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Abstract—Key to recent successes in the field of artificial 

intelligence (AI) has been the ability to train a growing number of 

parameters which form fixed connectivity matrices between layers 

of nonlinear nodes. This “deep learning” approach to AI has 

historically required an exponential growth in processing power 

which far exceeds the growth in computational throughput of 

digital hardware as well as trends in processing efficiency. New 

computing paradigms are therefore required to enable efficient 

processing of information while drastically improving 

computational throughput. Emerging strategies for analog 

computing in the photonic domain have the potential to drastically 

reduce latency but require the ability to modify optical processing 

elements according to the learned parameters of the neural 

network. In this point-of-view article, here we provide a forward-

looking perspectives on both optical and electrical memories 

coupled to integrated photonic hardware in the context of AI. We 

show that for programmed memories the READ energy-latency-

product of photonic random access memory (PRAM) technology 

can be orders of magnitude lower as compared to electronic 

SRAMs. However, current PRAM-based devices are bulk 

compared to electronics and we comment on the need for further 

material and device-design optimizations all together leading to a 

PRAM technology roadmap. It is our intent to share a path that 

PRAMs become an integral part of future foundry processes give 

these promising initial device performance and relevance for 

emerging AI hardware and machine learning accelerators, but 

also for future network edge modules for the looming indusrtry-

4.0 era.   

 
Index Terms—Artificial intelligence, neural network hardware, 

analog computers, optical computing, analog processing circuits 

I. INTRODUCTION 

ECENT progress in the field of AI has been fueled by 

two major research thrusts: 1) finding ways to train 

increasingly large deep neural networks (DNNs) and 2) 

applying new insights from neuroscience to computing 

algorithms and hardware, commonly known as “neuromorphic 

computing.” These approaches to AI make the shift from 

specialized “expert models” which rely on a human 
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understanding of the data to generalized “neural networks” 

which typically use a very large number of free parameters to 

statistically fit the data [1]. In fact, the performance of a DNN 

has been shown to improve when the number of free parameters 

exceeds that of the available training data [2]. The vast and 

tunable 3D connectivity of billions of neurons in the brain is 

similarly considered a key contributor to intelligence in humans 

and other animals. Thus, the immense number of trainable 

parameters in biological and deep neural networks leads to both 

its generality as well as computational complexity [3]. 

In both deep learning and neuromorphic computing, the 

compute operations needed varies drastically from the precise, 

sequential arithmetic operations that have driven digital 

hardware design for the past half century. Instead, computation 

is limited by memory access bottlenecks rather than processor 

speed, leading to memory-centric design approaches (e.g., 

weight stationary systolic arrays [4], in-memory computation 

[5], etc.). These approaches typically minimize the movement 

of fixed parameters to improve latency and energy efficiency. 

However, since all electrical processors are fundamentally 

limited by an energy-bandwidth tradeoff stemming from the 

capacitance of their interconnects [6], this ultimately limits the 

maximum compute efficiency achievable (typically measured 

in operations per watt, “OPS/W”). 

Analog computation in the optical domain is an exciting 

alternative to electrical processors which side-steps this energy-

bandwidth tradeoff [7]–[9]. The bandwidth of an optical 

channel (waveguide, fiber, or even free space) is independent 

of modulation frequency and therefore extremely high data 

throughput can be achieved in the optical domain. Additionally, 

the wave nature of optical signals allows passive elements to 

achieve unitary linear transformations with no power penalty in 

lossless materials [10]. These properties make optical analog 

computing highly attractive for ultrafast, low-power linear 

operations—the major computational bottleneck in today’s 

neural networks. However, for these optical computations to be 
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useful, they must be coupled to the trained parameters of the 

neural network through analog optical memories. 

In this point of view article, we first identify important 

features needed for analog optical memory memories and their 

respective challenges. We then discuss different approaches 

used by the community to implement optical memory for 

processing information in the optical domain. Next, we perform 

an energy-latency analysis to identify the applications where 

these various approaches have a distinct advantage. Finally, we 

end our discussion with an outlook of the current state of optical 

memory technologies and present a roadmap identifying the 

key technological challenges where continued innovation is 

most needed. 

II. KEY REQUIREMENTS OF PHOTONIC MEMORY TECHNOLOGY 

At the highest level, photonic computing strategies can be 

most generally divided into two main categories—coherent or 

incoherent. These distinct strategies place important physical 

constraints on the optical memory cells used since in the case 

of coherent photonic architectures, both the amplitude and 

phase of the optical signals are used to perform computation 

[11]–[13]. Incoherent architectures instead use only the 

amplitude of the optical signal to perform computation, but 

require sources with many different optical frequencies to 

prevent unwanted interference effects [14]–[16]. Therefore, for 

coherent architectures, the insertion loss (IL), amplitude-

independent phase control, and fabrication variability of the 

memory cell directly impact the compute accuracy [17]. These 

strict requirements are largely reduced for incoherent 

architectures, but extinction ratio (ER), crosstalk, and precision 

of the memory cell still limit the ultimate accuracy that can be 

achieved [18]. Despite these architecture-specific requirements, 

several key metrics of the memory cell have similar impact on 

the performance of the photonic processor regardless of the 

computing strategy. Here, we summarize these metrics and 

their importance for photonic computing. 

Insertion loss (IL). IL of the memory cell impacts the 

maximum optical power that can be transmitted and read out by 

detection circuitry when the memory is in the fully “on” state. 

Since computation occurs in the analog domain, the precision 

of the optical readout is fundamentally limited by photon shot 

noise. Improving the IL, therefore reduces the optical power 

required to perform computation. For coherent architectures, if 

the IL differs between two interfering optical paths, the 

interference contrast will be reduced and limit compute 

accuracy (sometimes also referred to as “fidelity” [11]). 

Precision. Optical memory cells are typically tuned with a 

continuous parameter since they are analog in nature. 

Therefore, the maximum achievable precision is typically 

limited by either the stability of the memory cell itself, the noise 

of the control circuitry, or the optoelectronic noise at detection. 

Fortunately, many studies have shown that neural networks 

require relatively low precision memory (even as low as 1 or 2 

bits [19]–[21]) and that uncorrelated noise can serve as a 

method for regularization and improved resilience [22]–[24]. 

Extinction ratio (ER). The ER of the memory cell is linked 

to the precision and determines the maximum optical contrast 

between the “on” and “off” states. Improving the ER will help 

to distinguish between neighboring analog levels of 

transmission or phase, increasing the maximum compute 

precision (and typically accuracy) achievable. Detecting the 

difference in intensity between the add and drop ports of a 

microring resonator (MRR) or in the relative transmission of 

two memory cells are methods for improving ER while also 

achieving both positive and negative values for weights [16]. 

Programming latency. While access and read latency can be 

a bottleneck for electronic memory cells, the write speed of the 

memory cell is usually the limiting factor for photonics. 

Reading the state of memory in the optical domain is 

fundamentally limited by the speed of light traveling through 

the bus waveguides, but in practice readout is limited by the 

speed of the detection circuitry at the output. Therefore, in the 

case of frequent weight updates, the programming latency could 

dominate (especially in the limit of large matrix operations 

which exceed the available on-chip photonic memory [25]). 

Therefore, minimizing the latency for frequent weight updates 

is crucial for maximizing throughput when faced with realistic 

constrains on physical optical hardware. 

Programming energy and static power. Similar to the case 

of latency, if the computing application requires frequent 

updating of the optical weights (e.g., in a photonic tensor core 

[26]), the optical memory cell programming energy could 

potentially dominate the power consumption of the chip. 

Additionally, when using volatile optical responses to store 

data—such as thermo-optic, electro-absorptive, or plasma-

dispersion effects—the static power consumption needed to 

hold a fixed weight can contribute a significant amount to the 

overall power budget of the computing system [18]. 

Cycling endurance. The minimum number of cycles 

required for an optical memory cell will vary greatly depending 

on the use case. For example, a fixed-weight architecture that 

does not require frequent weight updates (e.g., a small 

convolutional layer implemented optically [14], [15]) will have 

a much lower cycling requirement compared to a neuromorphic 

architecture where accumulation of optical pulses occurs in the 

memory cells themselves [27], [28]. As a point of reference, 

NAND flash memory used in consumer-grade USB flash drives 

typically have endurances ranging from 104 to 106 cycles [29], 

but these devices are used for storage rather than computation. 

Footprint. The footprint of the optical memory cell limits 

the integration density on chip and can be the limiting factor for 

scalability. This has important implications on the efficiency 

and latency of the photonic processor since smaller memory 

arrays will require more frequent weight updates than large-

scale memory arrays for the same matrix operation [25]. While 

the footprint of photonic memory cells is much larger than that 

of electronic memory, with the waveguide dimensions and 

evanescent coupling as the main limiting factors, the compute 

density can be much greater for optical memory due to high-

speed analog operations [18]. 

III. CURRENT IMPLEMENTATIONS OF PHOTONIC MEMORY 

A. Electronic memories coupled to optical components 

One common method for implementing optical memory is to 

use an optical modulator coupled to electrical memory. This 

first involves digital-to-analog conversion (DAC) of the digital 
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weight, followed by electrical-to-optical conversion (E/O) of 

the analog electrical signal. E/O conversion is most commonly 

achieved by modulating the real or imaginary refractive index 

of a material through different physical effects, such as thermo-

optic, electro-absorption, or plasma-dispersion [30]–[35]. This 

approach to optical memory has the notable benefit of foundry 

compatibility which has enabled several key proof-of-concept 

demonstrations of photonic processors [8]. Additionally, by 

decoupling the device used for optical modulation from that of 

data storage, both devices can independently optimize 

important metrics that could be high challenging to optimize in 

a single material platform (e.g., programming speed and cycling 

endurance). However, most physical effects used for optical 

modulation are both volatile and weak (e.g., Δn ~ 10-3 to 10-4 

per volt, ○C, etc.). This translates to constant external biasing 

(e.g., P-N junction) or power dissipation (e.g., resistive 

microheater) to maintain the state of an optical weight, as well 

as large device footprints for non-resonant devices such as 

MZIs and electro-absorptive modulators. Below, we briefly 

describe the most common devices used to implement optical 

memory and their operation. 

 
Fig. 1. Electronic memories coupled to optical modulators. (a) 

Schematic of a reconfigurable MZI implementing the 2×2 unitary 

matrix 𝑈. (b) Schematic of a programmable add-drop MRR using 

differential weighting to implement positive and negative weights. 

A Mach-Zehnder Interferometer (MZI) is a reconfigurable 

2 × 2 photonic coupler that uses two pairs of phase shifters and 

bidirectional couplers to implement a 2 × 2 unitary weight 

matrix 𝑈. Normalized incident field amplitudes are used to 

represent the elements of an input vector 𝐴. The optical output 

vector from the MZI is then equal to 𝐵⃗⃗ = 𝑈𝐴. To reconfigure 

the weight matrix 𝑈, a pair of phase shifters are arranged on any 

two arms of the MZI to control both the interference and 

relative phase of the two outputs. Assuming coherent inputs, 

50:50 couplers, and two phase shifters φ and θ, the output 

amplitudes can be described as: 

 𝐵⃗⃗ = [
𝑒𝑗φsin⁡(θ) cos⁡(θ)

𝑒𝑗φcos⁡(θ) −sin⁡(θ)
] 𝐴. (1) 

MZIs can be organized into a mesh to serve as an optical 

linear unit that performs matrix multiplications [36]. An 𝑁 × 𝑁 

arbitrary unitary matrix can be deployed on MZIs connected in 

various mesh topologies, e.g., triangular [37], rectangular [38], 

and binary tree [39]. While mathematically elegant, one 

drawback of this approach is the requirement of ~𝑁2 MZIs to 

implement arbitrary 𝑁 × 𝑁 matrices through the singular value 

decomposition approach [36] which can lead to large footprints 

and low compute density [18]. 

A Micro-Ring Resonator (MRR) is a reconfigurable optical 

device that can be used to tune the relative transmission of its 

through and drop ports at specific optical frequencies which 

depend on the radius of the ring [40]. To implement matrix 

multiplication, an 𝑁 × 𝑁 array of MRRs can be used in a 

wavelength-division multiplexing (WDM) scheme to form a 

“broadcast and weight” architecture [16]. Input vectors are 

encoded as the modulated light intensities of multiple 

wavelengths, while each MRR acts as a filter to selectively 

apply attenuation to a specific input wavelength according to a 

corresponding matrix element [41]. Crosstalk between MRRs 

of similar optical resonance and free spectral range limit the 

ultimate size of the 𝑁 × 𝑁 matrix which can be implemented. 

Moreover, MRRs also suffer from high sensitivity to 

temperature and fabrication variations. 

Resistive heaters and P-N junctions are most commonly used 

as phase shifters in MZIs and MRRs [31]–[33], [35]. These two 

modulation approaches have certain advantages and 

disadvantages for optical memory. For instance, despite having 

very low insertion losses, resistive heaters suffer from slow 

switching speeds (hundreds of kHz) and high static power 

consumption (several mW). On the other hand, P-N junctions 

offer high switching speeds and typically dissipate very little 

static power. However, their insertion loss is high due to free-

carrier absorption and also dependent on the applied bias, 

making them unsuitable for photonic processors using the 

coherent schemes mentioned above. 

When using these volatile optical modulators as memory 

units, each modulator requires designated control circuitry to 

read digital data from memory and then hold the transmission 

or phase of the modulator constant. This not only introduces 

complexity to the integrated system, but it also increases static 

power dissipation from the DAC and driver blocks needed to 

hold the state of each modulator. When combined with the 

energy and latency of high-speed DACs, this can increase the 

overall power consumption and latency of the photonic 

processor and is analyzed in more detail in Section IV. 

In recent years several methods have been used to eliminate 

the need for DACs and directly use binary data with E/O 

modulators. Examples include directly modulating light with 

binary inputs using segmented MZIs [34] and MRRs [31] with 

up to 4 bits of resolution. This is a promising approach for 

optical memory as such schemes can even improve the DAC 

linearity [31]. We compare the various modulation schemes 

described above in Table 1. 

Technology Speed Energy/Power IL (ER) DAC? 

Segmented  

P-N MRR [31] 

20 Gb/s 

(NRZ) 

155 fJ/bit 5.5 dB  

(3 dB) 

No 

 40 Gb/s 

(PAM-4) 

42 fJ/bit 
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Segmented SIS-

CAP MZI [34] 

20 Gb/s 

(NRZ) 

4.5 pJ/bit NA No 

40 Gb/s 

(PAM-16) 

250 fJ/bit NA 

Single P-N 

MRR [33] 
44 Gb/s 

(NRZ) 
17.4 fJ/bit 0.9 dB 

(8 dB) 
Yes 

Thermal  

MZI [42] 
2.4 μs 12.7 mW (𝑃𝜋) 0.5 dB 

(20 dB) 
Yes 

Thermal 

MRR [43] 
1.3 μs 1.47 nm/mW NA 

(15 dB) 
Yes 

Table 1: Comparison of metrics for various optical modulators. 

B. On-chip memories based on nonvolatile photonics 

A second approach for implementing on-chip photonic 

memories involves nonvolatile optical materials or phenomena, 

where the stored weights are recorded in the form of erasable 

refractive index and/or optical absorption changes. The 

examples include: 1) phase change materials (PCMs), which 

exhibit giant optical property change upon undergoing a 

nonvolatile amorphous-crystalline structural transition [44]; 2) 

ferroelectric (FE) crystals exemplified by BaTiO3 (BTO) whose 

electric polarization can be switched by an external electrical 

field in a nonvolatile manner [45]; and 3) charge accumulation 

in a floating gate or charge trapping in a dielectric layer, the 

mechanism responsible for data storage in electronic flash 

memories, which modifies the optical attributes in a Si 

waveguide via free carrier plasma dispersion [46] (Fig. 2). All 

the schemes are amenable to electrical writing and optical 

reading [47]–[50]. Another key feature of these memories is 

multi-level operation capacity, where the presence of 

intermediate states (corresponding to e.g. mixtures of 

amorphous/crystalline phases in PCMs [51] or partial FE 

domain switching in FE crystals [52]) can be used to encode 

multi-bit information in one single memory cell [53]–[55]. In-

memory computing based on nonvolatile photonic memories 

have been demonstrated in single memory cells [56] as well as 

in large crossbar arrays [57]. 

 

 
Fig. 2. Nonvolatile optical memory technologies. (a) Schematic 

illustration of a PCM-integrated photonic memory; (b) operating 

mechanism of the PCM-integrated memory: less optical power is 

transmitted through the waveguide if the PCM is in the crystalline state 

than when it is in the amorphous state [44]; (c) cross-section structure 

of a nonvolatile waveguide phase shifter integrated with FE BTO 

crystal, which can serve as a basic building block for photonic 

memory; (d) schematics depicting progressive FE domain switching 

with increasing the voltage applied between the electrodes [45]; (e) 

tilted and (f) cross-sectional schematics of a photonic memory device 

based on charge accumulation in a floating gate. The black arrows 

indicate the charge carrier flow directions during write and erase 

operations [58]. 

Compared to electronic memory driven approaches 

discussed in the previous section, nonvolatile photonic 

memories allow fixed weight storage with zero static power 

dissipation while affording improved long-term data retention. 

These nonvolatile photonic memory technologies also each 

boasts unique advantages with respective technical limitations. 

In addition to using variable attenuation to represent weights as 

is illustrated in Fig. 2b, low-loss PCMs [59] can execute phase-

only encoding functions in a coherent network [60]. PCM 

photonic memory cells are also ultra-compact, only a few 

microns in length. However, they require relatively large 

switching power (sub-nJ for all-optical switching [44] and a few 

nJ’s for electrothermal switching [61]). Moreover, their cycling 

endurance must be further improved [62]. In comparison, FE 

devices claim considerably reduced switching power 

consumption down to tens of pJ’s [45] as well as enhanced 

endurance [63], although they require much larger footprint and 

a constant DC bias to maintain electro-optic index change 

during readout. Both PCM and FE devices also involve new 

materials and special processes (backend deposition for PCMs 

and wafer bonding for FE crystals) for integration with standard 

Si photonic foundry process. The charge accumulation or 

trapping devices hold the advantage of full CMOS 

compatibility, although they suffer from similar limitations as 

their electronic flash memory counterpart in low write/erase 

speed and endurance. 

C. Passive optical memories 

Controlling signal propagation through delay lines is another 

promising approach to implement optical memory. This 

approach has been used as volatile optical memory for 

computing in both recurrent and convolutional photonic neural 

networks [14], [64]–[66]. When combined with time-

multiplexing and wavelength dispersion, optical delay lines 

have been used to achieve extremely high computational 

throughput with ultra-low latencies [14]. The fact that they are 

fully passive and have minimal latency (i.e., time of flight of 

the optical signal) are two major advantages of using optical 

delay lines for temporary data storage. However, optical delay 

lines require significant area on-chip—limited by the bending 

radius and spacing between neighboring waveguides—which 

increases with the required delay. Additionally, it is challenging 

to efficiently tune these delays after fabrication. Heterogeneous 

approaches which integrate multiple optical degrees of freedom 

using WDM, optical memories, and delay lines is a promising 

direction for photonic computing [66]. 

IV. ENERGY-LATENCY ANALYSIS 

In order to establish a comparison between emerging memory 

technologies in the optical domain (O) with their electronic (E) 
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counterparts, we can utilize the figure of merit defined as the 

READ-WRITE operations ratio, as well as the overall energy 

and latency cost when considering E/O and O/E conversions. 

A. READ operation 

For an ideal photonic memory based on PCMs or other 

nonvolatile material platform, the READ operation requires the 

energies for the creation and detection of a single photon to 

access the stored data [67]. Considering a laser source, a 

memory insertion loss (0.005 dB/bit), and photodetector 

readout, the READ (access) energy of a photonic random-

access memory (P-RAM) takes <1 fJ/bit for an on-off-keyed 

signal at 30 GHz data rates, or, about 10 fJ/bit access for a 

higher bit resolution (e.g. PAM-16 for a 4-bit one) [68]–[71]. 

State-of-the-art SRAM memory using flip-flops, which can be 

in one of two bistable states, has an access latency of 0.21 ns 

and costs about 5 pJ/bit access [72], [73].  Energy and latency 

penalties increase when accessing data stored in SRAM cache 

memories, costing around 180 pJ and 1.66 ns per access for 

FinFET-based technologies [74]. Thus, a generic photonic link 

offers MAC operations and memory access of 10–100× higher 

MAC/s/J/access than SRAM, highlighting how a P-RAM can 

improve the performance of a computational processor, as 

compared in the Table 2. 

 

 Area/bit 

(μm2) 

Read energy 

(fJ/bit) 

Read Latency 

(ps) 

SRAM cache [74] 
(64-byte block size) 

0.055 350 1,660 

SRAM cell [73], [75] 

(7nm Fin-FET, 6T) 

~0.01 5,000 210 

P-RAM [76] 15 10 < 50 

Table 2: Performance table of a photonic random-access memory (P-

RAM) as compared to established SRAM shows an several order-of-

magnitude higher READ performance. This is particularly relevant for 

network edge AI with seldomly updated weights (i.e., rare WRITE 

operations), but frequent READs. Note, this does not include ADC 

energy or latency for P-RAM READ operations since computation can 

occur optically across multiple P-RAM memory cells before ADC. 

Adding the area to the read energy and latency shows an about 5× 

higher figure-of-merit based on a (area×read energy×read latency)-1. 

B. WRITE operation 

When writing data to a P-RAM cell, triggering the phase 

transition of the chalcogenide material, switching ferroelectric 

domains, etc. is required. This leads to a strong modulation of 

optical properties (phase for materials such as Sb2Se3 and BTO, 

or amplitude for materials such as GST, GSST, and GSSe). In 

the case of PCMs, local annealing is used to switch the 

material—typically either using all-optical heating or an on-

chip electro-thermal microheater (e.g., ITO, doped silicon, or 

metal heaters [68], [70], [77]). This multilevel, ultra-compact 

approach using PCMs with low IL (such as GSST and GSSe 

[67], [76]) enables highly efficient fixed weight banks with low 

power consumption. Compared with writing to SRAM cells, the 

writing of P-RAM based on (Joule) heating is limited by the 

behavior of heat propagation and thus requires higher writing 

energies (few pJ to sub-nJ for all-optical approaches [77] and 

few nJ for integrated microheaters [78]), as well as higher 

latency (sub-μs). In comparison, the SRAM address line, that is 

operated for opening and closing the switch and to control the 

certain transistors that permits reading, can experience a writing 

speed of ~1 to 2 ns per access with an associated energy down 

to <10 pJ/bit. However, unlike the volatile SRAM which needs 

constant external voltage applied once the information is 

written to preserve from the current leakage (~2 nW/bit [74], 

[75]), PCM based non-volatile P-RAM does not require 

continuous external energy after the information is written. 

Thus, one state of PCM can be maintained passively long term. 

From an energy perspective, PCM based P-RAM is more 

suitable for applications which do not require frequent updates 

and instead require low-cost, long-term data storage which can 

be rapidly accessed once the information is written. In fact, 

there is a point beyond which P-RAM becomes more energy 

efficient compared to the SRAM energy requirements for 

storing information (Fig. 3). For novel PCM materials, 

researchers might look for any compounds with lower 

switching temperatures to further reduce the WRITE energy of 

the P-RAM, and so reducing the threshold time where P-RAM 

is more efficient for storing information than SRAM. 

 
Fig. 3: Trend of total energy consumption for writing over time for P-

RAM and SRAM. PCM-based P-RAM does not require additional 

energy once written, while FE-based P-RAM requires a DC voltage to 

read the information. SRAM requires a constant power to overcome 

internal leakage, power that becomes more prominent as DAC and E/O 

conversion are required to interface the optical waveguides. 

C. Electrical-optical conversion 

Conversion between the electrical and optical domains is 

already an overhead cost that many systems pay every day. 

Assessing the cost in terms of power and latency for these 

conversions shapes the system design and choice of memory, 

especially when considering neural networks. Considering 

electronic memories such as SRAM, the electrical signal needs 

to go through a DAC (~1 nJ and ~3 ns [79]), driving amplifier, 

and electro-optical modulator to convert it into an optical 

signal. In the same fashion, the detected optical signal requires 

a trans-impedance amplifier (TIA) and ADC to convert the 

processed data back to the electronic domain [80]. In this kind 

of architecture, where each step of the network has to perform 

a E/O/E conversion, it is straightforward to realize that scaling 

to multiple processing layers can introduce several problems, 

Commented [YN1]: This is for register-based reads, correct? 
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such as the need to buffer intermediate information in an S-

RAM cache, as well as limit the latency and efficiency of the 

network due to the DACs and ADCs. A full optical network, 

where the weights are stored in a nonvolatile fashion by means 

of P-RAM elements [26], [81], [82], the signals are converted 

once to the optical domain, and converted back once at the end 

of the network, would take full advantage of the wide 

bandwidth provided by the optical domain and extremely low 

latency and low energy consumption. However, a lack of 

efficient, nonlinear optical elements with low optical threshold 

powers currently limits the practicality of this approach for deep 

neural networks. 

V. OUTLOOK AND ROADMAP FOR DATA STORAGE IN OPTICAL 

COMPUTING 

A. Roadmap for electronic memories for optical computing  

Efficient integration of high-density electronic storage with 

analog optical computing platforms is a challenge that requires 

alleviating (or removing) the energy-consuming digital-to-

analog and electro-optical conversions. The simplest solution is 

seemingly to adopt a completely analog technology using, for 

instance, memristors in the electrical domain directly integrated 

to photonic waveguides [83]–[85]. DACs for data input and 

ADCs for data output are not needed if the optical processor is 

communicating with an analog environment and E/O 

conversion can be realized employing the same memristive 

element. However, the world runs on digital technology and 

computing with an analog architecture would certainly require 

data type conversion. The prospect of E/O conversion of digital 

signals using optical DACs (see Section IIIA and Table 1), and 

ideally also ADCs, open the possibility of faster operations with 

simplified circuitry. The latency can also be further optimized 

by bringing the electronic memory bank closer to the photonic 

processor using monolithic co-integration of nanoelectronics 

and photonics rather than using two separate chiplets [86].  

Moreover, novel modulation approaches for electro-optical 

conversion are necessary to avoid the widespread use of 

thermo-optical control, which faces serious heating issues when 

scaling to hundreds of simultaneously operating devices. 

Similarly, faster carrier-based modulation faces high IL and 

large form factors—both of which are detrimental to computing 

tasks since the complexity of the photonic circuitry can afford 

neither. Optomechanical modulators [87], while still volatile 

unless using latches or bi-stability [88], [89], are potential 

CMOS-compatible platforms given their low insertion losses, 

low powers, and form factors comparable to thermo-optic 

modulators. Provided CMOS integration in the future, optical 

modulators based on 2D materials could provide an even closer 

to optimal platform for energy-efficient modulation [90].  

B. Roadmap for photonic memories based on nonvolatile 

materials 

Photonic integrated technologies, as available in current 

commercial foundries, must deal with large form factors due to 

waveguide footprints, a fact that could improve in the future by 

adopting smaller node CMOS fabrication processes to achieve 

reliable nanophotonic structures [18]. The current form-factor 

limitation means that electronics’ storage densities of 10 

Gb/mm2 [91] are likely unachievable with photonic memories, 

especially those based on material platforms directly embedded 

into the photonic circuits. Yet, the prospect of a novel optical 

memory class that, despite the lower storage density, can 

contribute to and enhance the performance of the memory 

hierarchy in hybrid optoelectronic architectures—especially 

photonic computational memory—is enough to motivate the 

development of an “ideal” photonic memory. The target 

performance metrics for optical memories (described in detail 

in Section II) are ultimately determined by the computing task 

at hand, just like the different electronic technologies in a Von 

Neumann computer’s memory hierarchy. Whether volatile or 

nonvolatile, written with higher or lower frequency, etc., some 

features that any ideal photonic memory should have include:  

1. CMOS compatibility for guaranteed scalability  

2. Low IL comparable to the propagation loss of the 

platform (<1 dB/cm) 

3. READ and WRITE energy consumption of <fJ and fJ-

pJ, respectively 

4. Large modulation depths >10 dB for amplitude 

modulation and at least 2π for phase modulation 

5. WRITE cyclability >108 

6. Precision and stability that are not compromised by 

environmental effects such as temperature or material 

degradation  

Despite the challenges described in Section III, there is still 

ample room for improved performance in nonvolatile photonic 

memory technologies. For instance, even though the PCM 

photonic memories come with limited endurance today (> 5 × 

105 cycles [76]), there does not appear to be any intrinsic 

limitations that precludes them from reach endurance levels 

attained in PCM-based RF switches (1.5 × 108 cycles [92]) and 

electronic memories (> 2 × 1012 cycles [93]). Their energy 

consumption can also be minimized by searching for new PCM 

compositions with reduced liquidus temperature and fast 

crystallization kinetics, and/or further device optimization via 

engineering the effective device area’s thermal capacitance. On 

the other hand, development of new FE crystals compatible 

with CMOS backend processing, such as HfO2-based oxide 

alloys [94], [95], could potentially facilitate their integration 

with standard photonic integrated circuits. Finally, other 

alternative emerging nonvolatile integrated photonics platforms 

may also prove useful for photonic memory applications [96]–

[98]. Whether backend, frontend, or eventually fully integrated 

into CMOS fabrication processes, the novel active material-

based approaches require a scalable fabrication to guarantee 

high density photonic architectures and mass production. 

C. Optical memories in edge/cloud computing  

Alleviating the von Neumann bottleneck, especially if using 

fiber optics to store and fetch data—commonly done in data 

centers for cloud computing—is the longstanding promise of 

optical memories in conventional computers.  This task is yet 

to be demonstrated given the complexity of realizing high-

density optical storage, mostly due to the lack of fully CMOS 

compatible platforms and their large footprints. On the other 

hand, the development of fully integrated optical or electronic 

memory with a photonic processor either in a von Neumann 

[99] or brain-inspired architectures [8], [11], [100], together 
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with integrated light sources and photodetectors, can lead to the 

development of packaged devices with the portability and 

processing capacity required to enhance edge computing. 

Inference [11], [27] and high-throughput matrix-vector 

multiplications [18], [81]  have already led to outstanding, high-

performance demonstrations using on-chip photonic 

processors—systems that can be integrated to future edge 

computing devices.  
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