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Abstract—Key to recent successes in the field of artificial
intelligence (AI) has been the ability to train a growing number of
parameters which form fixed connectivity matrices between layers
of nonlinear nodes. This “deep learning” approach to AI has
historically required an exponential growth in processing power
which far exceeds the growth in computational throughput of
digital hardware as well as trends in processing efficiency. New
computing paradigms are therefore required to enable efficient
processing of information while drastically improving
computational throughput. Emerging strategies for analog
computing in the photonic domain have the potential to drastically
reduce latency but require the ability to modify optical processing
elements according to the learned parameters of the neural
network. In this point-of-view article, here we provide a forward-
looking perspectives on both optical and electrical memories
coupled to integrated photonic hardware in the context of AI. We
show that for programmed memories the READ energy-latency-
product of photonic random access y (PRAM) technology
can be orders of magnitude lower as compared to electronic
SRAMs. However, current PRAM-based devices are bulk
compared to electronics and we comment on the need for further
material and device-design optimizations all together leading to a
PRAM technology roadmap. It is our intent to share a path that
PRAMs become an integral part of future foundry processes give
these promising initial device performance and relevance for
emerging Al hardware and machine learning accelerators, but
also for future network edge modules for the looming indusrtry-
4.0 era.

Index Terms—Artificial intelligence, neural network hardware,
analog computers, optical computing, analog processing circuits

1. INTRODUCTION

ECENT progress in the field of Al has been fueled by
two major research thrusts: 1) finding ways to train
increasingly large deep neural networks (DNNs) and 2)
applying new insights from neuroscience to computing
algorithms and hardware, commonly known as “neuromorphic
computing.” These approaches to Al make the shift from
specialized “expert models” which rely on a human
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understanding of the data to generalized “neural networks”
which typically use a very large number of free parameters to
statistically fit the data [1]. In fact, the performance of a DNN
has been shown to improve when the number of free parameters
exceeds that of the available training data [2]. The vast and
tunable 3D connectivity of billions of neurons in the brain is
similarly considered a key contributor to intelligence in humans
and other animals. Thus, the immense number of trainable
parameters in biological and deep neural networks leads to both
its generality as well as computational complexity [3].

In both deep learning and neuromorphic computing, the
compute operations needed varies drastically from the precise,
sequential arithmetic operations that have driven digital
hardware design for the past half century. Instead, computation
is limited by memory access bottlenecks rather than processor
speed, leading to memory-centric design approaches (e.g.,
weight stationary systolic arrays [4], in-memory computation
[5], etc.). These approaches typically minimize the movement
of fixed parameters to improve latency and energy efficiency.
However, since all electrical processors are fundamentally
limited by an energy-bandwidth tradeoff stemming from the
capacitance of their interconnects [6], this ultimately limits the
maximum compute efficiency achievable (typically measured
in operations per watt, “OPS/W”).

Analog computation in the optical domain is an exciting
alternative to electrical processors which side-steps this energy-
bandwidth tradeoff [7]-[9]. The bandwidth of an optical
channel (waveguide, fiber, or even free space) is independent
of modulation frequency and therefore extremely high data
throughput can be achieved in the optical domain. Additionally,
the wave nature of optical signals allows passive elements to
achieve unitary linear transformations with no power penalty in
lossless materials [10]. These properties make optical analog
computing highly attractive for ultrafast, low-power linear
operations—the major computational bottleneck in today’s
neural networks. However, for these optical computations to be
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useful, they must be coupled to the trained parameters of the
neural network through analog optical memories.

In this point of view article, we first identify important
features needed for analog optical memory memories and their
respective challenges. We then discuss different approaches
used by the community to implement optical memory for
processing information in the optical domain. Next, we perform
an energy-latency analysis to identify the applications where
these various approaches have a distinct advantage. Finally, we
end our discussion with an outlook of the current state of optical
memory technologies and present a roadmap identifying the
key technological challenges where continued innovation is
most needed.

II. KEY REQUIREMENTS OF PHOTONIC MEMORY TECHNOLOGY

At the highest level, photonic computing strategies can be
most generally divided into two main categories—coherent or
incoherent. These distinct strategies place important physical
constraints on the optical memory cells used since in the case
of coherent photonic architectures, both the amplitude and
phase of the optical signals are used to perform computation
[11]-[13]. Incoherent architectures instead use only the
amplitude of the optical signal to perform computation, but
require sources with many different optical frequencies to
prevent unwanted interference effects [14]-[16]. Therefore, for
coherent architectures, the insertion loss (IL), amplitude-
independent phase control, and fabrication variability of the
memory cell directly impact the compute accuracy [17]. These
strict requirements are largely reduced for incoherent
architectures, but extinction ratio (ER), crosstalk, and precision
of the memory cell still limit the ultimate accuracy that can be
achieved [18]. Despite these architecture-specific requirements,
several key metrics of the memory cell have similar impact on
the performance of the photonic processor regardless of the
computing strategy. Here, we summarize these metrics and
their importance for photonic computing.

Insertion loss (IL). IL of the memory cell impacts the
maximum optical power that can be transmitted and read out by
detection circuitry when the memory is in the fully “on” state.
Since computation occurs in the analog domain, the precision
of the optical readout is fundamentally limited by photon shot
noise. Improving the IL, therefore reduces the optical power
required to perform computation. For coherent architectures, if
the IL differs between two interfering optical paths, the
interference contrast will be reduced and limit compute
accuracy (sometimes also referred to as “fidelity” [11]).

Precision. Optical memory cells are typically tuned with a
continuous parameter since they are analog in nature.
Therefore, the maximum achievable precision is typically
limited by either the stability of the memory cell itself, the noise
of the control circuitry, or the optoelectronic noise at detection.
Fortunately, many studies have shown that neural networks
require relatively low precision memory (even as low as 1 or 2
bits [19]-[21]) and that uncorrelated noise can serve as a
method for regularization and improved resilience [22]-[24].

Extinction ratio (ER). The ER of the memory cell is linked
to the precision and determines the maximum optical contrast
between the “on” and “off” states. Improving the ER will help

to distinguish between neighboring analog levels of
transmission or phase, increasing the maximum compute
precision (and typically accuracy) achievable. Detecting the
difference in intensity between the add and drop ports of a
microring resonator (MRR) or in the relative transmission of
two memory cells are methods for improving ER while also
achieving both positive and negative values for weights [16].

Programming latency. While access and read latency can be
a bottleneck for electronic memory cells, the write speed of the
memory cell is usually the limiting factor for photonics.
Reading the state of memory in the optical domain is
fundamentally limited by the speed of light traveling through
the bus waveguides, but in practice readout is limited by the
speed of the detection circuitry at the output. Therefore, in the
case of frequent weight updates, the programming latency could
dominate (especially in the limit of large matrix operations
which exceed the available on-chip photonic memory [25]).
Therefore, minimizing the latency for frequent weight updates
is crucial for maximizing throughput when faced with realistic
constrains on physical optical hardware.

Programming energy and static power. Similar to the case
of latency, if the computing application requires frequent
updating of the optical weights (e.g., in a photonic tensor core
[26]), the optical memory cell programming energy could
potentially dominate the power consumption of the chip.
Additionally, when using volatile optical responses to store
data—such as thermo-optic, electro-absorptive, or plasma-
dispersion effects—the static power consumption needed to
hold a fixed weight can contribute a significant amount to the
overall power budget of the computing system [18].

Cycling endurance. The minimum number of cycles
required for an optical memory cell will vary greatly depending
on the use case. For example, a fixed-weight architecture that
does not require frequent weight updates (e.g., a small
convolutional layer implemented optically [14], [15]) will have
amuch lower cycling requirement compared to a neuromorphic
architecture where accumulation of optical pulses occurs in the
memory cells themselves [27], [28]. As a point of reference,
NAND flash memory used in consumer-grade USB flash drives
typically have endurances ranging from 10* to 10° cycles [29],
but these devices are used for storage rather than computation.

Footprint. The footprint of the optical memory cell limits
the integration density on chip and can be the limiting factor for
scalability. This has important implications on the efficiency
and latency of the photonic processor since smaller memory
arrays will require more frequent weight updates than large-
scale memory arrays for the same matrix operation [25]. While
the footprint of photonic memory cells is much larger than that
of electronic memory, with the waveguide dimensions and
evanescent coupling as the main limiting factors, the compute
density can be much greater for optical memory due to high-
speed analog operations [18].

[I1. CURRENT IMPLEMENTATIONS OF PHOTONIC MEMORY

A. Electronic memories coupled to optical components

One common method for implementing optical memory is to
use an optical modulator coupled to electrical memory. This
first involves digital-to-analog conversion (DAC) of the digital
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weight, followed by electrical-to-optical conversion (E/O) of
the analog electrical signal. E/O conversion is most commonly
achieved by modulating the real or imaginary refractive index
of a material through different physical effects, such as thermo-
optic, electro-absorption, or plasma-dispersion [30]-[35]. This
approach to optical memory has the notable benefit of foundry
compatibility which has enabled several key proof-of-concept
demonstrations of photonic processors [8]. Additionally, by
decoupling the device used for optical modulation from that of
data storage, both devices can independently optimize
important metrics that could be high challenging to optimize in
a single material platform (e.g., programming speed and cycling
endurance). However, most physical effects used for optical
modulation are both volatile and weak (e.g., An ~ 10~ to 10
per volt, °C, etc.). This translates to constant external biasing
(e.g., P-N junction) or power dissipation (e.g., resistive
microheater) to maintain the state of an optical weight, as well
as large device footprints for non-resonant devices such as
MZIs and electro-absorptive modulators. Below, we briefly
describe the most common devices used to implement optical
memory and their operation.
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Fig. 1. Electronic memories coupled to optical modulators. (a)
Schematic of a reconfigurable MZI implementing the 2x2 unitary
matrix U. (b) Schematic of a programmable add-drop MRR using
differential weighting to implement positive and negative weights.

A Mach-Zehnder Interferometer (MZI) is a reconfigurable
2 X 2 photonic coupler that uses two pairs of phase shifters and
bidirectional couplers to implement a 2 X 2 unitary weight
matrix U. Normalized incident field amplitudes are used to
represent the elements of an input vector A. The optical output
vector from the MZI is then equal to B =UA. To reconfigure
the weight matrix U, a pair of phase shifters are arranged on any
two arms of the MZI to control both the interference and
relative phase of the two outputs. Assuming coherent inputs,
50:50 couplers, and two phase shifters ¢ and 6, the output
amplitudes can be described as:

= [e/®sin(8) cos(8)] -~
e/®cos () —sin ()

M

MZIs can be organized into a mesh to serve as an optical
linear unit that performs matrix multiplications [36]. An N X N
arbitrary unitary matrix can be deployed on MZIs connected in

various mesh topologies, e.g., triangular [37], rectangular [38],
and binary tree [39]. While mathematically elegant, one
drawback of this approach is the requirement of ~N? MZIs to
implement arbitrary N X N matrices through the singular value
decomposition approach [36] which can lead to large footprints
and low compute density [18].

A Micro-Ring Resonator (MRR) is a reconfigurable optical
device that can be used to tune the relative transmission of its
through and drop ports at specific optical frequencies which
depend on the radius of the ring [40]. To implement matrix
multiplication, an N X N array of MRRs can be used in a
wavelength-division multiplexing (WDM) scheme to form a
“broadcast and weight” architecture [16]. Input vectors are
encoded as the modulated light intensities of multiple
wavelengths, while each MRR acts as a filter to selectively
apply attenuation to a specific input wavelength according to a
corresponding matrix element [41]. Crosstalk between MRRs
of similar optical resonance and free spectral range limit the
ultimate size of the N X N matrix which can be implemented.
Moreover, MRRs also suffer from high sensitivity to
temperature and fabrication variations.

Resistive heaters and P-N junctions are most commonly used
as phase shifters in MZIs and MRRs [31]-[33], [35]. These two
modulation approaches have certain advantages and
disadvantages for optical memory. For instance, despite having
very low insertion losses, resistive heaters suffer from slow
switching speeds (hundreds of kHz) and high static power
consumption (several mW). On the other hand, P-N junctions
offer high switching speeds and typically dissipate very little
static power. However, their insertion loss is high due to free-
carrier absorption and also dependent on the applied bias,
making them unsuitable for photonic processors using the
coherent schemes mentioned above.

When using these volatile optical modulators as memory
units, each modulator requires designated control circuitry to
read digital data from memory and then hold the transmission
or phase of the modulator constant. This not only introduces
complexity to the integrated system, but it also increases static
power dissipation from the DAC and driver blocks needed to
hold the state of each modulator. When combined with the
energy and latency of high-speed DACs, this can increase the
overall power consumption and latency of the photonic
processor and is analyzed in more detail in Section IV.

In recent years several methods have been used to eliminate
the need for DACs and directly use binary data with E/O
modulators. Examples include directly modulating light with
binary inputs using segmented MZIs [34] and MRRs [31] with
up to 4 bits of resolution. This is a promising approach for
optical memory as such schemes can even improve the DAC
linearity [31]. We compare the various modulation schemes
described above in Table 1.

Technology Speed | Energy/Power | IL (ER) DAC?
Segmented 20 Gb/s 155 1J/bit 5.5dB No
P-NMRR [31] | (NRZ) (3 dB)
40 Gb/s 42 fI/bit
(PAM-4)
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Segmented SIS-| 20 Gb/s 4.5 pl/bit NA No
CAP MZI [34] | (NRZ)
40 Gb/s 250 fI/bit NA
(PAM-16)
Single P-N 44 Gb/s 17.4 1J/bit 0.9dB Yes
MRR [33] (NRZ) (8 dB)
Thermal 24ps | 127mW (B,) | 0.5dB Yes
MZI [42] (20 dB)
Thermal 1.3 ps 1.47 nm/mW NA Yes
MRR [43] (15dB)

Table 1: Comparison of metrics for various optical modulators.

B. On-chip memories based on nonvolatile photonics

A second approach for implementing on-chip photonic
memories involves nonvolatile optical materials or phenomena,
where the stored weights are recorded in the form of erasable
refractive index and/or optical absorption changes. The
examples include: 1) phase change materials (PCMs), which
exhibit giant optical property change upon undergoing a
nonvolatile amorphous-crystalline structural transition [44]; 2)
ferroelectric (FE) crystals exemplified by BaTiO3 (BTO) whose
electric polarization can be switched by an external electrical
field in a nonvolatile manner [45]; and 3) charge accumulation
in a floating gate or charge trapping in a dielectric layer, the
mechanism responsible for data storage in electronic flash
memories, which modifies the optical attributes in a Si
waveguide via free carrier plasma dispersion [46] (Fig. 2). All
the schemes are amenable to electrical writing and optical
reading [47]-[50]. Another key feature of these memories is
multi-level operation capacity, where the presence of
intermediate states (corresponding to e.g. mixtures of
amorphous/crystalline phases in PCMs [51] or partial FE
domain switching in FE crystals [52]) can be used to encode
multi-bit information in one single memory cell [53]-[55]. In-
memory computing based on nonvolatile photonic memories
have been demonstrated in single memory cells [56] as well as
in large crossbar arrays [57].
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Fig. 2. Nonvolatile optical memory technologies. (a) Schematic
illustration of a PCM-integrated photonic memory; (b) operating
mechanism of the PCM-integrated memory: less optical power is
transmitted through the waveguide if the PCM is in the crystalline state
than when it is in the amorphous state [44]; (c) cross-section structure
of a nonvolatile waveguide phase shifter integrated with FE BTO

crystal, which can serve as a basic building block for photonic
memory; (d) schematics depicting progressive FE domain switching
with increasing the voltage applied between the electrodes [45]; (e)
tilted and (f) cross-sectional schematics of a photonic memory device
based on charge accumulation in a floating gate. The black arrows
indicate the charge carrier flow directions during write and erase
operations [58].

Compared to electronic memory driven approaches
discussed in the previous section, nonvolatile photonic
memories allow fixed weight storage with zero static power
dissipation while affording improved long-term data retention.
These nonvolatile photonic memory technologies also each
boasts unique advantages with respective technical limitations.
In addition to using variable attenuation to represent weights as
is illustrated in Fig. 2b, low-loss PCMs [59] can execute phase-
only encoding functions in a coherent network [60]. PCM
photonic memory cells are also ultra-compact, only a few
microns in length. However, they require relatively large
switching power (sub-nJ for all-optical switching [44] and a few
nJ’s for electrothermal switching [61]). Moreover, their cycling
endurance must be further improved [62]. In comparison, FE
devices claim considerably reduced switching power
consumption down to tens of pJ’s [45] as well as enhanced
endurance [63], although they require much larger footprint and
a constant DC bias to maintain electro-optic index change
during readout. Both PCM and FE devices also involve new
materials and special processes (backend deposition for PCMs
and wafer bonding for FE crystals) for integration with standard
Si photonic foundry process. The charge accumulation or
trapping devices hold the advantage of full CMOS
compatibility, although they suffer from similar limitations as
their electronic flash memory counterpart in low write/erase
speed and endurance.

C. Passive optical memories

Controlling signal propagation through delay lines is another
promising approach to implement optical memory. This
approach has been used as volatile optical memory for
computing in both recurrent and convolutional photonic neural
networks [14], [64]-[66]. When combined with time-
multiplexing and wavelength dispersion, optical delay lines
have been used to achieve extremely high computational
throughput with ultra-low latencies [14]. The fact that they are
fully passive and have minimal latency (i.e., time of flight of
the optical signal) are two major advantages of using optical
delay lines for temporary data storage. However, optical delay
lines require significant area on-chip—limited by the bending
radius and spacing between neighboring waveguides—which
increases with the required delay. Additionally, it is challenging
to efficiently tune these delays after fabrication. Heterogeneous
approaches which integrate multiple optical degrees of freedom
using WDM, optical memories, and delay lines is a promising
direction for photonic computing [66].

IV. ENERGY-LATENCY ANALYSIS

In order to establish a comparison between emerging memory
technologies in the optical domain (O) with their electronic (E)
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counterparts, we can utilize the figure of merit defined as the
READ-WRITE operations ratio, as well as the overall energy
and latency cost when considering E/O and O/E conversions.

A. READ operation

For an ideal photonic memory based on PCMs or other
nonvolatile material platform, the READ operation requires the
energies for the creation and detection of a single photon to
access the stored data [67]. Considering a laser source, a
memory insertion loss (0.005 dB/bit), and photodetector
readout, the READ (access) energy of a photonic random-
access memory (P-RAM) takes <1 fJ/bit for an on-off-keyed
signal at 30 GHz data rates, or, about 10 fJ/bit access for a
higher bit resolution (e.g. PAM-16 for a 4-bit one) [68]-[71].
State-of-the-art SRAM memory using flip-flops, which can be
in one of two bistable states, [has an access latency of 0.21 ns
and costs about 5 pJ/bit access [72], [73]. ]Energy and latency
penalties increase when accessing data stored in SRAM cache
memories, costing around 180 pJ and 1.66 ns per access for
FinFET-based technologies [74]. Thus, a generic photonic link
offers MAC operations and memory access of 10—100x higher
MAC/s/J/access than SRAM, highlighting how a P-RAM can
improve the performance of a computational processor, as
compared in the Table 2.

Area/bit | Read energy | Read Latency
(pm?) (fJ/bit) (ps)
SRAM cache [74] 0.055 350 1,660
(64-byte block size)
SRAM cell [73], [75]| ~0.01 5,000 210
(7nm Fin-FET, 6T)
P-RAM [76] 15 10 <50

Table 2: Performance table of a photonic random-access memory (P-
RAM) as compared to established SRAM shows an several order-of-
magnitude higher READ performance. This is particularly relevant for
network edge Al with seldomly updated weights (i.e., rare WRITE
operations), but frequent READs. Note, this does not include ADC
energy or latency for P-RAM READ operations since computation can
occur optically across multiple P-RAM memory cells before ADC.
Adding the area to the read energy and latency shows an about 5x
higher figure-of-merit based on a (areaxread energy xread latency)™'.

B. WRITE operation

When writing data to a P-RAM cell, triggering the phase
transition of the chalcogenide material, switching ferroelectric
domains, etc. is required. This leads to a strong modulation of
optical properties (phase for materials such as Sb,Ses and BTO,
or amplitude for materials such as GST, GSST, and GSSe). In
the case of PCMs, local annealing is used to switch the
material—typically either using all-optical heating or an on-
chip electro-thermal microheater (e.g., ITO, doped silicon, or
metal heaters [68], [70], [77]). This multilevel, ultra-compact
approach using PCMs with low IL (such as GSST and GSSe
[67], [76]) enables highly efficient fixed weight banks with low
power consumption. Compared with writing to SRAM cells, the
writing of P-RAM based on (Joule) heating is limited by the
behavior of heat propagation and thus requires higher writing
energies (few pJ to sub-nJ for all-optical approaches [77] and
few nJ for integrated microheaters [78]), as well as higher

latency (sub-ps). In comparison, the SRAM address line, that is
operated for opening and closing the switch and to control the
certain transistors that permits reading, can experience a writing
speed of ~1 to 2 ns per access with an associated energy down
to <10 pJ/bit. However, unlike the volatile SRAM which needs
constant external voltage applied once the information is
written to preserve from the current leakage (~2 nW/bit [74],
[75]), PCM based non-volatile P-RAM does not require
continuous external energy after the information is written.
Thus, one state of PCM can be maintained passively long term.
From an energy perspective, PCM based P-RAM is more
suitable for applications which do not require frequent updates
and instead require low-cost, long-term data storage which can
be rapidly accessed once the information is written. In fact,
there is a point beyond which P-RAM becomes more energy
efficient compared to the SRAM energy requirements for
storing information (Fig. 3). For novel PCM materials,
researchers might look for any compounds with lower
switching temperatures to further reduce the WRITE energy of
the P-RAM, and so reducing the threshold time where P-RAM
is more efficient for storing information than SRAM.
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Fig. 3: Trend of total energy consumption for writing over time for P-
RAM and SRAM. PCM-based P-RAM does not require additional
energy once written, while FE-based P-RAM requires a DC voltage to
read the information. SRAM requires a constant power to overcome
internal leakage, power that becomes more prominent as DAC and E/O
conversion are required to interface the optical waveguides.

C. Electrical-optical conversion

Conversion between the electrical and optical domains is
already an overhead cost that many systems pay every day.
Assessing the cost in terms of power and latency for these
conversions shapes the system design and choice of memory,
especially when considering neural networks. Considering
electronic memories such as SRAM, the electrical signal needs
to go through a DAC (~1 nJ and ~3 ns [79]), driving amplifier,
and electro-optical modulator to convert it into an optical
signal. In the same fashion, the detected optical signal requires
a trans-impedance amplifier (TIA) and ADC to convert the
processed data back to the electronic domain [80]. In this kind
of architecture, where each step of the network has to perform
a E/O/E conversion, it is straightforward to realize that scaling
to multiple processing layers can introduce several problems,
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such as the need to buffer intermediate information in an S-
RAM cache, as well as limit the latency and efficiency of the
network due to the DACs and ADCs. A full optical network,
where the weights are stored in a nonvolatile fashion by means
of P-RAM elements [26], [81], [82], the signals are converted
once to the optical domain, and converted back once at the end
of the network, would take full advantage of the wide
bandwidth provided by the optical domain and extremely low
latency and low energy consumption. However, a lack of
efficient, nonlinear optical elements with low optical threshold
powers currently limits the practicality of this approach for deep
neural networks.

V. OUTLOOK AND ROADMAP FOR DATA STORAGE IN OPTICAL
COMPUTING

A. Roadmap for electronic memories for optical computing

Efficient integration of high-density electronic storage with
analog optical computing platforms is a challenge that requires
alleviating (or removing) the energy-consuming digital-to-
analog and electro-optical conversions. The simplest solution is
seemingly to adopt a completely analog technology using, for
instance, memristors in the electrical domain directly integrated
to photonic waveguides [83]-[85]. DACs for data input and
ADCs for data output are not needed if the optical processor is
communicating with an analog environment and E/O
conversion can be realized employing the same memristive
element. However, the world runs on digital technology and
computing with an analog architecture would certainly require
data type conversion. The prospect of E/O conversion of digital
signals using optical DACs (see Section IIIA and Table 1), and
ideally also ADCs, open the possibility of faster operations with
simplified circuitry. The latency can also be further optimized
by bringing the electronic memory bank closer to the photonic
processor using monolithic co-integration of nanoelectronics
and photonics rather than using two separate chiplets [86].

Moreover, novel modulation approaches for electro-optical
conversion are necessary to avoid the widespread use of
thermo-optical control, which faces serious heating issues when
scaling to hundreds of simultaneously operating devices.
Similarly, faster carrier-based modulation faces high IL and
large form factors—both of which are detrimental to computing
tasks since the complexity of the photonic circuitry can afford
neither. Optomechanical modulators [87], while still volatile
unless using latches or bi-stability [88], [89], are potential
CMOS-compatible platforms given their low insertion losses,
low powers, and form factors comparable to thermo-optic
modulators. Provided CMOS integration in the future, optical
modulators based on 2D materials could provide an even closer
to optimal platform for energy-efficient modulation [90].

B. Roadmap for photonic memories based on nonvolatile
materials

Photonic integrated technologies, as available in current
commercial foundries, must deal with large form factors due to
waveguide footprints, a fact that could improve in the future by
adopting smaller node CMOS fabrication processes to achieve
reliable nanophotonic structures [18]. The current form-factor
limitation means that electronics’ storage densities of 10
Gb/mm? [91] are likely unachievable with photonic memories,

especially those based on material platforms directly embedded
into the photonic circuits. Yet, the prospect of a novel optical
memory class that, despite the lower storage density, can
contribute to and enhance the performance of the memory
hierarchy in hybrid optoelectronic architectures—especially
photonic computational memory—is enough to motivate the
development of an “ideal” photonic memory. The target
performance metrics for optical memories (described in detail
in Section II) are ultimately determined by the computing task
at hand, just like the different electronic technologies in a Von
Neumann computer’s memory hierarchy. Whether volatile or
nonvolatile, written with higher or lower frequency, etc., some
features that any ideal photonic memory should have include:

1. CMOS compatibility for guaranteed scalability

2. Low IL comparable to the propagation loss of the
platform (<1 dB/cm)

3. READ and WRITE energy consumption of <fJ and fJ-
pJ, respectively

4. Large modulation depths >10 dB for amplitude
modulation and at least 2n for phase modulation

5. WRITE cyclability >108

6. Precision and stability that are not compromised by
environmental effects such as temperature or material
degradation

Despite the challenges described in Section III, there is still
ample room for improved performance in nonvolatile photonic
memory technologies. For instance, even though the PCM
photonic memories come with limited endurance today (> 5 x
10° cycles [76]), there does not appear to be any intrinsic
limitations that precludes them from reach endurance levels
attained in PCM-based RF switches (1.5 x 108 cycles [92]) and
electronic memories (> 2 x 10'2 cycles [93]). Their energy
consumption can also be minimized by searching for new PCM
compositions with reduced liquidus temperature and fast
crystallization kinetics, and/or further device optimization via
engineering the effective device area’s thermal capacitance. On
the other hand, development of new FE crystals compatible
with CMOS backend processing, such as HfO,-based oxide
alloys [94], [95], could potentially facilitate their integration
with standard photonic integrated circuits. Finally, other
alternative emerging nonvolatile integrated photonics platforms
may also prove useful for photonic memory applications [96]—
[98]. Whether backend, frontend, or eventually fully integrated
into CMOS fabrication processes, the novel active material-
based approaches require a scalable fabrication to guarantee
high density photonic architectures and mass production.

C. Optical memories in edge/cloud computing

Alleviating the von Neumann bottleneck, especially if using
fiber optics to store and fetch data—commonly done in data
centers for cloud computing—is the longstanding promise of
optical memories in conventional computers. This task is yet
to be demonstrated given the complexity of realizing high-
density optical storage, mostly due to the lack of fully CMOS
compatible platforms and their large footprints. On the other
hand, the development of fully integrated optical or electronic
memory with a photonic processor either in a von Neumann
[99] or brain-inspired architectures [8], [11], [100], together
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with integrated light sources and photodetectors, can lead to the
development of packaged devices with the portability and
processing capacity required to enhance edge computing.
Inference [11], [27] and high-throughput matrix-vector
multiplications [18], [81] have already led to outstanding, high-
performance  demonstrations using on-chip  photonic
processors—systems that can be integrated to future edge
computing devices.
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