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Resonant Self-Interacting Dark Matter from Dark QCD
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We present new models utilizing QCD-like dark sectors to resolve small-scale structure problems. These
models of resonant self-interacting dark matter in a dark sector with QCD are based on analogies to the
meson spectra in standard model QCD. We introduce a simple model that realizes resonant self-interaction
(analogous to the ¢-K-K system) and thermal freeze-out, in which dark mesons are made of two light
quarks. We also consider asymmetric dark matter composed of heavy and light dark quarks to realize a
resonant self-interaction (analogous to the Y (45)-B-B system) and discuss the experimental probes of both
setups. Finally, we comment on the possible resonant self-interactions already built into SIMP and ELDER
mechanisms while using lattice results to determine feasibility.
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Introduction.—The study of dark matter (DM) has been
one of the most important topics in particle physics,
astrophysics, and cosmology. Although there is over-
whelming evidence of DM, we know next to nothing
about its nature. Observations involving halo or subhalo
structures [1] may shed light on this mystery. Historically,
core versus cusp [1-6], too-big-to-fail [7], and diversity
problems [8] have indicated the potential existence of DM
self-interaction (see, e.g., Ref. [9]), although baryonic
feedback [10-13] provides an alternative explanation of
these small-scale puzzles.

The Bullet cluster [14-16], along with halo shape
observations [17,18], sets an upper bound on DM self-
interactions around ~cm?/g. Given that a larger cross
section could be preferable for smaller-scale halos [19],
introducing a velocity dependent self-interaction to explain
the small-scale structure issues is well motivated.

The preferred DM self-interaction strength is near that
of nuclear interactions [9]. Thus, it is interesting to
consider a QCD-like theory in which such strength of
interaction emerges. Additionally, one of the simplest
ways to achieve such velocity dependence solely in the
dark sector is via resonant scattering [20], although one
can also achieve that by exchanging a light mediator
through t-channel processes [19]. Suppose there is a
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resonance in the DM self-interactions just above the
threshold of twice its mass. Then this resonant self-
interacting DM may miss this resonance in systems with
large velocity dispersions, such as clusters of galaxies,
while it may frequently hit the resonance in systems with
small velocity dispersions, such as dwarf galaxies. This
would lead to cross section enhancement at small velo-
cities, yielding the desired velocity dependence. This
solution typically requires that the resonance have a mass
(107 — 10™*)mpy; above twice the DM mass.

In this Letter, we will consider multiple models with
mediators just above the threshold which explains such
resonances. To achieve these resonances, we need look no
further than standard model (SM) QCD in which many
cases of such resonances exist naturally. Perhaps the most
famous example of near-threshold resonance is in the triple-
a reaction in stellar burning, aa — %Be, a®Be — '°C*
(7.66 MeV 07 excited state of '2C),

m(®Be) — 2m(a)

= 0.000012, 1
m(*Be) m

m('*C*) — m(®Be) — m(a)
m(12C*)

= 0.000026. (2)

This example is often invoked as evidence for the anthropic
principle [21,22]. Even though they are less pronounced,
there are numerous examples of near-threshold resonances
in QCD, such as
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m(¢) — 2m(K°)

gy 0 (3)
m(D%) —mn(ﬁéDOf)) m(x’) _ 0.0035, (4)
m(By)) —Z((;:’:)) —m(K%) _ o011, (5)

m{T(4S)] —2m(B%) _ o010, (6)

m[Y(4S)]

Some of these illustrative near resonances are shown in
Fig. 1. Most examples are not pure accidents: QCD
dynamics require there to be such near-threshold resonan-
ces. In a heavy-light meson (Qg), its mass is essentially the
sum of the heavy quark mass mg, and the effect of the
strong interaction ~Agcp. On the other hand, for the heavy-
heavy meson (QQ), its mass is twice the heavy quark mass
2m and the effect of binding. In the limit my > Aqcp, it
is clear myp ~ 2mg; is the zeroth-order approximation. To
be more precise, we need to understand the quarkonium
potential, discussed in the section about the heavy quark
model. On the other hand, the mass splitting between D*
and D is due to the hyperfine interaction between magnetic
moments and is approximately ~A(2)CD /mg which is not
related to m, ~ (m qAQCD)l/ 2. We consider this example to
be a pure accident.

In the following sections, we discuss three specific
scenarios. First, we outline a model with two light quarks,

2mpo ~ My3770) ~- /

2mpo = Myus)

IO—II“II T

*V@S)

\ 2mgo = my

Meson Mass [GeV]

| @ SM value

0.01 0.1 1
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FIG. 1. A selection of the SM meson spectrum as a function of
the larger quark mass in each meson, m,,. Extrapolations of twice
the pseudoscalar meson mass (PS + PS), of the first vector meson
mass [V(1S)], of the second vector meson mass [V(2S)], of the
third vector meson mass [V(3S)], and of the fourth vector meson
mass [V(4S)] are shown. For my = m,, we show 70 as well as the
average masses of the first three p and w states. For my = my, we
show K? and the first three ¢’s. For my = {m,, m,}, we show D°
and B° as well as the first four y and Y states, respectively.

with one much heavier than the other, in which dark
“kaons” freeze out to the correct relic abundance and the
resonance is analogous to KK~ — ¢. We then discuss an
asymmetric DM model in which DM particles are mesons
with one heavy and one light quark, and the resonance is
similar to B’B? — Y(4S). The closeness to threshold A =
1-2mpg /my in both must be quite significant, where mpg is
the mass of the pseudoscalar meson and my, is the mass of
the vector meson. Finally, we describe a model directly
based on the strongly interacting massive particle (SIMP)
framework discussed in Ref. [23] and use lattice results to
determine the parameters for the resonance. The dark QCD
confinement scales in our models are above ~10 MeV, and
any excess entropy in the dark sector has time to safely
transfer to the SM prior to the neutrino decoupling and the
big bang nucleosynthesis (BBN). One other recent work
connecting dark QCD and small-scale structure can be
found in Ref. [24], but their dark QCD scale is significantly
lower than that of SM and is drastically different from
our setup.

With our discussions of QCD mesons and resonances
complete, future references to quarks (e.g., #) and mesons
(e.g., K) in this Letter will refer to dark sector analogs to the
SM states unless otherwise noted.

Light quark model.—We first assume a QCD-like gauge
theory SU(3),, in the dark sector. DM is composed of dark
“kaons” [25] composed of two dark quarks with masses
much smaller than the dark QCD scale, labeled u and s,
with mg > m,,. The quarks are charged under a dark U(1),
as u(+1) and s(0) which is broken, resulting in a massive
dark photon Aj. We also assume a kinetic mixing between
U(1)p and U(1)gy, of the form £ D 1/2-¢eF,, F};.

DM self-interactions: The desired resonant self inter-
action is provided by the dark ¢ exchange saturating the
Breit-Wigner cross section in the P wave. We assume A ~
1077® for these dark mesons [20]. We also need
(60/mpym) ~ 0.1 (cm?/g) in order for the low-velocity
limit of the self-interaction cross section to fit small-scale
structure observations [20]. Thus, we calculate the 4-kaon
interaction in the dark sector. The self-interaction mediated
by Ap is negligible for the parameters we consider.

We define U = e*"//x, 1= KT =1K2%, 2Tr(I1?) =
K“K*%; f is the dark kaon decay constant. First, consider
the nonderivative couplings. The relevant chiral Lagrangian
terms are

1 2 12 " 0 " 0
ﬁ__mTr[UT(m >+(m >U] (7)
2mu + my 0 mg 0 my

1 (2m2
S —mLKYK 4 (mK

(G werer )

The relevant derivative couplings are
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fx
L =Emo,utou
2
— 0,k K- — 27K (koK)
3fk

_ 2}10%((K+K-)aﬂaﬂ(1<+1<-) +O0(K%).  (9)

We assume K is heavier than K= by ~10% (which can
be induced by the L, term in the chiral Lagrangian [27-
29]), so that only the K states make up DM. From here on,
we define my = mg= to be the masses of the dark charged
kaons. The neutral kaon is unstable and cannot be a DM
candidate because it can decay into, for example, four
electrons, through an off shell dark photon. In halos today,
there are only K= interactions. After taking into account the
derivative terms, the self-interaction cross section for
K*K~ — KYK™ is ogx- = (1/167)(m% /£ ).

To match the fitted low-velocity limit of the self-
interaction cross section [20], we set (og/mpym) =
Nogek-/mg) =0.111002 cm?/g. mpy = my is the DM
mass, and o, is the low-velocity limit of the DM self-
interaction cross section.

Requiring the correct o,/ mpy; in our model fixes the re-
lation between myg and fg, ~(0.07 £0.01) GeV (mg/
GeV)!/4. If we match this to the SM ratio of mg/fx ~
0.32 [30], we get mg ~ 100-160 MeV for the dark kaon
(region I). On the other hand, if we consider the SM ¢-K-K
system, its y = g%/(384x) ~ 0.02 and mg ~ 0.9-1.5 GeV
(region II). gy is the coupling constant, and the definition of
y can be found in Ref. [20]. We delineate the ranges of my
which correspond to each of these two assumptions in
Fig. 2. Even though these regions do not overlap, one could
consider a different gauge group or simply a different N,
(see the Supplemental Material [31] for more discussions,
which also includes Ref. [32-49]). For example, the
regions could move closer [50] for N, = 2.

The DM self-interaction mediated by the dark photon A
is suppressed as (my/m,, )", and the interaction strength is
much smaller than that of four-meson interaction so that it
can be neglected in this consideration.

Freeze-out: Here, we consider the process that sets the
DM relic abundance. We assume Aj, is heavier than K.
Since A, is heavier than K+, before K° decays (suppressed
by one loop, &*, and mgﬁ), it annihilates via K°K°? —
KTK~. The annihilation K*K~ — ApA, — ete ete”
can also happen, but it is suppressed by &*, much smaller
than the freeze-out cross section. The primary freeze-out
process we consider is thus KT K~ - A, — SM.

The generic choice of m,, and my is mostly excluded in
our parameter region of interest. However, one can invoke
another resonance to open up the parameter space. In
addition to the resonance in self-interactions induced by the
vector meson, one can also arrange the dark photon mass so
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FIG. 2. The most motivated mass ranges for resonant self-
interaction, analogous to the ¢-K-K system discussed in
the text, are enclosed by red dashed and dotted lines. The
green curves give the correct relic abundance with A, =
(m3, —4mipy) /4mpy, = 0.1 and 0.01, reproduced from Ref. [51].
The purple regime is constrained by DM-electron direct detec-
tion; the gray regime is the approximate accelerator bound (see
text for discussions), and the blue region is constrained by the
DM-nucleon scattering (including the Migdal effect).

that it goes on resonance for the freeze-out process, to allow
smaller Y to produce the correct relic abundance and avoid
accelerator as well as direct-detection constraints [51-55].
We define Ay, = [(m} —4my)/4mi]. In Fig. 2, we show
the A resonant cases with A, = = 0.1 and 0.01, along with
constraints from direct-detection [56-60] and accelerator
experiments [61-66]. We assume my, = 2my for the
direct-detection constraints and rescale the accelerator
constraints accordingly [67]. We also checked that this
model is safe from the cosmic microwave background
(CMB) and halo constraints.

Heavy quark model.—We want the near-threshold res-
onance to emerge directly from the theory for the model
discussed in this section. We consider one light quark « and
two heavy quarks ¢ and b and assume the ¢ and b
abundances are fixed by their asymmetries, n. = nj.
There are many ways to populate asymmetric DM (see,
e.g., [68-70] and references therein) which will work for
this GeV scale DM [71]. So, we remain agnostic about the
origin of the asymmetry. We also assume the heavy quarks
have a common mass, m, and refer to either heavy quark
as Q. This assumption is unnecessary for successful
phenomenology, and is made only for the simpli-
city of discussions. The resonance is D°(cit)B* (ub) —
Y (cb)(nS) for some excited level n, and mp, = my is the
DM mass for these heavy-quark mesons. Despite being

172001-3



PHYSICAL REVIEW LETTERS 128, 172001 (2022)

motivated by the presence of the heavy quarks, this
resonance requires some level of accident which we proceed
to estimate. The relic abundance of the DM particles, D% and
B, are set by the asymmetry of n. and n;,.

We introduce a massive dark photon 7’ corresponding to
a broken U(1)" dark gauge group which the lightest
pseudoscalar dark meson, x(@u), decays through
Ref. [73]. We assume a similar coupling as the SM z°
to two photons and that the decay proceeds through a
heavy-fermion loop. Note that " here is different from the
dark photon A introduced in the section about the light
quark model since y' decays entirely to visible SM
particles. We assume a kinetic mixing between U(1)’
and U(1)gy of the form £ D 1/2-eF*™F),.

Heavy-light meson and quarkonium spectrum:
Following the discussion of Refs. [78-80], interactions
of heavy quarks can be described by the nonrelativistic
Schrodinger equation. The ch bound states have the
logarithmic potential V(r) = Cln(r/ry), where C is a
parameter that can be calculated in lattice QCD and r
is the distance at which the log potential is equal to the
threshold necessary for Y(ch) to decay into D°(cit)+
B*(ub). The level spacing of these quarkonium excited
states is independent of m, [see Eq. (8) of Ref. [78] ]:

4n
My (s) — my(is) =~ Cln <?> (10)

in the large n limit. The mass splitting is

1 1
A, = My(ys) = My((n-1)s] = C[ﬁ + 0(;)} (11)

The summed mass of the mesons with one heavy quark is
[see also Eq. (6) of Ref. [78]]

1 m
mp + mpg — My(is) :A+2C1H<AQ>’ (12)

assuming mg > A, where A is the dark confinement scale
[81]. The intersection of the summed scalar meson masses
(black) with the different heavy quarkonium excited states
(purple) is where resonance occurs as shown in Fig. 3.
The tuning to be on resonance can be reduced to
A x (mg/A,), where A is at the level of 10778 [20]. In
the large n limit, assuming the dimensionful parameters
A ~ C ~ A for simplicity, the m, which allows the sum of
the pseudoscalar mesons’ masses to fall between the n — 1
and n levels is mg ~ n*(4/3e)*A [by solving Eqgs. (10)-
(12)]; e is the exponential. The requisite level of accident
(E.T.) to achieve the desired resonant self-interaction,

mQ 4\2 3
FT.=Ax—=A — , 13
X3 X(3e> n (13)
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FIG. 3. The crossings of the sum of heavy quark pseudoscalar
meson masses and heavy quarkonium excited states for different
heavy quark masses, m.

can then be reduced (getting closer to an order one
number). When n > 10, the level of accident is reduced
by as much as 10°.

Log potential region: When m,, is significantly larger
than A, the quark potential is Coulombic for small n. The
quark potential only becomes logarithmic, as assumed
above, for large enough n, which can be estimated as
follows. The Bohr radius of the system is a = 1/(a,my),
where «a, is the dark gauge fine structure constant.
The energy levels are roughly E, ~ (amp/n*) in the
Coulombic region, so (a;mgy/n*) > A corresponds to
the log potential region. Thus, for my 2 10A (assuming
a, ~ 1), n needs to be larger than at least 4 for the quark
system to have a logarithmic potential. This is consistent
with our analysis above.

Experimental signature: We assume the dark 7 and the
dark photon have the same couplings as their SM counter-
parts so that the former decays to the latter quickly after
confinement. The dark photon must further decay to the
SM to successfully transfer the excess, symmetric entropy
from the dark sector prior to SM neutrino decoupling.

As mentioned previously, we assume n. = nj for sim-
plicity. Now, let us further assume that n. + nj = ng gy,
where the latter is the asymmetric SM baryon number
density. This could easily occur in a full model which
includes a mechanism for all three asymmetries to be
generated simultaneously. Requiring the asymmetric
heavy-light mesons to reproduce the observed DM relic
abundance yields mpy = m,(Qpyh? /Qp spmh?*), where m,,
is the proton mass. The DM mass mpy = mp = mg ~ mg
in the heavy-quark limit. With n, and Eq. (13), we can
write the required dark confinement scale as A = mg(3eA/
4 F.T.)%3 ~ m,(Qpm/Qpsm)(3eA/4 BT.)*3.

To enable the dark z to decay to a pair of dark photons,
we require 2m, < m, ~ A. Thus, the upper bound on the
dark photon mass is set by the level of accident we permit
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FIG. 4. The parameter space in the heavy quark model in which
the dark photon decays quickly enough to transfer the dark z’s
entropy before neutrino decoupling. Existing constraints [8§2-91]
are dark gray while projected sensitivities of future experiments
are shown as dashed lines [83,91-104]. The dashed vertical lines
show different levels of accident (F.T.) required to achieve the
necessary resonant self interaction, as defined in Eq. (13).

associated to A. In Fig. 4, we show the dark photon
parameter space in which the dark pions decay to dark
photons which in turn decay to SM particles fast enough.
We also show the relevant current and future experimental
probes.

Based on this specific dark-photon setup, the reduction
of the level of an accident is at best ~103, not the value of
10° discussed below Eq. (13). However, one can consider
other similar models to achieve a better reduction. For
example, the dark pion can decay to completely secluded
dark-sector particles (thus allowing a smaller A), and a
better reduction of accident can be achieved. The secluded
scenarios could, for example, affect the effective number of
relativistic species and produce interesting signatures in
cosmological observations (including BBN and CMB
measurements), which are beyond the scope of this paper.

SIMP & ELDER DM as resonant SIDM.—Another
natural place to expect resonances is in dark sectors with
confining gauge groups. Two classes of such dark sectors
that have their own strong motivations are strongly inter-
acting massive particles (SIMPs) [105] and elastically
decoupling relics (ELDERs) [106]. It is possible that the

dark vector resonance we require to achieve the desired
self-interacting dark matter (SIDM) behavior is already
realized in SIMP or ELDER scenarios. For concreteness,
we consider one of the simplest SIMP realizations where
the 3 — 2 process is realized by a Wess-Zumino-Witten
term in a dark chiral Lagrangian where the dark pions
compose DM [23]. Motivated by specific realizations [48],
we further restrict our consideration to an Sp(4) gauge
group with Ny = 2 fermions in the fundamental, so that the
flavor symmetry is SU(4)/Sp(4) and there are five equal-
mass pions comprising DM.

For this gauge and flavor structure, there exist lattice
results for the corresponding spectra and decay constants
after confinement in the dark sector [107,108]. In particu-
lar, there exists a single point at which the lightest
pseudoscalar mass, i.e., the dark pion, is exactly half the
mass of the lightest vector resonance. At this point, the ratio
of the pseudoscalar mass to its decay constant is m,/f, =
1.9 [109].

At first glance for this ratio, we find that the SIMP
mechanism does not quite work as the necessary my [23]
causes the DM self-interaction to be too large and excluded
by the Bullet Cluster bound [14-16]. However, to see
whether this parameter set simultaneously explains both the
abundance and the self-interaction cross section requires
detailed modeling of pion scattering, including the vector
meson exchanges, which is beyond the scope of this Letter
and will be discussed elsewhere. Given a variety of QCD-
like gauge theories, we believe a significant fraction of
them lead to the correct phenomenology.

We have presented three new models to realize the
resonant self-interacting dark matter, using pseudoscalar
and vector meson states arising from a dark QCD. These
models can motivate future small-scale studies, and lead to
new experimental searches and lattice QCD studies in the
dark sector.
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