addition, in the propagation stage for mined block of

MEC server m in the blockchain system, a slow prop-

agation speed will lead to loss of the mined block and

no reward (which is called orphaning [36]). The prob-

ability of orphaning is calculated as

ϱ(t) = 1− e−δζ(sm), (17)

where δ is a constant, and ζ(sm) indicates the prop-

agation time for block size sm of MEC server m [8].

Thus we obtain the probability of MEC server m suc-

cessfully mining a block as

Pm(t) = µm(t)(1− ϱ(t)) = µm(t)e
−δζ(sm). (18)

Denote rb as the mining reward for the winning

MEC server. The expected mining payoffs of MEC

server m can be expressed as

Rm,b(t) = rbPm(t)

= rb ·
fm,b(t)

∑

m∈M fm,b(t)
· e−δζ(sm). (19)

III. PROBLEM FORMULATION

In order to achieve a higher network revenue, achieve

load balancing, and encourage MECS to partici-

pate in cooperative workloads execution, the MEC

blockchain network operators need to make optimal

decisions for workload offloading, service caching,

load balancing among MECS, and computation capa-

bility allocation in each time slot t. Let

ψ(t) ≜ {xm(t),ym(t), zm(t),fm(t)}

be the decisions set, where fm(t) = {fk
m,p(t)}k∈K

⋃

{fm,b(t)}. We aim to maximize the network revenue,

i.e., to balance the cost and reward of the MEC sys-

tem and the blockchain system. We denote the utility

function of MEC server m at time slot t as

Um(t) = (1−ρ)
{

[
∑

k∈K

Rk
m,p(t)]−Cm(t)

}

+ρRm,b(t),

(20)

where ρ (greater than zero) is the weight parame-

ter for the utility between the MEC system and the

blockchain system. We formulate a problem that max-

imizes the weighted and time-averaged sum of net-

work revenue in the long-term time horizon as

P1 : max
ψ(t)

lim
T→∞

1

T

T−1
∑

t=0

M
∑

m=1

Um(t)

s.t. (1) − (3), (6)
∑

l∈M

yknl(t) = 1,
∑

l∈M

zkml(t) = 1 (21)

∑

k∈K

βk
n(t) = 1,

∑

m∈M

µm(t) = 1 (22)

∑

k∈K

fk
m,p(t) + fm,b(t) ≤ Fm. (23)

In Problem P1, Constraint (1) represents the stor-

age capacity constraint of MEC server m. Con-

straint (2) describes that the relationship between ser-

vice caching, workload offloading, and load balancing

decisions. Constraint (3) shows the limit of overall

bandwidth resources of MEC server m. Constraint (6)

enforces the limit of service capacity of the wireline

LAN. Constraint (21) guarantees that the sum of the

workload offloading decisions and the load balancing

decisions of the MEC server m at time slot t are both

equal to 1. The first term in Constraints (22) guar-

antees the percentage of each type of workloads gen-

erated by MD n at time slot t, and the second term

of (22) indicates the limit of the proportional to the
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success of mining competition. Constraint (23) en-

sures that the sum of allocated computation capabil-

ities for workload computing and mining service can-

not exceed the computation capability of MEC server

m at time slot t.

The formulated problem of long-term network rev-

enue maximization is a mixed integer nonlinear pro-

gramming (MINLP) problem. As the number of MDs

in the MEC blockchain networks is increased, the

complexity of the problem will also increase greatly,

which is difficult to solve by traditional methods.

Therefore, we propose a highly competitive solution

based on DRL to drive the strategy ψ(t).

IV. LEARNING-BASED JOINT SERVICE

CACHING AND LOAD BALANCING

POLICY

In this section, we consider Problem P1 as an MDP

problem. We aim to design a learning-based joint ser-

vice caching and load balancing policy to find a highly

competitive solution to the original problem P1.

4.1 The DRL Framework

We first reformulate the problem as an MDP, and de-

fine the state, action, and reward function as follows.

4.1.1 State

The state of MEC server m at time slot t con-

sists of the workload arrival rate πm(t) =

{π1,m(t), π2,m(t), ..., πN,m(t)}, the propor-

tion of different types of workloads βm(t) =

{β1,m(t),β2,m(t), ...,βN,m(t)}, the reputation

Ym(t) = {Y 1
m(t), Y

2
m(t), ..., Y

K
m (t)}, the channel con-

ditions Hm(t) = {H1,m(t), H2,m(t), . . . , HN,m(t)},

the storage capacity Rm and the computation capabil-

ity Fm, which can be written by a tuple as

s(t) ≜
{

πm(t),βm(t),Hm(t),Ym(t), Rm, Fm

}

.

4.1.2 Action

In the MEC blockchain network, we consider four

types of actions, including service caching xm(t),

workload offloading ym(t), load balancing zm(t), and

computation capability allocation fm(t). We denote

a(t) ≜
{

xm(t),ym(t), zm(t),fm(t)
}

as the action space of MEC server m at time slot t. To

simplify the problem, we divide the number of work-

loads and service resources of the MEC server m into

countable parts to discretize the action space.

4.1.3 Reward Function

In this paper, we aim to maximize the network rev-

enue by jointly optimizing the decisions for workload

offloading, service caching, load balancing among

MECS, and computation capability allocation. There-

fore, the reward function needs to take these objectives

into consideration, which is defined as

r(t) =
M
∑

m=1

Um(t). (24)

4.2 Learning-Based Algorithm

Reinforcement learning (RL) is used to describe and

solve the problem of reward maximization or achiev-

ing specific goals through learning strategies in the

process of interacting with the environment, usually

described as an MDP. It is an autonomous learning

process, where the agent makes decisions periodically

and gradually, relying on the feedback from the envi-

ronment to improve the strategy, until the best strategy

π∗ = argmax
π

Q∗(s(t), a(t))

is learned. The agent aims to achieve the expected

long-term reward, which can be expressed as:

r(t) = r(t)+γr(t+1)+γ2r(t+2)+ ...+γT−tr(T ),

(25)

where γ ∈ [0, 1] is the reward discount coefficient,

indicating the influence of future rewards on the re-

sponse of the current action.

DRL is an effective method to combine deep learn-

ing and RL to address problems with large action

space and sample space, where a neural network called

DQN is incorporated to approximate the Q value.

In the DQN architecture, for given system state and
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action inputs, the output Q value, Q(s(t), a(t)) ≈
Q′(s(t), a(t); θ), can be obtained directly, where θ de-

notes the parameter of the neural network. The neural

network is trained by iteratively updating the parame-

ter θ to minimize the loss function:

L(θ(t)) = E

{

[

r(t) + γmaxQ(s(t+ 1), a(t+ 1);

θ(t+ 1))−Q(s(t), a(t); θ(t))
]2
}

, (26)

where r(t) + γmaxQ(s(t+ 1), a(t+ 1); θ(t+ 1)) is

the target Q value and will be updated every once in a

while.

To overcome the Q value overestimation problem

encountered in the DQN algorithm, we propose a

double-dueling DQN based joint service caching and

load balance algorithm. The key idea is to use differ-

ent objective functions to select and evaluate actions,

and then the target Q value in the double-dueling DQN

can be expressed as:

r(t) + γmaxQ(s(t+ 1), amax(s(t)|θ(t)); θ(t+ 1)),

(27)

the amax(s(t)|θ(t)) = argmaxa(t)Q(s(t), a(t); θ(t))

is the best action, which is obtained through the cur-

rent Q network.

The Q value is divided into two parts in the double-

dueling DQN model. The first part is just based on the

state and does not take into account the specific action

to be performed, which is called value function and

expressed as V (s). The second part is called advan-

tage function and denoted as A(s, a), which is based

on the current state and action. Thus, we obtain the Q

value in the double-dueling DQN architecture as

Q(s, a) = A(s, a) + V (s). (28)

In the implementation of the proposed double-

dueling DQN based joint service caching and load bal-

ance algorithm, we set a fully connected feed-forward

5-layer neural network, and each hidden layer has 20

neurons [37]. In each training step, the state infor-

mation in current system will be fed into the Q net-

work. Then the Q network returns the optimal ac-

tion, which is selected in accordance with the ϵ-greedy

policy. Based on the optimal action (service caching,

workload offloading, load balancing, and computa-

Algorithm 1. The double-dueling DQN based joint service

caching and load balancing algorithm.

1: Input: Learning rate α; exploration rate ϵ; dis-

count factor γ; experience replay memory D; up-

date step length C; action space a(t).

2: Output: Optimal strategy ψ(t).

3: Initialize the current network parameter θ;

4: Initialize the target network parameter θ′ = θ;

5: Initialize the experience replay buffer;

6: for t = 1, 2, ... do

7: Observe the initial state s(t);

8: Select probability p randomly;

9: if p ≥ ϵ then

10: Choose action amax(s(t)|θ(t)) =

argmaxa(t)Q(s(t), a(t); θ(t));

11: else

12: Choose an action randomly;

13: end if

14: Decrease the exploration probability ϵ;

15: Execute action a(t);

16: Based on the service caching, workload offload-

ing, load balancing, and computation capability

allocation decisions to obtain the network util-

ity by solving (20);

17: Compute the reward function r(t) by solv-

ing (24) and obtain the next state s(t+ 1);

18: Store the experience (s(t), a(t), r(t), s(t + 1))

in the memory D;

19: Sample random mini-batch from D;

20: Calculate the target Q value by solving (27);

21: Calculate the loss function and calculate net-

work parameter θ;

22: Every C steps reset θ′ = θ;

23: end for

tion capability allocation decisions), we can obtain

the network utility by solving (27). And then we ob-

tain the value of reward function by solving (20) and

obtain the next state s(t + 1). All the experience

(s(t), a(t), r(t), s(t + 1)) in the training process will

be accumulated in the experience replay pool D. A

small group of samples will be selected from the pool

to train the current network parameters, and the tar-

get network will be directly copied from the current

network, with the same structure and parameters. The

detailed algorithm is presented in Algorithm 1.
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Table 1. List of simulation parameters.

Parameter Numerical value Unit

Wm 30 MHz

πn,m(t) [10,40] workload/sec

κ 10−27 -

σ2 −174 dBm/Hz

fTX 900 MHz

NL 20 -

α 0.01 -

γ 0.9 -

sm [2,6] MB

rb 20 tokens

ϵ 0.1 -

V. PERFORMANCE EVALUATION

5.1 Simulation Configuration

In this section, we validate the performance of our pro-

posed algorithm by simulations using the Pytorch with

Python 3.7 (tensorflow) on a desktop with Windows

64 bits, 3.59 GHz AMD Ryzen 5 3600 6-Core Pro-

cessor, and 16 GB RAM, and comparison with several

baseline schemes. We consider an MEC blockchain

networks including 30 MDs and 4 MECS. There are

overlapping coverage areas between the MECS. Each

MEC server serves a dedicated set of MDs that are as-

sociated with it. MDs can generate a total of four types

of workloads. Assume that MECS have strong service

capabilities to serve all types of workloads, and each

MEC server can cache the corresponding application

data in advance based on the caching policies. For

each type of workload in the MEC system, the data

size of each workload of type k is dk = [0.5, 1] Mb/-

workload, the required CPU cycles for processing one

type k workload is hk = [20, 40] CPU cycles/Mb, and

the required storage capacity is ak = [20, 80] GB. The

storage capacity and computation capacity of MEC

servers are set to [100, 200] GB and [5, 10] GHz, re-

spectively. The channel gain for wireless data trans-

mission is modeled by the indoor loss model [14]:

L[dB] = 20 log(fTX)[MHz] +NL log(d[m])− 28.

The noise power σ2 is −174 dBm/Hz [38]. The weight

factor φ between delay and energy consumption are

set to 0.6 and 0.4, respectively. For the blockchain

network, η = 1/600 sec [14] and the mining reward

is set to rb = 20 tokens. Other simulation parameters

are listed in Table 1.

Figure 2. Convergence performance of the proposed algo-

rithm as indicated by the evolution of the loss function.

We evaluate the performance of our proposed al-

gorithm and compare it with the following baseline

schemes under various system configurations:

1. No direct communications among MDs and their

un-associated MECS (termed NDC): unlike our

proposed scheme, in this scheme, the MDs in the

overlapping coverage area of multiple MECS can

only allow to offload workloads to its associated

MEC server, and cannot directly offload work-

loads to other MECS that covering them.

2. Greedy offloading scheme (termed GO): in this

scenario, each MEC server hopes to serve as

many MDs as possible. As long as the MEC

server caches the corresponding applications data

to serve such type of workloads, the MEC server

will reserve as many workloads as possible and

ignore its computing capability and the current

system state. For unserviceable workloads, the

MEC server only considers the computing capa-

bility and ignores the reputation value when bal-

ancing the workloads to other MEC servers.

3. Random offloading scheme (termed RO): both

MDs and MECS randomly select a feasible MEC

server for workloads offloading with equal proba-

bility.

5.2 Results and Analysis

We first show the convergence of our proposed algo-

rithm with respect to the loss function and learning

rate in Figure 2 and Figure 3, respectively. In Fig-

ure 2, we present the convergence performance of the
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Figure 3. Reward function value vs. different learning

rates.

proposed algorithm as shown by the evolution of the

loss function. At the beginning of the training process,

since the double-dueling DQN agent does not have

enough information to make reasonable decisions, the

loss function assumes large values. As the training

process goes on, the value of loss function decreases

gradually and eventually approaches a relatively sta-

ble value after about 4,000 time slots. We then ex-

amine the influence of different learning rates on the

convergence of the proposed algorithm in Figure. 3.

We simulate the change of reward function values at

α = 10−1, 10−2, 10−3 over 12,000 time slots. The

vertical axis is the long-term averaged reward value,

which is normalized by introducing r̂ = r
rmax

for ease

of viewing. It can be observed that the averaged re-

ward value of the network gradually increases and ap-

proaches 1 as the learning process progresses. Fur-

thermore, since the state of the network in each time

slot may change dynamically, e.g., due to the dynamic

workload arrival process, the curve will still fluctu-

ate slightly even after convergence. Moreover, as the

learning rate is increased from 10−3 to 10−1, the con-

vergence rate of the proposed algorithm also increases

gradually.

Next, we examine the network delay cost under dif-

ferent numbers of MDs. The results are presented in

Figure 4. As the increase of the number of MDs, the

amount of workloads will also increase. Due to the

limited computation capabilities of MECS, all the four

curves show high network delay costs. Compared with

the three baseline schemes, our proposed algorithm

achieves the smallest network delay costs. In the NDC

Figure 4. The network delay cost under different numbers

of mobile devices.

Figure 5. The Energy consumption under different numbers

of mobile devices.

scheme, each MD can only offload workloads to its

associated MEC server, and then the MEC server may

transfer the workloads to other MEC servers that can

execute the workloads. Such an approach increases

the data transmission delay between MECS. Thus, the

network delay cost is slightly higher than our proposed

algorithm. In addition, the GO scheme offloads work-

loads to the MEC server with the largest computational

capability other than itself. Thus its network delay cost

is lower than that of the RO scheme.

We also demonstrate the energy consumption of the

four schemes under different numbers of MDs in Fig-

ure 5. It can be seen that the energy consumption

trends of the four algorithms are similar to the network

delay cost trends shown in Figure 4.

Figure 6 verifies the effect of different numbers

of MDs on the payment rewards received by MEC

servers. According to (15), the payment rewards of

each MEC server are related to the credibility evalua-
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Figure 6. The Payment reward under different numbers of

mobile devices.

Figure 7. Delay cost versus total computational capability.

tion results of each MEC server provided by MDs and

the amount of workload processing. As the number of

MDs is increased, the amount of workloads increases,

and the payment rewards of the four algorithms all be-

come larger. However, due to the constant increase in

the number of MDs on the premise of maintaining the

same computing capabilities of MECS, the network

delay cost gradually increases (as shown in Figure 4),

which leads to poorer credibility evaluation results of

MECS. Thus, the trends of payment rewards for the

four algorithms will slow down or even decrease when

the number of MDs becomes large.

Next, we examine the effect of different total com-

putation capabilities of MECS on the network delay

cost and the energy consumption of MECS in Figure 7

and Figure 8, respectively. Figure 7 shows the decreas-

ing network delay cost as the total computation capa-

bilities of MECS are increased. It can be seen that

when the computing capabilities of MECS are suffi-

cient to process the current workloads, the decrease of

the network delay cost gradually slows down in all the

Figure 8. Energy consumption vs. computing capability.

Figure 9. Payment reward vs. computational capability.

curves of the four algorithms. Figure 8 shows that the

energy consumption increases with the computing ca-

pabilities of MECS.

In Figure 9, we present the relationship between the

payment reward obtained by the MECS and the total

computing capabilities. According to (15), when the

MEC server processes the same amount of workloads,

a better value of credibility evaluation will provide the

MEC server a higher payment reward. As the comput-

ing capabilities of MECS is increased, the processing

delay gradually decreases, and the credibility evalua-

tion results of MECS gradually become better. Thus,

as the MECS computing capabilities are increased, the

payment rewards obtained by the MECS get better and

better. When the computing capabilities of MECS are

sufficient to meet the current workloads, the payment

rewards obtained by the MECS will be gradually sta-

bilized.

Figure 10 shows the influence of the current block

size on the value of the objective function. Accord-

ing to (20), the value of the objective function is re-
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Figure 10. Objective function value vs. block sizes.

lated to the mining payoffs of MECS. A larger block

size value leads to a longer propagation time for the

corresponding block, which is more likely to be lost

during the propagation process. Therefore, the proba-

bility of success of block mining will becomes smaller.

And thus the objective function values of the four al-

gorithms decrease gradually with the increase of block

size.

VI. CONCLUSION

In this paper, we considered the problem of joint

service caching and load balancing for blockchain-

authorized MEC networks with multiple cooperative

MECS and multiple types of workloads. We estab-

lished a secure load balancing mechanism among co-

operative MECS based on the blockchain technology

to maximize resources utilization. We formulated a

long-term network revenue maximization MDP prob-

lem and developed a double-dueling DQN algorithm

for network revenue maximization while satisfying the

requirements of MDs. We analyzed the convergence

and feasibility of the proposed algorithm by extensive

simulations. Compared with three baseline schemes,

our proposed algorithm achieved a superior perfor-

mance in terms of the energy consumption, the net-

work delay cost, and the payment reward in MEC

blcokchain networks.
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