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Abstract—Fog radio access networks (F-RANs) have been re-
garded as a promising paradigm to support latency-sensitive
and computation-intensive services by leveraging computing and
caching capabilities of fog access points (F-APs). To execute of-
floaded computation tasks, it is essential to pre-store necessary
programs and databases at F-APs, referred as service caching.
However, due to system dynamics and the coupling of decisions,
cache, radio, and computation resource management at F-RANs
is a challenging problem. In this paper, a joint multi-dimensional
resource optimization problem is formulated, aiming at minimiz-
ing the weighted sum of expected latency cost and caching cost,
which is featured by a two-timescale structure. For radio and
computation resource allocation on a small timescale, a coalitional
game based approach is proposed under given caching decisions.
On a larger timescale, services are cached at each F-AP using a
multi-agent reinforcement learning algorithm. The advantage of
the proposed algorithms is that they can implicitly take the impact
of small timescale resource allocation into account while adapting
to the long-term statistics of channel coefficients and user service
requests. We analyze the proposed algorithms with respect to their
convergence, optimality, and complexity, and validate their perfor-
mance with extensive simulations, where superior performance is
observed over several baseline schemes.

Index Terms—Fog radio access networks, multi-dimensional
resource management, machine learning, multi-agent
reinforcement learning (MARL).

I. INTRODUCTION

E
MERGING services, such as virtual reality/augmented

reality (VR/AR) and online gaming, are latency-sensitive

and computation-demanding, which put heavy burdens on the
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processors and batteries of user devices [1], [2], [3]. Although

cloud computing provides a solution that overcomes this issue,

offloading a large number of computation tasks to the cloud

unavoidably increases the data traffic on the backhaul/fronthaul

as well as user latency [4], [5], [6]. Fortunately, as a promising

paradigm, fog radio access networks (F-RANs) can well har-

monize fog computing and cloud computing, to achieve lower

latency and transmission overhead by allowing user devices to

offload computation tasks to fog access points (F-APs) [7], [8].

A. Computation Offloading Optimization in F-RANs

Recently, much attention has been paid to computation of-

floading optimization in F-RANs. In [9], it was assumed that

a task node can offload some tasks to the nearby fog nodes,

and a bandit learning based online node selection strategy was

proposed for a typical task node to minimize a long-term cost

induced by communication and computation. The authors in [10]

jointly optimized the task division of a single mobile device

among multiple fog nodes and the device’s local CPU frequency,

aiming at lowering the total execution latency and device energy

consumption of all tasks. Under a scenario with multiple mobile

users and one fog node, task distribution and resource allocation

were formulated as a mixed-integer non-linear programming

in [11], which was then solved by a low-complexity suboptimal

algorithm. In [12], given a three-layer hierarchical computing

architecture, a user task can be offloaded to servers at radio units

or distributed units or central units, and the joint optimization

of receive beamforming, task distribution, computing resource

allocation at each server and the transmission bandwidth di-

vision of fronthaul was tackled using variable relaxation and

substitution. In order to further reduce the offloading latency

and improve spectrum efficiency, several prior works consid-

ered power-domain non-orthogonal multiple access (NOMA).

In [13], subcarrier sharing among multiple users in a NOMA-

enabled F-RAN was modeled as a coalition formation game,

where users in the same coalition share the same subcarrier for

task data uploading. In [14], a joint user offloading decision,

fog node association, and resource allocation problem was in-

vestigated to minimize a weighted system cost, and alternating

direction method of multipliers based optimization was adopted

to solve the problem. By utilizing genetic algorithm, authors

in [15] proposed a heuristic approach to the joint optimization

of computation offloading decisions and resource allocation for
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a scenario with multiple UEs and fog nodes, which can lead to

a stable convergence solution.

Although the above works achieve good performance, they

implicitly assume that the fog nodes or F-APs can execute

all kinds of computation tasks offloaded to them. However,

executing the offloaded computation tasks not only requires

the input data from user devices but also dedicated programs

and databases, which should be pre-stored at F-APs. Taking AR

service for example, programs for 3D rendering shall be cached

at F-APs and this kind of operation is termed service caching.

Actually, the service caching problem has been considered in

several prior works in computation offloading scenarios. In [16],

combinatorial contextual bandit learning was utilized to place

services effectively at the edge under spatial-temporal dynamics.

In [17], genetic algorithm was adopted to solve the problem of

service caching and task offloading, aiming at balancing the user

perception of service latency and the cost paid by users due to

the use of computing resource. In [18], the authors focused on

a cache-assisted single-user mobile edge computing system and

proposed an alternating minimization based approach to jointly

optimize service placement, computation offloading decisions,

CPU processing frequency, and transmit power of mobile users.

In [19], a service caching and task offloading problem was

presented for a dense F-RAN, where an online optimization

algorithm was developed by integrating Lyapunov optimization

with Gibbs sampling.

B. Other Related Works

In addition to resource allocation in computation offloading

scenarios, there have been some studies focusing on traditional

radio resource allocation or multi-media content caching or a

joint optimization of them in F-RANs.

In [20], aiming at maximizing downlink throughput, authors

studied dynamic radio resource allocation, and the primal prob-

lem was transformed into an F-AP power allocation problem and

a subchannel assignment problem among F-UEs that was solved

using matching theory. From the perspective of interference

management in a downlink F-RAN, authors in [21] addressed

the assignment of resource blocks (RBs) to each user, power

allocation among RBs and the power split levels of users using

the same RB. Faced with the non-convexity of the resource allo-

cation problem, a decoupled solution was proposed, which was

based on Hungarian algorithm and alternating direction method

of multipliers. When F-APs equip multi-antennas, beamforming

vector design should be considered in radio resource allocation.

In [22], a fractional programming and weighted minimum mean

square error based approach was developed to optimize down-

link beamforming vectors of F-APs, where throughput, energy

consumption and content caching cost were comprehensively

considered. In [23], authors focused on cost efficiency defined

as the ratio of content delivery throughput and caching cost, and

path-following algorithms were introduced to maximize cost

efficiency via multicast beamforming optimization.

As for multi-media content caching optimization, each UE

in [24] can acquire its requested content from either a single

F-AP or multiple F-APs via joint transmission, and content

transmission delay was analyzed by considering caching states

of F-APs, transmission mode selection and content sharing strat-

egy among F-APs. To solve the formulated delay minimization

problem, the number of optimization variables were first reduced

by carefully analyzing problem structure and then genetic algo-

rithm was adopted to solve a simplified content caching problem.

In [25], NOMA transmission from one F-AP to two users was

considered and each user can directly cancel the interference

of the other owing to local content caching. Then, upper plane

method based content caching scheme was developed to mini-

mize F-AP’s transmission power under caching space limitation

of users. In [26], under the limit of caching update frequency,

caching update was formulated as a constrained Markov decision

process, whose objective was to minimize the average age of

information of served user content requests. To deal with large

state space, the primal problem was decomposed into multiple

subproblems and each subproblem was further solved using

deep reinforcement learning. In [27], authors addressed content

caching in an ultra-dense F-RAN featuring a stochastic geomet-

ric network model and a spatial-temporal user demand model.

With mean-field game theory, a distributed caching scheme was

developed, whose complexity is independent of the number of

F-APs.

Given the coupling of radio and caching resource alloca-

tion, literature [28], [29], [30], [31] studied their two-timescale

optimization. In [28], content recommendation was utilized

to reshape users’ content requests, and the joint optimization

of recommendation, content caching and beamforming was

studied to minimize content transmission latency. Faced with

the resulted two-timescale problem, authors decoupled it into

multiple parallel subproblems, each of which corresponded to

a given system state. Particularly, in each subproblem, content

caching was handled by integer relaxation and greedy rounding

technique. The authors in [29] optimized F-APs’ content deliv-

ery at each time frame while updating cached contents at each

F-AP on a larger timescale without knowing the prior content

popularity distribution. In [30], long-term content placement and

short-term remote radio head (RRH) clustering together with

beamforming were jointly addressed to balance the fronthaul

traffic and power consumption. In [31], an F-AP cache size

allocation and beamforming design problem was tackled, where

storage resource was allocated based on the long-term statistical

information while the beamformer was designed based on the

instantaneous channel state information.

C. Our Contribution and Novelty

In general, cache resource is adjusted on a larger timescale

than radio and computation resource [29]. Nevertheless, this

feature has not been captured in literatures [9], [10], [11], [12],

[13], [14], [15], [16], [17], [18], [19] studying service caching

and resource allocation in computation offloading scenarios. In

this paper, we deal with the two-timescale joint optimization

of service caching, user service mode selection, subchannel

assignment, and computation resource allocation in an F-RAN

computation offloading scenario, whose system model is sig-

nificantly different from those in literatures studying traditional
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multi-media content caching and radio resource allocation. In

the F-RAN system, each user can either execute its task locally

at an F-AP (i.e., the edge mode) or offload the task to the

cloud via RRHs (i.e., the cloud mode). The resulted problem

aims at minimizing the long-term weighted sum of average

user group latency cost and service caching cost. Although

literature [28], [29], [30], [31] in subsection B have addressed

two-timescale resource management problems, their proposals

are either heuristic or only deal with continuous caching vari-

ables. Specifically, authors in [28] used relaxation and rounding

technique to optimize content caching, which lacked of rigor-

ous analysis about optimality. In [30], 0-1 caching variables

were also relaxed to continuous variables whose values were

identified by solving a carefully constructed convex problem.

Nevertheless, how to recover these values to integer values was

not discussed and the theoretic optimality of resulted long-term

performance was unknown. In [31], cache size allocated to each

F-AP was defined as continuous variables, which is not the case

in our paper. In [29], long-term content caching decisions were

made by solving a well designed problem, based on the intuitive

that minimizing its objective contributes to less requirement on

fronthaul rate, possibly reducing long-term power consumption.

Different from [28], [29], [30], [31], we propose to directly

handle long-term integer caching variables with the help of

multi-agent RL (MARL), and it can identify which services

are cached at each F-AP by utilizing historical samples of user

service requests and channel states. With an easily designed

reward function, the RL algorithm can take the small timescale

resource allocation into account and converge to local optimal

caching decisions. Moreover, since our proposal is model-free,

it provides a general framework to optimize long-term perfor-

mance in two-timescale resource management, and can well

fit into the case where the explicit relationship between the

long-term objective and caching decisions can not be derived.

Note that various RL algorithms have been utilized for cache

resource management [32], [33], [34], [35], [36], [37]. However,

the prior work [35] mainly addressed content update policies

instead of content placement decisions, while the work [36]

only assumed a single F-AP. The proposed scheme in [37] can

be applied to our service caching problem by redesigning the

reward function, which will be taken as one of the baselines in

our simulation study in Section V. As for resource allocation on

small timescale, we take coalition game as our tool, which has

been widely applied in user clustering and resource allocation in

NOMA enabled wireless networks [13], [38], [39]. Particularly,

users as game players participate in a coalition formation game.

The service mode together with the transmission subchannel

of each user can be determined according to which coalition it

joins.

The main contributions of this paper are as follows.
� The problem of computation offloading in an F-RAN with

service caching is considered, where each user can choose

between two service modes, namely the edge mode and

the cloud mode. Under this setting, a joint cache, radio,

and computation resource allocation problem is formulated

with a two-timescale structure. The objective of radio and

computation resource allocation on a small timescale is to

Fig. 1. The F-RAN system model considered in this paper.

minimize average user group latency, while the objective

of cache resource optimization on a large timescale is to

minimize the long-term weighted sum of the latency and

service caching costs.
� To deal with the two-timescale optimization problem,

a low-complexity coalition formation based approach is

developed for radio and computation resource allocation

under fixed service placement, which adapts to instanta-

neous user service requests and channel states. Then, an

MARL algorithm is developed to decide which services

are to be cached at each F-AP. With this approach, two

main challenges are overcome, which are caused by the

long-term objective function that does not have an explicit

form and the discrete caching decision variables.
� The convergence, optimality, and complexity of the pro-

posed algorithms are rigorously analyzed. Numerical sim-

ulation results are provided to demonstrate their superior

performance compared to several baselines. In addition, the

effects of several key parameters on system performance

are also investigated.

The remainder of this paper is organized as follows. The

F-RAN system model with service caching and computation

offloading is described in Section II. Section III formulates the

two-timescale radio, computation, and cache resource allocation

problem. The proposed algorithms are developed in Section IV,

while our simulation and analysis are presented in Section V.

Finally, the paper is concluded in Section VI. The notation used

in this paper is summarized in Table I.

II. SYSTEM MODEL

As shown in Fig. 1, the F-RAN considered in this paper

consists of one service cloud, multiple RRHs, multiple F-APs,

and multiple users. Each RRH, F-AP, and user is equipped with

a single antenna. The service cloud stores all the services that

are of interest to the users, while the RRHs only implement

radio frequency functions, which are connected to a baseband

unit (BBU) pool through fronthaul links. Each F-AP is capable

of caching services as well as local resource management [40].

Each user can either offload the computation task of its requested
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TABLE I
NOTATION

service to an F-AP, which is referred to as the edge service mode,

or offload the task to the service cloud via RRHs and the BBU

pool, which is called the cloud service mode.

The set of services, F-APs, RRHs, and users are denoted by

S = {1, 2, . . ., S}, F = {1, 2, . . ., F}, N = {1, 2, . . ., N}, and

U = {1, 2, . . ., U}, respectively. Each F-AP f ∈ F has an initial

cache capacity Vf in GB and possesses computation capability

df,max in CPU cycles per second. Each service is characterized by

a three-tuple {δs, ζs, εs}. Specifically, δs and ζs denote the input

data size in bits and the computation workload in CPU cycles for

the service’s computation task execution, respectively, and εs in

GB represents the storage size needed to cache the necessary

code and data of service s. Define yu,s = 1 to indicate that

user u requests service s; and yu,s = 0 otherwise. Thus the total

size of input data and the total computation workload of user u
can be expressed as λu =

∑
s∈S yu,sδs and ηu =

∑
s∈S yu,sζs,

respectively.

Let cf,s = 1 indicate that F-AP f caches the code and data for

service s; and cf,s = 0 otherwise. Each F-AP f is pre-assigned

with a set of subchannels defined by Bf , satisfying Bf ∩ Bf ′ =
φ, for all f �= f ′. The bandwidth of each subchannel is W and

each user associated with F-APf shall be allocated with only one

subchannel [41]. For the RRHs, we follow the common setting in

cloud radio access networks, where the spectrum of bandwidth

WC is fully shared by all the users in the cloud mode [42].

But for convenience, the set of subchannels B0 is still defined

for all the RRHs with |B0| = 1. Meanwhile, it is assumed that

the spectrum occupied by the RRHs is non-overlapping with

that of the F-APs and hence there is no mutual interference

between the users in the edge mode and those in the cloud

mode. Define the radio resource allocation variable of user u as

x
f,bf
u . When f ≥ 1, x

f,bf
u = 1 means user u transmits to F-AP

f on subchannel bf ∈ Bf , i.e., it operates in the edge service

mode, while x
f,bf
u = 0 otherwise. When f = 0, x

f,bf
u indicates

whether user u is in the cloud service mode (x
f,bf
u = 1) or not

(x
f,bf
u = 0). Denote the collection of all x

f,bf
u ’s with u ∈ U ,

f ∈ F ∪ {0} and bf ∈ Bf by a network-wide radio resource

allocation vector x. In addition, since the computation resource

in the cloud is sufficient, we only consider the computation

resource allocation at the F-APs. Define df,u as the amount of

computation resource allocated to user u at F-AP f , and denote

the network-wide computation resource allocation vector by d

that is a collection of all df,u’s with u ∈ U and f ∈ F . In the

following, the transmission model and computation model for

users in different service modes are specified.

A. Edge Service Mode

In the edge service mode, a user first uploads the necessary

input data to an F-AP that caches the requested service. Then

service program will be executed at this F-AP. Consider user u
transmits its data to F-AP f on subchannel bf . When there is no

other user sharing subchannel bf with user u, its transmission

rate is given by

R
f,bf
u,0 = W log2

(
1 +

pu|h
f,bf
u |2

n0 W

)
, (1)

where pu is the uplink transmit power of user u, h
f,bf
u repre-

sents the channel co-efficient between user u and F-AP f on

subchannel bf , and n0 is the noise power spectral density. Then,

the corresponding transmission time is

t
f,bf
u,0 =

λu

R
f,bf
u,0

. (2)

To reduce the transmission waiting time, another user u′

will also be allowed to transmit simultaneously on the same

subchannel bf , if needed, by leveraging NOMA as in [45], [46],

where only two-user NOMA is considered to limit the signal

processing complexity. Specifically, when the channel gain of

user u is worse than that of user u′, the transmission rate of user

u will be the same as that in the case of orthogonal multiple

access (OMA). Since the F-APs are allocated with disjoint sets

of subchannels, there is no interference from the users associated

with other F-APs, and hence the transmission rate of user u can

be written as

R
f,bf
u,1 = W log2

(
1 +

pu|h
f,bf
u |2

n0 W

)
. (3)
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The transmission time of user u incurred by uploading data of

size λu is given by

t
f,bf
u,1 =

λu

R
f,bf
u,1

. (4)

When the channel gain of user u is better than that of user u′,

the transmission rate of user u under simultaneous transmission

of user u′ is

R
f,bf
u,2 = W log2

(
1 +

pu|h
f,bf
u |2

pu′ |h
f,bf
u′ |2 + n0 W

)
. (5)

If user u can complete its transmission within t
f,bf
u,′1 , i.e. R

f,bf
u,2 ·

t
f,bf
u,′1 ≥ λu, then t

f,bf
u,2 = λu/R

f,bf
u,2 . If user u cannot complete

its transmission within t
f,bf
u,′1 , user u will continue to transmit

the remaining data without the interference from user u′. In this

case, the transmission time of user u can be written as

t
f,bf
u,2 =

λu − t
f,bf
u,′1 R

f,bf
u,2

R
f,bf
u,0

+ t
f,bf
u,′1 . (6)

Thus, the wireless transmission time of user u, which com-

municates with F-AP f over subchannel bf , is given by

t
f,bf
u = I

{
∑

u∈U

x
f,bf
u = 1

}
· tf,bu,0

+ I

{
∑

u∈U

x
f,bf
u = 2, |h

f,bf
u |2 < |h

f,bf
u′ |2

}
· t

f,bf
u,1

+ I

{
∑

u∈U

x
f,bf
u = 2, |h

f,bf
u |2 > |h

f,bf
u′ |2

}
· t

f,bf
u,2 , (7)

where I{·} is an indicator function that equals to 1 when the

condition is true.

The service’s task execution time of user u depends on the

workload of the offloaded task, ηu, as well as the CPU frequency

allocated by F-AP f , df,u, which is calculated as

texu =
ηu
df,u

. (8)

B. Cloud Service Mode

In the cloud service mode, user u transmits its input data to

the service cloud through RRHs and the BBU pool. Since the

services’ task execution time in the cloud can be neglected owing

to its sufficient computing capability and the fronthaul between

RRHs and the BBU pool can be assumed ideal, we mainly

consider the wireless transmission time from users to RRHs and

the data transmission time over the non-ideal backhaul from the

BBU pool to the service cloud. For users accessing the RRHs,

whose set is denoted by U0 ⊆ U , their transmission is based on

uplink joint reception. After re-indexing these users, their set is

re-defined as UC = {1, 2, . . ., |U0|} and uC is the new index of

user u ∈ U in UC . Define HC as the channel matrix between

all the users in U0 and the RRHs, whose (n, uC)th entry is the

channel co-efficient between user u and RRH n.

According to [47], the receiving beamforming matrix is given

by V = A
−1
HCP

1
2 , where A = HCPHC

H + n0WCI and P

is a diagonal matrix with the uC-th element PuC
being pu. For

user u, its signal-to-interference-and-noise ratio (SINR) is given

by

SINRu =
PuC

∣∣vH
uC

hC,uC

∣∣2
∑

j �=uC ,j∈UC

Pj

∣∣vH
uC

hC,j

∣∣2 + n0WCv
H
uC

vuC

, (9)

where vuC
∈ C

N×1 is the uC th column of matrix V, and

hC,uC
∈ C

N×1 is the uC th column of HC . The uplink trans-

mission rate from user u to RRHs can be written as

RC,u = WC log2 (1 + SINRu) . (10)

Therefore, the wireless transmission time of user u is calculated

as

tC,u =
λu

RC,u

. (11)

After the centralized signal processing in the BBU pool, it

further forwards users’ input data to the service cloud over

backhaul with a constant transmission rate R0. To transmit the

data of all the users in cloud service mode, the time consumed

is given by

tbk =

∑
u∈U0

λu

R0

. (12)

III. PROBLEM FORMULATION

To mitigate the signalling exchanges among F-APs and the

BBU pool for identifying network-wide user latency perfor-

mance, we assume that each F-AP and the BBU pool only care

about the latency performance of the user group associated with

them. Specifically, user group latency is defined to measure the

time elapsed from when users in a group start sending their

service requests till when all the users in the group receive their

task execution results. Denote the user group Uf ⊆ U served by

F-AP f byUf = {u|
∑

bf∈Bf
x
f,bf
u = 1}. The user group latency

is given by

tf = max
u∈Uf

∑

bf∈Bf

x
f,bf
u t

f,bf
u +max

u∈Uf

texu , (13)

where it is assumed that the latency induced by sending the

task execution results to the user group through the downlink is

negligible. This assumption is reasonable since the data volume

of results is usually very small, e.g., in object detection tasks.

Meanwhile, (13) also implicitly means that the computation

resource at F-AP f will not be allocated until it receives all the

data uploaded by users in Uf , which significantly helps simplify

the computation resource allocation design.

For user group U0 ⊆ U in the cloud mode, i.e., U0 =
{u|xf,b0

u = 1}, the user group latency is expressed as

t0 = max
u∈U0

tC,u + tbk. (14)
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Then, the average user group latency is defined as

t =
1

F + 1

F∑

f=0

tf , (15)

where tf is set to 0 if Uf = φ.

Caching services at F-APs will be effective to reduce the

user group latency, which allows services’ computation tasks

to be executed locally. Nevertheless, considering the limited

storage capacity of F-APs, caching decisions must be properly

made to balance the latency and the caching cost incurred from

expanding storage spaces. Considering that the storage resource

is often allocated on a larger timescale than the computation and

radio resource, a multi-dimensional resource management prob-

lem is formulated with a two-timescale structure. Specifically,

service caching on the long-term aims to minimize a system

cost consisting of the expected latency cost and the caching cost,

while the short-term radio and computation resource allocation

intends to achieve a minimum average user group latency by

taking current channel coefficients, user service requests, and

service caching states into account. Let H, Y, and C denote

the collection of all the channel coefficients, yu,s, and cf,s,

respectively. Recall that x is the network-wide radio resource

allocation vector and d is the network-wide computation re-

source allocation vector. To minimize a weighted system cost,

the corresponding optimization problem is given by (16).

min
C

Ω = κα · EH,Y

[
min
x,d

t(x,d,H,Y,C)

]

︸ ︷︷ ︸
latency cost

+ (1 − κ) β
∑

f∈F

lf,C

︸ ︷︷ ︸
caching cost

(16)

s.t. (a1) cf,s = {0, 1}, ∀f ∈ F , ∀s ∈ S,

(a2) lf,C=

{
0, if

∑
s∈S εscf,s≤Vf ,

1
Vf

(∑
s∈S εscf,s − Vf

)
, otherwise,

(a3) x
f,bf
u ∈ {0, 1} , ∀f ∈ F ∪ {0}, ∀bf ∈ Bf , ∀u ∈ U ,

(a4)
∑

u∈U

x
f,bf
u ≤ 2, ∀f ∈ F , ∀bf ∈ Bf ,

(a5)
∑

f∈F∪{0}

∑

bf∈Bf

x
f,bf
u = 1, ∀u ∈ U ,

(a6)
∑

bf∈Bf

x
f,bf
u ≤

∑

s∈S

yu,scf,s, ∀u ∈ U , ∀f ∈ F ,

(a7) 0 ≤ df,u ≤
∑

bf

x
f,bf
u df,max, ∀u ∈ U , ∀f ∈ F ,

(a8)
∑

u∈U

df,u ≤ df,max, ∀f ∈ F

In (16), α and β represent the unit cost of average user group

latency and the cost of expanding F-AP’s cache size by one

unit, respectively; κ is a weight factor; and lf,C represents

the total caching cost at F-AP f . Based on (a2), if the total

storage demands of all the services cached by F-AP f do not

exceed its reserved cache capacity, the caching cost of F-AP f
is 0 while additional cost is incurred otherwise. Note that fog

nodes can be built with virtualization technique [43], [44], based

on which caching resource can be dynamically scaled up on

demand but with potentially more operation power consumption.

Constraint (a3) indicates that the variables in the radio resource

allocation vector x are all integers, while Constraint (a4) states

that each subchannel of an F-AP can be occupied by at most two

users simultaneously using NOMA [45], [46]. Constraint (a5)

states that each user can be served by only one F-AP-subchannel

resource pair or by all the RRHs. Constraint (a6) means that each

user can be served by an F-AP only when its requested service

has been cached at the F-AP [22]. Finally, Constraints (a7)

and (a8) jointly provide the feasible region of d.

In [31] and [48], the authors proposed to adopt sample average

approximation (SAA) to deal with problems similar to (16), by

which the expectation of t(·) over H and Y is substituted by the

sample average. More specifically, assuming a set of Q samples

of H and Y are available, the objective of (16) after SAA is

written as

Ω̂ =
κα

Q

Q∑

q=1

min
x(q),d(q)

t(x(q),d(q),H(q),Y(q),C)

+ (1 − κ)β
∑

f∈F

lf,C, (17)

where H(q) and Y(q) are the qth sample of H and Y, respec-

tively, and x(q) and d(q) are the network-wide radio resource

allocation and computation resource allocation for given H(q)
and Y(q), respectively.

Then, the two-timescale problem (16) can be successfully

transformed into the following single timescale problem.

min
C,{x(q),d(q)}Qq=1

κα

Q

Q∑

q=1

t(x(q),d(q),H(q),Y(q),C)

+ (1 − κ)β
∑

f∈F

lf,C, (18)

s.t. (a1), (a2)with (a3)−(a8) satisfied for (Hq,Yq),

q ∈ {1, 2, . . ., Q} .

Nevertheless, it is quite challenging to solve Problem (18)

with traditional optimization approaches. On one hand, to

achieve a tight approximation, SAA requires the number of

samples Q to be sufficiently large [31], leading to a potentially

huge solution space that may be intractable for heuristic search

methods (e.g., genetic algorithms (GA)). On the other hand,

integer relaxation and convexification techniques may be ap-

plied to make Problem (18) more tractable. However, a naive

integer recovery scheme can lead to large performance loss,

while convexification is not an easy task due to the complicated

relationship between t and optimization variables. Facing these

challenges, instead of solving the transformed problem (18), this
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paper directly deals with problem (16) by integrating model-free

machine learning and game theory as elaborated in the next

section.

IV. ALGORITHM DESIGN

In this section, a short-term radio and computation resource

allocation subproblem is first solved by a coalition formation

based algorithm under fixed service caching placements, chan-

nel states, and user service request states. After that, an MARL

algorithm is proposed to optimize the long-term service caching.

A. Short-Term Radio and Computation Resource Allocation

Algorithm Design

We first deal with the radio and computation resource alloca-

tion subproblem for given long-term service placement C at the

F-APs, which is given by

min
x,d

t(x,d,H,Y,C)

s.t. (a3)–(a8). (19)

First, the optimal computation resource allocation is studied

under fixed radio resource allocation. With given radio resource

allocation, Problem (19) can be decoupled among the F-APs,

which is equivalent to the minimization of the maximum com-

putation time among all the users in Uf for each F-AP f . The

corresponding local optimization problem is given by

min
df,u

max
u∈Uf

ηu
df,u

s.t. (b1)0 ≤ df,u ≤ df,max, u ∈ Uf ,

(b2)
∑

u∈Uf

df,u ≤ df,max, (20)

which is a minimax linear fractional programming problem. We

introduce Theorem 1 below to solve this problem.

Theorem 1: When the computation resource allocated to

each user u ∈ Uf satisfies d∗f,u = ηu∑
u∈Uf

ηu
df,max, the optimal

objective value of Problem (20) is achieved, which is equal to

tex∗u = ηu

d∗
f,u

=

∑
u∈Uf

ηu

df,max
.

Proof: First, it is claimed that the optimal solution to Prob-

lem (20) is achieved when the equality of Constraint (b2) holds,

since consuming unused computation resource can always de-

crease the objective value. With this in mind, denote the vector

constituted by d∗f,u as d
∗
f and define the set of all possible df

satisfying Constraint (b1) and the equality of Constraint (b2)

by Df . For any d ∈ Df/d
∗
f , there must exist a user u ∈ Uf

such that df,u < d∗f,u. Then, we can obtain texu > tex∗u , and

thus maxu∈Uf
texu > tex∗u = maxu∈Uf

tex∗u . Therefore the theo-

rem holds. �

Based on the above theorem, the closed-form expression of the

optimal network-wise computation resource allocation vectord∗

can be derived. For each of its element d∗f,u, we have

d∗f,u =

{
ηu∑

u∈Uf
ηu

df,max, if
∑

bf∈Bf
x
f,bf
u = 1,

0, otherwise.
(21)

Then, Problem (19) can be equivalently reduced to the following

radio resource allocation problem.

min
x

t (H,Y,C,x,d∗(x))

s.t. (a3)–(a6). (22)

Note that resource allocation variables in Problem (22)

are integers and the objective contains indicator functions,

since t is related to t
f,bf
u given by (7). Hence, optimal algo-

rithms can suffer high complexity. Facing this issue, a low-

complexity algorithm is developed that is inspired by coali-

tional game theory. Specifically, define a coalition set by M =
{Mf,bf |f ∈ F ∪ {0}, bf ∈ Bf}, where Mf,bf ⊆ U , and user

u is allocated with resource pair (f, bf ), i.e., x
f,bf
u = 1, if it is

a member of Mf,bf . Thus, solving Problem (22) optimally is

equivalent to finding an optimal coalitional structure M∗ such

that

i) M∗
f,bf

∩M∗
f ′,bf ′

= φ, for any resource pairs (f, bf ) and

(f ′, bf ′ ) with (f, bf ) �= (f ′, sbf ′), in order to satisfy Con-

straint (a5);

ii) |M∗
f,bf

| ≤ 2, for any resource pair (f, bf ) with f ≥ 1, to

meet constraint (a4);

iii) u /∈ M∗
f,bf

, for all bf ∈ Bf , if the service requested by

user u is not cached by F-AP f , which is to satisfy

Constraint (a6).

A coalitional structure satisfying the above three conditions

is called a feasible structure.

A common solution concept adopted in coalitional games is

Nash-stable [49]. Under a Nash-stable coalitional structure M,

any user will have no incentive to unilaterally switch from one

coalition to another while keeping the structures feasible. To

achieve a stable structure, an iterative algorithm is designed as

in Algorithm 1. The main idea is that each user u checks each

coalition Mf,bf based on a switching rule, and user u joins a

new coalition once the rule holds. More formally, we have the

following definition.

Definition 1: (Coalition Switching Rule) Consider a feasi-

ble coalitional structure M, under which u ∈ Mf,bf . User u
will switch from coalition Mf,bf to Mf ′,bf ′ where (f, bf ) �=
(f ′, bf ′), if the newly formed structure Mnew after the switch-

ing is feasible and meanwhile tf (Mnew) + tf ′(Mnew) <
tf (M) + tf ′(M).

According to Definition 1, each coalition switching results in a

strict decrease in the objective of (22). Hence, there is similarity

between our proposal and greedy based approach in terms of

optimization behavior. Meanwhile, since the objective of (22) is

lower bounded, the convergence of Algorithm 1 directly holds.

Moreover, the convergence of Algorithm 1 also indicates that no

user is willing to leave its current coalition, which corresponds

to a local optimal solution to short-term resource allocation

problem (22). The complexity of the algorithm is given by

O(U
∑

f∈F∪{0} |Bf |D), where D is the number of repetitions

till convergence. In addition, since it is intractable to know the

exact value of D, it is difficult to analyze convergence speed

directly. But at least, according to the time complexity above,

we can infer that more F-APs (a lager |F|), more available
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Algorithm 1: Greedy Coalition Formation Based Resource

Allocation.

1: Initiate a coalition structure M and denote the

coalition that user u joins under M by M(u);
2: repeat

3: for user u = 1 : U do

4: for each coalition Mf ′,bf ′ do

5: if the switching rule holds for user u, coalition

M(u) and Mf ′,bf ′ then

6: User u leaves M(u) and joins Mf ′,bf ′ ;

7: Update the coalition structure M with the

newly formed one;

8: else

9: The coalition structure remains unchanged;

10: end if

11: end for

12: end for

13: until Convergence

14: Derive the final x and d
∗(x) under converged M;

subchannels per F-AP (a larger |Bf |) and more UEs (a larger

U ) lead to slower convergence speed due to longer convergence

time.

B. Long-Term Service Caching Algorithm Design

After solving the short-term radio and computation resource

allocation problem, we next tackle the long-term service caching

problem as follows:

min
C

Ω = κα · EH,Y [t(x∗,d∗,H,Y,C)]

+ (1 − κ)β ·
∑

f∈F

lf,C,

s.t. (a1), (a2), (23)

where x∗ andd∗ denote the network-wide radio resource alloca-

tion and computation resource allocation decisions computed by

Algorithm 1, respectively, for given H, Y, and service caching

matrix C.

Solving Problem (23) needs to deal with two challenges. First,

since it is difficult to derive the explicit relationship of x∗ and

d
∗ with C, the objective Ω has no explicit form. Second, the

elements cf,s in C are all integers. Although exhaustive search

can be adopted to find optimal solution, its complexity grows

exponentially with regard to the numbers of F-APs and services.

Therefore, we propose to use a model-free MARL algorithm

to achieve sub-optimal caching decisions, which is based on

stochastic learning automata (SLA) [50], [51]. In our algorithm,

to handle the explosive growth of the action space in the single-

agent setting, F × S learning agents are created, each of which

corresponds to one of the F-AP-service pairs (f, s). For agent

i, its action set is denoted by Ai = {ai,1, ai,2}, where i = (f −
1)S + s. Selecting action ai,1 means F-AP f caches service s,

i.e., cf,s = 1, while taking action ai,2 means the opposite case

of cf,s = 0.

Fig. 2. An illustration of the proposed MARL based service caching algorithm.

Fig. 2 illustrates the training procedure of the proposed MARL

based service caching algorithm. Specifically, assume Q sam-

ples {H(q),Y(q)}Qq=1 are collected in the past and are used

to construct a virtual environment with which all the agents

interact. Under the qth sample (H(q),Y(q)), each learning

agent selects an action aqi from its action set based on the action

selection probability vector π
q
i = [πq

i,ai,1
, πq

i,ai,2
], where πq

i,ai,1

and πq
i,ai,2

represent the probability that agent i chooses action

ai,1 and action ai,2, respectively. Once all the agents determine

their actions, the network-wide service caching matrix C is

generated. With the known C, the virtual environment feeds

back a common reward to all the agents, which is given below.

kaq
= κα · t (H(q),Y(q),aq) + (1 − κ)β ·

∑

f∈F

lf (aq), (24)

where aq = [aq1 , a
q
2 , . . ., a

q
FS ] is the action profile of all the

agents selected under (H(q),Y(q)). Note that the agents will

implicitly cooperate to improve the effectiveness of network-

wide service caching by learning from a common reward.

As per [51], the reward should be within [0,1]. Thus, kaq
is

further normalized as follows.

k̃aq
=

{
Θ−kaq

Θ , if kaq
≤ Θ,

0, if kaq
> Θ,

(25)

where Θ is a threshold with a positive constant value. With k̃aq
,

each agent i updates its action selection probability distribution

using the following equations.

πq+1
i,ai,j

= πq
i,ai,j

+ ξk̃aq
(1 − πq

i,ai,j
), if aqi = ai,j ,

πq+1
i,ai,j

= πq
i,ai,j

− ξk̃aq
πq
i,ai,j

, if aqi �= ai,j , (26)
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Algorithm 2: MARL Based Service Caching Algorithm.

1: The cloud server initializes an environment based on

history data {H(q),Y(q)}Qq=1 and creates F × S SLA

agents, each setting its initial action selection

probabilities to 0.5;

2: for data sample q = 1 : Q do

3: Each agent selects an action aqi based on π
q
i ;

4: Under the caching matrix derived from aq ,

Algorithm 1 is executed;

5: Calculate the normalized payoff k̃aq
according

to (24) and (25);

6: Each agent updates its action selection probabilities

according to (26);

7: end for

8: Derive the final caching matrix C based on

{πQ+1
i }FS

i=1, where cf,s = 1 if i = (f − 1)S + s and

πQ+1
i,ai,1

> πQ+1
i,ai,2

;

where 0 < ξ < 1 is the learning rate. Moreover, for q ≥ 1, we

have

πq+1
i,ai,1

+ πq+1
i,ai,2

=
(
πq
i,ai,1

+ πq
i,ai,2

)(
1 − ξk̃aq

)
+ ξk̃aq

.

(27)

Then, it can be seen that if π1
i,ai,1

+ π1
i,ai,2

= 1, we

have π2
i,ai,1

+ π2
i,ai,2

= 1 ⇒ π3
i,ai,1

+ π3
i,ai,2

= 1. . ., and hence

πq+1
i,ai,1

+ πq+1
i,ai,2

= 1 is satisfied.

Algorithm 2 describes the procedure of the proposed service

caching algorithm. We next analyze its convergence, optimality,

and complexity.

1) Convergence: According to Theorems 3.1 and 4.1 in [51],

the following lemma holds.

Lemma 1: Since all agents receive the same reward k̃aq
∈

[0, 1], Algorithm 2 converges when the learning rate ξ is suf-

ficiently small, and H(q) and Y(q) both follow independently

and identically distributions. Meanwhile, the converged caching

strategy π
∗
i satisfies

∑
a

EH,Y

[
k̃a(H,Y,Θ)

]∏
π∗
i,ai

≥

∑
a

EH,Y

[
k̃a(H,Y,Θ)

]
πi,ai

∏
i′ �=i

π∗
i′,ai′

, ∀i, ∀πi.
(28)

As for convergence speed, it depends on learning step size

ξ in equation (26). A larger ξ means a larger increment in

the probability of selecting a certain action and hence a faster

convergence speed can be achieved as verified in Fig. 7 in

simulation part.

2) Optimality: We have the following theorem on the opti-

mality of the proposed algorithm.

Theorem 2: When the action selection probabilities of all the

agents converge to pure strategies with the corresponding action

profile denoted by a
∗, the service caching matrix C decided by

a
∗ is a local optimal solution to Problem (23).

Proof: Since (28) holds for any strategy of agent i, it must

hold for any pure strategy of agent i as a special case, which

means that agent i selects a deterministic action. On the basis

of this fact, when the action selection strategy of each agent

converges to a pure strategy, we have the following inequality

according to (28).

EH,Y

[
k̃a∗(H,Y,Θ)

]
≥

EH,Y

[
k̃(ai,a

∗
−i

)(H,Y,Θ)
]
, ∀i, ∀ai ∈ Ai.

(29)

According to (25), when parameter Θ is sufficiently large, we

have

k̃a = Θ−ka

Θ . (30)

Then, the following inequality can be derived following (29)

and (30).

EH,Y [ka∗(H,Y)] ≤ EH,Y

[
k(ai,a

∗
−i

)(H,Y)
]
, ∀i, ∀ai ∈ Ai.

(31)

Substituting (24) into EH,Y[ka∗(H,Y)], we have

EH,Y [ka∗(H,Y)]

= EH,Y

[
κα · t (H,Y,a∗) + (1 − κ)β ·

∑
f∈F

lf (a
∗)

]

= κα · EH,Y [t (H,Y,C∗)] + (1 − κ)β ·
∑
f∈F

lf (C
∗).

(32)

It can be seen that the right-hand-side of (32) is the same as the

optimization objective in Problem (23). Based on (31) and (32),

the objective value of Problem (23) cannot be further decreased

by unilaterally changing the action of any agent. In other words,

changing the value of any single element cf,s in C
∗ decided by

a
∗ will not be beneficial. Thus Algorithm 2 converges to a local

optimal solution to Problem (23). �

3) Complexity: In each iteration of Algorithm 2, each agent

first generates a random number to select an action based on the

action selection probability vector, with complexityO(1). Then,

the radio and computation resource allocation algorithm is exe-

cuted and the complexity is O(U
∑

f∈F∪{0} |Bf |D) as analyzed

before. Based on the received reward, each agent updates the

action selection probability with fixed number of operations and

hence the complexity is also O(1). Since the operations of each

learning agent can be executed in parallel in the cloud computing

environment of F-RANs, the total complexity incurred by each

iteration of Algorithm 2 is therefore O(U
∑

f∈F∪{0} |Bf |D).

V. SIMULATION RESULTS AND ANALYSIS

In this section, our simulation results are provided to evaluate

the performance of the proposed algorithms. In the simulations,

an F-RAN scenario with 3 F-APs, 5 RRHs, and 10 users is

considered, which are distributed in a circular area of radius

100 m, as shown in Fig. 3. The number of services potentially

requested by users is 10. All the users are assumed to request ser-

vices following an identical Zipf distribution with parameter 1.

Note that our proposal also works when users have differentiated

service request distributions. The path loss exponent of the

wireless channels is set to 3 and the small-scale channel fading

is modeled by CN (0, 1). Other main simulation parameters are

listed in Table II.
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Fig. 3. Simulation scenario of an F-RAN with 3 F-APs, 5 RRHs, and 10 users
in a circular area of 100 m radius.

TABLE II
SIMULATION PARAMETER SETTING

A. Radio and Computation Resource Allocation Algorithm

We first investigate the performance of the radio and com-

putation resource optimization algorithm (Algorithm 1) under

a fixed service caching matrix. More specifically, each F-AP

caches all the services that are potentially requested by users.

To verify the superiority of our proposal, the proposed algorithm

is compared with the following baseline schemes.
� Random allocation scheme with NOMA: In this scheme,

each user randomly selects an F-AP-subchannel resource

pair, or operates in the cloud mode, to offload its compu-

tation task of the requested service.
� Proposed scheme with OMA: In this scheme, if two users

are allocated with the same subchannel of an F-AP, these

two users offload their computation tasks in turn, i.e.,

uploading their input data using orthogonal time-domain

resources.
� GA scheme with NOMA: In this scheme, GA is applied

to solve the radio resource allocation problem (19), where

NOMA is used to allow two users to share a subchannel.

Note that random resource allocation and genetic algorithm

based resource allocation have also been adopted in [52]

and [15], respectively.

Fig. 4. The convergence performance of Algorithm 1.

Fig. 5. Average user group latency under different schemes versus the number
of users.

Fig. 4 shows the convergence of the proposed radio and

computation resource allocation algorithm. In addition to its

fast convergence, the proposed algorithm achieves a good per-

formance very close to that of the GA with NOMA scheme, in

terms of average user group latency given by (15). In Fig. 5, the

metric (15) is evaluated more rigorously under different schemes

by varying the number of users, where every result is the average

of 200 independent simulations with fixed locations of only

F-APs and RRHs as per Fig. 3. First, it can be observed that (15)

increases with the number of users under all the four schemes.

This is because the number of users that can be served by each

F-AP is limited and hence more users have to offload their tasks

via the RRHs asU is increased, leading to larger latency. Second,

compared with the proposed scheme with OMA, the proposed

scheme with NOMA achieves a lower average user group la-

tency, because NOMA allows users to simultaneously transmit

on the same subchannel. Moreover, the proposed scheme’s per-

formance is very close to that of the GA scheme, but with a much

shorter execution time. Especially, when the number of users is
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Fig. 6. The evolution of the action selection probabilities of the 2nd agent and
the 14th agent.

12, the GA scheme only reduces the latency performance by

around 2% over the proposed scheme, but its execution time is

6.52 s that is much longer than the time 0.56 s consumed by the

proposed scheme.

B. Service Caching Algorithm

In this section, the performance of the proposed service

caching algorithm (Algorithm 2) is examined under the same

topology given by Fig. 3. The cost α of unit expected latency

and the cost β of expanding F-AP’s cache by one unit are

set to 2 and 0.2, respectively. If not otherwise specified, the

weighting factor κ in (16) is set to 0.5. The learning rate ξ
is set to 0.1 and the normalization related parameter Θ is set

to 1. The number of samples of (H,Y) used for constructing

the training environment is Q = 5 × 103. Note that the samples

are independent and identically distributed, which are generated

based on the channel model and the service request distribution

mentioned above.

Fig. 6 illustrates the evolution of the action selection prob-

ability distributions for the 2nd agent and the 14th agent.

With the progress of the training procedure, the probability

of choosing one action converges to 1 and that of choosing

the other action converges to 0 for both agents, which indi-

cates that pure strategies have been achieved in our setting.

Fig. 7 presents the impact of the learning rate parameter ξ on

learning performance. Define
∑q

q′=1 k̃aq′
/q as the time-average

reward during the learning process. It can be seen that the

convergence time and learning performance is well balanced

when ξ = 0.1, which is taken as the learning rate used in the

remaining simulations.

Next, the proposed MARL based service caching scheme,

named as Caching scheme 1, is compared with the following

baseline schemes.
� Caching scheme 2: This scheme originates from [37],

where a multi-agent multi-armed RL method is adopted

for content caching. To adapt this proposal to our problem,

Fig. 7. The impact of learning rate ξ on learning performance.

the reward of each learning agent is now given by

kaq
= −κα · t (Hq,Yq,aq) . (33)

Note that caching cost is not involved in the reward because

caching decisions in this scheme are made under the strict

storage limit of each F-AP.
� Caching scheme 3: In this scheme, F-APs cache no service

and all users operate in the cloud service mode.
� Caching scheme 4: In this scheme, each F-AP caches all

the services that are potentially requested by users.
� Caching scheme 5: In this scheme, each F-AP caches the

most popular services that rank in the top ∆% among all

the services. In the simulations, we have searched ∆ ∈
{10, 20, . . ., 90} and chosen the optimal value 40.

� Caching scheme 6: In this scheme, we assume that each

F-AP knows the service request probability and each F-

AP first checks the service with the highest probability to

decide whether to cache with probability of 0.5. Then, each

F-AP continues to check the next one with lower request

probability until the cache size is full.
� Caching scheme 7: In this scheme, GA based service

caching is utilized, where each individual corresponds to a

service caching matrix and the fitness value of an individual

is defined as the reciprocal of the optimization objective

value of Problem (16). Since the objective value includes

the expected value of t, we take the average of t under

Nsam samples of {H,Y} to approximate its expectation.

Thus, GA based service caching needs to invoke Algo-

rithm 1 for NgenNpopNsam times, where Ngen, Npop, and

Nsam represent the maximum number of generations, the

population size, and the number of samples of {H,Y},

respectively. In simulation, Npop = 20, Ngen = 200, and

Nsam = 20. Furthermore, the number of elite individuals,

crossover probability, and mutation probability are set to

2, 0.6 and 0.05, respectively.
� Caching scheme 8: In this scheme, the service cloud

determines the caching matrix by solving the following
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Fig. 8. The evolution of the time average value of (15) under different caching
schemes.

optimization problem for each F-AP f with integer re-

laxation and rounding technique while computation and

communication resource are allocated with Algorithm 1.

max
cf,s

∑

s∈S

cf,s

s.t. (1)
∑

s∈S

εscf,s ≤ Vf ,

(2) cf,s ∈ {0, 1} , ∀s ∈ S.

The rational behind such formulation is to make each F-AP

cache as many services as possible under given caching

space.

Note that no caching scheme has been adopted in [28] and

most popular caching scheme has been adopted in [25]. More-

over, genetic algorithm based caching has been utilized in [24].

In Caching scheme 1 and Caching scheme 2, service caching

matrices are obtained based on the training environment con-

structed by Q samples of {H,Y} as mentioned before. To

compare the performance of various caching schemes, another

1000 samples of {H,Y} are generated following the same

distribution as that used to generate the previous Q samples.

In the evaluation, the caching matrix derived from each scheme

remains fixed and only the short-term radio and computation

resource allocation is conducted under each sample of {H,Y}.

Fig. 8 shows the evolution of the time-average value of (15)

calculated as
∑q

q′=1 tq′/q, and its converged value is taken

to approximate the expected value of t in (16) under a given

caching matrix. In Fig. 9, the caching cost of different caching

schemes is shown. Since Caching scheme 2 and Caching scheme

6 can strictly meet the caching space constraints of F-APs, their

caching costs are 0. Caching scheme 3 also has 0 caching cost,

since all the tasks are executed in the cloud, which, however,

incurs high latency cost. In contrast, the proposed Caching

scheme 1 achieves zero caching cost without incurring much

latency.

Fig. 9. The caching cost under different caching schemes.

Fig. 10. The objective value of (16) achieved by different caching schemes.

Fig. 10 presents the objective value of (16) achieved by the

eight schemes. It can be seen that our proposed Scheme 1

improves the system cost by 13.8% when compared to the state-

of-the-art Scheme 2. Meanwhile, Scheme 2 needs to additionally

solve a 0-1 Knapsack problem in each iteration, and it also has to

explicitly know the parameter of Zipf distribution used to model

global service popularity, which are not required in our scheme.

Moreover, it is observed that caching all the services leads to

poor performance due to the large caching cost, and the proposed

scheme outperforms Schemes 3, 4, 5, 6 and 8. This is because the

caching strategies of the agents can well adapt to the dynamics

in the network environment and align well with the system

objective by learning from the designed reward. In addition,

although Scheme 7 achieves a competitive performance relative

to our proposal, it needs to execute Algorithm 1 of short-term

resource allocation forNgenNpopNsam = 8 ∗ 104 times, but our

proposed MARL based caching needs to execute Algorithm 1

for only 2000 times before convergence according to Fig. 6,

which is a great reduction in time complexity.

In Fig. 11, the impact of parameter Θ in (25) on the system

cost is evaluated. As the value of Θ is increased, the system cost

decreases first and then increases. This is because the normalized
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Fig. 11. The influence of parameter Θ on the system cost.

Fig. 12. The influence of the weight κ in (16) on the system cost.

reward k̃aq
has a high chance to become zero when Θ is set to

a small value, and hence the much useful information of kaq

is lost, which makes the strategy learning of agents ineffective.

On the other hand, as Θ is further increased, the values of nor-

malized rewards by taking different actions become closer and

hence it is difficult for agents to differentiate good actions from

bad ones.

In Fig. 12, the impact of the weight κ in (16) is illustrated. It

can be seen that a larger κ ≥ 0.5 results in a larger system cost.

To explain this phenomenon, Fig. 13 is presented to demonstrate

the latency cost and caching cost under varying κ. With a larger

κ, learning agents care more about the latency cost while the

caching cost plays a less vital role in the system cost. Hence

the latency cost gradually decreases while the caching cost goes

higher. Particularly, the degree of variation of the latency cost is

much smaller than that of the caching cost. This is why a larger

κ leads to a higher weighted system cost. The differentiated

variation degrees of the two costs are due to the fact that the

learning agents have to choose to cache much more services

that are rarely requested by users to further reduce the latency

cost.

Fig. 13. The influence of the weight κ on the latency cost and the caching cost
defined in (16).

VI. CONCLUSION

In this paper, we studied the multi-dimensional resource man-

agement problem in the context of fog radio access networks for

service task offloading, which was featured by a two-timescale

formulation. Aiming at minimizing the weighted sum of the

expected latency cost and the caching cost, a coalition formation

based algorithm was proposed to allocate radio and computation

resource on a smaller timescale for given service caching, while

a multi-agent reinforcement learning based service caching opti-

mization algorithm was developed to decide service placement

at the F-APs on a larger timescale. In addition, convergence,

optimality, and complexity of both proposed algorithms were

analyzed. Through numerical results, the effectiveness of the

proposed algorithms was verified through comparison with sev-

eral baseline schemes, and the impacts of key parameters on the

system performance were demonstrated.
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