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Abstract—At Presently, it is still a great challenge to achieve
online classification of traffic flows due to the highly varying
network environments, e.g., unpredictable new traffic classes,
network noise, and congestion. Traditional classification meth-
ods work well in stable network environments, but may not
exhibit their performance in dynamic environments. To address
online classification issues, a granular computing-based classifica-
tion model (GCCM) is developed, where the spatial and temporal
flow granules are defined to make GCCM robust against varia-
tions and less sensitive to noise, and the correlations among flow
granules are explored to establish the granular relation matrix
(GRM). The inherent burst features between packets indicated
by GRM prompt GCCM to achieve fine classification in unsta-
ble network environments. GCCM analyzes the burst features of
packets without inspecting the payload information, and thus can
be used to classify encrypted traffic as well as unencrypted traf-
fic at a fast speed. In addition, the GCCM model, depending on
difference measurement D(-), is a threshold-based classification,
and therefore can be used to distinguish between time-varying
classes. The validity of GCCM for online traffic classification is
examined through theoretical results. The experimental evalua-
tion of classification for fine and varied classes under dynamic
network environments with noise and congestion also demon-
strates its superiority in terms of classification accuracy and
real-time performance with the state-of-the-art.

Index Terms—Granular computing, granular relation matrix
(GRM), network noise, online classification, traffic flows.
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I. INTRODUCTION

ETWORK traffic is growing rapidly on a tremendous
Nscale, with so much variety that it is indispensable
to develop an effective classification systems to implement
network resources management [1], provide technical sup-
port to guarantee quality of service [2], enforce differentiated
services for users [3], maintain and improve the network
security [4], etc. According to the 6G white paper [5], one
of the first important network operations is traffic classi-
fication. Online traffic classification is necessary and has
become a research focus in the fields of communications and
networking [6], [7]. In recent years, flow features (e.g., dura-
tion and mean packet size) are widely used to distinguish
between different traffic [8], [9]. However, the rapid devel-
opment of the Internet technologies poses new challenges to
online traffic classification.

1) With continuous innovation of applications, new types of
traffic are fed into the Internet [10]. When the number
of classes is increased, the differences among classes
become more subtle, which create difficulties on fine
classification [11].

2) In dynamic networks, problems, such as packet loss,
retransmission, and disorder of packets may occur at
any time [12]. Thus, there is a compelling need to deal
with incomplete and noisy data for classification.

3) In ubiquitous heterogeneous environments, the target
classes are frequently changed over time [13].

For example, the 3rd Generation Partnership Project (3GPP)
defines four target classes, including conversation, streaming,
interaction, and background. There are six classes in ITU-
T Y.1541. If a traffic flow is transformed from 3GPP to
ITU-T, the target classes will be different. These investiga-
tions motivate us to develop a network traffic classification
model [termed granular computing-based classification model
(GCCM)], which is expected to classify traffic into fine and
time-varying classes under dynamic network environments
with noise and congestion. The major contributions of this
article are summarized as follows.

1) Granular Relation Matrix (GRM): GRM is proposed for
the first time in this article. It reflects the spatial and tem-
poral correlation between granules. The existing flow
features, such as mean variance and kurtosis, are just
a special case of GRM (at the maximum observation
scale). On the basis of holder index «, the inherent rela-
tionship between packets indicated by GRM can achieve
fine classification even under congestion.
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2) Flow Granules: Based on the granular computing, flow
granules N, (x) and R;(y) are defined to make model
GCCM less sensitive to incomplete and noisy data.
The flow granules are generated by aggregating similar
neighborhood packets. The information to be processed
is aggregated packets. As a result, the missing data and
incomplete information can be effectively solved in the
dynamic network environment.

3) Difference Measurement: D(-), which is presented
to measure the difference degree between matrices.
Depending on D(-), GCCM uses GRM to achieve a
threshold-based classification and thus is able to classify
varied classes.

II. RELATED WORK

A number of approaches have been proposed to imple-
ment traffic classification, e.g., the technique of deep packet
inspection (DPI). DPI approaches are based on the payload
to achieve classification, which are not affected by dynamic
network environments (e.g., new classes and congestion) [15].
DPI is more accurate than other approaches when classifying
unencrypted traffic [16]. For example, Yun et al. [4] exploited
the semantic information in protocol message formats to iden-
tify real-world network traces. The experimental results on
BitTorrent, FTP, SMTP, etc., show that the scheme has an
average recall of about 97.4% and an average precision of
about 98.4%. However, inspection of packet payload is time-
consuming and breaches the privacy of users [9], [17]. In
addition, access to the payload is often not possible since 90%
of the traffic is encrypted [18]. Besides, it is not easy for DPI
to identify new classes or unknown classes since the keywords,
signatures, certificates, and cookies of the unknown classes are
totally unknown [10]. The applicability of DPI is hence lim-
ited. Some methods for encrypted traffic exploited the fixed
registered ports [6]. However, port-based methods became
inaccurate due to dynamic reuse of ports and new applications
with unregistered or random generated ports. Zou et al. [19]
exploited the physical state and resource usage monitoring to
implement classification of encrypted traffic. Nevertheless, the
proposed phenotyping mechanism in [19] can only identify
five fixed classes, including aggregation, broadcast, consensus,
and distributed gradient descent (DGD).

Presently, one of the most popular techniques for varied
classes are statistical features (SFs) [8], [9]. SFs are obtained
by analyzing the packet sizes and intervals, without inspect-
ing the payload information. In contrast to DPI, it thus can be
used to classify encrypted traffic as well as unencrypted traf-
fic at a considerable speed [20], [21]. For example, Nossenson
and Polacheck [22] classified videos into live streaming and
video on demand (VoD) based on the SFs of packet length,
information offset, etc. Thay et al. [23] proposed a classifi-
cation technique based on the number of peer connection in
both incoming and outgoing directions within a 5-min duration
to classify P2P traffic, including BitTorrent, Skype, SopCast,
etc. However, SFs usually do not work well for fine classifi-
cation [24]. For example, the largest packets of the SD, HD,
and UD video flows are all 1494 bytes. Other SFs, such as
duration, mean packet size, and skew, are also basically the
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same, which are invalid when utilized for fine classification of
SD, HD, and UD video flows [25]. When the number of classes
is increased, the differences in SFs between classes become
subtle. It is of necessity to conduct further study and explore
more effective methods. Wu et al. [26] proposed a chain and
hierarchical structure (CHS) to make up for the defects of SFs.
However, CHS has the chain effect of error propagation. When
the number of classes is increased, the number of classifiers
is increased, and thus the cumulative error on each classifier
will be greatly increased.

Some of the explorations proposed behavior features to
implement traffic classification [27], [28]. Behavior features
are different from SFs. The latter suppose that the packets
are independent of each other, while the former is on the
basis of the close relationships among packets. For instance,
Chen et al. [29] found that large-size messages from the server
interacting with small-size messages from the client (and vice
versa) are frequently observed in video or P2P traffic flows
whereas rarely appear in HTTP and other types of traffic
flows, and each traffic type has distinct sequential message
pattern. Behavior features can be used to identify traffic flows.
Compared with SFs, behavior features are more adopted for
fine classification. However, behavior features usually do not
work well for traffic flows with noise. In [30], the behavior
features are based on the key packets from the first few sec-
onds of the flow to achieve online classification, but they may
not achieve the expected classification results if the key pack-
ets are lost. In [31], Hybrid features, i.e., SFs plus behavior
features, are proposed to mitigate the shortcomings of SFs and
behavior features. However, the performance of classification
may not be improved by just a simple addition of features.
Fine classification of noisy traffic is still hard to deal with.
It is necessary to explore other avenues to overcome these
obstacles for online traffic classification.

Accordingly, we presented a new model GCCM to achieve
online classification of both encrypted and unencrypted traffic
for fine and varied classes, with further resilience to noise.

1) GCCM analyzes the burst features of packets, without
inspecting the payload information, and thus can be used
to classify encrypted traffic as well as unencrypted traffic
at a fast speed.

2) The burst feature of GRM proposed in this article
reflects the spatial and temporal correlation between
granules. The inherent relationship between packets
indicated by GRM can achieve fine classification even
under congestion.

3) Besides, we explored granular computing to calculate
GRM, making GCCM less sensitive to incomplete and
noisy data.

4) In addition, the proposed model GCCM, depending on
difference measurement D(-), is a kind of threshold-
based classification, and thereby can be used to identify
time-varying classes. The gaps between GCCM and
other literatures can be broadly summarized in Table 1.

III. PROPOSED MODEL GCCM

A group of scientists explored the manner of human think-
ing and learning, and proposed a new mechanism called
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TABLE I
OVERVIEW OF PREVIOUS STUDIES AND OUR WORK
Approaches | [4], [15]|[8], [9], [20], [21]|[10]| [11], [27]|[13], [17], [18], [30], [31]|[16], [31]][19]|[22], [23]|[24]][25].[26] | [28], [29]| GCCM
Encrypted traffic v v v v v v v v v v v
Throughput v v v v v v v
Fine classes v v v v v v v v
Varied classes v v v v v
Noise tolerance v v v v v
Congestion v v v v v
Flow Granules ~_Structure Granules 1) spatial and 2) temporal granules. The former is defined as
tial 1 i .
Spal 1a) Granule || [| Spatial Structure GRM Classification follows:
Ry(x) Granule &, T ,
Flows S c-ava’ P D(C.C) | J
> [Temporal Granule | {|Temporal Structure R, (x) = U P.cU (2)
Ny) Granule o v - !
i=k
------ » Section I1I-A------- Section I1I-B --->Section III-C»Section I11-D S.t.|Pi — Pi+1 | < Thl‘v (3)
Fig. 1. Block diagram for the organization of Section III. where symbols j and k are the sequence numbers of the pack-

granular computing [32], [33], [34]. By studying the process
of human recognition, Zadeh [35] found that human divided
an object into granules for analysis. Pal and Chakraborty [36]
also pointed out that the contents of information that human
observe, measure, and reason are all granules. Granular com-
puting reasons and analyzes the relationships between gran-
ules, which can filter out interference and noise, and handle
missing or incomplete data. Based on the principles and
mechanisms of granular computing, the framework of GCCM
basically consists of four steps as shown in Fig. 1.

1) Define flow granules: spatial granule R, (x) and temporal
granule 8;(y).

2) Explore the relationships between granules (i.e., struc-
ture granules).

3) Establish the novel flow feature of GRM.

4) Achieve classification of traffic flows on the basis of

GRM and D(.).

A. Flow Granules

In this study, the basic granules (i.e., flow granules) are
defined based on the concept of neighborhood granules. Before
proceeding, an accurate definition of flow is first provided as
follows. Traffic is composed of flows, and the flows aggre-
gate into traffic. Some flows are unidirectional (e.g., uplink or
downlink), while others are bidirectional. The characteristics
of uplink and downlink packets are often quite different, which
should be calculated separately. Therefore, the kth flow Fj is
defined as a set of packets with the same five-tuple. The five-
tuple refers to {SrcIP, DestIP, SrcPort, DestPort, Protocol},
where SrcIP, DestIP, SrcPort, and DestPort denote the source
IP address, destination IP address, source port, and destination
port, respectively. The flow sequence is described as follows:

Fr £{Pi, T)|i=1.2,..v, } (L

where P; refers to the size of the ith packet, T; is the inter-
arrival time between the ith packet and the previous packet,
and resolution N, refers to the number of packets in Fy. Based
on the concept of neighborhood granules proposed by Pal and
Chakraborty [36], two types of flow granules are presented:

ets, and the values of j and k depend on the flow data. U refers
to the complete set. If the neighborhood packets have a sim-
ilar packet size (Thr, is the threshold, and the details about
the settings of Thr, refer to Section IV-B), they will be aggre-
gated into the same granule 8, (x), and thus {8,(0)}|x=1.2,. x
can be obtained, where X is the number of the spatial gran-
ules. Take an email flow as an example, which is captured by
packet capture software (e.g., Wireshark). {P;} is obtained as
{60, 76, 60239, 84, 76, 90, 67, 83, 67460, .. .}. If Thr, is set to
100, the spatial granules are

3
R,(1) = | Pi = {P1, P2, P3} = {60, 76, 60}
i=1

4
M@ =P = (Pa} = (239)
i=4

10
R,(3) = UP; = {84,76, 90, 67, 83, 67}, etc.
i=5
Similar to spatial granule, temporal granule is defined as
follows:

j
vy =|JTev “
i=k

s.t.  |Ti — Tiy1| < Thry. 5)

From (5), if the neighborhood packets have similar interarrival
time (Thr; is the threshold, and the details about the settings of
Thr; refer to Section IV-B), they will aggregate into the same
granule, and thus {®¥,(y)}|y=1,2,...,y is obtained, where Y is the
number of the temporal granules. The members in granules
R, (x) and R,(y) are similar neighborhood packets (i.e., the
neighborhood packets have similar size or similar interarrival
time), so the calculation model is less sensitive to missing data
and can remove the noisy data as well, which is one of the
basic ideas of granular computing.

B. Structure Granules

By exploring the human reasoning patterns, Zadeh [35]
found that human analyze issues from various perspectives,
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and can shuttle up and down at these perspectives to make
a synthetic diagnosis. Imitating such patterns, granular com-
puting decomposes or merges the granules from different
perspectives or levels (scales) to obtain structure granules.
Granular computing studies the inherent relationship between
granules at different perspectives or levels (scales). However,
the idea of analyzing the changes of a process in different
scales is not new. In fact, date back to at least the late 1960s,
Mandelbrot used the concept of scales to study the traits of
objects [37]. Suppose {F(¢)} is a stochastic process, and the
measurement ((e) and the observation scale ¢ satisfy

w(e) o e%. (6)
That is
ol In 11 (¢) %
Ine

where « is called the holder index or singularity index,
which has been widely used in prediction of gas emission
in mines, classification of hydrological and water resources,
anti-interference treatment of artificial scenes [38].
According to (1), flows satisfy the definition of {F(#)|=i}
proposed by Mandelbrot. In (7), ¢ is a continuous variable. It
needs to be sampled to apply to discrete flow sequence F [39],
and thus the structure granules are established as follows:

1
o = {_ In Mm}m:l,Z,‘..,Z} ®)
m
| m 2
stopm =YY Nk —1)+1) )
k=1 li=1

where R(-) refers to the spatial granule 8, (x) or temporal gran-
ule ®,(y); R() is the average of members in the flow granule;
Z = {X, Y} is the number of flow granules; and m refers to the
observation scale. The minimum scale is m = 1, which means
that each flow granule is treated as a separate granule; the
maximum scale is m = Z, which means that all flow granules
merge into one granule, corresponding to the SF of “average
packet size.” Therefore, SF is a special case of structure gran-
ules when the observation scale reaches the maximum. More
concretely, structure granules captures the varying process of
a flow when the observation scale m is changed from 1 to N,.

C. Granular Relation Matrix

In Section III-A, two types of flow granules are defined:
1) spatial and 2) temporal granules. Substituting the two types
of granules into (6)—(8), two types of structure granules can be
obtained: spatial structure granule o, and temporal structure
granule o;. The former describes the changing traits of packets
size, while the latter describes the bursting traits of packets at
different scales. The two vectors are cross multiplied to obtain
the GRM, which describes the changing traits of bursty data

at different spatial and temporal scales
Clywy £ ay -, (10)

where o, is deduced from spatial granules 8,(x)|=12,.. x.
Here, the minimum observation scale is m = 1, while the
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maximum scale is m = X. Therefore, o, has X obser-
vations. Similarly, o, is deduced from temporal granules
R;(¥)|x=1,2....,v, and thus o; has ¥ observations when the time
scale is changed from 1 to Y. T is the transpose of matrix.
Therefore, the order of GRM C is X x Y.

Proposition 1: GRM C uniquely identifies the type of the
network flow.

Proof: Suppose there are two flows: 1) F, and 2) F}. For
flow F,, the spatial and temporal structure granules are a,,
and oy, respectively. For flow Fp, the spatial and temporal
structure granules are o, and a. Then, the observation scale
of time for the temporal structure granules is fixed as o|;—y,,
and only study the changing traits of packets size o,. Here,
we aim to compute o, of the aggregated flow Z = F, + F},.
According to the theory proposed by Mandelbrot, ¢ in (6) is
a continuous variable. Thus, (8) can be obtained by sampling
the observation scale ¢ as follows:

@ = {aline=m) = { lim Y

Ine—m

In ()
Ine
where « is a continuous variable and « is a vector. The mem-
bers of a are sampled from «. From (6), wu.(e) o< &%=,
up(e) o e, and then

In(uq(e) + mp(e))
Ine '

lim
Ine—m

12)

Uy =

Hence, the boundaries of «,, can be deduced as follows:

. . Ing2pa(e)up(e) 1

inf(a,;) = lnlglgm 1‘;—8 = E(ava +oaow)  (13)
. 2max(pa(e), up(e))

sup(ay;) = lnl;gm e = max(yg, Oyp)-

(14)

In particular, when oy, = ayp = o, inf(e,;) = sup(ay;) = @y,
which indicates that, if flow F, belongs to the same class as
flow F}, then the aggregated flow Z = F, + F}, will fall in the
same class. If flows F,; and F} belong to different classes, the
spatial structure granule «,, of the aggregated flow Z would
be neither oy, nor «,p. Therefore, we prove that the vector
a,, samples of «, with different scale m as in (11), is unique
under fixed temporal scale a;|—y,. As a result, the orthogonal
matrix of all members C = o, - &;T can uniquely identify the
type of network flow.

In addition, we provide a detailed description on the physi-
cal meaning of GRM here. GRM is based on the holder index
o. According to the theory proposed by Mandelbrot, « repre-
sents the burst index of objects, and In u,, refers to the burst
amount when the observation scale is m. Based on (11), we
calculate ¢ for the spatial granules (i.e., packet sizes) and tem-
poral granules (i.e., packet intervals), respectively, and thus
obtain vectors o, and o;

A . In pym(e1)
oy = {av|ln51=m} = lim —

Ingy—m Ingq
o = {Ol I } A lim In i, (e2)
! fine2=n Ine,—m Ingy

where €1 and &, are the observation scales, Inu,,, refers to
the burst amount of packet sizes when the observation scale
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A Observation Scale: Qma-.

—;na@ @ %ne,lngz

i ;
/ | /
1044y / / K In i@, In “,
a
,

Ingy,.~”

\ 4

Fig. 2. Physical meaning of GRM.

is m (Ine; = m), and «, represents the burst index of packet
sizes. Inuy, refers to the burst amount of intervals when the
observation scale is n, and a4 is the burst index of packet
intervals. o, and e are cross multiplied to obtain GRM

Clxsy £ oy ~OL,T = {Olv . at|1n81=m,ln€2=n}
In ey (er) In g (£2)
Ing;lney '

lim  lim
Ingy—>mlngy—n

For ease of understanding, the burst amount of packet sizes
Inp,, is supposed to be a green surface as shown in Fig. 2.
Consequently, its observation scale Ine; is also a surface.
The burst amount of intervals Inuy, is supposed to be a line
segment and hence its observation scale Ingy is also a line
segment. Inu,, multiplied Inu, turns out to be a volume
and its observation scale IngjInég, is a small cube. That is,
InpypInuy, refers to the burst amount of volume. Just as o,
represents the burst index of packet sizes and o represents the
burst index of packet intervals, the physical meaning of GRM
is the burst index of the traffic volume.

D. Differences Between GRMs

For a certain type of flows, they always follow a specific
communication protocol and transmission pattern, so that they
have similar variations reflecting the inherent traits. Due to this
reason, SFs (e.g., mean packet size, and maximum and mini-
mum packets) are used to identify different flows. However, as
described in Section III-B, these SFs are static, which cannot
reflect the varying features of traffic. In contrast, GRM not
only contains the SFs, but also describes the varying features
reflecting the deeper nature. GRM depicts the traits more com-
prehensively. Consequently, it can be used to achieve accurate
identification of network flows for fine classes.

Matrix, which physically refers to a certain transformation,
describes the movement track. For example, y = Ax, where
matrix A represents the movement track from state x to y in
space Q. If we stand in space R to observe this movement,
we have y = Bx/, where x' and y/, respectively, correspond
to the state of x and y in the new space R, and matrix B
represents the movement track from state x’ to y'. So we have
HxX = x, HY =y. Then, HY =y =AHxX = HH 'AH)x.
That is, in space R, the movement track from state x' to y’
can be described by B = H 'AH. It can be seen that the
similar matrices of A and B = H~'AH essentially describe the
same movement, which are observed in different space. GRM
describes the trajectory of bursty data at different observation
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scales. The similarity of two GRMs is measured as follows:

C.Cy" +CpC,"
C.C." +CyCpT
where C, and Cj refer to the GRMs of flows F, and Fp,
respectively. Suppose the order of matrix C, is X, * Y,, and
that of Cj, is Xj * Y. When comparing C, and Cp, by (15), the
comparison should be made at the same observation scale, so
the dimensions are selected to be min(X,, Xp) and min(Y,, Y).
For similar matrices A and H'AH, tr(H™'AH) = tww(HH'A)
= tr(A), where tr(-) refers to the trace of matrix. Similar matri-
ces have the same trace. In addition, GRM C is the cross
product of spatial structure granule &, and temporal structure
granule o;. Therefore, tr(ot,ab = a,aI. Then, the similarity
measurement matrix in (15) is converted into a scalar, called
the difference degree

D(Cq, Cp) = 15)

tr(C.Cp" + CoC,")
tr(CaC,"T + CpCpT)

According to (16), Dif(C,, Cp) = Dif(Cp, C,), and Dif(-) is
between O and 1. Dif(-) is used to measure the difference
degree between matrices. The smaller the value of Dif(-),
the smaller the difference, and the higher the similarity. In
the extreme case, Dif(C,, C,) = 0, which means there is no
difference between the two matrices.

Dif(C4, Cp) = 1 — (16)

E. Semi-Supervised Classification and Threshold Setting

Suppose there are L classes {Ml}lL:p and several flows
{,....Fj,...,Fi,...,} in each class. The centers of classes
are {Pl}lel. As described in Section III-D, Dif(-) is uni-
formly distributed between 0 and 1. Therefore, the center P;
is determined by

P; £ min {

min, max Dif(CFj, Cpk)

Jj#k FieM, }
According to (17), the difference degree between P; and other
flows {, ..., Fj,..., Fi,...,} is the smallest. In order to judge
whether a flow Fj belongs to the /th class M, it just needs
to calculate the difference degree between flow Fj and the
class center, i.e., Dif(Cr,, Cp,). If the difference degree is less
than or equal to the threshold, then Fj belongs to class M;
otherwise Fj does not belong to class M;. That is

Fr € My, if {Dif(Cp,,Cp,) =T
Fi ¢ M;, if {Dif(Cf,, Cp,) > T}.

The proposed traffic classification model is a semi-
supervised learning. The system is first trained based on
manually labeled samples. Then, unlabeled samples are grad-
ually added into the learning system and are classified by (18).
When the number of samples accumulates to a certain amount,
the system parameters (e.g., threshold 7') will be adjusted.
In (18), threshold T significantly affects the performance of the
system. The maximum between-class variance (Otsu) method
is adopted to establish an adjustment mechanism for the global
optimal threshold as follows:

T* = arg maxz (Di’f2 (M < Mj))
i#]

a7

(18)

19)
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Algorithm 1: Setting the Threshold
1 Input: Filgk=12,...ny)3

2 Output: T = t(e + 1);

3 for unlabeled flows Fy do

4 { Calculate Dif (Cf,, Cp));
5 Find min = mLin Dif(Cpk, Cp,) and compare with #(e);
6 if min < 7(e) then

7 ‘ Put F}, into class Mj;

8 end

9 else

10 Create new class My1;
11 Put F} into class M ;
12 end

13 end

14 Update centers {Pl}{‘zl;

15 do

16 | fo(e+1),0'(e+ 1)} = g X Dif*({Cp,, Cr}, C);

17 if [o(e+ 1) —o(e)| < O then

18 | e+ 1) =1(e) £ A;

19 end

20 Update centers {Pl}lL:1 and o’(e + 1);
21 while |o'(e +1) — o/ (e)| > ¢;

22 return T = t(e + 1);

Algorithm 2: Classification of Traffic Flows

Input: flow Fy;

Output: Re;

Obtain flow sequence (P;, 7;) by (1);

Partition flow sequence into subflows;

for subflow do

Calculate: // (see Section III-A)
Spatial granules R, (x) = |JP; € U,
Temporal granules 8;(y) = |JT; € U;

D-I-CIEE B N N N

end

Obtain spatial structure granules o, and temporal structure
granules o;; // (see Section I1I-B)

11 Establish GRM: Cp, = a, - oc,T; /I (see Section III-C)

12 for each class cj|j<;, do

Compare Cp, ‘with typical GRM: Cp;;

Difference between GRMs is Dif (CF,, Cp,); //(see
Section 11I-D)

—
=l

15 end

16 if Dif (Cg,, Cp,) < T; then

17 \ Re = 1; // F and P; are of the same class
18 else

19 \ Re = 0; // F and P; are of the different class
20 end
21 return Re;

where Dif(t; M; <> M) is the difference degree between M;
and M; when the threshold is set to 7. According to Otsu, the
maximum variance between classes implies the smallest false
rate: min(frr + far), where frr is the false rejection rate and
far is the false acceptance rate.

As in (17) and (18), the basic principle of classification
is based on k-means. In order to prevent parameter solidifica-
tion, here an improvement is made on the threshold adjustment
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using the idea of the genetic algorithm. According to biolog-
ical evolution theory, genes need to be crossed and mutated.
Therefore, the thresholds are randomly adjusted (i.e., the muta-
tion operation) to obtain new centers, and choose the better
one between the old and the new one. The procedure of thresh-
old adjustment is presented in Algorithm 1, where t(e) is
randomly adjusted to t#(e) = A. In the iterations, if the dif-
ference is obviously increased, the threshold and center are
updated. Otherwise, A is continuously indented by 1/2 (i.e.,
dichotomy). Thus, the iterative calculation of the threshold is
linearly convergent. The size of the convergence step is 0.5,
which means the interval will shrink by a ratio of 0.5 in each
iteration. In the worst case, the proposed algorithm (#(e) &= A)
degenerates back to the original k-means algorithm (¢(e)).

The complete classification process of GCCM illustrated in

Algorithm 2 is summarized as follows.

1) GCCM classify flow Fj according to its bitstream as in
line 3. Our method does not need the payload, and thus
it is able to deal with encrypted traffic flows as well as
unencrypted traffic.

2) In order to reduce the computation, flows are divided
into subflows [10] as in line 4. More details about the
settings of resolution N, for subflow can be obtained in
Section IV-B.

3) GRM, which is based on granules R, (x) and RX;(y) as in
line 6, is effectively cope with missing, incomplete, or
noisy data.

IV. CONFIGURATION AND PARAMETER SETTINGS
A. Datasets and Traffic Classes

In this article, four public datasets (i.e., UNB, UNIBS,
WIDE, and UCI) and two private datasets (i.e., NJUPT
and ISP) are used to evaluate the classification performance
as shown in Table II. The WIDE traces (http://mawi.wide.
ad.jp/mawi/) began on June 2020 and were taken from a
U.S.—Japan—Pacific backbone line (a 150-Mb/s Ethernet link)
that carries commodity traffic for WIDE organizations. The
UCI (http://archive.ics.uci.edu/ml/index.php) maintains 557
datasets, including the YouTube Collection Dataset, the Spam
Base Dataset, etc., from which various types of traffic are
obtained. The NJUPT traces are captured by Wireshark in
the campus network of Nanjing University of Posts and
Telecommunications. The ISP traces are collected at a lead-
ing Internet service provider of China (the name of the city is
omitted as required by commercial confidentiality). This traces
contain important surveillance and conferencing videos, such
as Ezviz and Gotomeeting. The UNB trace (http://www.unb.
ca/cic/research/datasets/vpn.html) has many network applica-
tions. Researchers are allowed to read the full payload trace.
The UNIBS traces (http://netweb.ing.unibs.it/ntw/tools/traces/
index.php) are collected from the edge routers of the cam-
pus network of the University of Brescia, which include the
applications, such as Edonkey, Skype, and BitTorrent.

In the field of traffic classification, one of the first important
issues is how to define the classes [40]. Most of the classes in
the prior works, such as [41] and [42] are application-based,
and consequently the traffic is labeled as YouTube, Facebook,
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TABLE 11 TABLE IV
DATASETS SETTING OF THRESHOLD

Dataset Year Linktype Volume Flows Thr,  Spatial granules : R, (x)

WIDE 2020 backbone 33GB 80K 1500

ucI 2020 edge 29GB 46k 1300 {---1194,1194,1194,1117,60,60,45,1141,82,1133,1141,- - - }

NJUPT 2018 edge 42GB 106k 1100

ISP 2018 backbone 36GB 77K 1000

UNB 2016 edge 28GB 65K

UNIBS 2009 edge 27GB 70K ggo {---{1194,1194,1194,1117},{60,60,45},{1141},{82},- - - }
TABLE III 10

5 {---{1194,1194,1194} {1117},{60,60},{45} {1141}, - - }

CLASSES OF NETWORK TRAFFIC

Coarse classes ~ NRQ classes Label  Typical Apps
Video Video conferencing 1 Gotomeeting
Telemedicine 2 FsMeeting
Instant messaging videos 3 QQ, WeChat
Group chat videos 4 Skype
E-commerce 5 Direct connect
Unidirectional videos 6 PPlive
Bidirectional videos 7 TVant
multidirectional videos 8 BitTorrent
BT video on demand 9 Jjvod
SD 10
HD 11 Youku, Tudou
UD 12
Video broadcast 13 UUSee
Video surveillance 14 Ezviz
Audio Audio conversation 15 QQ, WeChat
P2P audio 16 Peergine,
Online music 17 TTplayer,
Audio broadcasting 18 GoldenRadio
WB Web browsing 19 Baidu, Blogger
TC Text communication 20 Baidu, Blogger
Email Email 21 Gmail, Hotmail
File transfer FTP 22 Baidu Netdisk
P2P 23 Baidu Netdisk

Skype, QQ, Tik Tok, WeChat, etc. However, after carefully
observing the datasets, we have figured out the following.

1y

2)

One application might generate different types of bit-
streams. For instance, WeChat generates video and audio
flows. Clearly, although they are from the same appli-
cation, WeChat video and audio need to be classified
into different classes from the perspective of network
differentiated services.

Some applications, such as QQ and WeChat, which were
developed with a similar mechanism, often generate sim-
ilar types of video bitstreams. In summary, different
applications may generate similar types of bitstreams,
while the same application may generate different types
of bitstreams. Therefore, in this article, we define the
classes from the perspective of network resource and
QoS requirement (NRQ). This mapping between the
NRQ classes and typical applications is presented in
Table II1.

B. Parameter Settings

The most important parameters in this article are Thr,, Thry,
and resolution N,.

1y

Thresholds Thr, and Thr;, which control the size of spa-
tial granules and temporal granules, respectively, and
thus determine the capability of noise tolerance. These

2)

thresholds are easy to set in practice. Taking an email
flow as an example, the spatial granules under differ-
ent Thr, are demonstrated as shown in Table IV. No
matter what the value of Thr, is set to, X, (x) has only
three results. If Thr, is greater than 1000, the size of
granule will be too large: all packets are fused into one
granule, and thus the differences between granules for
classification cannot be obtained. If Thr, is lower than
10, the size of granule will be too small. In the extreme
case, each packet is a granule and thus granular com-
puting lost its function (note that granular computing
aims at analyzing objects with granules rather than indi-
vidual elements). Therefore, the suitable Thr, for email
flows locates between 10 and 1000. For other types
of traffic, a suitable Thr, is located between 10 and a
(300 < a < 1000). Therefore, threshold Thr, is finally
set to 100 in this article. Threshold Thr, is also based
on the same simple manual observation, and finally set
to 0.001 in this article. What needs to be especially
emphasized is that the size of granule will not increase
or decrease in linear manner with thresholds Thr, and
Thr;, but in a jumping manner. As shown in Table IV,
when Thr, is set to 10 to 1000, the spatial granules are
basically the same. Therefore, the performance of clas-
sification will not get much better when the settings of
thresholds Thr, and Thr; are further improved.

Resolution N,. The length of flows is of great dif-
ference. Short flows, such as email, may have only
a few hundreds of Byte. Many text flows are below
1 MB. Long flows (e.g., videos) are usually as large
as several MB. Longer flows (e.g., streaming media)
may last more than 1 h. In practice, long flows are
divided into subflows to reduce the computation as
shown in Algorithm 2 line 4. The resolution of sub-
flow is set to N, = 5000. These packets are enough
to obtain the comprehensive traits of flows. N, can
certainly be further reduced. However, with a smaller
number of packets, the difference degree of GRMs for
the same type of flows will become larger, leading to
unstable classification. Here, video flows are used to
study the impact of resolution N, on GRMs. The flows
are segmented into subflows with different resolutions
N; = {20000, 10000, 8000, 5000, 2000, 1000, 500, 100}.
The difference degrees of GRMs under N, = N; are
calculated by Dif(C;, Ci)|v,=n;). As shown in Fig. 3,
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Fig. 3. Setting of resolution.

when N, = N1 = 20000, the difference degree of GRMs
for all subflows Dif(C;, Cx) ~ 0.011 £ 0.002, which
is highly stable. With the decrease of N,, the differ-
ence degree of GRMs becomes relatively more unstable.
Especially, when N, = Ng = 100, Dif(C;, Cy) ~
0.413 £0.107. The difference degree of GRMs for sub-
flows becomes huge, which will cause great instability
in classification. We repeatedly tested and verified the
above situation with other classes of long flows, and
the results are basically similar. Therefore, the resolu-
tion for long flows is set to N, = N4 = 5000, which not
only ensures the stability of classification, but also only
requires a small amount of computation and less storage
space. For short flows (e.g., the email flow), the GRM
features are the same whether the resolution is 2000,
3000, or other. In order to take into account long flows
(upward compatibility), the resolution is finally set to
5000 for all flows.

C. Metrics of Traffic Classification

Precision, recall and Fl-score are commonly used to mea-
sure the accuracy of traffic classification model [6]. Here, we
also use them to evaluate the classification performance.

1) Precision: The number of flows correctly classified as a
class divided by the total number of flows classified as
that class.

2) Recall: The number of flows classified as a class divided
by the total of flows actually belonging to that class.

3) FI-Score: Be defined as a harmonic mean of precision
and recall as follows:

precision - recall

Fl=2. (20)

precision + recall

V. PERFORMANCE EVALUATION
A. Evaluating the GRM of Single Flow

In this experiment, a single video flow generated
by Youku is used to demonstrate how to calculate the
GRM. By packet capture software (i.e., Wireshark), we

obtain the size and arrival time of each packet of flow
Fy: {(470, 2.649745), (462, 2.650173), (1494, 2.650256), .. .,
(68, 359.282943), (1494, 359.434729), (1494, 359.493700)},
and thus get Tj, P; as in (1). Then, the following three steps
are executed.
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Fig. 4. 3-D surface of C.

Step i: Scanning T;, P; to obtain the flow granules.
According to (2) and (3), and (4) and (5), the neighborhood
members are aggregated to form the spatial and temporal
granules

N, (x) = {{470, 462}, {1494}, ..., (68}, {1494, 1494}
R:(y) = {{0.000428, 0.00083, 0.00045}, ... ., {0.151786}, {0.05897}}.

Step ii: Observing the above flow granules at various scales
to form structure granules. For different observation scales
m=1,2,..., [logN,], the structure granules &, and o; are
generated by (8) and (9)

a, = {32.345, 27.299, 25.560, 24.677, 24.159
23.814,23.567, 23.379, 23.225}

a; = {9.326,7.229,5.198, 4.704, 3.382
2.152,1.016, 0.926, 0.824}.

Step iii: Generating GRM. According to (10), GRM is
finally calculated to be C = a,a;'. The corresponding
three-dimensional (3-D) surface of C is shown in Fig. 4.

As shown in the first step, the spatial and temporal gran-
ules have different dimensions, so the dimensions of their
corresponding structure granules are also different, which con-
sequently causes the GRMs to have different orders. That is,
for Cx.y, the values of X and Y are different. As discussed
in Section III-D, the two GRMs should be compared at the
same observation scale. Thus, the dimensions are selected to
bem=1,2,...,[logN,] for all flow granules.

B. Dealing With the Noise

Based on granular computing, flow granules makes GCCM
less sensitive to missing, incomplete, or noisy data. Here, we
take the spatial granules of an email flow as an example to
demonstrate how flow granules eliminates the noise. The raw
data {P;} captured by Wireshark is

{60, 76, 60, 239, 84, 76, 90, 67, 83, 67, 460, 1456, ...}. (21)

Suppose Pg is lost and P7 is varied by noise. That is, (21) is
changed into

[60,76, 60,239, 84,3€ 170, 67, 83, 67, 460, 1456, . ...}.
(22)
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Fig. 5. Dealing with noise by flow granules. Fig. 5(a) and (b) represent the burst shape of the raw data and the noisy data, respectively. The noise generates
obvious deviations in burst shape. Fig. 5(c) and (d) show the burst shape of the raw data and the noisy data by using the technique of granular computing.
These two burst shapes are basically the same. Flow granules can deal with noise.

TABLE V
CONFUSION MATRIX (%)

Class | Video Audio WB TC FTP Email | Pre.
Video 9543 48 125 29 229 26 95.43
Audio 26 9714 194 11 34 21 97.14
WB 102 196 9471 91 26 114 94.71
TC 11 18 145 9525 24 277 95.25
FTP 194 22 12 38 9707 27 97.07
Email 18 26 134 277 13 9532 95.32
Rec. ‘ 96.45 96.91 9395 9553 96.75 95.35 ‘

Based on the technique of granular computing in (2), the
spatial granules of the raw data and noisy data are

{{60, 76, 60}, {239}, {84, 76,90, 67, 83,67}, ...} (23)
{{60, 76, 60}, {239}, {84, 170, 67, 83,67}, ...}.  (24)

After the averaging processing according to (9), we have

{{65, 65, 65}, {239}, {78,78,78,78,78,78}, ...} (25)
{{65, 65, 65}, {239}, {94, 94, 94,94, 94}, . . .}. (26)

In order to display the deviations in burst features between the
raw data and the noisy data, we draw the burst amount between
packet sizes (i.e., the absolute value of difference between two
adjacent packet sizes) as shown in Fig. 5(a) and (b). Compared
with the burst shape of (21) in Fig. 5(a) (the raw data), the
burst shape of (22) in Fig. 5(b) (containing noisy data) is
changed a lot, which will lead to some differences in burst
index a. Actually, the proposed technique of granules will
also lead to some deviations to the raw data in burst index
as shown in Fig. 5(c). However, without granules, the noise
will generate even greater deviations in burst index as shown
in Fig. 5(b). By using flow granules, the burst shape of (26)
in Fig. 5(d) remains consistent with that of (25) in Fig. 5(c),
and thus their burst index « are basically the same. That is,
the proposed flow granules can deal with such incomplete and
noisy data.

C. Performance of GCCM

Generally, classification models can be divided into two
major categories: 1) Probability-based models (e.g., random
forest). These models predict the probability that samples
belong to a class. The output is the probability and 2) target-
based models (e.g., k-means). These models directly figure out

whether a sample belongs to a class or not. There are many
metrics to evaluate the performance of a classification model.
Note that ROC and AUC are based on probability models.
Therefore, the commonly used metrics of precision, recall, and
F1-score are exploited to demonstrate the performance.

First, 3000 flows are randomly selected from NJUPT,
including video, audio, Web browsing (WB), text communica-
tion (TC), FTP, and email, with 500 flows for each class. The
2-fold cross-validation is carried out on these flows. The final
result is obtained by averaging the results of 20 runs, which is
presented in Table VI. The proposed method works well for
each type of traffic. The highest F1 is 97.25%, and the average
F1 reaches 95.95%. Even the worst F1 is still above 94%.

Table V presents the confusion matrix of the classification
results, where we have aggregated the results across all 20
runs. The small differences observed between Tables V and VI
are due to the average of ratios not necessarily being equal to
the ratio of sums. The ratio of video flows being identified as
video is 95.43%, and the ratios of video flows being misiden-
tified as audio, WB, TC, FTP, and email are 0.48%, 1.25%,
0.29%, 2.29%, and 0.26%, respectively. The ratio of audio
flows being identified as audio is 97.14%, and the ratios of
audio flows being misidentified as video, WB, TC, FTP, and
email are 0.26%, 1.94%, 0.11%, 0.34%, and 0.21%, respec-
tively. From Table V, we can also compute the frr(= 1 — pre.)
of video, audio, WB, TC, FTP, and email flows as 4.57%,
2.86%, 5.29%, 4.75%, 2.93%, and 4.68%, respectively, and
the far(= 1 —rec.) for the six types of flows are 3.55%, 3.09%,
6.05%, 4.47%, 3.25%, and 4.65%, respectively. These results
are consistent with the Otsu scheme given in (19), which can
avoid the local worst case.

Genuinely, these sums and averages in Tables V and VI
cannot reflect the differences between each run, so the 95%
confidence intervals are plotted as error bars in Fig. 6 to
demonstrate the differences between each run. Here, we pro-
vide the overall accuracy of GCCM in classifying video, audio,
WB, TC, FTP, and email flows from different dadasets. For
example, the overall F1, precision, and recall for UNIBS are
95.13%, 93.53%, and 96.62%, respectively; the corresponding
deviations are 1.71%, 2.29%, and 2.12%. It can be seen that:
1) GCCM shows a stable classification performance with slight
deviation and 2) when different datasets are tested as shown
in Fig. 6, the classification results do not exhibit much differ-
ence. Therefore, Section V-D will not discuss the classification
performance under different datasets.
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TABLE VI
COARSE CLASSIFICATION RESULTS

GCCM \ FSM [10] \

FSIP [9] | SFNN [8] | DPI [4]

Pre. Rec. | Fl Pre. Rec. | Fl

Pre. Rec. | FI1 Pre. Rec. | FI Pre. Rec.

95.97
96.78
94.21
95.53
97.25
95.64

94.95
96.63
95.12
95.27
97.35
95.74

96.78
97.02
93.09
96.12
96.92
95.39

96.08
95.35
95.88
94.12
95.63
96.76

96.77
96.67
96.28
93.26
95.53
96.89

95.39
94.11
95.48
94.97
95.82
96.63

95.75
95.87
95.03
94.82
95.54
94.71

96.87
97.55
94.34
93.81
95.42
93.58

94.63
94.26
95.79
95.93
95.66
95.85

97.49
99.35
86.35
98.81
91.69
92.35

96.93 98.06 | 95.87
99.37  99.34 | 99.27
88.60 84.21 | 98.18
99.17 98.45 | 99.12
90.23  93.20 | 97.07
9195 9276 | 96.23

93.03
99.19
98.97
98.34
99.52
98.29

98.91
99.35
97.39
99.90
94.73
94.26

i
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[ Rec.

0.7
0.6
05F

04

03

UNIBS UNB  NJUPT ISP WIDE ucl

Fig. 6.

Classification performance of GCCM.
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Fig. 7. Classification performance for fine classes.

D. Comparisons

We further test several state-of-the-art schemes, including
FSM [10], FSIP [9], SENN [8], and DPI [4]. Application
generates traffic under specific communication protocol and
transmission pattern, etc., so traffic flows always have differ-
ent shapes. In [10], the fractal characteristics were used to
describe the shape of the flow and thus to facilitate classifi-
cation. Wu et al. [9] proposed the method FSIP to classify
network flows, where instance purification aims to remove
redundant SFs and thus obtaining an effective feature set
to achieve accurate classification. Kornycky et al. [8] made
use of the well-known vector quantization algorithm SFNN
to investigate traffic classification for encrypted WLAN data.
Yun et al. [4] exploited the DPI, i.e., the semantic information

in protocol message formats, to identify real-world network
traces.

The classification results are presented in Table VI. Some
methods show wonderful performance for certain classes, e.g.,
the F1 of SFNN for Audio is 99.35%. It can be seen that DPI,
based on the payload to achieve classification, is relatively
more accurate than other methods. Most of the recall values
of DPI are higher than other methods. The mean Fl-scores
are 95.9%, 95.64%, 95.29%, 94.34%, and 97.6% for GCCM,
FSM, FSIP, SFNN, and DPI, respectively. In general, all these
methods achieve good performance. This is mainly because
there are only six coarse classes in this experiment. In the next
section, the classification performance of the five schemes for
23 fine classes will be further tested.

E. Fine Classification

In order to verify whether these schemes can adapt to fine
classification, more classes, e.g., video streaming and online
music (more details on the fine classes can be obtained in
Table III), are randomly selected from the datasets, with 500
flows for each class. In Fig. 7, the x-axis represents the label
classes and the y-axis is the F1-score. Note that F1 is the har-
monic mean of precision and recall. A high F1 score indicates
high precision and recall. Therefore, the precision and recall
results are no longer presented in the remainder of Section V.

As shown in Fig. 7, the DPI scheme exploits the seman-
tic information of the payload to identify traffic, and thus is
relatively more accurate than other methods when classifying
unencrypted traffic. However, it cannot work for encrypted
flows from classes 7 to 23. The F1-scores of SFNN for the 23
classes are around 0.8, and that of FSIP is slightly higher. FSIP
removes redundant SFs and thus obtains an effective feature set
to achieve accurate classification. However, FSIP implements
feature purification under given classes. Consequently, those
extracted SFs are only effective for a specific set of classes. If
the classes change, the classification system needs to be com-
pletely retrained. In contrast, the average F1 of FSM is as high
as 0.9, which is comparable to that of GCCM. The fractal char-
acteristics are different from the commonly used traditional
SFs (e.g., the mean, variance, and kurtosis of packets) in that
they capture the nonlinear characteristics of traffic, which do
not change much as the classes of flows are increased, and
thus they work well in fine classification. However, FSM can
only work well for flows under smooth network conditions. In
dynamic network environments, especially when noise occurs,
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the fractal characteristics are changed, resulting in a decline
in classification performance.

FE. Adaptability to Variations

This section continues to use the flows as in Section V-E.
In order to simulate network noise and congestion, we make
some random adjustments of packet loss and delay for the
original traces. In practice, there are two main technical rea-
sons for packet loss rate exceeding 5%: 1) hardware failures
and 2) network attacks. The research of this article aims at nei-
ther hardware failure nor network attack detection. Therefore,
The packet loss rate is set within 5% to simulate the vari-
able network environment with normal congestion. Note that
traffic will be interfered and varied during transmission, i.e.,
network noise. To simulate noisy data, we further modify and
add some extra packets. In each flow, the intensity of packet
modification is also controlled within 5%. Then, these flows
are used to test whether the above classification methods have
resilience to noise and tolerance to congestion.

As shown in Fig. 8, DPI, based on the payload to achieve
classification, is not affected by network dynamics (e.g., con-
gestion and traffic noise). Therefore, DPI is more accurate
than other approaches when classifying unencrypted traffic.
However, it cannot work for the encrypted traffic. FSIP, SENN,
and FSM present obvious decrease in Fl-score. These SFs
and fractal characteristics, which are obtained in a friendly
network environment, does not work well in an adversar-
ial network environment. Take video flow as an example. In
a good network environment, the fractal characteristics 7(q)
(g = 1,2,3,4,5) are 1.395, 4.715, 5.265, 7.152, and 9.609,
respectively. While in the bad network environment, they are
changed to 1.203, 4.158, 5.594, 7.863, and 9.472, respec-
tively. Actually, the fractal characteristics 7 (q) for the flows are
always varying under different network environments, which
results in unstable classification results. The F1-scores of the
proposed scheme are around 0.8, consistently higher than the
scores of other baseline methods. GCCM analyzes deep into
the trajectory of change for different flows, and the neigh-
borhood granules can effectively deal with noisy and missing
data. Therefore, GCCM is more suitable and robust for online
classification in dynamic network environments.

G. Time and Space Complexities

In this section, 1000 flows are used to evaluate the classi-
fication time. As shown in Fig. 9, it takes GCCM 1.527 s
for six classes, 1.653 s for 12 classes, and 1.769 s for 20
classes. It can be seen that GCCM has lower computation
times than FSM, FSIP, SENN, and DPI. The results illustrated
in Fig. 9 agree with the theoretical analysis in Table VII. The
computation of GCCM is mainly involved.

1) Data Preprocessing: Flow granules are formed in this
step. According to (2) and (3), and (4) and (5), flow gran-
ules can be obtained by just scanning the flow sequence,
so the computational complexity is O(N,), where N, is
the resolution of the flow sequence.

Obtaining Structure Granules: Calculations of «, and o4
need O(N,(logm)). Here, the observation scale is set to
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TABLE VII
COMPARISON OF TIME AND SPACE COMPLEXITY
| Time Complexity | Space Complexity
GCCM O(LNyNy) O((L + N¢)(log(Ny))?)
FSM O(LN; log(Ny/s)N¢) O((L + N¢)N, log(Ny))
FSIP O(J?2LN;Ny) O(JL(Ns + Nt))
SFNN O(JLNstNt) O(JNf(Ns + N¢))
DPI O(IKLNW) O(KL+ N:W)
Parameters | I: no. of iterations J: no. of features
K: no. of keywords L: no. of classes
Ny: no. of feature values N,-: resolution of flows
Ns: no. of sample flows N¢: no. of testing flows
S: no. of segments W: no. of grams
m = [log N,] as in Section V-A, so the time complexity
is O(N, (log(log N,))) ~ O(N,).
3) Generating GRM: The computation required to generate
the two-dimensional (2-D) matrix GRM is O((log Ny)2).
4) Classifying Flow: The main computation of this step is

to calculate the difference degree Dif(Cr,, Cp,) between

flow F; and center P;. Note that tr(ogee, 1) = ooy T, S0

the calculation of (16) is greatly simplified. The dimen-

sion of structure granules equals to the observation scale

[logN,], and thus the time complexity is O(LlogN,),
where L is the number of classes.

Therefore, the complexity of classifying flow Fj is O(N, +

(log N)? + LlogN,) =~ O(LN,). Here, the overall time com-

plexity is mainly dependent on the calculation of structure
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granules. Classification of N, flows will result in computa-
tion of O(LN,N;). In order to calculate the difference degree
Dif(CF,, Cp,) between flow Fy and center Py, their correspond-
ing GRMs need to be stored. The observation scale is set at
m = [logN,]. Accordingly, the required space for GRMs is
O((log N,)?). There are L centers, plus N; flows, so the overall
space complexity is O((L + Ny)(log Nr)z).

According to the previous experiments, parameters Ny, Ny,
and N, are fixed. Here, we only pay attention to variable
parameters. As shown in Table VII, the time and space com-
plexities of GCCM and FSM depend only on L, while those
of the other methods depend not only on L, but also on other
factors (e.g., J and Ny). As the number of classes (i.e., L)
is increased from 6 to 20, J will also increase as a result.
Therefore, GCCM has the lowest time and space complexity.

VI. CONCLUSION

In this article, we conducted an in-depth analysis of traf-
fic classification, and found that the existing flow features
are inadequate for online classification under highly vary-
ing network environments. Taking the behavior features as an
example, they are based on the sequential message pattern
between packets, making it challenging to work well for traf-
fic with missing data. GRM is presented to address this issue,
which included two core stages. First, two types of flow gran-
ules were defined to make the model less sensitive to noise
and missing data. Therefore, it can work well in poor network
environments. Second, the spatial and temporal correlations
between flow granules are explored to establish GRM, where
the relationship between packets was not isolated but closely
correlated. Many SFs can be treated as a special case of GRM.
GRM describes the flows more comprehensively, and thus can
classify the flows more accurately.

However, there are some issues that need to be further
explored in the future.

1) High-dimensional GRM (HGRM). This article only
established a 2-D GRM from the perspective of time
and space. We hope to explore other useful observations
to build an HGRM to further improve the classification
accuracy.

2) The application scope of GCCM. GCCM can be applied
to a series of classification tasks, such as classification
of encrypted, unencrypted, unknown, and even anomaly
traffic flows as long as they have certain flow shapes.
For the traffic flows that have time-varying shapes (e.g.,
some malware traffic), we will further explore novel
flow features and design a new model to achieve good
identification in our future work.
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