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Abstract—At Presently, it is still a great challenge to achieve
online classification of traffic flows due to the highly varying
network environments, e.g., unpredictable new traffic classes,
network noise, and congestion. Traditional classification meth-
ods work well in stable network environments, but may not
exhibit their performance in dynamic environments. To address
online classification issues, a granular computing-based classifica-
tion model (GCCM) is developed, where the spatial and temporal
flow granules are defined to make GCCM robust against varia-
tions and less sensitive to noise, and the correlations among flow
granules are explored to establish the granular relation matrix
(GRM). The inherent burst features between packets indicated
by GRM prompt GCCM to achieve fine classification in unsta-
ble network environments. GCCM analyzes the burst features of
packets without inspecting the payload information, and thus can
be used to classify encrypted traffic as well as unencrypted traf-
fic at a fast speed. In addition, the GCCM model, depending on
difference measurement D(·), is a threshold-based classification,
and therefore can be used to distinguish between time-varying
classes. The validity of GCCM for online traffic classification is
examined through theoretical results. The experimental evalua-
tion of classification for fine and varied classes under dynamic
network environments with noise and congestion also demon-
strates its superiority in terms of classification accuracy and
real-time performance with the state-of-the-art.
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I. INTRODUCTION

N
ETWORK traffic is growing rapidly on a tremendous

scale, with so much variety that it is indispensable

to develop an effective classification systems to implement

network resources management [1], provide technical sup-

port to guarantee quality of service [2], enforce differentiated

services for users [3], maintain and improve the network

security [4], etc. According to the 6G white paper [5], one

of the first important network operations is traffic classi-

fication. Online traffic classification is necessary and has

become a research focus in the fields of communications and

networking [6], [7]. In recent years, flow features (e.g., dura-

tion and mean packet size) are widely used to distinguish

between different traffic [8], [9]. However, the rapid devel-

opment of the Internet technologies poses new challenges to

online traffic classification.

1) With continuous innovation of applications, new types of

traffic are fed into the Internet [10]. When the number

of classes is increased, the differences among classes

become more subtle, which create difficulties on fine

classification [11].

2) In dynamic networks, problems, such as packet loss,

retransmission, and disorder of packets may occur at

any time [12]. Thus, there is a compelling need to deal

with incomplete and noisy data for classification.

3) In ubiquitous heterogeneous environments, the target

classes are frequently changed over time [13].

For example, the 3rd Generation Partnership Project (3GPP)

defines four target classes, including conversation, streaming,

interaction, and background. There are six classes in ITU-

T Y.1541. If a traffic flow is transformed from 3GPP to

ITU-T, the target classes will be different. These investiga-

tions motivate us to develop a network traffic classification

model [termed granular computing-based classification model

(GCCM)], which is expected to classify traffic into fine and

time-varying classes under dynamic network environments

with noise and congestion. The major contributions of this

article are summarized as follows.

1) Granular Relation Matrix (GRM): GRM is proposed for

the first time in this article. It reflects the spatial and tem-

poral correlation between granules. The existing flow

features, such as mean variance and kurtosis, are just

a special case of GRM (at the maximum observation

scale). On the basis of holder index α, the inherent rela-

tionship between packets indicated by GRM can achieve

fine classification even under congestion.
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2) Flow Granules: Based on the granular computing, flow

granules ℵv(x) and ℵt(y) are defined to make model

GCCM less sensitive to incomplete and noisy data.

The flow granules are generated by aggregating similar

neighborhood packets. The information to be processed

is aggregated packets. As a result, the missing data and

incomplete information can be effectively solved in the

dynamic network environment.

3) Difference Measurement: D(·), which is presented

to measure the difference degree between matrices.

Depending on D(·), GCCM uses GRM to achieve a

threshold-based classification and thus is able to classify

varied classes.

II. RELATED WORK

A number of approaches have been proposed to imple-

ment traffic classification, e.g., the technique of deep packet

inspection (DPI). DPI approaches are based on the payload

to achieve classification, which are not affected by dynamic

network environments (e.g., new classes and congestion) [15].

DPI is more accurate than other approaches when classifying

unencrypted traffic [16]. For example, Yun et al. [4] exploited

the semantic information in protocol message formats to iden-

tify real-world network traces. The experimental results on

BitTorrent, FTP, SMTP, etc., show that the scheme has an

average recall of about 97.4% and an average precision of

about 98.4%. However, inspection of packet payload is time-

consuming and breaches the privacy of users [9], [17]. In

addition, access to the payload is often not possible since 90%

of the traffic is encrypted [18]. Besides, it is not easy for DPI

to identify new classes or unknown classes since the keywords,

signatures, certificates, and cookies of the unknown classes are

totally unknown [10]. The applicability of DPI is hence lim-

ited. Some methods for encrypted traffic exploited the fixed

registered ports [6]. However, port-based methods became

inaccurate due to dynamic reuse of ports and new applications

with unregistered or random generated ports. Zou et al. [19]

exploited the physical state and resource usage monitoring to

implement classification of encrypted traffic. Nevertheless, the

proposed phenotyping mechanism in [19] can only identify

five fixed classes, including aggregation, broadcast, consensus,

and distributed gradient descent (DGD).

Presently, one of the most popular techniques for varied

classes are statistical features (SFs) [8], [9]. SFs are obtained

by analyzing the packet sizes and intervals, without inspect-

ing the payload information. In contrast to DPI, it thus can be

used to classify encrypted traffic as well as unencrypted traf-

fic at a considerable speed [20], [21]. For example, Nossenson

and Polacheck [22] classified videos into live streaming and

video on demand (VoD) based on the SFs of packet length,

information offset, etc. Thay et al. [23] proposed a classifi-

cation technique based on the number of peer connection in

both incoming and outgoing directions within a 5-min duration

to classify P2P traffic, including BitTorrent, Skype, SopCast,

etc. However, SFs usually do not work well for fine classifi-

cation [24]. For example, the largest packets of the SD, HD,

and UD video flows are all 1494 bytes. Other SFs, such as

duration, mean packet size, and skew, are also basically the

same, which are invalid when utilized for fine classification of

SD, HD, and UD video flows [25]. When the number of classes

is increased, the differences in SFs between classes become

subtle. It is of necessity to conduct further study and explore

more effective methods. Wu et al. [26] proposed a chain and

hierarchical structure (CHS) to make up for the defects of SFs.

However, CHS has the chain effect of error propagation. When

the number of classes is increased, the number of classifiers

is increased, and thus the cumulative error on each classifier

will be greatly increased.

Some of the explorations proposed behavior features to

implement traffic classification [27], [28]. Behavior features

are different from SFs. The latter suppose that the packets

are independent of each other, while the former is on the

basis of the close relationships among packets. For instance,

Chen et al. [29] found that large-size messages from the server

interacting with small-size messages from the client (and vice

versa) are frequently observed in video or P2P traffic flows

whereas rarely appear in HTTP and other types of traffic

flows, and each traffic type has distinct sequential message

pattern. Behavior features can be used to identify traffic flows.

Compared with SFs, behavior features are more adopted for

fine classification. However, behavior features usually do not

work well for traffic flows with noise. In [30], the behavior

features are based on the key packets from the first few sec-

onds of the flow to achieve online classification, but they may

not achieve the expected classification results if the key pack-

ets are lost. In [31], Hybrid features, i.e., SFs plus behavior

features, are proposed to mitigate the shortcomings of SFs and

behavior features. However, the performance of classification

may not be improved by just a simple addition of features.

Fine classification of noisy traffic is still hard to deal with.

It is necessary to explore other avenues to overcome these

obstacles for online traffic classification.

Accordingly, we presented a new model GCCM to achieve

online classification of both encrypted and unencrypted traffic

for fine and varied classes, with further resilience to noise.

1) GCCM analyzes the burst features of packets, without

inspecting the payload information, and thus can be used

to classify encrypted traffic as well as unencrypted traffic

at a fast speed.

2) The burst feature of GRM proposed in this article

reflects the spatial and temporal correlation between

granules. The inherent relationship between packets

indicated by GRM can achieve fine classification even

under congestion.

3) Besides, we explored granular computing to calculate

GRM, making GCCM less sensitive to incomplete and

noisy data.

4) In addition, the proposed model GCCM, depending on

difference measurement D(·), is a kind of threshold-

based classification, and thereby can be used to identify

time-varying classes. The gaps between GCCM and

other literatures can be broadly summarized in Table I.

III. PROPOSED MODEL GCCM

A group of scientists explored the manner of human think-

ing and learning, and proposed a new mechanism called
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TABLE I
OVERVIEW OF PREVIOUS STUDIES AND OUR WORK

Fig. 1. Block diagram for the organization of Section III.

granular computing [32], [33], [34]. By studying the process

of human recognition, Zadeh [35] found that human divided

an object into granules for analysis. Pal and Chakraborty [36]

also pointed out that the contents of information that human

observe, measure, and reason are all granules. Granular com-

puting reasons and analyzes the relationships between gran-

ules, which can filter out interference and noise, and handle

missing or incomplete data. Based on the principles and

mechanisms of granular computing, the framework of GCCM

basically consists of four steps as shown in Fig. 1.

1) Define flow granules: spatial granule ℵv(x) and temporal

granule ℵt(y).

2) Explore the relationships between granules (i.e., struc-

ture granules).

3) Establish the novel flow feature of GRM.

4) Achieve classification of traffic flows on the basis of

GRM and D(·).

A. Flow Granules

In this study, the basic granules (i.e., flow granules) are

defined based on the concept of neighborhood granules. Before

proceeding, an accurate definition of flow is first provided as

follows. Traffic is composed of flows, and the flows aggre-

gate into traffic. Some flows are unidirectional (e.g., uplink or

downlink), while others are bidirectional. The characteristics

of uplink and downlink packets are often quite different, which

should be calculated separately. Therefore, the kth flow Fk is

defined as a set of packets with the same five-tuple. The five-

tuple refers to {SrcIP, DestIP, SrcPort, DestPort, Protocol},
where SrcIP, DestIP, SrcPort, and DestPort denote the source

IP address, destination IP address, source port, and destination

port, respectively. The flow sequence is described as follows:

Fk �
{

(Pi, Ti)
∣

∣

i=1,2,...,Nr

}

(1)

where Pi refers to the size of the ith packet, Ti is the inter-

arrival time between the ith packet and the previous packet,

and resolution Nr refers to the number of packets in Fk. Based

on the concept of neighborhood granules proposed by Pal and

Chakraborty [36], two types of flow granules are presented:

1) spatial and 2) temporal granules. The former is defined as

follows:

ℵv(x) =
j

⋃

i=k

Pi ∈ U (2)

s.t.|Pi − Pi+1| < Thrv (3)

where symbols j and k are the sequence numbers of the pack-

ets, and the values of j and k depend on the flow data. U refers

to the complete set. If the neighborhood packets have a sim-

ilar packet size (Thrv is the threshold, and the details about

the settings of Thrv refer to Section IV-B), they will be aggre-

gated into the same granule ℵv(x), and thus {ℵv(x)}|x=1,2,...,X

can be obtained, where X is the number of the spatial gran-

ules. Take an email flow as an example, which is captured by

packet capture software (e.g., Wireshark). {Pi} is obtained as

{60, 76, 60 239, 84, 76, 90, 67, 83, 67 460, . . .}. If Thrv is set to

100, the spatial granules are

ℵv(1) =
3

⋃

i=1

Pi = {P1, P2, P3} = {60, 76, 60}

ℵv(2) =
4

⋃

i=4

Pi = {P4} = {239}

ℵv(3) =
10
⋃

i=5

Pi = {84, 76, 90, 67, 83, 67}, etc.

Similar to spatial granule, temporal granule is defined as

follows:

ℵt(y) =
j

⋃

i=k

Ti ∈ U (4)

s.t. |Ti − Ti+1| < Thrt. (5)

From (5), if the neighborhood packets have similar interarrival

time (Thrt is the threshold, and the details about the settings of

Thrt refer to Section IV-B), they will aggregate into the same

granule, and thus {ℵt(y)}|y=1,2,...,Y is obtained, where Y is the

number of the temporal granules. The members in granules

ℵv(x) and ℵt(y) are similar neighborhood packets (i.e., the

neighborhood packets have similar size or similar interarrival

time), so the calculation model is less sensitive to missing data

and can remove the noisy data as well, which is one of the

basic ideas of granular computing.

B. Structure Granules

By exploring the human reasoning patterns, Zadeh [35]

found that human analyze issues from various perspectives,
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and can shuttle up and down at these perspectives to make

a synthetic diagnosis. Imitating such patterns, granular com-

puting decomposes or merges the granules from different

perspectives or levels (scales) to obtain structure granules.

Granular computing studies the inherent relationship between

granules at different perspectives or levels (scales). However,

the idea of analyzing the changes of a process in different

scales is not new. In fact, date back to at least the late 1960s,

Mandelbrot used the concept of scales to study the traits of

objects [37]. Suppose {F(t)} is a stochastic process, and the

measurement µ(ε) and the observation scale ε satisfy

µ(ε) ∝ εα. (6)

That is

α �
ln µ(ε)

ln ε
(7)

where α is called the holder index or singularity index,

which has been widely used in prediction of gas emission

in mines, classification of hydrological and water resources,

anti-interference treatment of artificial scenes [38].

According to (1), flows satisfy the definition of {F(t)|(t=i)}
proposed by Mandelbrot. In (7), ε is a continuous variable. It

needs to be sampled to apply to discrete flow sequence F [39],

and thus the structure granules are established as follows:

α �

{

1

m
ln µm

∣

∣

m=1,2,...,Z

}

(8)

s.t. µm �

Z
m

∑

k=1

∣

∣

∣

∣

∣

m
∑

i=1

ℵ̄(m(k − 1) + l)

∣

∣

∣

∣

∣

2

(9)

where ℵ(·) refers to the spatial granule ℵv(x) or temporal gran-

ule ℵt(y); ℵ̄(·) is the average of members in the flow granule;

Z = {X, Y} is the number of flow granules; and m refers to the

observation scale. The minimum scale is m = 1, which means

that each flow granule is treated as a separate granule; the

maximum scale is m = Z, which means that all flow granules

merge into one granule, corresponding to the SF of “average

packet size.” Therefore, SF is a special case of structure gran-

ules when the observation scale reaches the maximum. More

concretely, structure granules captures the varying process of

a flow when the observation scale m is changed from 1 to Nr.

C. Granular Relation Matrix

In Section III-A, two types of flow granules are defined:

1) spatial and 2) temporal granules. Substituting the two types

of granules into (6)–(8), two types of structure granules can be

obtained: spatial structure granule αv and temporal structure

granule αt. The former describes the changing traits of packets

size, while the latter describes the bursting traits of packets at

different scales. The two vectors are cross multiplied to obtain

the GRM, which describes the changing traits of bursty data

at different spatial and temporal scales

C|X∗Y � αv · αt
T (10)

where αv is deduced from spatial granules ℵv(x)|x=1,2,...,X .

Here, the minimum observation scale is m = 1, while the

maximum scale is m = X. Therefore, αv has X obser-

vations. Similarly, αt is deduced from temporal granules

ℵt(y)|x=1,2,...,Y , and thus αt has Y observations when the time

scale is changed from 1 to Y . T is the transpose of matrix.

Therefore, the order of GRM C is X ∗ Y .

Proposition 1: GRM C uniquely identifies the type of the

network flow.

Proof: Suppose there are two flows: 1) Fa and 2) Fb. For

flow Fa, the spatial and temporal structure granules are αva

and αta, respectively. For flow Fb, the spatial and temporal

structure granules are αvb and αtb. Then, the observation scale

of time for the temporal structure granules is fixed as αt|m=y0
,

and only study the changing traits of packets size αv. Here,

we aim to compute αvz of the aggregated flow Z = Fa + Fb.

According to the theory proposed by Mandelbrot, ε in (6) is

a continuous variable. Thus, (8) can be obtained by sampling

the observation scale ε as follows:

α = {α|ln ε=m} �
{

lim
ln ε→m

ln µ(ε)

ln ε

}

(11)

where α is a continuous variable and α is a vector. The mem-

bers of α are sampled from α. From (6), µa(ε) ∝ εαva ,

µb(ε) ∝ εαvb , and then

αvz = lim
ln ε→m

ln(µa(ε) + µb(ε))

ln ε
. (12)

Hence, the boundaries of αvz can be deduced as follows:

inf(αvz) = lim
ln ε→m

ln
√

2µa(ε)µb(ε)

ln ε
=

1

2
(αva + αvb) (13)

sup(αvz) = lim
ln ε→m

2 max(µa(ε), µb(ε))

ln ε
= max(αva, αvb).

(14)

In particular, when αva = αvb = αv, inf(αvz) = sup(αvz) = αv,

which indicates that, if flow Fa belongs to the same class as

flow Fb, then the aggregated flow Z = Fa + Fb will fall in the

same class. If flows Fa and Fb belong to different classes, the

spatial structure granule αvz of the aggregated flow Z would

be neither αva nor αvb. Therefore, we prove that the vector

αv, samples of αv with different scale m as in (11), is unique

under fixed temporal scale αt|m=y0
. As a result, the orthogonal

matrix of all members C = αv · αt
T can uniquely identify the

type of network flow.

In addition, we provide a detailed description on the physi-

cal meaning of GRM here. GRM is based on the holder index

α. According to the theory proposed by Mandelbrot, α repre-

sents the burst index of objects, and ln µm refers to the burst

amount when the observation scale is m. Based on (11), we

calculate α for the spatial granules (i.e., packet sizes) and tem-

poral granules (i.e., packet intervals), respectively, and thus

obtain vectors αv and αt

αv =
{

αv|ln ε1=m

}

�

{

lim
ln ε1→m

ln µvm(ε1)

ln ε1

}

αt =
{

αt|ln ε2=n

}

�

{

lim
ln ε2→m

ln µtn(ε2)

ln ε2

}

where ε1 and ε2 are the observation scales, lnµvm refers to

the burst amount of packet sizes when the observation scale
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Fig. 2. Physical meaning of GRM.

is m (ln ε1 = m), and αv represents the burst index of packet

sizes. lnµtn refers to the burst amount of intervals when the

observation scale is n, and αt is the burst index of packet

intervals. αv and αt are cross multiplied to obtain GRM

C|X∗Y � αv · αt
T =

{

αv · αt|ln ε1=m,lnε2=n

}

=
{

lim
ln ε1→m

lim
ln ε2→n

ln µvm(ε1) ln µtn(ε2)

ln ε1 ln ε2

}

.

For ease of understanding, the burst amount of packet sizes

lnµvm is supposed to be a green surface as shown in Fig. 2.

Consequently, its observation scale ln ε1 is also a surface.

The burst amount of intervals lnµtn is supposed to be a line

segment and hence its observation scale ln ε2 is also a line

segment. lnµvm multiplied lnµtn turns out to be a volume

and its observation scale ln ε1 ln ε2 is a small cube. That is,

lnµvmlnµtn refers to the burst amount of volume. Just as αv

represents the burst index of packet sizes and αt represents the

burst index of packet intervals, the physical meaning of GRM

is the burst index of the traffic volume.

D. Differences Between GRMs

For a certain type of flows, they always follow a specific

communication protocol and transmission pattern, so that they

have similar variations reflecting the inherent traits. Due to this

reason, SFs (e.g., mean packet size, and maximum and mini-

mum packets) are used to identify different flows. However, as

described in Section III-B, these SFs are static, which cannot

reflect the varying features of traffic. In contrast, GRM not

only contains the SFs, but also describes the varying features

reflecting the deeper nature. GRM depicts the traits more com-

prehensively. Consequently, it can be used to achieve accurate

identification of network flows for fine classes.

Matrix, which physically refers to a certain transformation,

describes the movement track. For example, y = Ax, where

matrix A represents the movement track from state x to y in

space Q. If we stand in space R to observe this movement,

we have y′ = Bx′, where x′ and y′, respectively, correspond

to the state of x and y in the new space R, and matrix B

represents the movement track from state x′ to y′. So we have

Hx′ = x, Hy′ = y. Then, Hy′ = y = AHx′ = H(H−1
AH)x′.

That is, in space R, the movement track from state x′ to y′

can be described by B = H
−1

AH. It can be seen that the

similar matrices of A and B = H
−1

AH essentially describe the

same movement, which are observed in different space. GRM

describes the trajectory of bursty data at different observation

scales. The similarity of two GRMs is measured as follows:

D(Ca, Cb) �
CaCb

T + CbCa
T

CaCa
T + CbCb

T
(15)

where Ca and Cb refer to the GRMs of flows Fa and Fb,

respectively. Suppose the order of matrix Ca is Xa ∗ Ya, and

that of Cb is Xb ∗Yb. When comparing Ca and Cb by (15), the

comparison should be made at the same observation scale, so

the dimensions are selected to be min(Xa, Xb) and min(Ya, Yb).

For similar matrices A and H
−1

AH, tr(H−1
AH) = tr(HH

−1
A)

= tr(A), where tr(·) refers to the trace of matrix. Similar matri-

ces have the same trace. In addition, GRM C is the cross

product of spatial structure granule αv and temporal structure

granule αt. Therefore, tr(αtα
T
v ) = αtα

T
v . Then, the similarity

measurement matrix in (15) is converted into a scalar, called

the difference degree

Dif (Ca, Cb) � 1 −
tr
(

CaCb
T + CbCa

T
)

tr
(

CaCa
T + CbCb

T
) . (16)

According to (16), Dif(Ca, Cb) = Dif(Cb, Ca), and Dif(·) is

between 0 and 1. Dif(·) is used to measure the difference

degree between matrices. The smaller the value of Dif(·),
the smaller the difference, and the higher the similarity. In

the extreme case, Dif(Ca, Ca) = 0, which means there is no

difference between the two matrices.

E. Semi-Supervised Classification and Threshold Setting

Suppose there are L classes {Ml}L
l=1, and several flows

{, . . . , Fj, . . . , Fk, . . . , } in each class. The centers of classes

are {Pl}L
l=1. As described in Section III-D, Dif(·) is uni-

formly distributed between 0 and 1. Therefore, the center Pl

is determined by

Pl � min
Fk∈Ml

{

max
j 
=k,Fj∈Ml

Dif
(

CFj , CFk

)

}

. (17)

According to (17), the difference degree between Pl and other

flows {, . . . , Fj, . . . , Fk, . . . , } is the smallest. In order to judge

whether a flow Fk belongs to the lth class Ml, it just needs

to calculate the difference degree between flow Fk and the

class center, i.e., Dif(CFk
, CPl

). If the difference degree is less

than or equal to the threshold, then Fk belongs to class Ml;

otherwise Fk does not belong to class Ml. That is
{

Fk ∈ Ml, if
{

Dif
(

CFk
, CPl

)

≤ T
}

Fk /∈ Ml, if
{

Dif
(

CFk
, CPl

)

> T
}

.
(18)

The proposed traffic classification model is a semi-

supervised learning. The system is first trained based on

manually labeled samples. Then, unlabeled samples are grad-

ually added into the learning system and are classified by (18).

When the number of samples accumulates to a certain amount,

the system parameters (e.g., threshold T) will be adjusted.

In (18), threshold T significantly affects the performance of the

system. The maximum between-class variance (Otsu) method

is adopted to establish an adjustment mechanism for the global

optimal threshold as follows:

T∗ = arg max
∑

i 
=j

(

Dif2
(

t; Mi ↔ Mj

)

)

(19)
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Algorithm 1: Setting the Threshold

1 Input: Fk|(k=1,2,...,Ns);

2 Output: T = t(e + 1);

3 for unlabeled flows Fk do

4 { Calculate Dif (CFk
, CPl

);

5 Find min = min
L

Dif
(

CFk
, CPl

)

and compare with t(e);

6 if min ≤ t(e) then

7 Put Fk into class Ml;

8 end

9 else

10 Create new class ML+1;

11 Put Fk into class ML;

12 end

13 end

14 Update centers {Pl}L
l=1;

15 do

16 {σ(e + 1), σ ′(e + 1)} = 1
{i,k}

∑

Dif 2
(

{CPi , CFk
}, CPl

)

;

17 if |σ(e + 1) − σ(e)| < 0 then

18 t(e + 1) = t(e) ± �;

19 end

20 Update centers {Pl}L
l=1 and σ ′(e + 1);

21 while |σ ′(e + 1) − σ ′(e)| > ε;

22 return T = t(e + 1);

Algorithm 2: Classification of Traffic Flows

1 Input: flow Fk;
2 Output: Re;
3 Obtain flow sequence (Pi, Ti) by (1);
4 Partition flow sequence into subflows;
5 for subflow do
6 Calculate: // (see Section III-A)
7 Spatial granules ℵv(x) =

⋃

Pi ∈ U;
8 Temporal granules ℵt(y) =

⋃

Ti ∈ U;
9 end

10 Obtain spatial structure granules αv and temporal structure
granules αt; // (see Section III-B)

11 Establish GRM: CFk
= αv · αt

T; // (see Section III-C)
12 for each class cl|l≤L do
13 Compare CFk

with typical GRM: Cpl ;
14 Difference between GRMs is Dif (CFk

, Cpl); //(see
Section III-D)

15 end
16 if Dif (CFk

, Cpl) ≤ Tl then
17 Re = 1; // F and Pl are of the same class
18 else
19 Re = 0; // F and Pl are of the different class
20 end
21 return Re;

where Dif(t; Mi ↔ Mj) is the difference degree between Mi

and Mj when the threshold is set to t. According to Otsu, the

maximum variance between classes implies the smallest false

rate: min(frr + far), where frr is the false rejection rate and

far is the false acceptance rate.

As in (17) and (18), the basic principle of classification

is based on k-means. In order to prevent parameter solidifica-

tion, here an improvement is made on the threshold adjustment

using the idea of the genetic algorithm. According to biolog-

ical evolution theory, genes need to be crossed and mutated.

Therefore, the thresholds are randomly adjusted (i.e., the muta-

tion operation) to obtain new centers, and choose the better

one between the old and the new one. The procedure of thresh-

old adjustment is presented in Algorithm 1, where t(e) is

randomly adjusted to t(e) ± �. In the iterations, if the dif-

ference is obviously increased, the threshold and center are

updated. Otherwise, � is continuously indented by 1/2 (i.e.,

dichotomy). Thus, the iterative calculation of the threshold is

linearly convergent. The size of the convergence step is 0.5,

which means the interval will shrink by a ratio of 0.5 in each

iteration. In the worst case, the proposed algorithm (t(e)±�)

degenerates back to the original k-means algorithm (t(e)).

The complete classification process of GCCM illustrated in

Algorithm 2 is summarized as follows.

1) GCCM classify flow Fk according to its bitstream as in

line 3. Our method does not need the payload, and thus

it is able to deal with encrypted traffic flows as well as

unencrypted traffic.

2) In order to reduce the computation, flows are divided

into subflows [10] as in line 4. More details about the

settings of resolution Nr for subflow can be obtained in

Section IV-B.

3) GRM, which is based on granules ℵv(x) and ℵt(y) as in

line 6, is effectively cope with missing, incomplete, or

noisy data.

IV. CONFIGURATION AND PARAMETER SETTINGS

A. Datasets and Traffic Classes

In this article, four public datasets (i.e., UNB, UNIBS,

WIDE, and UCI) and two private datasets (i.e., NJUPT

and ISP) are used to evaluate the classification performance

as shown in Table II. The WIDE traces (http://mawi.wide.

ad.jp/mawi/) began on June 2020 and were taken from a

U.S.–Japan–Pacific backbone line (a 150-Mb/s Ethernet link)

that carries commodity traffic for WIDE organizations. The

UCI (http://archive.ics.uci.edu/ml/index.php) maintains 557

datasets, including the YouTube Collection Dataset, the Spam

Base Dataset, etc., from which various types of traffic are

obtained. The NJUPT traces are captured by Wireshark in

the campus network of Nanjing University of Posts and

Telecommunications. The ISP traces are collected at a lead-

ing Internet service provider of China (the name of the city is

omitted as required by commercial confidentiality). This traces

contain important surveillance and conferencing videos, such

as Ezviz and Gotomeeting. The UNB trace (http://www.unb.

ca/cic/research/datasets/vpn.html) has many network applica-

tions. Researchers are allowed to read the full payload trace.

The UNIBS traces (http://netweb.ing.unibs.it/ntw/tools/traces/

index.php) are collected from the edge routers of the cam-

pus network of the University of Brescia, which include the

applications, such as Edonkey, Skype, and BitTorrent.

In the field of traffic classification, one of the first important

issues is how to define the classes [40]. Most of the classes in

the prior works, such as [41] and [42] are application-based,

and consequently the traffic is labeled as YouTube, Facebook,

Authorized licensed use limited to: Auburn University. Downloaded on August 24,2023 at 05:49:41 UTC from IEEE Xplore.  Restrictions apply. 



TANG et al.: ONLINE CLASSIFICATION OF NETWORK TRAFFIC BASED ON GRANULAR COMPUTING 5205

TABLE II
DATASETS

TABLE III
CLASSES OF NETWORK TRAFFIC

Skype, QQ, Tik Tok, WeChat, etc. However, after carefully

observing the datasets, we have figured out the following.

1) One application might generate different types of bit-

streams. For instance, WeChat generates video and audio

flows. Clearly, although they are from the same appli-

cation, WeChat video and audio need to be classified

into different classes from the perspective of network

differentiated services.

2) Some applications, such as QQ and WeChat, which were

developed with a similar mechanism, often generate sim-

ilar types of video bitstreams. In summary, different

applications may generate similar types of bitstreams,

while the same application may generate different types

of bitstreams. Therefore, in this article, we define the

classes from the perspective of network resource and

QoS requirement (NRQ). This mapping between the

NRQ classes and typical applications is presented in

Table III.

B. Parameter Settings

The most important parameters in this article are Thrv, Thrt,

and resolution Nr.

1) Thresholds Thrv and Thrt, which control the size of spa-

tial granules and temporal granules, respectively, and

thus determine the capability of noise tolerance. These

TABLE IV
SETTING OF THRESHOLD

thresholds are easy to set in practice. Taking an email

flow as an example, the spatial granules under differ-

ent Thrv are demonstrated as shown in Table IV. No

matter what the value of Thrv is set to, ℵv(x) has only

three results. If Thrv is greater than 1000, the size of

granule will be too large: all packets are fused into one

granule, and thus the differences between granules for

classification cannot be obtained. If Thrv is lower than

10, the size of granule will be too small. In the extreme

case, each packet is a granule and thus granular com-

puting lost its function (note that granular computing

aims at analyzing objects with granules rather than indi-

vidual elements). Therefore, the suitable Thrv for email

flows locates between 10 and 1000. For other types

of traffic, a suitable Thrv is located between 10 and a

(300 < a < 1000). Therefore, threshold Thrv is finally

set to 100 in this article. Threshold Thrt is also based

on the same simple manual observation, and finally set

to 0.001 in this article. What needs to be especially

emphasized is that the size of granule will not increase

or decrease in linear manner with thresholds Thrv and

Thrt, but in a jumping manner. As shown in Table IV,

when Thrv is set to 10 to 1000, the spatial granules are

basically the same. Therefore, the performance of clas-

sification will not get much better when the settings of

thresholds Thrv and Thrt are further improved.

2) Resolution Nr. The length of flows is of great dif-

ference. Short flows, such as email, may have only

a few hundreds of Byte. Many text flows are below

1 MB. Long flows (e.g., videos) are usually as large

as several MB. Longer flows (e.g., streaming media)

may last more than 1 h. In practice, long flows are

divided into subflows to reduce the computation as

shown in Algorithm 2 line 4. The resolution of sub-

flow is set to Nr = 5000. These packets are enough

to obtain the comprehensive traits of flows. Nr can

certainly be further reduced. However, with a smaller

number of packets, the difference degree of GRMs for

the same type of flows will become larger, leading to

unstable classification. Here, video flows are used to

study the impact of resolution Nr on GRMs. The flows

are segmented into subflows with different resolutions

Ni = {20000, 10000, 8000, 5000, 2000, 1000, 500, 100}.
The difference degrees of GRMs under Nr = Ni are

calculated by Dif(Cj, Ck)|(Nr=Ni). As shown in Fig. 3,
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Fig. 3. Setting of resolution.

when Nr = N1 = 20000, the difference degree of GRMs

for all subflows Dif(Cj, Ck) ∼ 0.011 ± 0.002, which

is highly stable. With the decrease of Nr, the differ-

ence degree of GRMs becomes relatively more unstable.

Especially, when Nr = N8 = 100, Dif(Cj, Ck) ∼
0.413 ± 0.107. The difference degree of GRMs for sub-

flows becomes huge, which will cause great instability

in classification. We repeatedly tested and verified the

above situation with other classes of long flows, and

the results are basically similar. Therefore, the resolu-

tion for long flows is set to Nr = N4 = 5000, which not

only ensures the stability of classification, but also only

requires a small amount of computation and less storage

space. For short flows (e.g., the email flow), the GRM

features are the same whether the resolution is 2000,

3000, or other. In order to take into account long flows

(upward compatibility), the resolution is finally set to

5000 for all flows.

C. Metrics of Traffic Classification

Precision, recall and F1-score are commonly used to mea-

sure the accuracy of traffic classification model [6]. Here, we

also use them to evaluate the classification performance.

1) Precision: The number of flows correctly classified as a

class divided by the total number of flows classified as

that class.

2) Recall: The number of flows classified as a class divided

by the total of flows actually belonging to that class.

3) F1-Score: Be defined as a harmonic mean of precision

and recall as follows:

F1 = 2 ·
precision · recall

precision + recall
. (20)

V. PERFORMANCE EVALUATION

A. Evaluating the GRM of Single Flow

In this experiment, a single video flow generated

by Youku is used to demonstrate how to calculate the

GRM. By packet capture software (i.e., Wireshark), we

obtain the size and arrival time of each packet of flow

Fk : {(470, 2.649745), (462, 2.650173), (1494, 2.650256), . . . ,

(68, 359.282943), (1494, 359.434729), (1494, 359.493700)},
and thus get Ti, Pi as in (1). Then, the following three steps

are executed.

Fig. 4. 3-D surface of C.

Step i: Scanning Ti, Pi to obtain the flow granules.

According to (2) and (3), and (4) and (5), the neighborhood

members are aggregated to form the spatial and temporal

granules

ℵv(x) = {{470, 462}, {1494}, . . . , {68}, {1494, 1494}}

ℵt(y) = {{0.000428, 0.00083, 0.00045}, . . . , {0.151786}, {0.05897}}.

Step ii: Observing the above flow granules at various scales

to form structure granules. For different observation scales

m = 1, 2, . . . , �log Nr�, the structure granules αv and αt are

generated by (8) and (9)

αv = {32.345, 27.299, 25.560, 24.677, 24.159

23.814, 23.567, 23.379, 23.225}
αt = {9.326, 7.229, 5.198, 4.704, 3.382

2.152, 1.016, 0.926, 0.824}.

Step iii: Generating GRM. According to (10), GRM is

finally calculated to be C = αvαt
T. The corresponding

three-dimensional (3-D) surface of C is shown in Fig. 4.

As shown in the first step, the spatial and temporal gran-

ules have different dimensions, so the dimensions of their

corresponding structure granules are also different, which con-

sequently causes the GRMs to have different orders. That is,

for CX∗Y , the values of X and Y are different. As discussed

in Section III-D, the two GRMs should be compared at the

same observation scale. Thus, the dimensions are selected to

be m = 1, 2, . . . , �log Nr� for all flow granules.

B. Dealing With the Noise

Based on granular computing, flow granules makes GCCM

less sensitive to missing, incomplete, or noisy data. Here, we

take the spatial granules of an email flow as an example to

demonstrate how flow granules eliminates the noise. The raw

data {Pi} captured by Wireshark is

{60, 76, 60, 239, 84, 76, 90, 67, 83, 67, 460, 1456, . . .}. (21)

Suppose P6 is lost and P7 is varied by noise. That is, (21) is

changed into

{

60, 76, 60, 239, 84,����76, 170, 67, 83, 67, 460, 1456, . . .
}

.

(22)

Authorized licensed use limited to: Auburn University. Downloaded on August 24,2023 at 05:49:41 UTC from IEEE Xplore.  Restrictions apply. 



TANG et al.: ONLINE CLASSIFICATION OF NETWORK TRAFFIC BASED ON GRANULAR COMPUTING 5207

(a) (b) (c) (d)

Fig. 5. Dealing with noise by flow granules. Fig. 5(a) and (b) represent the burst shape of the raw data and the noisy data, respectively. The noise generates
obvious deviations in burst shape. Fig. 5(c) and (d) show the burst shape of the raw data and the noisy data by using the technique of granular computing.
These two burst shapes are basically the same. Flow granules can deal with noise.

TABLE V
CONFUSION MATRIX (%)

Based on the technique of granular computing in (2), the

spatial granules of the raw data and noisy data are

{{60, 76, 60}, {239}, {84, 76, 90, 67, 83, 67}, . . .} (23)

{{60, 76, 60}, {239}, {84, 170, 67, 83, 67}, . . .}. (24)

After the averaging processing according to (9), we have

{{65, 65, 65}, {239}, {78, 78, 78, 78, 78, 78}, . . .} (25)

{{65, 65, 65}, {239}, {94, 94, 94, 94, 94}, . . .}. (26)

In order to display the deviations in burst features between the

raw data and the noisy data, we draw the burst amount between

packet sizes (i.e., the absolute value of difference between two

adjacent packet sizes) as shown in Fig. 5(a) and (b). Compared

with the burst shape of (21) in Fig. 5(a) (the raw data), the

burst shape of (22) in Fig. 5(b) (containing noisy data) is

changed a lot, which will lead to some differences in burst

index α. Actually, the proposed technique of granules will

also lead to some deviations to the raw data in burst index

as shown in Fig. 5(c). However, without granules, the noise

will generate even greater deviations in burst index as shown

in Fig. 5(b). By using flow granules, the burst shape of (26)

in Fig. 5(d) remains consistent with that of (25) in Fig. 5(c),

and thus their burst index α are basically the same. That is,

the proposed flow granules can deal with such incomplete and

noisy data.

C. Performance of GCCM

Generally, classification models can be divided into two

major categories: 1) Probability-based models (e.g., random

forest). These models predict the probability that samples

belong to a class. The output is the probability and 2) target-

based models (e.g., k-means). These models directly figure out

whether a sample belongs to a class or not. There are many

metrics to evaluate the performance of a classification model.

Note that ROC and AUC are based on probability models.

Therefore, the commonly used metrics of precision, recall, and

F1-score are exploited to demonstrate the performance.

First, 3000 flows are randomly selected from NJUPT,

including video, audio, Web browsing (WB), text communica-

tion (TC), FTP, and email, with 500 flows for each class. The

2-fold cross-validation is carried out on these flows. The final

result is obtained by averaging the results of 20 runs, which is

presented in Table VI. The proposed method works well for

each type of traffic. The highest F1 is 97.25%, and the average

F1 reaches 95.95%. Even the worst F1 is still above 94%.

Table V presents the confusion matrix of the classification

results, where we have aggregated the results across all 20

runs. The small differences observed between Tables V and VI

are due to the average of ratios not necessarily being equal to

the ratio of sums. The ratio of video flows being identified as

video is 95.43%, and the ratios of video flows being misiden-

tified as audio, WB, TC, FTP, and email are 0.48%, 1.25%,

0.29%, 2.29%, and 0.26%, respectively. The ratio of audio

flows being identified as audio is 97.14%, and the ratios of

audio flows being misidentified as video, WB, TC, FTP, and

email are 0.26%, 1.94%, 0.11%, 0.34%, and 0.21%, respec-

tively. From Table V, we can also compute the frr(= 1−pre.)

of video, audio, WB, TC, FTP, and email flows as 4.57%,

2.86%, 5.29%, 4.75%, 2.93%, and 4.68%, respectively, and

the far(= 1−rec.) for the six types of flows are 3.55%, 3.09%,

6.05%, 4.47%, 3.25%, and 4.65%, respectively. These results

are consistent with the Otsu scheme given in (19), which can

avoid the local worst case.

Genuinely, these sums and averages in Tables V and VI

cannot reflect the differences between each run, so the 95%

confidence intervals are plotted as error bars in Fig. 6 to

demonstrate the differences between each run. Here, we pro-

vide the overall accuracy of GCCM in classifying video, audio,

WB, TC, FTP, and email flows from different dadasets. For

example, the overall F1, precision, and recall for UNIBS are

95.13%, 93.53%, and 96.62%, respectively; the corresponding

deviations are 1.71%, 2.29%, and 2.12%. It can be seen that:

1) GCCM shows a stable classification performance with slight

deviation and 2) when different datasets are tested as shown

in Fig. 6, the classification results do not exhibit much differ-

ence. Therefore, Section V-D will not discuss the classification

performance under different datasets.
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TABLE VI
COARSE CLASSIFICATION RESULTS

Fig. 6. Classification performance of GCCM.

Fig. 7. Classification performance for fine classes.

D. Comparisons

We further test several state-of-the-art schemes, including

FSM [10], FSIP [9], SFNN [8], and DPI [4]. Application

generates traffic under specific communication protocol and

transmission pattern, etc., so traffic flows always have differ-

ent shapes. In [10], the fractal characteristics were used to

describe the shape of the flow and thus to facilitate classifi-

cation. Wu et al. [9] proposed the method FSIP to classify

network flows, where instance purification aims to remove

redundant SFs and thus obtaining an effective feature set

to achieve accurate classification. Kornycky et al. [8] made

use of the well-known vector quantization algorithm SFNN

to investigate traffic classification for encrypted WLAN data.

Yun et al. [4] exploited the DPI, i.e., the semantic information

in protocol message formats, to identify real-world network

traces.

The classification results are presented in Table VI. Some

methods show wonderful performance for certain classes, e.g.,

the F1 of SFNN for Audio is 99.35%. It can be seen that DPI,

based on the payload to achieve classification, is relatively

more accurate than other methods. Most of the recall values

of DPI are higher than other methods. The mean F1-scores

are 95.9%, 95.64%, 95.29%, 94.34%, and 97.6% for GCCM,

FSM, FSIP, SFNN, and DPI, respectively. In general, all these

methods achieve good performance. This is mainly because

there are only six coarse classes in this experiment. In the next

section, the classification performance of the five schemes for

23 fine classes will be further tested.

E. Fine Classification

In order to verify whether these schemes can adapt to fine

classification, more classes, e.g., video streaming and online

music (more details on the fine classes can be obtained in

Table III), are randomly selected from the datasets, with 500

flows for each class. In Fig. 7, the x-axis represents the label

classes and the y-axis is the F1-score. Note that F1 is the har-

monic mean of precision and recall. A high F1 score indicates

high precision and recall. Therefore, the precision and recall

results are no longer presented in the remainder of Section V.

As shown in Fig. 7, the DPI scheme exploits the seman-

tic information of the payload to identify traffic, and thus is

relatively more accurate than other methods when classifying

unencrypted traffic. However, it cannot work for encrypted

flows from classes 7 to 23. The F1-scores of SFNN for the 23

classes are around 0.8, and that of FSIP is slightly higher. FSIP

removes redundant SFs and thus obtains an effective feature set

to achieve accurate classification. However, FSIP implements

feature purification under given classes. Consequently, those

extracted SFs are only effective for a specific set of classes. If

the classes change, the classification system needs to be com-

pletely retrained. In contrast, the average F1 of FSM is as high

as 0.9, which is comparable to that of GCCM. The fractal char-

acteristics are different from the commonly used traditional

SFs (e.g., the mean, variance, and kurtosis of packets) in that

they capture the nonlinear characteristics of traffic, which do

not change much as the classes of flows are increased, and

thus they work well in fine classification. However, FSM can

only work well for flows under smooth network conditions. In

dynamic network environments, especially when noise occurs,
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the fractal characteristics are changed, resulting in a decline

in classification performance.

F. Adaptability to Variations

This section continues to use the flows as in Section V-E.

In order to simulate network noise and congestion, we make

some random adjustments of packet loss and delay for the

original traces. In practice, there are two main technical rea-

sons for packet loss rate exceeding 5%: 1) hardware failures

and 2) network attacks. The research of this article aims at nei-

ther hardware failure nor network attack detection. Therefore,

The packet loss rate is set within 5% to simulate the vari-

able network environment with normal congestion. Note that

traffic will be interfered and varied during transmission, i.e.,

network noise. To simulate noisy data, we further modify and

add some extra packets. In each flow, the intensity of packet

modification is also controlled within 5%. Then, these flows

are used to test whether the above classification methods have

resilience to noise and tolerance to congestion.

As shown in Fig. 8, DPI, based on the payload to achieve

classification, is not affected by network dynamics (e.g., con-

gestion and traffic noise). Therefore, DPI is more accurate

than other approaches when classifying unencrypted traffic.

However, it cannot work for the encrypted traffic. FSIP, SFNN,

and FSM present obvious decrease in F1-score. These SFs

and fractal characteristics, which are obtained in a friendly

network environment, does not work well in an adversar-

ial network environment. Take video flow as an example. In

a good network environment, the fractal characteristics τ(q)

(q = 1,2,3,4,5) are 1.395, 4.715, 5.265, 7.152, and 9.609,

respectively. While in the bad network environment, they are

changed to 1.203, 4.158, 5.594, 7.863, and 9.472, respec-

tively. Actually, the fractal characteristics τ(q) for the flows are

always varying under different network environments, which

results in unstable classification results. The F1-scores of the

proposed scheme are around 0.8, consistently higher than the

scores of other baseline methods. GCCM analyzes deep into

the trajectory of change for different flows, and the neigh-

borhood granules can effectively deal with noisy and missing

data. Therefore, GCCM is more suitable and robust for online

classification in dynamic network environments.

G. Time and Space Complexities

In this section, 1000 flows are used to evaluate the classi-

fication time. As shown in Fig. 9, it takes GCCM 1.527 s

for six classes, 1.653 s for 12 classes, and 1.769 s for 20

classes. It can be seen that GCCM has lower computation

times than FSM, FSIP, SFNN, and DPI. The results illustrated

in Fig. 9 agree with the theoretical analysis in Table VII. The

computation of GCCM is mainly involved.

1) Data Preprocessing: Flow granules are formed in this

step. According to (2) and (3), and (4) and (5), flow gran-

ules can be obtained by just scanning the flow sequence,

so the computational complexity is O(Nr), where Nr is

the resolution of the flow sequence.

2) Obtaining Structure Granules: Calculations of αv and αt

need O(Nr(log m)). Here, the observation scale is set to

Fig. 8. Classification performance under congestion and noise.

Fig. 9. Comparison of classification time.

TABLE VII
COMPARISON OF TIME AND SPACE COMPLEXITY

m = �log Nr� as in Section V-A, so the time complexity

is O(Nr(log(log Nr))) ≈ O(Nr).

3) Generating GRM: The computation required to generate

the two-dimensional (2-D) matrix GRM is O((log Nr)
2).

4) Classifying Flow: The main computation of this step is

to calculate the difference degree Dif(CFk
, CPl

) between

flow Fk and center Pl. Note that tr(αtαv
T) = αtαv

T, so

the calculation of (16) is greatly simplified. The dimen-

sion of structure granules equals to the observation scale

�log Nr�, and thus the time complexity is O(L log Nr),

where L is the number of classes.

Therefore, the complexity of classifying flow Fk is O(Nr +
(log Nr)

2 + L log Nr) ≈ O(LNr). Here, the overall time com-

plexity is mainly dependent on the calculation of structure

Authorized licensed use limited to: Auburn University. Downloaded on August 24,2023 at 05:49:41 UTC from IEEE Xplore.  Restrictions apply. 



5210 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 53, NO. 8, AUGUST 2023

granules. Classification of Nt flows will result in computa-

tion of O(LNrNt). In order to calculate the difference degree

Dif(CFk
, CPl

) between flow Fk and center Pl, their correspond-

ing GRMs need to be stored. The observation scale is set at

m = �log Nr�. Accordingly, the required space for GRMs is

O((log Nr)
2). There are L centers, plus Nt flows, so the overall

space complexity is O((L + Nt)(log Nr)
2).

According to the previous experiments, parameters Ns, Nt,

and Nr are fixed. Here, we only pay attention to variable

parameters. As shown in Table VII, the time and space com-

plexities of GCCM and FSM depend only on L, while those

of the other methods depend not only on L, but also on other

factors (e.g., J and Nf ). As the number of classes (i.e., L)

is increased from 6 to 20, J will also increase as a result.

Therefore, GCCM has the lowest time and space complexity.

VI. CONCLUSION

In this article, we conducted an in-depth analysis of traf-

fic classification, and found that the existing flow features

are inadequate for online classification under highly vary-

ing network environments. Taking the behavior features as an

example, they are based on the sequential message pattern

between packets, making it challenging to work well for traf-

fic with missing data. GRM is presented to address this issue,

which included two core stages. First, two types of flow gran-

ules were defined to make the model less sensitive to noise

and missing data. Therefore, it can work well in poor network

environments. Second, the spatial and temporal correlations

between flow granules are explored to establish GRM, where

the relationship between packets was not isolated but closely

correlated. Many SFs can be treated as a special case of GRM.

GRM describes the flows more comprehensively, and thus can

classify the flows more accurately.

However, there are some issues that need to be further

explored in the future.

1) High-dimensional GRM (HGRM). This article only

established a 2-D GRM from the perspective of time

and space. We hope to explore other useful observations

to build an HGRM to further improve the classification

accuracy.

2) The application scope of GCCM. GCCM can be applied

to a series of classification tasks, such as classification

of encrypted, unencrypted, unknown, and even anomaly

traffic flows as long as they have certain flow shapes.

For the traffic flows that have time-varying shapes (e.g.,

some malware traffic), we will further explore novel

flow features and design a new model to achieve good

identification in our future work.
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