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A Joint Learning and Game-Theoretic Approach to
Multi-Dimensional Resource Management
in Fog Radio Access Networks

Yaohua Sun ", Siqi Chen

Abstract—Fog radio access networks (F-RANs) have been re-
garded as a promising paradigm to support latency-sensitive
and computation-intensive services by leveraging computing and
caching capabilities of fog access points (F-APs). To execute of-
floaded computation tasks, it is essential to pre-store necessary
programs and databases at F-APs, referred as service caching.
However, due to system dynamics and the coupling of decisions,
cache, radio, and computation resource management at F-RANs
is a challenging problem. In this paper, a joint multi-dimensional
resource optimization problem is formulated, aiming at minimiz-
ing the weighted sum of expected latency cost and caching cost,
which is featured by a two-timescale structure. For radio and
computation resource allocation on a small timescale, a coalitional
game based approach is proposed under given caching decisions.
On a larger timescale, services are cached at each F-AP using a
multi-agent reinforcement learning algorithm. The advantage of
the proposed algorithms is that they can implicitly take the impact
of small timescale resource allocation into account while adapting
to the long-term statistics of channel coefficients and user service
requests. We analyze the proposed algorithms with respect to their
convergence, optimality, and complexity, and validate their perfor-
mance with extensive simulations, where superior performance is
observed over several baseline schemes.

Index Terms—Fog radio access networks, multi-dimensional
resource management, machine learning, multi-agent
reinforcement learning (MARL).

I. INTRODUCTION

MERGING services, such as virtual reality/augmented
reality (VR/AR) and online gaming, are latency-sensitive
and computation-demanding, which put heavy burdens on the

Manuscript received 28 November 2021; revised 10 May 2022 and 22 July
2022; accepted 3 October 2022. Date of publication 12 October 2022; date of
current version 13 February 2023. The work of Shiwen Mao was supported
by the NSF under Grants ECCS-1923717 and CNS-2107190. This work was
supported in part by the National Natural Science Foundation of China under
Grant 62001053, in part by the National Key R&D Program of China under
Grant 2020YFB1806703 and in part by China Institute of Communications
through Young Elite Scientist Sponsorship Program. The review of this article
was coordinated by Dr. Beatriz Lorenzo. (Corresponding author: Sigi Chen.)

Yaohua Sun and Zeyu Wang are with the State Key Laboratory of Network-
ing and Switching Technology (SKL-NST), Beijing University of Posts and
Telecommunications, Beijing 510300, China (e-mail: sunyaohua@bupt.edu.cn;
zeyu.wang @bupt.edu.cn).

Siqi Chen is with the China Mobile Research Institute, Beijing 100032, China
(e-mail: chensiqiwl @chinamobile.com).

Shiwen Mao is with the Department of Electrical and Computer Engineering,
Auburn University, Auburn, AL 36849-5201 USA (e-mail: smao@ieee.org).

Digital Object Identifier 10.1109/TVT.2022.3214075

, Zeyu Wang, and Shiwen Mao

, Fellow, IEEE

processors and batteries of user devices [1], [2], [3]. Although
cloud computing provides a solution that overcomes this issue,
offloading a large number of computation tasks to the cloud
unavoidably increases the data traffic on the backhaul/fronthaul
as well as user latency [4], [5], [6]. Fortunately, as a promising
paradigm, fog radio access networks (F-RANs) can well har-
monize fog computing and cloud computing, to achieve lower
latency and transmission overhead by allowing user devices to
offload computation tasks to fog access points (F-APs) [7], [8].

A. Computation Offloading Optimization in F-RANs

Recently, much attention has been paid to computation of-
floading optimization in F-RANs. In [9], it was assumed that
a task node can offload some tasks to the nearby fog nodes,
and a bandit learning based online node selection strategy was
proposed for a typical task node to minimize a long-term cost
induced by communication and computation. The authors in [10]
jointly optimized the task division of a single mobile device
among multiple fog nodes and the device’s local CPU frequency,
aiming at lowering the total execution latency and device energy
consumption of all tasks. Under a scenario with multiple mobile
users and one fog node, task distribution and resource allocation
were formulated as a mixed-integer non-linear programming
in [11], which was then solved by a low-complexity suboptimal
algorithm. In [12], given a three-layer hierarchical computing
architecture, a user task can be offloaded to servers at radio units
or distributed units or central units, and the joint optimization
of receive beamforming, task distribution, computing resource
allocation at each server and the transmission bandwidth di-
vision of fronthaul was tackled using variable relaxation and
substitution. In order to further reduce the offloading latency
and improve spectrum efficiency, several prior works consid-
ered power-domain non-orthogonal multiple access (NOMA).
In [13], subcarrier sharing among multiple users in a NOMA-
enabled F-RAN was modeled as a coalition formation game,
where users in the same coalition share the same subcarrier for
task data uploading. In [14], a joint user offloading decision,
fog node association, and resource allocation problem was in-
vestigated to minimize a weighted system cost, and alternating
direction method of multipliers based optimization was adopted
to solve the problem. By utilizing genetic algorithm, authors
in [15] proposed a heuristic approach to the joint optimization
of computation offloading decisions and resource allocation for
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a scenario with multiple UEs and fog nodes, which can lead to
a stable convergence solution.

Although the above works achieve good performance, they
implicitly assume that the fog nodes or F-APs can execute
all kinds of computation tasks offloaded to them. However,
executing the offloaded computation tasks not only requires
the input data from user devices but also dedicated programs
and databases, which should be pre-stored at F-APs. Taking AR
service for example, programs for 3D rendering shall be cached
at F-APs and this kind of operation is termed service caching.
Actually, the service caching problem has been considered in
several prior works in computation offloading scenarios. In [16],
combinatorial contextual bandit learning was utilized to place
services effectively at the edge under spatial-temporal dynamics.
In [17], genetic algorithm was adopted to solve the problem of
service caching and task offloading, aiming at balancing the user
perception of service latency and the cost paid by users due to
the use of computing resource. In [18], the authors focused on
a cache-assisted single-user mobile edge computing system and
proposed an alternating minimization based approach to jointly
optimize service placement, computation offloading decisions,
CPU processing frequency, and transmit power of mobile users.
In [19], a service caching and task offloading problem was
presented for a dense F-RAN, where an online optimization
algorithm was developed by integrating Lyapunov optimization
with Gibbs sampling.

B. Other Related Works

In addition to resource allocation in computation offloading
scenarios, there have been some studies focusing on traditional
radio resource allocation or multi-media content caching or a
joint optimization of them in F-RANSs.

In [20], aiming at maximizing downlink throughput, authors
studied dynamic radio resource allocation, and the primal prob-
lem was transformed into an F-AP power allocation problem and
a subchannel assignment problem among F-UEs that was solved
using matching theory. From the perspective of interference
management in a downlink F-RAN, authors in [21] addressed
the assignment of resource blocks (RBs) to each user, power
allocation among RBs and the power split levels of users using
the same RB. Faced with the non-convexity of the resource allo-
cation problem, a decoupled solution was proposed, which was
based on Hungarian algorithm and alternating direction method
of multipliers. When F-APs equip multi-antennas, beamforming
vector design should be considered in radio resource allocation.
In [22], a fractional programming and weighted minimum mean
square error based approach was developed to optimize down-
link beamforming vectors of F-APs, where throughput, energy
consumption and content caching cost were comprehensively
considered. In [23], authors focused on cost efficiency defined
as the ratio of content delivery throughput and caching cost, and
path-following algorithms were introduced to maximize cost
efficiency via multicast beamforming optimization.

As for multi-media content caching optimization, each UE
in [24] can acquire its requested content from either a single
F-AP or multiple F-APs via joint transmission, and content
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transmission delay was analyzed by considering caching states
of F-APs, transmission mode selection and content sharing strat-
egy among F-APs. To solve the formulated delay minimization
problem, the number of optimization variables were first reduced
by carefully analyzing problem structure and then genetic algo-
rithm was adopted to solve a simplified content caching problem.
In [25], NOMA transmission from one F-AP to two users was
considered and each user can directly cancel the interference
of the other owing to local content caching. Then, upper plane
method based content caching scheme was developed to mini-
mize F-AP’s transmission power under caching space limitation
of users. In [26], under the limit of caching update frequency,
caching update was formulated as a constrained Markov decision
process, whose objective was to minimize the average age of
information of served user content requests. To deal with large
state space, the primal problem was decomposed into multiple
subproblems and each subproblem was further solved using
deep reinforcement learning. In [27], authors addressed content
caching in an ultra-dense F-RAN featuring a stochastic geomet-
ric network model and a spatial-temporal user demand model.
With mean-field game theory, a distributed caching scheme was
developed, whose complexity is independent of the number of
F-APs.

Given the coupling of radio and caching resource alloca-
tion, literature [28], [29], [30], [31] studied their two-timescale
optimization. In [28], content recommendation was utilized
to reshape users’ content requests, and the joint optimization
of recommendation, content caching and beamforming was
studied to minimize content transmission latency. Faced with
the resulted two-timescale problem, authors decoupled it into
multiple parallel subproblems, each of which corresponded to
a given system state. Particularly, in each subproblem, content
caching was handled by integer relaxation and greedy rounding
technique. The authors in [29] optimized F-APs’ content deliv-
ery at each time frame while updating cached contents at each
F-AP on a larger timescale without knowing the prior content
popularity distribution. In [30], long-term content placement and
short-term remote radio head (RRH) clustering together with
beamforming were jointly addressed to balance the fronthaul
traffic and power consumption. In [31], an F-AP cache size
allocation and beamforming design problem was tackled, where
storage resource was allocated based on the long-term statistical
information while the beamformer was designed based on the
instantaneous channel state information.

C. Our Contribution and Novelty

In general, cache resource is adjusted on a larger timescale
than radio and computation resource [29]. Nevertheless, this
feature has not been captured in literatures [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19] studying service caching
and resource allocation in computation offloading scenarios. In
this paper, we deal with the two-timescale joint optimization
of service caching, user service mode selection, subchannel
assignment, and computation resource allocation in an F-RAN
computation offloading scenario, whose system model is sig-
nificantly different from those in literatures studying traditional
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multi-media content caching and radio resource allocation. In
the F-RAN system, each user can either execute its task locally
at an F-AP (i.e., the edge mode) or offload the task to the
cloud via RRHs (i.e., the cloud mode). The resulted problem
aims at minimizing the long-term weighted sum of average
user group latency cost and service caching cost. Although
literature [28], [29], [30], [31] in subsection B have addressed
two-timescale resource management problems, their proposals
are either heuristic or only deal with continuous caching vari-
ables. Specifically, authors in [28] used relaxation and rounding
technique to optimize content caching, which lacked of rigor-
ous analysis about optimality. In [30], O-1 caching variables
were also relaxed to continuous variables whose values were
identified by solving a carefully constructed convex problem.
Nevertheless, how to recover these values to integer values was
not discussed and the theoretic optimality of resulted long-term
performance was unknown. In [31], cache size allocated to each
F-AP was defined as continuous variables, which is not the case
in our paper. In [29], long-term content caching decisions were
made by solving a well designed problem, based on the intuitive
that minimizing its objective contributes to less requirement on
fronthaul rate, possibly reducing long-term power consumption.
Different from [28], [29], [30], [31], we propose to directly
handle long-term integer caching variables with the help of
multi-agent RL (MARL), and it can identify which services
are cached at each F-AP by utilizing historical samples of user
service requests and channel states. With an easily designed
reward function, the RL algorithm can take the small timescale
resource allocation into account and converge to local optimal
caching decisions. Moreover, since our proposal is model-free,
it provides a general framework to optimize long-term perfor-
mance in two-timescale resource management, and can well
fit into the case where the explicit relationship between the
long-term objective and caching decisions can not be derived.
Note that various RL algorithms have been utilized for cache
resource management [32], [33], [34], [35], [36], [37]. However,
the prior work [35] mainly addressed content update policies
instead of content placement decisions, while the work [36]
only assumed a single F-AP. The proposed scheme in [37] can
be applied to our service caching problem by redesigning the
reward function, which will be taken as one of the baselines in
our simulation study in Section V. As for resource allocation on
small timescale, we take coalition game as our tool, which has
been widely applied in user clustering and resource allocation in
NOMA enabled wireless networks [13], [38], [39]. Particularly,
users as game players participate in a coalition formation game.
The service mode together with the transmission subchannel
of each user can be determined according to which coalition it
joins.
The main contributions of this paper are as follows.
® The problem of computation offloading in an F-RAN with
service caching is considered, where each user can choose
between two service modes, namely the edge mode and
the cloud mode. Under this setting, a joint cache, radio,
and computation resource allocation problem is formulated
with a two-timescale structure. The objective of radio and
computation resource allocation on a small timescale is to
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minimize average user group latency, while the objective
of cache resource optimization on a large timescale is to
minimize the long-term weighted sum of the latency and
service caching costs.

e To deal with the two-timescale optimization problem,
a low-complexity coalition formation based approach is
developed for radio and computation resource allocation
under fixed service placement, which adapts to instanta-
neous user service requests and channel states. Then, an
MARL algorithm is developed to decide which services
are to be cached at each F-AP. With this approach, two
main challenges are overcome, which are caused by the
long-term objective function that does not have an explicit
form and the discrete caching decision variables.

e The convergence, optimality, and complexity of the pro-
posed algorithms are rigorously analyzed. Numerical sim-
ulation results are provided to demonstrate their superior
performance compared to several baselines. In addition, the
effects of several key parameters on system performance
are also investigated.

The remainder of this paper is organized as follows. The
F-RAN system model with service caching and computation
offloading is described in Section II. Section III formulates the
two-timescale radio, computation, and cache resource allocation
problem. The proposed algorithms are developed in Section IV,
while our simulation and analysis are presented in Section V.
Finally, the paper is concluded in Section VI. The notation used
in this paper is summarized in Table I.

II. SYSTEM MODEL

As shown in Fig. 1, the F-RAN considered in this paper
consists of one service cloud, multiple RRHs, multiple F-APs,
and multiple users. Each RRH, F-AP, and user is equipped with
a single antenna. The service cloud stores all the services that
are of interest to the users, while the RRHs only implement
radio frequency functions, which are connected to a baseband
unit (BBU) pool through fronthaul links. Each F-AP is capable
of caching services as well as local resource management [40].
Each user can either offload the computation task of its requested
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TABLE I
NOTATION
Notation  Definition
F The set of F-APs
S The set of services potentially requested by all the users
u The set of users
N The set of RRHs
Vi The reserved caching capacity of F-AP f
Os The input date size for the task execution of service s
(s The computation workload of service s’s computation task
€s The storage size required for caching service s
:cfi’bf A 0-1 indicator representing whether user w transmits to
F-AP f on subchannel by (f > 1)
x?;bo A 0-1 indicator representing whether user u operates in
cloud service mode
Ct,s A 0-1 indicator representing whether service s is cached at
F-AP f
Yu,s A 0-1 indicator representing whether user u requests
service s
Au The size of data uploaded by user u
Nu The computation workload offloaded by user u
H The collection of all the channel coefficients
x The collection of all the zi’bf with f >0
C The service caching matrix with (f, s)-th entry being cy
Y The service request matrix with (u, s)-th entry being ya.,s
df The computation resource allocated to user u by F-AP f
d The collection of all the dy ,, with f > 1
Uy The user group associated with F-AP f
Uo The user group associated with RRHs
ty The user group latency of Uy with f >0
t The average user group latency of all user groups
e The cost of one unit latency
B8 The cost of scaling out the F-AP’s cache by one unit size
ly.c The caching cost of F-AP f under caching matrix C
K The weight balancing latency and caching costs
Q The weighted system cost
(C] A parameter to normalize the reward in Algorithm 2

service to an F-AP, which is referred to as the edge service mode,
or offload the task to the service cloud via RRHs and the BBU
pool, which is called the cloud service mode.

The set of services, F-APs, RRHs, and users are denoted by
S={1,2,..,SLF={1,2,.. ., F}, N ={1,2,...,N},and
U =1{1,2,...,U},respectively. Each F-AP f € F has an initial
cache capacity Vy in GB and possesses computation capability
d r.max in CPU cycles per second. Each service is characterized by
athree-tuple {Js, (s, €5 }. Specifically, §; and (; denote the input
data size in bits and the computation workload in CPU cycles for
the service’s computation task execution, respectively, and €, in
GB represents the storage size needed to cache the necessary
code and data of service s. Define v, s = 1 to indicate that
user u requests service s; and y,, s = 0 otherwise. Thus the total
size of input data and the total computation workload of user u
can be expressed as Ay = Y. g Yu,s0s and 7y, = > s Yu,sCs»
respectively.

Letcy s = 1indicate that F-AP f caches the code and data for
service s; and ¢y , = 0 otherwise. Each F-AP f is pre-assigned
with a set of subchannels defined by By, satisfying By N By =
¢, for all f # f’. The bandwidth of each subchannel is W and
eachuser associated with F-AP f shall be allocated with only one
subchannel [41]. For the RRHs, we follow the common setting in
cloud radio access networks, where the spectrum of bandwidth
We is fully shared by all the users in the cloud mode [42].
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But for convenience, the set of subchannels By is still defined
for all the RRHs with |By| = 1. Meanwhile, it is assumed that
the spectrum occupied by the RRHs is non-overlapping with
that of the F-APs and hence there is no mutual interference
between the users in the edge mode and those in the cloud
mode. Define the radio resource allocation variable of user u as
xf:’bf. When f > 1, xﬂ’bf = 1 means user u transmits to F-AP

f on subchannel by € By, i.e., it operates in the edge service

mode, while xﬁ’bf = 0 otherwise. When f = 0, xu’bf indicates

whether user w is in the cloud service mode (xu’bf = 1) or not
(xfj’bf = 0). Denote the collection of all :cu’bf s with u € U,
f e Fu{0} and by € By by a network-wide radio resource
allocation vector x. In addition, since the computation resource
in the cloud is sufficient, we only consider the computation
resource allocation at the F-APs. Define d; , as the amount of
computation resource allocated to user u at F-AP f, and denote
the network-wide computation resource allocation vector by d
that is a collection of all ds ,’s with v € U and f € F. In the
following, the transmission model and computation model for
users in different service modes are specified.

A. Edge Service Mode

In the edge service mode, a user first uploads the necessary
input data to an F-AP that caches the requested service. Then
service program will be executed at this F-AP. Consider user u
transmits its data to F-AP f on subchannel b;. When there is no
other user sharing subchannel by with user u, its transmission
rate is given by

fbg 2
fibg p |hu |
Ryt = Wlogy | 1+ 50— | M
where p,, is the uplink transmit power of user u, h!i’bf repre-

sents the channel co-efficient between user u and F-AP f on
subchannel by, and ny is the noise power spectral density. Then,
the corresponding transmission time is

f.by Au
- . )
o Ri:gf

To reduce the transmission waiting time, another user u’
will also be allowed to transmit simultaneously on the same
subchannel by, if needed, by leveraging NOMA as in [45], [46],
where only two-user NOMA is considered to limit the signal
processing complexity. Specifically, when the channel gain of
user u is worse than that of user «’, the transmission rate of user
u will be the same as that in the case of orthogonal multiple
access (OMA). Since the F-APs are allocated with disjoint sets
of subchannels, there is no interference from the users associated
with other F-APs, and hence the transmission rate of user « can
be written as
pull P

by _
R =Wl
08> o W

1 1+ )
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The transmission time of user v incurred by uploading data of
size ), is given by

Ay
thh = 2 @)

When the channel gain of user w is better than that of user v/,
the transmission rate of user « under simultaneous transmission
of user v’ is

b
pu/|h£i \2 +ngW

fbf,

R = Wlog, (1 +

If user u can complete its transmission within th? wilsie Ry,
ti?lf > Ay, then tf by = AU/R % If user u cannot complete

its transmission w1th1n tz’, 1 » user u will continue to transmit
the remaining data without the interference from user «’. In this
case, the transmission time of user u can be written as

¢y =—+tf (6)

Thus, the wireless transmission time of user u, which com-
municates with F-AP f over subchannel by, is given by

= H{Zx{,’bf = 1} -t

ueld

. {zxz;bf ot < |hgj;bf|2} e
ueld
b b b b
St <a g o
ueld

where I{-} is an indicator function that equals to 1 when the
condition is true.

The service’s task execution time of user u depends on the
workload of the offloaded task, n,,, as well as the CPU frequency
allocated by F-AP f, d¢,,, which is calculated as

ty" = dZ“ : (®)

B. Cloud Service Mode

In the cloud service mode, user u transmits its input data to
the service cloud through RRHs and the BBU pool. Since the
services’ task execution time in the cloud can be neglected owing
to its sufficient computing capability and the fronthaul between
RRHs and the BBU pool can be assumed ideal, we mainly
consider the wireless transmission time from users to RRHs and
the data transmission time over the non-ideal backhaul from the
BBU pool to the service cloud. For users accessing the RRHs,
whose set is denoted by Uy C U, their transmission is based on
uplink joint reception. After re-indexing these users, their set is
re-defined as Uo = {1,2,. .., |Up|} and uc is the new index of
user u € U in Uc. Define He as the channel matrix between
all the users in U and the RRHs, whose (n, uc)th entry is the
channel co-efficient between user « and RRH n.
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According to [47], the receiving beamforming matrix is given
by V=A"'HcP:, where A = HoPH¢ ! + ngWeIand P
is a diagonal matrix with the uc-th element P, , being p,,. For
user u, its signal-to-interference-and-noise ratio (SINR) is given
by

Puc |V11i{c hC,uc ‘2

SINR, = 3 , (9
>, P ’Vfchc’j‘ +noWevl v,
jFuc,jeUc
where v, € CN*1 s the ucth column of matrix V, and

hcy, € CN*! is the ucth column of He. The uplink trans-
mission rate from user v to RRHs can be written as

Rc =Welog, (1+SINR,). (10)

Therefore, the wireless transmission time of user w is calculated
as

Ay
RC U

tow = (11)
After the centralized signal processing in the BBU pool, it
further forwards users’ input data to the service cloud over
backhaul with a constant transmission rate Iy. To transmit the
data of all the users in cloud service mode, the time consumed
is given by
bk ZUEUO A

- S (12)

III. PROBLEM FORMULATION

To mitigate the signalling exchanges among F-APs and the
BBU pool for identifying network-wide user latency perfor-
mance, we assume that each F-AP and the BBU pool only care
about the latency performance of the user group associated with
them. Specifically, user group latency is defined to measure the
time elapsed from when users in a group start sending their
service requests till when all the users in the group receive their
task execution results. Denote the user group /y C U served by
F-AP fbylU; = {u\zbfer A 1}. The user group latency
is given by

13)

t; = max ghbr b + max t&”,
u€Uy u€Uy
byeBy

where it is assumed that the latency induced by sending the
task execution results to the user group through the downlink is
negligible. This assumption is reasonable since the data volume
of results is usually very small, e.g., in object detection tasks.
Meanwhile, (13) also implicitly means that the computation
resource at F-AP f will not be allocated until it receives all the
data uploaded by users in Uy, which significantly helps simplify

the computation resource allocation design.
For user group Uy CU in the cloud mode, i
{u|zf:* = 1}, the user group latency is expressed as

e., U() =

to = m%{xtCU + %%, (14)

ue
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Then, the average user group latency is defined as

F

1
CERTL

f=0

15)

where t is set to 0 if Uy = ¢.

Caching services at F-APs will be effective to reduce the
user group latency, which allows services’ computation tasks
to be executed locally. Nevertheless, considering the limited
storage capacity of F-APs, caching decisions must be properly
made to balance the latency and the caching cost incurred from
expanding storage spaces. Considering that the storage resource
is often allocated on a larger timescale than the computation and
radio resource, a multi-dimensional resource management prob-
lem is formulated with a two-timescale structure. Specifically,
service caching on the long-term aims to minimize a system
cost consisting of the expected latency cost and the caching cost,
while the short-term radio and computation resource allocation
intends to achieve a minimum average user group latency by
taking current channel coefficients, user service requests, and
service caching states into account. Let H, Y, and C denote
the collection of all the channel coefficients, y, s, and cy s,
respectively. Recall that x is the network-wide radio resource
allocation vector and d is the network-wide computation re-
source allocation vector. To minimize a weighted system cost,
the corresponding optimization problem is given by (16).

ménQ =rko -Euy [mi&l t(x,d,H,Y,C)

latency cost

+(1=r)BY lc (16)
feF
———
caching cost
st.(al) ¢p s ={0,1},Vf e F,Vs € S,
0, isteS GsCf,SSVf7

@2)lyc= { |

vy (ZSGS €sCf,s — Vf), otherwise,

@3) 2" € {0,1},Vf € FU{0},Vbs € By, Vu €U,
(ad) Y al™ <2,Vf € F by € By,

ueld

@) > Y al =1vueu,

FEFU{O} byeBy

@6) > " <Y yuacsa,Vu UV EF,

bfGBf seS

@7 0 < df <> al™ dymax, Yu € UNF € F,
by

(38) de,u S df,maxavf eF
ueld

In (16), « and 3 represent the unit cost of average user group
latency and the cost of expanding F-AP’s cache size by one
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unit, respectively; ~ is a weight factor; and [y c represents
the total caching cost at F-AP f. Based on (a2), if the total
storage demands of all the services cached by F-AP f do not
exceed its reserved cache capacity, the caching cost of F-AP f
is 0 while additional cost is incurred otherwise. Note that fog
nodes can be built with virtualization technique [43], [44], based
on which caching resource can be dynamically scaled up on
demand but with potentially more operation power consumption.
Constraint (a3) indicates that the variables in the radio resource
allocation vector x are all integers, while Constraint (a4) states
that each subchannel of an F-AP can be occupied by at most two
users simultaneously using NOMA [45], [46]. Constraint (a5)
states that each user can be served by only one F-AP-subchannel
resource pair or by all the RRHs. Constraint (a6) means that each
user can be served by an F-AP only when its requested service
has been cached at the F-AP [22]. Finally, Constraints (a7)
and (a8) jointly provide the feasible region of d.

In[31] and [48], the authors proposed to adopt sample average
approximation (SAA) to deal with problems similar to (16), by
which the expectation of ¢(-) over H and Y is substituted by the
sample average. More specifically, assuming a set of () samples
of H and Y are available, the objective of (16) after SAA is
written as

> min #(x(qg),d(q), H(q), ¥(g),C)

1 x(q),d(q)

Q
+(1=r)B> e,

feF

Q
a
a7

where H(q) and Y (g) are the gth sample of H and Y, respec-
tively, and x(¢) and d(q) are the network-wide radio resource
allocation and computation resource allocation for given H(q)
and Y (q), respectively.

Then, the two-timescale problem (16) can be successfully
transformed into the following single timescale problem.

Q
RO
min — > t(x(q),d(q), H(q), Y(q), C)
Cuix(a)d@)y, @ 1

+(1 *K)ﬂzlf,@ (18)

feF
s.t. (al), (a2) with (a3) —(a8) satisfied for (Hq, Yy),
qge{l,2,...,Q}.

Nevertheless, it is quite challenging to solve Problem (18)
with traditional optimization approaches. On one hand, to
achieve a tight approximation, SAA requires the number of
samples () to be sufficiently large [31], leading to a potentially
huge solution space that may be intractable for heuristic search
methods (e.g., genetic algorithms (GA)). On the other hand,
integer relaxation and convexification techniques may be ap-
plied to make Problem (18) more tractable. However, a naive
integer recovery scheme can lead to large performance loss,
while convexification is not an easy task due to the complicated
relationship between ¢ and optimization variables. Facing these
challenges, instead of solving the transformed problem (18), this
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paper directly deals with problem (16) by integrating model-free
machine learning and game theory as elaborated in the next
section.

IV. ALGORITHM DESIGN

In this section, a short-term radio and computation resource
allocation subproblem is first solved by a coalition formation
based algorithm under fixed service caching placements, chan-
nel states, and user service request states. After that, an MARL
algorithm is proposed to optimize the long-term service caching.

A. Short-Term Radio and Computation Resource Allocation
Algorithm Design

We first deal with the radio and computation resource alloca-
tion subproblem for given long-term service placement C at the
F-APs, which is given by

min ¢(x,d, H,Y,C)

x,d

s.t. (a3)—(al). (19)

First, the optimal computation resource allocation is studied
under fixed radio resource allocation. With given radio resource
allocation, Problem (19) can be decoupled among the F-APs,
which is equivalent to the minimization of the maximum com-
putation time among all the users in Uy for each F-AP f. The
corresponding local optimization problem is given by

. U
min max
dfﬁu uEZ/{f df7u

s.t. (bl)O < df7u < df,maxv u € U,

(b2) Z df,u < df,maxv

uelly

(20)

which is a minimax linear fractional programming problem. We
introduce Theorem 1 below to solve this problem.

Theorem [: When the computation resource allocated to
each user u € Uy satisfies d} , = ~"*——d max, the optimal

uwedy Mu
objective value of Problem (20) is achieved, which is equal to
ZuEMf T

a, df

Proof:f‘First, it is claimed that the optimal solution to Prob-
lem (20) is achieved when the equality of Constraint (b2) holds,
since consuming unused computation resource can always de-
crease the objective value. With this in mind, denote the vector
constituted by d7 , as d’; and define the set of all possible d ¢
satisfying Constraint (bl) and the equality of Constraint (b2)
by Dy. For any d € D;/d%, there must exist a user u € Uy
such that dy, < d*}’u. Then, we can obtain t* > ¢, and
thus max,ey, t5" > 177" = maxyey, t;,"*. Therefore the theo-
rem holds. |

Based on the above theorem, the closed-form expression of the
optimal network-wise computation resource allocation vector d*
can be derived. For each of its element d’}’u, we have

fby _

N 1
d* _ Zueuf N df,maxa if beEBf Lu - 17
f 0, otherwise.

$eT* — N
u

2
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Then, Problem (19) can be equivalently reduced to the following
radio resource allocation problem.

min ¢ (H,Y,C,x,d"(x))

s.t. (a3)—(ab). (22)

Note that resource allocation variables in Problem (22)
are integers and the objective contains indicator functions,
since t is related to ti’bf given by (7). Hence, optimal algo-
rithms can suffer high complexity. Facing this issue, a low-
complexity algorithm is developed that is inspired by coali-
tional game theory. Specifically, define a coalition set by M =
{Myp,If € FU{0},bf € By}, where My, € U, and user

u is allocated with resource pair (f,by), i.e., xu’b'f =1, if itis
a member of My ;.. Thus, solving Problem (22) optimally is
equivalent to finding an optimal coalitional structure M* such
that
i) M?,bf N M}/,bf/ = ¢, for any resource pairs (f,by) and
(f', by with (f,bg) # (f’,sby), in order to satisfy Con-
straint (a5);

ii) |M’}’bf| < 2, for any resource pair (f, bys) with f > 1, to
meet constraint (a4);

i) u ¢ ./\/l?bf, for all by € By, if the service requested by
user u is not cached by F-AP f, which is to satisfy
Constraint (a6).

A coalitional structure satisfying the above three conditions

is called a feasible structure.

A common solution concept adopted in coalitional games is
Nash-stable [49]. Under a Nash-stable coalitional structure M,
any user will have no incentive to unilaterally switch from one
coalition to another while keeping the structures feasible. To
achieve a stable structure, an iterative algorithm is designed as
in Algorithm 1. The main idea is that each user u checks each
coalition My ;. based on a switching rule, and user u joins a
new coalition once the rule holds. More formally, we have the
following definition.

Definition 1: (Coalition Switching Rule) Consider a feasi-
ble coalitional structure M, under which uv € M, e User u
will switch from coalition My, to My, p where (f,bf) #
(f',by), if the newly formed structure M., after the switch-
ing is feasible and meanwhile t¢(Moew) + b (Mpew) <
tr(M) +tp(M).

According to Definition 1, each coalition switching results in a
strict decrease in the objective of (22). Hence, there is similarity
between our proposal and greedy based approach in terms of
optimization behavior. Meanwhile, since the objective of (22) is
lower bounded, the convergence of Algorithm 1 directly holds.
Moreover, the convergence of Algorithm 1 also indicates that no
user is willing to leave its current coalition, which corresponds
to a local optimal solution to short-term resource allocation
problem (22). The complexity of the algorithm is given by
O > teruioy 1Br|D), where D is the number of repetitions
till convergence. In addition, since it is intractable to know the
exact value of D, it is difficult to analyze convergence speed
directly. But at least, according to the time complexity above,
we can infer that more F-APs (a lager |F|), more available
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Algorithm 1: Greedy Coalition Formation Based Resource
Allocation.
1: Initiate a coalition structure M and denote the
coalition that user u joins under M by M (u);

2: repeat

3 foruseru=1:U do

4: for each coalition My, , do

5 if the switching rule holds for user u, coalition

M(u) and ./\/lfgbf, then
6: User u leaves M(u) and joins My, 3
7: Update the coalition structure M with the
newly formed one;

8: else

9: The coalition structure remains unchanged;
10: end if
11: end for
12: end for

13: until Convergence
14:  Derive the final x and d*(x) under converged M;

subchannels per F-AP (a larger |B;|) and more UEs (a larger
U) lead to slower convergence speed due to longer convergence
time.

B. Long-Term Service Caching Algorithm Design

After solving the short-term radio and computation resource
allocation problem, we next tackle the long-term service caching
problem as follows:

ménQ =kra-Egvy [t(x",d",H,Y,C)]

+(1=r)B-Y e,

feF

s.t. (al), (a2), (23)

where x* and d* denote the network-wide radio resource alloca-
tion and computation resource allocation decisions computed by
Algorithm 1, respectively, for given H, Y, and service caching
matrix C.

Solving Problem (23) needs to deal with two challenges. First,
since it is difficult to derive the explicit relationship of x* and
d* with C, the objective {2 has no explicit form. Second, the
elements cy ; in C are all integers. Although exhaustive search
can be adopted to find optimal solution, its complexity grows
exponentially with regard to the numbers of F-APs and services.
Therefore, we propose to use a model-free MARL algorithm
to achieve sub-optimal caching decisions, which is based on
stochastic learning automata (SLA) [50], [51]. In our algorithm,
to handle the explosive growth of the action space in the single-
agent setting, F' x S learning agents are created, each of which
corresponds to one of the F-AP-service pairs (f, s). For agent
i, its action set is denoted by A; = {a; 1,a; 2}, where i = (f —
1)S + s. Selecting action a;,1 means F-AP f caches service s,
i.e., c¢ss = 1, while taking action a; » means the opposite case
of ¢ fos = 0.
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g-th iteration

Agent 1 | ’ | ‘
I H |

Agent ¢ ‘ |

Agent FS ‘ |

U qr

‘ Dynamic environment: H(q) and Y (q) ’

Select an action based on the Update the action selection
action selection probability D probability vector according
vector T to (26)

Under caching matrix C decided by a,, radio and computation
resource are allocated by Algorithm 1, and the environment
calculates the normalized payoff &,

Fig.2. Anillustration of the proposed MARL based service caching algorithm.

Fig. 2 illustrates the training procedure of the proposed MARL
based service caching algorithm. Specifically, assume () sam-
ples {H(q),Y(q)}?:1 are collected in the past and are used
to construct a virtual environment with which all the agents
interact. Under the gth sample (H(g),Y(q)), each learning
agent selects an action a; from its action set based on the action
selection probability vector 7 =[] 7, ], where 7{
and nyai’z represent the probability that agent ¢ chooses action
a;,1 and action a; », respectively. Once all the agents determine
their actions, the network-wide service caching matrix C is
generated. With the known C, the virtual environment feeds
back a common reward to all the agents, which is given below.

ke, = ko -t (H(g), Y(q),ay) + (1 — k)8 > Ip(ay), (24)
feF

where a, = [a],a],.. ., a%] is the action profile of all the
agents selected under (H(q), Y (q)). Note that the agents will
implicitly cooperate to improve the effectiveness of network-
wide service caching by learning from a common reward.

As per [51], the reward should be within [0,1]. Thus, ks, is
further normalized as follows.

O—ka,
fa =4 ©
q O7

where © is a threshold with a positive constant value. With an,
each agent ¢ updates its action selection probability distribution
using the following equations.

if ko, <O,

25
if ka, > O, (23)

g+l _ _q 7. g e d
Tiai; — Tia;, +§kaq(1 Wi,ai,j% if a; = a;;,
I A if ad # a; ; (26)

a5 1,04 5 Aq Ni,a4, 50 7 VA
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Algorithm 2: MARL Based Service Caching Algorithm.

1:  The cloud server initializes an environment based on
history data {H(q), Y(q)}qQ:1 and creates ' x S SLA
agents, each setting its initial action selection
probabilities to 0.5;

2: for data sample ¢ = 1 : ) do

3:  Each agent selects an action a based on 7;

4: Under the caching matrix derived from a,,
Algorithm 1 is executed;

5: Calculate the normalized payoff an according
to (24) and (25);

6: Each agent updates its action selection probabilities
according to (26);

7: end for

8: Derive the final caching matrix C based on
{m@TYES where ¢j = 1ifi = (f —1)S 4 s and
Q+1 Q+1,

. T
,Q4,1 >

7T 1,a42°

where 0 < ¢ < 1 is the learning rate. Moreover, for ¢ > 1, we
have

q+1 O (' q T T
4,ai,1 Tri,ai,z - (Wiﬂli,] + 7ri7ai,2> (1 - gkaQ) +€kaq'
@n
. : 1 |
Then, it can be seen that if =, +m, =1 we
2 2 3 3
have 73, + 7, ,=1=m, +m,,=1.. and hence
q+1

ta T 71‘;1’-;17 = 1 is satisfied.

Algorithm 2 describes the procedure of the proposed service
caching algorithm. We next analyze its convergence, optimality,
and complexity.

1) Convergence: According to Theorems 3.1 and 4.1 in [51],
the following lemma holds.

Lemma 1: Since all agents receive the same reward an €
[0, 1], Algorithm 2 converges when the learning rate £ is suf-
ficiently small, and H(q) and Y (¢) both follow independently
and identically distributions. Meanwhile, the converged caching
strategy 7 satisfies

S By [fa(H, Y, 0)| [T7,, >

S Emy {I%a(H7Y,G))} Tisas 1 T, Vi, V.
a i

As for convergence speed, it depends on learning step size
¢ in equation (26). A larger £ means a larger increment in
the probability of selecting a certain action and hence a faster
convergence speed can be achieved as verified in Fig. 7 in
simulation part.

2) Optimality: We have the following theorem on the opti-
mality of the proposed algorithm.

Theorem 2: When the action selection probabilities of all the
agents converge to pure strategies with the corresponding action
profile denoted by a*, the service caching matrix C decided by
a* is a local optimal solution to Problem (23).

Proof: Since (28) holds for any strategy of agent ¢, it must
hold for any pure strategy of agent ¢ as a special case, which
means that agent ¢ selects a deterministic action. On the basis

T,

(28)
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of this fact, when the action selection strategy of each agent
converges to a pure strategy, we have the following inequality
according to (28).

Eny |Fa (H,Y, @)] >

. (29)
Eny kz(ai,aii)(H,Y7@)} Vi, Va; € A;.

According to (25), when parameter O is sufficiently large, we
have

oy = Ska,

S (30)

Then, the following inequality can be derived following (29)
and (30).

EH,Y [kjaw (H,Y)} < IEH,Y {k(ai’aii)(H’Y)} R Vi,Vai S ./41

Substituting (24) into Eg v [ka (H, Y)], we have ey
Eqy [ka (H,Y)]
= Eny |ka-t(HY,a)+(1—r)3- Y Is(a’)
= ka-Epy[t(H,Y,C))+ (1 k)3 -ffélf(c*).
(32)

It can be seen that the right-hand-side of (32) is the same as the
optimization objective in Problem (23). Based on (31) and (32),
the objective value of Problem (23) cannot be further decreased
by unilaterally changing the action of any agent. In other words,
changing the value of any single element c¢ ; in C* decided by
a* will not be beneficial. Thus Algorithm 2 converges to a local
optimal solution to Problem (23). |

3) Complexity: In each iteration of Algorithm 2, each agent
first generates a random number to select an action based on the
action selection probability vector, with complexity O(1). Then,
the radio and computation resource allocation algorithm is exe-
cuted and the complexity is O(U }_ ¢ 740y [Bf|D) as analyzed
before. Based on the received reward, each agent updates the
action selection probability with fixed number of operations and
hence the complexity is also O(1). Since the operations of each
learning agent can be executed in parallel in the cloud computing
environment of F-RANS, the total complexity incurred by each
iteration of Algorithm 2 is therefore O(U }_ ;7 0y |By|D).

V. SIMULATION RESULTS AND ANALYSIS

In this section, our simulation results are provided to evaluate
the performance of the proposed algorithms. In the simulations,
an F-RAN scenario with 3 F-APs, 5 RRHs, and 10 users is
considered, which are distributed in a circular area of radius
100 m, as shown in Fig. 3. The number of services potentially
requested by users is 10. All the users are assumed to request ser-
vices following an identical Zipf distribution with parameter 1.
Note that our proposal also works when users have differentiated
service request distributions. The path loss exponent of the
wireless channels is set to 3 and the small-scale channel fading
is modeled by CN/(0, 1). Other main simulation parameters are
listed in Table II.
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Fig.3. Simulation scenario of an F-RAN with 3 F-APs, 5 RRHs, and 10 users
in a circular area of 100 m radius.

TABLE II
SIMULATION PARAMETER SETTING

Parameters Value

Transmit power of each user 20 dBm

Noise power spectral density -174 dBm/Hz

Number of subchannels for each F-AP 2

Bandwidth of each subchannel 180 kHz

Bandwidth allocated to the RRHs 1800 kHz

Input data size of service s [1.6 — 2.4] Mbits

Computation workload of service s [0.15 — 0.25] x 107
CPU cycles

CPU speed of F-AP f 5 x 109 CPU cycles/s

Reserved caching capacity of F-AP f 1GB

Required storage to cache service s [0.15-0.4] GB

A. Radio and Computation Resource Allocation Algorithm

We first investigate the performance of the radio and com-
putation resource optimization algorithm (Algorithm 1) under
a fixed service caching matrix. More specifically, each F-AP
caches all the services that are potentially requested by users.
To verify the superiority of our proposal, the proposed algorithm
is compared with the following baseline schemes.

® Random allocation scheme with NOMA: In this scheme,

each user randomly selects an F-AP-subchannel resource
pair, or operates in the cloud mode, to offload its compu-
tation task of the requested service.

® Proposed scheme with OMA: In this scheme, if two users

are allocated with the same subchannel of an F-AP, these
two users offload their computation tasks in turn, i.e.,
uploading their input data using orthogonal time-domain
resources.

® GA scheme with NOMA: In this scheme, GA is applied

to solve the radio resource allocation problem (19), where
NOMA is used to allow two users to share a subchannel.

Note that random resource allocation and genetic algorithm
based resource allocation have also been adopted in [52]
and [15], respectively.
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Fig. 4. The convergence performance of Algorithm 1.
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Average user group latency under different schemes versus the number

Fig. 4 shows the convergence of the proposed radio and
computation resource allocation algorithm. In addition to its
fast convergence, the proposed algorithm achieves a good per-
formance very close to that of the GA with NOMA scheme, in
terms of average user group latency given by (15). In Fig. 5, the
metric (15) is evaluated more rigorously under different schemes
by varying the number of users, where every result is the average
of 200 independent simulations with fixed locations of only
F-APs and RRHs as per Fig. 3. First, it can be observed that (15)
increases with the number of users under all the four schemes.
This is because the number of users that can be served by each
F-AP is limited and hence more users have to offload their tasks
viathe RRHs as U is increased, leading to larger latency. Second,
compared with the proposed scheme with OMA, the proposed
scheme with NOMA achieves a lower average user group la-
tency, because NOMA allows users to simultaneously transmit
on the same subchannel. Moreover, the proposed scheme’s per-
formance is very close to that of the GA scheme, but with a much
shorter execution time. Especially, when the number of users is
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Fig. 6. The evolution of the action selection probabilities of the 2nd agent and

the 14th agent.

12, the GA scheme only reduces the latency performance by
around 2% over the proposed scheme, but its execution time is
6.52 s that is much longer than the time 0.56 s consumed by the
proposed scheme.

B. Service Caching Algorithm

In this section, the performance of the proposed service
caching algorithm (Algorithm 2) is examined under the same
topology given by Fig. 3. The cost « of unit expected latency
and the cost  of expanding F-AP’s cache by one unit are
set to 2 and 0.2, respectively. If not otherwise specified, the
weighting factor x in (16) is set to 0.5. The learning rate &
is set to 0.1 and the normalization related parameter © is set
to 1. The number of samples of (H,Y) used for constructing
the training environment is Q = 5 x 10°. Note that the samples
are independent and identically distributed, which are generated
based on the channel model and the service request distribution
mentioned above.

Fig. 6 illustrates the evolution of the action selection prob-
ability distributions for the 2nd agent and the 14th agent.
With the progress of the training procedure, the probability
of choosing one action converges to 1 and that of choosing
the other action converges to O for both agents, which indi-
cates that pure strategies have been achieved in our setting.
Fig. 7 presents the impact of the learning rate parameter £ on
learning performance. Define % _, ka , /q as the time-average
reward during the learning process. It can be seen that the
convergence time and learning performance is well balanced
when ¢ = 0.1, which is taken as the learning rate used in the
remaining simulations.

Next, the proposed MARL based service caching scheme,
named as Caching scheme 1, is compared with the following
baseline schemes.

® Caching scheme 2: This scheme originates from [37],

where a multi-agent multi-armed RL method is adopted
for content caching. To adapt this proposal to our problem,
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Fig. 7. The impact of learning rate £ on learning performance.

the reward of each learning agent is now given by

ka, = —ka -t (Hy, Yq,a,) . (33)
Note that caching cost is not involved in the reward because
caching decisions in this scheme are made under the strict
storage limit of each F-AP.

® Caching scheme 3: In this scheme, F-APs cache no service
and all users operate in the cloud service mode.

® Caching scheme 4: In this scheme, each F-AP caches all
the services that are potentially requested by users.

® Caching scheme 5: In this scheme, each F-AP caches the
most popular services that rank in the top A% among all
the services. In the simulations, we have searched A €
{10, 20, ...,90} and chosen the optimal value 40.

e Caching scheme 6: In this scheme, we assume that each
F-AP knows the service request probability and each F-
AP first checks the service with the highest probability to
decide whether to cache with probability of 0.5. Then, each
F-AP continues to check the next one with lower request
probability until the cache size is full.

® Caching scheme 7: In this scheme, GA based service
caching is utilized, where each individual corresponds to a
service caching matrix and the fitness value of an individual
is defined as the reciprocal of the optimization objective
value of Problem (16). Since the objective value includes
the expected value of ¢, we take the average of ¢ under
Ngam samples of {H, Y} to approximate its expectation.
Thus, GA based service caching needs to invoke Algo-
rithm 1 for Nyep, Npop Nsam times, where Nyey,, Npop, and
Ngqm represent the maximum number of generations, the
population size, and the number of samples of {H, Y},
respectively. In simulation, Ny, = 20, Ngep, = 200, and
Ngam = 20. Furthermore, the number of elite individuals,
crossover probability, and mutation probability are set to
2, 0.6 and 0.05, respectively.

e Caching scheme 8: In this scheme, the service cloud
determines the caching matrix by solving the following
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The evolution of the time average value of (15) under different caching

optimization problem for each F-AP f with integer re-
laxation and rounding technique while computation and
communication resource are allocated with Algorithm 1.

st.(1) Y escrs <V,
seS

(2)css €{0,1},Vs € S.

The rational behind such formulation is to make each F-AP
cache as many services as possible under given caching
space.

Note that no caching scheme has been adopted in [28] and
most popular caching scheme has been adopted in [25]. More-
over, genetic algorithm based caching has been utilized in [24].

In Caching scheme I and Caching scheme 2, service caching
matrices are obtained based on the training environment con-
structed by @ samples of {H,Y} as mentioned before. To
compare the performance of various caching schemes, another
1000 samples of {H,Y} are generated following the same
distribution as that used to generate the previous () samples.
In the evaluation, the caching matrix derived from each scheme
remains fixed and only the short-term radio and computation
resource allocation is conducted under each sample of {H, Y }.
Fig. 8 shows the evolution of the time-average value of (15)
calculated as Zg,:] ty/q, and its converged value is taken
to approximate the expected value of ¢ in (16) under a given
caching matrix. In Fig. 9, the caching cost of different caching
schemes is shown. Since Caching scheme 2 and Caching scheme
6 can strictly meet the caching space constraints of F-APs, their
caching costs are 0. Caching scheme 3 also has 0 caching cost,
since all the tasks are executed in the cloud, which, however,
incurs high latency cost. In contrast, the proposed Caching
scheme 1 achieves zero caching cost without incurring much
latency.

2561

I o
= 1)
T T

Caching cost

o
-~
T

0 I
Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

Fig. 9. The caching cost under different caching schemes.
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Fig. 10.  The objective value of (16) achieved by different caching schemes.

Fig. 10 presents the objective value of (16) achieved by the
eight schemes. It can be seen that our proposed Scheme 1
improves the system cost by 13.8% when compared to the state-
of-the-art Scheme 2. Meanwhile, Scheme 2 needs to additionally
solve a 0-1 Knapsack problem in each iteration, and it also has to
explicitly know the parameter of Zipf distribution used to model
global service popularity, which are not required in our scheme.
Moreover, it is observed that caching all the services leads to
poor performance due to the large caching cost, and the proposed
scheme outperforms Schemes 3,4, 5, 6 and 8. This is because the
caching strategies of the agents can well adapt to the dynamics
in the network environment and align well with the system
objective by learning from the designed reward. In addition,
although Scheme 7 achieves a competitive performance relative
to our proposal, it needs to execute Algorithm 1 of short-term
resource allocation for Ngen, Npop Nsam = 8 * 10* times, but our
proposed MARL based caching needs to execute Algorithm 1
for only 2000 times before convergence according to Fig. 6,
which is a great reduction in time complexity.

In Fig. 11, the impact of parameter O in (25) on the system
cost is evaluated. As the value of © is increased, the system cost
decreases first and then increases. This is because the normalized
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The influence of the weight « in (16) on the system cost.

reward %aq has a high chance to become zero when © is set to
a small value, and hence the much useful information of k‘aq
is lost, which makes the strategy learning of agents ineffective.
On the other hand, as O is further increased, the values of nor-
malized rewards by taking different actions become closer and
hence it is difficult for agents to differentiate good actions from
bad ones.

In Fig. 12, the impact of the weight « in (16) is illustrated. It
can be seen that a larger x > 0.5 results in a larger system cost.
To explain this phenomenon, Fig. 13 is presented to demonstrate
the latency cost and caching cost under varying «. With a larger
Kk, learning agents care more about the latency cost while the
caching cost plays a less vital role in the system cost. Hence
the latency cost gradually decreases while the caching cost goes
higher. Particularly, the degree of variation of the latency cost is
much smaller than that of the caching cost. This is why a larger
k leads to a higher weighted system cost. The differentiated
variation degrees of the two costs are due to the fact that the
learning agents have to choose to cache much more services
that are rarely requested by users to further reduce the latency
cost.
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Fig. 13.  The influence of the weight « on the latency cost and the caching cost
defined in (16).

VI. CONCLUSION

In this paper, we studied the multi-dimensional resource man-
agement problem in the context of fog radio access networks for
service task offloading, which was featured by a two-timescale
formulation. Aiming at minimizing the weighted sum of the
expected latency cost and the caching cost, a coalition formation
based algorithm was proposed to allocate radio and computation
resource on a smaller timescale for given service caching, while
amulti-agent reinforcement learning based service caching opti-
mization algorithm was developed to decide service placement
at the F-APs on a larger timescale. In addition, convergence,
optimality, and complexity of both proposed algorithms were
analyzed. Through numerical results, the effectiveness of the
proposed algorithms was verified through comparison with sev-
eral baseline schemes, and the impacts of key parameters on the
system performance were demonstrated.
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