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ABSTRACT
Dynamic programming based methods have been widely used in solving discrete-time nonlinear con-
strained optimal control problems. However, applying these methods in real-time is challenging because
a large amount of memory is needed and the associated computational cost is high. Here, a search space
dimension reduction strategy is proposed for a class of nonlinear discrete-time systems that are control-
affine and invertible. Specifically, a bio-inspired motion rule is combined with inverse dynamics to reduce
the value iteration search space to one dimension. The corresponding suboptimal control algorithm is
developed and its optimality is analysed. An adaptation rule is developed to estimate uncertainties and
improve the base policy. The closed-loop system is proven to be asymptotically stable. The advantages
of the algorithm including much smaller computational cost and significantly reduced memory usage are
demonstrated with two simulation examples.
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1. Introduction

Nonlinear constrained optimal control aims to drive a non-
linear system towards a desired value or along a desired tra-
jectory subject to equality and/or inequality constraints, while
optimising a user-defined performance index (Betts, 2010; Pon-
tryagin, 1986). This type of problem is ubiquitous and has
been seen in many applications such as spacecraft maneuver-
ing (Xin & Pan, 2009), wind turbine optimal control (Gros
& Schild, 2017), and autonomous scouting in agricultural fields
(N. Li et al., 2015).

Dynamic programming (DP), as one subset of nonlinear
constrained optimal control methods, has been widely stud-
ied for many decades, especially for those with discrete-time
dynamics (Chisci et al., 1998; Howard, 1960; Werbos, 1989a).
Based on Bellman’s Principle of Optimality, as shown in the
seminal work by Bellman (1954), the basic procedure of DP
involves two steps of operations over a discretised state-action
search space. A value iteration (VI) algorithm is an explicit
implementation of such a procedure (Bellman, 1961). In the
first step, the Bellman Equation (Howard, 1960) is followed to
compute the value function backward in time over the entire
state-action space until the optimal value function is reached. In
the second step, the optimal value function generates the greedy
control actions along the state trajectory (Bellman, 1961). As
another implementation of the procedure, in a policy iteration
(PI) algorithm (Bellman, 1961), instead of searching all possi-
ble control actions, a pre-selected control policy is used in the
first step to calculate the value function, which is then used to
improve the control policy until an optimal control policy is
reached. In the second step, the optimal control policy is fol-
lowed along the state trajectory (Bellman, 1961). Memory usage
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and computational cost ofDP, especially in Step 1 of bothVI and
PI, grow exponentially with respect to the dimension of search
space and the number of discretised nodes in each dimension –
referred to as the curses of dimensionality (Bellman, 1961). This
has preventedDP frombeing utilised inmany real-time optimal
control problems. For stochastic systems, this problem gets even
worse.

For the purpose of mitigating the computational burden of
DP, parameterised function approximators (Busoniu et al., 2010;
Lendaris et al., 2002; Powell, 2007), primarily neural networks
(Bertsekas &Tsitsiklis, 1996;Werbos, 1989b), have been applied
to predict the values associated with unvisited states based on
those of visited ones. However, the function approximation
approaches have their downsides. To start with, it has been
pointed out that replacing the lookup table in DP with func-
tion approximators sometimes is not robust even for very simple
problems (Boyan & Moore, 1995). Besides, there is no guide-
line about the choice of function approximators, for example the
configurations in neural network (Tesauro, 1992). A successful
design of a function approximator highly relies on experiences
and tuning (Powell, 2007). Additionally, a large amount of data
and offline training are typically required to produce a close
approximation of the value function (Polak, 1973). Further-
more, to obtain a good approximation, the number of param-
eters in a function approximator has to be sufficiently large and
a good portion of the state-action space needs to be visited
(Borghese & Arbib, 1995).

Another set of popular methods to mitigate the computa-
tional burden of DP are rollout algorithms (RA) (Bertsekas
et al., 1997) and receding horizon control (RHC) (Mayne
& Michalsha, 1988) or model predictive control (Clarke
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et al., 1987) algorithms. Although RHC is not a DP exclusive
method, it and RA utilise similar multi-step lookahead strate-
gies and approximate the original optimal control problemwith
one of a shorter horizon at each time instant (Bertsekas, 2020).
They essentially solve the Bellman equation in a neighbourhood
of the current state. From this perspective, these methods can
be regarded as subspace based methods that trade optimality
for computational cost reductions. The difference between RA
and RHC lies in the fact that the former approximates the value
function outside the subspace following a base policy (Bert-
sekas, 2013), whereas the latter truncates the value function
beyond the horizon (Michalsha &Mayne, 1993). Depending on
the size of the subspace, which is determined by the number of
lookahead steps, computational cost can still be a concern for
real-time implementation of these methods (Bertsekas, 2013).
On the other hand, techniques for reducing computational cost
of standard DP can be implemented within the subspace of RA
and RHC to further reduce the computational cost.

With the introduction of approximate/adaptive dynamic
programming (ADP) (Barto et al., 1983; Prokhorov & Wun-
sch, 1997; Sutton, 1988; Watkins, 1989; Werbos, 1982), the
offline computation of DP is transferred to online and the feed-
back information is then used to adapt to system uncertain-
ties. ADP is a class of methods (Barto et al., 1983; Prokhorov
& Wunsch, 1997; Sutton, 1988; Watkins, 1989; Werbos, 1982)
that solve the Bellman equation forward in time through suc-
cessive steps of policy evaluation and policy improvement.
Among ADPmethods, heuristic dynamic programming (HDP)
(Werbos, 1990) sees the most applications (Bhatnagar, 2010;
Borkar, 2005; Liu et al., 2013). It uses an actor network as the
control policy for the online forward propagation and a critic
network approximating the value function based on system
feedback information (Werbos, 1990). The critic network out-
put is then used to evaluate the actor network and improve
it accordingly (Werbos, 1990). This procedure is repeated
until an optimal control policy is reached (Werbos, 1990). As
improvement of the control policy usually requires the calcula-
tions of value function derivatives, dual heuristic programming
(DHP) is developed to approximate the derivative directly (Wer-
bos, 1992). Furthermore, with globalised DHP (GDHP), not
only the value function but also its derivative are approximated
(Miller et al., 1995). There are also action-dependent (AD)
variants of the aforementioned methods (i.e. ADHDP Watkins
& Dayan, 1992, ADDHP Prokhorov & Wunsch, 1997, and
ADGDHP Prokhorov & Wunsch, 1997) that assume the value
function to be directly related to both state and action. How-
ever, because most policy-based ADP methods (Pi et al., 2020;
Silver et al., 2014) assume the value function to be differentiable,
they are not suitable for constrained optimal control problems
where smoothness of the value function sometimes cannot be
guaranteed (Yaghmaie & Braun, 2019). Additionally, although
the computation of the value function is transferred from offline
to online, a sufficient collection of online data is still necessary
for the training of the critic network (Luo et al., 2018), resulting
in high CPU occupation and memory usage.

In brief, it is still a challenging task to apply DP and its
variations to many discrete-time, nonlinear constrained opti-
mal control problems in real-time. Two observations are: (1)
the inherent dynamics, many of which are known or partially

known, haven’t been fully utilised; and (2) knowledge of the
environment is not fully exploited, leading to inefficient search
over noncontributory regions of the state-action space. A sub-
space method has been discussed to reduce the computational
cost by finding local optimal or suboptimal solutions in Wei
et al. (2017).

A two-step search space dimension reduction strategy is pre-
sented here to tackle the aforementioned issue for a class of non-
linear discrete-time dynamic systems that are control-affine and
invertible. Instead of searching the action space exhaustively,
the first dimension reduction step uses an inverse dynamics
(ID) policy (Forrest-Barlach & Babcock, 1987; Kumar & Sey-
wald, 1996) as the base policy to calculate the control action
based on the current state and the desired state-to-reach in an
Euler scheme, resulting in an ID-basedVI (ID-VI)method. Fur-
thermore, the state search space is confined using the virtual
motion camouflage (VMC) rule, in which the state variation is
constrained by the 1-dimensional path control parameter (PCP)
(Xu & Basset, 2012). The motion camouflage phenomenon
(Srinivasan & Davey, 1995) is observed in mating hoverflies
when a male hoverfly is approaching a female one while its
motion is shown static on the retina of the female counterpart.
Xu and Basset (2012) have utilised this strategy in developing
direct collocation based suboptimal controllers for continuous-
time optimal trajectory planning problems, which are dramati-
cally different from the problems and approaches in this paper.
Here, the VMC rule is used in the second dimension reduction
step of DP to project the state space into a 1-dimensional PCP
parameter space and the ID-VI method is then developed into
the VMC-based ID-VI (ID-VMC-VI) method. Themain struc-
ture of VI method remains intact. Similar to most VI methods,
once the value function has converged, the actual control action
will be generated by the greedy policy (Powell, 2007).

The advantages of the resulting ID-VMC-VI algorithm
are summarised as follows. (1) Since the search space is
1-dimensional, the optimisation related computation time is
low. (2) Since only values corresponding to the 1-dimensional
PCP variables are stored, the memory usage is significantly
reduced. This can benefit many real-world applications with
limited random access memory. (3) It is shown that the closed-
loop system is asymptotically stable and the solution optimality
is lower bounded by a first-order tracking controller or a sec-
ond order tracking controller under two different scenarios. (4)
When combined with a gradient based ID policy improvement
rule, the ID-VMC-VI algorithm can solve constrained opti-
mal control problems with uncertainties. A stability analysis is
provided for the overall algorithm.

This study is a significant extension from our previous con-
ference publication (Li & Xu, 2020). (1) Here we focus on
the development of ID-VMC-VI method as a general method
for discrete-time invertible nonlinear control-affine systems. In
comparison, Li and Xu (2020) only applied the preliminary
version of ID-VI, ID-VMC-VI, and another algorithm in an
unmanned aerial vehicle (UAV) angular velocity control prob-
lem. (2) The theoretical aspect of ID-VMC-VI has been revised
and extended with respect to the a general class of discrete-
time optimal control problems, considering state and control
inequality constraints in a systematic manner. (3) Additional
sections on dimensionality, stability and optimality analyses
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have been developed. (4) A different ID policy improvement
method is developed to fit a wider range of problems with
different performance indices. Additional convergence and sta-
bility analyses are provided. (5) Guidelines on how to apply the
algorithm are offered. (6) In this paper, two simulation examples
are used for illustration. While the first example is adopted and
refined fromLi and Xu (2020), the improved algorithm and new
ID policy improvement method are applied. Furthermore, the
simulation parameters and settings are tuned for a better result
demonstration. The second example is a new and challenging
application involving obstacle avoidance.

Section 2 formulates the problem and recalls necessary back-
ground knowledge on DP. The two search dimension reduction
steps are presented in Section 3, along with stability, dimension-
ality and optimality analyses. Section 4 presents the ID policy
improvement rule and its stability and convergence analyses.
The overall algorithm is summarised in Section 5 and two sim-
ulation examples are shown in Section 6. The study is concluded
at the end.

2. Problem definition and background information

A discrete-time, invertible, and control-affine system can be
formulated as

xti+1 = F(xti , θ) + G(xti , θ)uti , xti ∈ Sn, uti ∈ Am, θ ∈ Pr

(1)
where xti is the state vector at time instant ti, i = 0, 1, 2, . . ..
uti is the control vector. θ consists of uncertain parameters.
Sn ⊂ R

n is the constrained state vector space. Am ⊂ R
m is

the constrained control vector space. Pr ⊂ R
r is the uncertain

parameter vector space. Assuming thatG(xti , θ) has a rank ofm,
its Moore-Penrose inverse G−1(xti , θ) exists (Penrose, 1954).

Because of the uncertainties in θ , given state xti and control
uti , the predicted system state x̂ti+1 based on θ̂ ti , which is the
estimate of θ at ti, will differ from the actual state feedback xti+1 .
Define x̃ti+1 = xti+1 − x̂ti+1 and let eti+1 = x̃Tti+1

x̃ti+1/2. The esti-
mation problem (E1) is defined as: Solve for θ̂ ti+1 to minimise
eti+1 .

The control problem (C1) is defined as: Solve for the optimal
control sequence {u∗}N−1

k=i so that the following performance
index, or value function, is minimised (Howard, 1960):

V(xti) =
N−1∑
k=i

L(xtk , utk) (2)

subject to the equality constraint (1) and the boundary
conditions:

xti = xti and xtN = xd,ti (3)

where L(xtk , utk) ≥ 0 is the step cost of taking utk in xtk . xd,ti ∈
Sn is the desired state-to-reach from xti . L(xtk , utk) = 0 only
when xtk = xd,ti and F(xd,ti , θ̂ ti) + G(xd,ti , θ̂ ti)utk = xd,ti .

The basic VI scheme solves for the optimal value function
V∗(xti) in C1 over the (m + n)-dimensional state-action space

using the Bellman equation (Powell, 2007)

Vj+1(xtk) = min
utk∈Am

{
L(xtk , utk) + Vj(xtk+1)

}
, ∀ xtk ∈ Sn

(4)
where k ≥ i. With (4), Vj(xd,ti) = 0, j = 0, 1, 2, . . ., is guaran-
teed. State constraints are introduced in the form of penalty in
the value function, i.e. Vj(xtk) = Penalty, ∀ xtk �∈ Sn.

In this paper, we consider the tabular approximation of the
value function.We define Sn to always refer to the discrete state
vector space, andAm to refer to the discrete action vector space.

For an actual system, the discrete vector spaces Sn and Am

are finite. Therefore, within finite iterations, the value itera-
tion stopping condition, Vj+1(xtk) = Vj(xtk), ∀ xtk ∈ S , will be
met and the optimal value function V∗(xtk), ∀ xtk ∈ S , will be
reached. The optimal value function at ti satisfies

V∗(xtk) = min
utk∈Am

{
L(xtk , utk) + V∗(xtk+1)

}
, ∀ xtk ∈ Sn, (5)

and the optimal control to take in state xti with respect to (2) is
given as Powell (2007)

u∗
ti = argmin

uti∈Am

{
L(xti , uti) + V∗(xti+1)

}
. (6)

Discussions on the existence and uniqueness of u∗
ti can be found

in Powell (2007). In general, it is assumed that ‘argmin’ includes
all necessary operations to find the best control vector.

Because xd,ti and θ̂ ti are time-varying, C1 needs to be solved
at each time instant ti. However, due to the curse of dimension-
ality, solvingC1 via basic VI scheme can be impracticable when
the systemdimension is high, even ifSn andAm are discrete and
finite. We present a two-step search space dimension reduction
strategy in the following.

3. Search space dimension reduction

3.1 Action space elimination

In the first dimension reduction step, the control action is calcu-
lated by an ID policy (Forrest-Barlach & Babcock, 1987) based
on the current state and a state-to-reach. Following this proce-
dure, instead of searching the (m + n)-dimensional state-action
space to find the optimal control action, we only need to search
the m-dimensional state space for the optimal state-to-reach.
The optimal control action can then be calculated by the ID
policy.

The ID policy based control to take in xtk to reach xd,tk in one
time step is calculated based on the estimate θ̂ ti as

uπ ,tk = G−1(xtk , θ̂ ti)[xd,tk − F(xtk , θ̂ ti)]
�= π(xtk , xd,tk , θ̂ ti) (7)

where xd,tk is assumed reachable within one time step with-
out considering the constraints. uπ ,tk is then saturated to sat-
isfy the control constraint uπ ,tk ∈ Am before used for the state
propagation in the value iteration.
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Choosing xd,tk = xd,ti and substituting (7) into (4), the Bell-
man equation for ID-VI can be written as

Vπ ,j(xtk) = L(xtk ,π(xtk , xd,ti , θ̂ti)) + Vπ ,j−1(xtk+1),

∀ xtk ∈ Sn (8)

where we follow the notation from Sutton and Barto (2018) and
use Vπ to denote the value function of following policy utk =
π(xtk , xd,ti , θ̂ti) during value iteration.

Compared with (4), which needs to be solved in the (m +
n)-dimensional state-action space, (8) is solved in the n-
dimensional state space. Thus, the action space is eliminated
from the search space following ID-VI and the search space
dimension is reduced from (m + n) to n.

In a discrete and finite Sn, the convergence of ID-VI is guar-
anteed. Once Vπ has converged to V∗

π , which is the optimal
value function following policy π , we search for the predicted
optimal state-to-reach xs∗ti+l

by solving

xs∗ti+l
= argmin

xti+l∈Sn

⎧⎨
⎩

l−1∑
p=0

L(xti+p,π(xti+p , xti+l , θ̂ ti)) + V∗
π (xti+l)

⎫⎬
⎭ .

(9)
where l is the number of steps it takes to propagate from xti
to xti+l , and l varies depending on xti+l . Because of the control
constraints, some states in Sn are not reachable from xti in one
time step. Thus, the l-step lookahead strategy (Sutton, 1988) is
used in (9) to evaluate those states as the state-to-reach. Dur-
ing the l-step lookahead, controls are constrained and the state
constraints are introduced as penalty.

Remark 3.1: Because of the state constraints, e.g. collision
avoidance and obstacle avoidance, the reachable set of states
from xti following the ID policy will be different from the
reachable set from xti+1 . As a result, even if xd,ti = xd,ti+1 , the
predicted optimal state-to-reach at different time step will not
necessarily be the same.

The ID-VI based control us∗ti is calculated by substituting x
s∗
ti+l

from (9) as the desired state-to-reach from xti into (7), i.e.

us∗ti = π(xti , x
s∗
ti+l

, θ̂ ti). (10)

3.2 State space projection via VMC

To further reduce the dimension of the search space, the VMC
rule (Srinivasan & Davey, 1995; Xu & Basset, 2012) is applied
to confine the state search space to a VMC subspace Sn

υ,ti ⊆ Sn

that is shaped by a reference state xref ,ti and a desired state-to-
reach xd,ti . TheVMCrule uniquely determines a state xυ

tk ∈ Sn
υ,ti

by a PCP υtk from the 1-dimensional PCP space V1. Following
this procedure, searching for the optimal state-to-reach in the
m-dimensional state space is transferred into searching for the
optimal PCP-to-go in the 1-dimensional PCP space, which is
then projected back into the state space to obtain the optimal
state-to-reach.

Following the VMC rule, a xυ
tk ∈ Sn

υ,ti can be determined by
a PCP υtk ∈ V1 as Xu and Basset (2012)

xυ
tk = xref ,ti + υtk(xd,ti − xref ,ti)

�= x(υtk , xd,ti , xref ,ti), υtk ∈ V1 (11)

where xref ,ti corresponds to a PCP value of 0, and xd,ti corre-
sponds to a PCP value of 1. It is practical to let V1 = [0,υmax],
where υmax can be chosen based on desired system charac-
teristics. For example, υmax = 1 corresponds to a desired state
response without overshoot, while υmax = 1.2 allows for a 20%
overshoot. Different from Xu and Basset (2012), xti does not
necessarily belong to Sn

υ,ti . The reference state xref ,ti can be
selected in such a way that Sn

υ,ti ⊆ Sn, i.e. every xυ
tk ∈ Sn

υ,ti
satisfies the state constraints. When the state constraints are
too complicated to satisfy, desired waypoint states-to-go can be
inserted to divide the original problem into sub-problems.

Equation (11) is a bijection, meaning for each υtk ∈ V1,
there is a corresponding xυ

tk ∈ Sn
υ,ti , and vice versa. The inverse

projection from the VMC subspace Sn
υ,ti to the PCP space V1 is

υtk =
〈
xυ
tk − xref ,ti , xd,ti − xref ,ti

〉
/
∥∥xd,ti − xref ,ti

∥∥
2

�= υ(xυ
tk , xd,ti , xref ,ti), xd,ti �= xref ,ti , x

υ
tk ∈ Sn

υ,ti . (12)

Substituting (11) into (7) with xd,ti as the desired state-to-reach,
the ID policy under the VMC rule becomes

uυ
π ,tk = π(x(υtk , xd,ti , xref ,ti), xd,ti , θ̂ ti). (13)

The Bellman equation for ID-VMC-VI is obtained by
substituting (11) and (13) into (8) as

Vπ ,j(x(υtk , xd,ti , xref ,ti))

= L(xυ
tk , u

υ
π ,tk) + Vπ ,j−1(x(υtk+1 , xd,ti , xref ,ti)),

∀ υtk ∈ V1, (14)

or simply

Vπυ,j(υtk) = L(xυ
tk , u

υ
π ,tk) + Vπυ,j−1(υtk+1), ∀ υtk ∈ V1

(15)
where we use the additional subscript υ to illustrate that the
value function is obtained under the VMC rule. υtk+1 is the PCP
corresponding to F(xυ

tk , θ̂ ti) + G(xυ
tk , θ̂ ti)u

υ
π ,tk and is calculated

using (12).
ID-VMC-VI solves (15) for the optimal value function V∗

πυ

in the 1-dimensional PCP space. After this reduction step, the
search space dimension is further reduced from n in ID-VI to 1.

For a discrete and finite V1, ID-VMC-VI is guaranteed to
converge. Once V∗

πυ is reached, we search V1 for the predicted
optimal PCP-to-go from xti as

υ∗
ti+l

= argmin
υti+l∈V1

⎧⎨
⎩

l−1∑
p=0

L(xti+p ,π(xti+p , x
υ
ti+l

, θ̂ ti)) + V∗
πυ(υti+l)

⎫⎬
⎭

(16)
where xυ

ti+l
= x(υti+l , xd,ti , xref ,ti). l is the number of steps taken

to reach xυ
ti+l

from xti , and l is free. The l-step lookahead
(Sutton, 1988) is warranted by not only control constraints, but
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also the fact that xti maynot belong toSn
υ,ti . Eitherway, the l-step

lookahead is necessary for finding the optimal PCP-to-go over
the 1-dimensional PCP space. Similar to ID-VI, the control and
state constraints are considered in the l-step lookahead in (16).

Remark 3.2: Because of the state constraints, the optimal PCP-
to-go changes as the system state propagates, even if the VMC
subspace stays unchanged. Choosing υ∗

ti+l
as the optimal PCP-

to-go at ti does not necessarilymean that the state trajectory will
eventually reach x(υ∗

ti+l
, xd,ti , xref ,ti) at ti+l.

Substituting (16) into (11), the optimal l-step state-to-reach
predicted by ID-VMC-VI is

xυ∗
ti+l

= x(υ∗
ti+l

, xd,ti , xref ,ti). (17)

The ID-VMC-VI based control uυ∗
ti is then calculated by substi-

tuting (17) as the desired state-to-reach from xti into (7), i.e.

uυ∗
ti = π(xti , x(υ

∗
ti+l

, xd,ti , xref ,ti), θ̂ ti). (18)

3.3 Stability analysis

Proposition 3.1: At ti, under the assumption that θ̂ ti = θ , xd,ti
is the asymptotically stable point of the system (1) under control
(18).

Proof: Let xti = xd,ti . It is straight forward to get xd,ti =
F(xd,ti , θ̂ ti) + G(xd,ti , θ̂ ti)u

υ∗
ti . Therefore, xd,ti is an equilibrium

point of the system (1) under control (18).
At ti, the optimal value functionV∗

πυ is stationary. From (16),
we define the value function of state xti under control (18) as

Vπυ(xti)
�=

l−1∑
p=0

L(xti+p ,π(xti+p , x
υ∗
ti+l

, θ̂ ti)) + V∗
πυ(υ∗

ti+l
)

= L(xti ,π(xti , x
υ∗
ti+l

, θ̂ ti))

+
l−1∑
p=1

L(xti+p ,π(xti+p , x
υ∗
ti+l

, θ̂ ti)) + V∗
πυ(υ∗

ti+l
),

(19)

in which

l−1∑
p=1

L(xti+p ,π(xti+p , x
υ∗
ti+l

, θ̂ ti)) + V∗
πυ(υ∗

ti+l
)

l2=l−1=
l2−1∑
p=0

L(xti+1+p ,π(xti+1+p , x
υ∗
ti+1+l2

, θ̂ ti)) + V∗
πυ(υ∗

ti+1+l2
)

≥ min
υti+1+l3

∈V1

⎧⎨
⎩

l3−1∑
p=0

L(xti+1+p ,π(xti+1+p , x
υ
ti+1+l3

, θ̂ ti))

+ V∗
πυ(υti+1+l3

)

⎫⎬
⎭

= Vπυ(xti+1). (20)

From the definition of the step cost function following (3), it
is clear that Vπυ(xti) ≥ 0, ∀ xti ∈ Sn, with Vπυ(xti) = 0 only
when xti = xd,ti .

Combining (19) and (20) yields

Vπυ(xti+1) − Vπυ(xti) ≤ −L(xti ,π(xti , x
υ∗
ti+l

, θ̂ ti)) ≤ 0,

∀ xti ∈ Sn. (21)

The second equality in (21) holds only when xti = xd,ti . There-
fore, Vπυ(xtk) is a Lyapunov function for the system (1) under
control (18) at ti. Based on the discrete-time Lyapunov theorem
(Luenberger, 1979) and the discrete-time LaSalle’s invariance
principle (Sundarapandian, 2003), the equilibrium point xd,ti is
asymptotically stable. �

3.4 Optimality analysis

Lemma 3.2: When applied to solve C1, us∗ti is suboptimal to u∗
ti .

Proof: From (5), we have

V∗(xti) = L(xti , u
∗
ti) + V∗(F(xti , θ̂ ti) + G(xti , θ̂ ti)u

∗
ti)

≤ L(xti , u
s∗
ti ) + V∗(F(xti , θ̂ ti) + G(xti , θ̂ ti)u

s∗
ti ). (22)

Therefore, us∗ti is suboptimal to u∗
ti . �

Asmentioned earlier, the selection of reference point in the sec-
ond dimension reduction step ismainly exploited for addressing
the state constraints. For the purpose of optimality analysis, xti
will be regarded as the reference point in this subsection.

Lemma 3.3: When applied to solve C1, uυ∗
ti is suboptimal to us∗ti .

Proof: Choosing xref ,ti = xti , then from (9), we have

xs∗ti+1
= argmin

xti+1∈Sn

{
L(xti ,π(xti , xti+1 , θ̂ ti)) + V∗

π (xti+1)
}
, (23)

and from (16) and (17), we have

xυ∗
ti+1

= argmin
xυ
ti+1∈Sn

υ,ti

{
L(xti ,π(xti , x

υ
ti+1

, θ̂ ti)) + V∗
πυ(xυ

ti+1
)
}

≥ argmin
xυ
ti+1∈Sn

υ,ti

{
L(xti ,π(xti , x

υ
ti+1

, θ̂ ti)) + V∗
π (xυ

ti+1
)
}
. (24)

Because Sn
υ,ti ⊆ Sn, comparing (23) and (24) yields

L(xti ,π(xti , x
s∗
ti+1

, θ̂ ti)) + V∗
π (xs∗ti+1

)

≤ L(xti ,π(xti , x
υ∗
ti+1

, θ̂ ti)) + V∗
πυ(xυ∗

ti+1
). (25)

From (10) and (18), we have us∗ti = π(xti , x
s∗
ti+1 , θ̂ ti) and uυ∗

ti =
π(xti , x

υ∗
ti+1 , θ̂ ti). Therefore, u

υ∗
ti is suboptimal to us∗ti . �

Corollary 3.4: For ∀ xυ
ti+1 ∈ Sn

υ,ti , π(xti , x
υ
ti+1 , θ̂ ti) is suboptimal

to uυ∗
ti in solving C1.
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Proof: The following inequality is a direct result from (24)

L(xti ,π(xti , x
υ∗
ti+1

, θ̂ ti)) + V∗
πυ(xυ∗

ti+1
) ≤ L(xti ,π(xti , x

υ
ti+1

, θ̂ ti))

+ V∗
πυ(xυ

ti+1
), (26)

which proves the statement. �

Corollary 3.5: If υ ∈ [0, 1], the optimality of using uυ∗
ti in C1

is lower bounded by that of a first-order, exponential decay state
tracking controller.

Proof: A first-order state trajectory in the VMC subspace can
be formulated as Ogata (2010)

xtk = xd − (xd − xi)ea(ti−tk), k = i, . . . ,N − 1 (27)

with 1/a > 0 being the time constant.
Substituting (27) into (12), the PCP-to-go can be derived as

υtk = 1 − ea(ti−tk), k = i, . . . ,N − 1. (28)

It is clear from (28) that 0 < υti+1 < 1, ∀ a > 0. Based on
Corollary 3.4, the tracking controller following this predefined
PCP is suboptimal to uυ∗

ti . �

Corollary 3.6: If υ can be larger than 1, the optimality of using
uυ∗
ti is lower bounded by that of a second-order state trajectory

tracking controller.

Proof: A second-order state trajectory can be formulated as
Ogata (2010)

xtk = xd − (xd − xi)
eωd(ti−tk)ζ/

√
1−ζ 2√

1 − ζ 2
sinχ ,

0 < ζ < 1, k = i, . . . ,N − 1 (29)

where χ = ωd(tk − ti) + tan−1(
√
1 − ζ 2/ζ ). ζ is the damping

ratio and ωd is the damped natural frequency.
The PCP-to-go following this second-order trajectory can be

derived as

υtk = 1 − eωd(ti−tk)ζ/
√

1−ζ 2√
1 − ζ 2

· [sinωd(tk − ti) cotχ + cosχ],

0 < ζ < 1, k = i, . . . ,N − 1. (30)

Choosing k = i+ 1 in (30) gives the PCP-to-go υti+1 . Follow-
ing Corollary 3.4, a controller tracking this predefined PCP is
suboptimal to uυ∗

ti . �

Remark 3.3: The performance advantage of the proposed ID-
VMC-VI control scheme over typical trajectory tracking con-
trollers lies in the optimisation over PCPs. Furthermore, in
ID-VMC-VI, we have the flexibility to choose the reference
point xref ,ti to address state constraints.

3.5 Dimension analysis

Following the two-step search space dimension reduction strat-
egy, the dimension of search space for the optimal control is
reduced from m+ n in basic VI to n in ID-VI, and eventually
reduced to 1 in ID-VMC-VI.

Assume that there are D discretised nodes per dimension in
the search space. Because the size of a tabular value function is
proportional to the number of discretised nodes in the search
space, the memory consumption of ID-VMC-VI will be Dn−1

andDm+n−1 times less than those of ID-VI and VI, respectively.
Even though the computational cost of a VI algorithm

depends onmany factors besides the size of the search space and
no rigid relationship can be drawn between the two, ID-VMC-
VI still dramatically reduces the computational cost compared
with ID-VI and the basic VI, as will be shown in the simulation
results.

4. ID policy improvement

4.1 Uncertain parameter adaptation via gradient descent

E1: The problem of estimating the uncertain parameter θ to
improve the ID policy, as stated in Section 2, is solved by the
gradient descent method (Curry, 1944)

θ̂ ti+1 = θ̂ ti − α
deti+1

dθ̂ ti
(31)

where α is the step size matrix. deti+1/dθ̂ ti is derived as

deti+1

dθ̂ ti
= dx̃ti+1

dθ̂ ti

deti+1

dx̃ti+1

= dx̃ti+1

dθ̂ ti
x̃ti+1 (32)

where

dx̃ti+1

dθ̂ ti
= dxti+1

dθ̂ ti
− dx̂ti+1

dθ̂ ti
. (33)

Given xti , xti+1 = F(xti , θ) + G(xti , θ)uti , where uti = G−1(xti ,
θ̂ ti)[x̂ti+1 − F(xti , θ̂ ti)]. The derivative of xti+1 with respect to θ̂ ti
via the chain rule is

dxti+1

dθ̂ ti
= duti

dθ̂ ti

dxti+1

duti

=
(

∂uti
∂ θ̂ ti

+ dx̂ti+1

dθ̂ ti

∂uti
∂ x̂ti+1

)
dxti+1

duti
(34)

where

∂uti
∂ θ̂ ti

= dG−1(xti , θ̂ ti)

dθ̂ ti
[x̂ti+1 − F(xti , θ̂ ti)]

−
[
dF(xti , θ̂ ti)

dθ̂ ti

]T

[G−1(xti , θ̂ ti)]
T . (35)

On the other hand, x̂ti+1 satisfies x̂ti+1 = F(xti , θ̂ ti) + G(xti , θ̂ ti)
uti , intowhich substitutinguti = G−1(xti , θ̂ ti)[x̂ti+1 − F(xti , θ̂ ti)]
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yields x̂ti+1 = x̂ti+1 . Therefore, x̂ti+1 is invariant with respect to
θ̂ ti , i.e. dx̂ti+1/dθ̂ ti = 0. Hence, from (33),

dx̃ti+1/dθ̂ ti = dxti+1/dθ̂ ti , (36)

and from (34),
dxti+1

dθ̂ ti
= ∂uti

∂ θ̂ ti

dxti+1

duti
. (37)

Combining (37) and (36), we have

dx̃ti+1

dθ̂ ti
= ∂uti

∂ θ̂ ti

dxti+1

duti
. (38)

Substituting (38) into (32), we have

deti+1

dθ̂ ti
= ∂uti

∂ θ̂ ti

dxti+1

duti
x̃ti+1 , (39)

which, when substituted into (31), yields

θ̂ ti+1 = θ̂ ti − α
∂uti
∂ θ̂ ti

dxti+1

duti
x̃ti+1 . (40)

4.2 Convergence analysis

Proposition 4.1: Following the gradient method (40), the adap-
tation parameter θ̂ converges to the actual value θ if the system is
in a transient stage.

Proof: According toCurry (1944), the gradient descentmethod
stops only when a stationary point is reached, i.e. when

deti+1/dθ̂ ti = 0. (41)

Given the fact that the system state is affected by the uncertain
parameter, dx̃ti+1/dθ̂ ti �= 0. Therefore, we know from (32) that
the stopping condition (41) holds true only if x̃ti+1 = 0. For a
system in transient stages, this condition can be elaborated as

x̃ti+1 = [F(xti , θ) − F(xti , θ̂ ti)]

+ [G(xti , θ)uti − G(xti , θ̂ ti)]uti = 0,

∀ xti ∈ Sn, (42)

For a general system, we assume there are an infinite number of
states in the state space, therefore, Equation (42) holds true only
if θ̂ ti = θ . �

4.3 Stability condition

To discuss the influence of parameter adaptation on the stabil-
ity of the closed-loop system, V(·, θ̂) is used to denote a value
function attained under the estimate θ̂ . Definition of Vπυ(x, θ̂)

follows (19).

Proposition 4.2: Assuming that there exists a vector κ ∈ R
r,

such that maxxtk∈Sn[Vπυ(xtk , θ̂ ti+1) − Vπυ(xtk , θ̂ ti)] ≤ κT

(θ̂ ti+1 − θ̂ ti), k ≥ i, then (xd,ti , θ) is the asymptotically stable

point of the system (1) under control (18) and parameter adap-
tation (40) if the parameter update step size α satisfies

κTα
∂uti
∂ θ̂ ti

dxti+1

duti
x̃ti+1 + L(xti ,π(xti , x

υ∗
ti+l

, θ̂ ti)) ≥ 0 (43)

with the equality holds only when xti = xd,ti .

Proof: Proof of Proposition 4.2 follows a similar idea of Propo-
sition 3.1. It is clear from Propositions 3.1 and 4.1 that (xd,ti , θ)

is an equilibrium point of the overall system.
From the definition of the step cost function following (3),

Vπυ(xtk , θ̂ th) ≥ 0, ∀ (xtk , θ̂ th) ∈ {(xtk , θ̂ th)|xtk ∈ Sn, θ̂ th ∈ Pr},
k ≥ i, h ≥ i. Vπυ(xtk , θ̂ th) = 0 only when xtk = xd,ti .

From (19), we have

Vπυ(xti , θ̂ ti) = L(xti ,π(xti , x
υ∗
ti+l

, θ̂ ti))

+
l−1∑
p=1

L(xti+p ,π(xti+p , x
υ∗
ti+l

, θ̂ ti)) + V∗
πυ(υ∗

ti+l
)

= L(xti ,π(xti , x
υ∗
ti+l

, θ̂ ti)) + Vπυ(xti+1 , θ̂ ti). (44)

From (44) and the assumption of Proposition 4.2, we have

Vπυ(xti+1 , θ̂ ti+1) − Vπυ(xti , θ̂ ti)

= Vπυ(xti+1 , θ̂ ti+1) − Vπυ(xti+1 , θ̂ ti)

− L(xti ,π(xti , x
υ∗
ti+l

, θ̂ ti))

≤ κT(θ̂ ti+1 − θ̂ ti) − L(xti ,π(xti , x
υ∗
ti+l

, θ̂ ti)). (45)

Substituting (40) into (45), we have

Vπυ(xti+1 , θ̂ ti+1) − Vπυ(xti , θ̂ ti)

≤ −κTα
∂uti
∂ θ̂ ti

dxti+1

duti
x̃ti+1 − L(xti ,π(xti , x

υ∗
ti+l

, θ̂ ti)), (46)

from which it is clear that (43) is the condition for Vπυ(xti+1 ,
θ̂ ti+1) − Vπυ(xti , θ̂ ti) ≤ 0. When xti = xd,ti , L(xti ,π(xti , x

υ∗
ti+l

,
θ̂ ti)) = 0. Thus, based on Proposition 4.1, Vπυ(xti+1 , θ̂ ti+1) −
Vπυ(xti , θ̂ ti) = 0 only if θ̂ ti = θ . Therefore, Vπυ(xtk , θ̂ th),
∀ (xtk , θ̂ th) ∈ {(xtk , θ̂ th)|xtk ∈ Sn, θ̂ th ∈ Pr}, k ≥ i, h ≥ i, is a
Lyapunov function for the system (1) under control (18)
and parameter adaptation (40), and the equilibrium point
(xd,ti , θ) is asymptotically stable (Luenberger, 1979; Sundara-
pandian, 2003). �

5. Algorithm

The ID-VMC-VI algorithm is summarised in Algorithm 1. All
related equations have been discussed before. It is worth men-
tioning that the algorithm needs to run at every time step ti
to take time-varying properties, such as state constraints, into
consideration, as well as to update the estimate of uncertain
parameter.

There are several guidelines to help efficiently implement the
algorithm. (1) A small step size is preferred to achieve better
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Algorithm 1 ID-VMC-VI Algorithm at ti
1: Given xd,ti , xti , θ̂ ti , α, V1

2: Set Vπυ,0(υ) = 0,∀ υ ∈ V1, j = 1, flag = 0
3: while flag = 0 do
4: for ∀ υtk ∈ V1 \ {υd} do
5: Calculate xυ

tk = x(υtk , xd,ti , xref ,ti)
6: Calculate uυ

π ,tk = π(xυ
tk , xd,ti , θ̂ ti)

7: Propagate xυ
tk+1

= F(xυ
tk , θ̂ ti) + G(xυ

tk , θ̂ ti)u
υ
π ,tk

8: Calculate υtk+1 = υ(xυ
tk+1

, xd,ti , xref ,ti)
9: Vπυ,j(υtk) ← L(xυ

tk , u
υ
π ,tk) + Vπυ,j−1(υtk+1)

10: end for
11: if Vπυ,j(υ) = Vπυ,j−1(υ),∀ υ ∈ V1 then
12: Set flag = 1
13: else
14: j ← j + 1
15: end if
16: end while
17: Calculate υ∗

ti+l
following (16)

18: Calculate xυ∗
ti+l

= x(υ∗
ti+l

, xd,ti , xref ,ti)
19: Calculate uυ∗

ti = π(xti , x(υ∗
ti+l

, xd,ti , xref ,ti), θ̂ ti)
20: Observe state feedback xti+1
21: Calculate x̃ti+1 = xti+1 − xυ∗

ti+1

22: Update θ̂ ti+1 ← θ̂ ti − α∇
θ̂ ti
eti+1

performance near the border of state and control constraints.
(2) The solution optimality depends on the selection of refer-
ence point and prey motion (i.e. desired state xd,ti). In general,
the reference point and desired state xd,ti are chosen so that the
VMC subspace does not violate the state constraints. However,
in case of complicated state constraints, an intermediate desired
state-to-reach can be adopted to break down the problem into
sub-problems. (3) Control constraints should be accounted for
in the state propagation in Line 9 of the above algorithm. (4)
Both state and control constraints should be accounted for in
the l-step lookahead in Line 14 of the algorithm.

Remark 5.1: We reckon that the ID-VMC-VI algorithm can
be implemented in real-time if the CPU time to execute the
algorithm is less than the control time step size.

6. Simulation validation and discussion

Two examples are simulated to show the computational cost and
memory usage advantages of the ID-VMC-VImethod. Example
1 solves a regulating problem with control constraints. Exam-
ple 2 solves an optimal trajectory planning problem with both
state and control constraints. While the first example is adopted
and refined from Li and Xu (2020), the improved algorithm and
the new ID policy improvement method from this paper are
applied. Furthermore, the simulation parameters and settings
are tuned to achieve better performance. Since the estimates
of uncertain parameters are updated at every time step, the
VI algorithm needs to be implemented in real time. Theoreti-
cally, the classical DP based VI method (VI) will generate the
optimal solutions, however, its high computational cost and a
huge amount of memory requirement prohibit it from real-time

application. Therefore, we show the comparison of VI, ID-VI,
and ID-VMC-VI methods only in Example 1; while in Example
2, ID-VI and ID-VMC-VI are compared. The implementation
of the ID-VI method has two differences from the ID-VMC-VI
method. First, during the value iteration, the VMC rule is not
followed. Second, (9) is followed instead of (16) to calculate the
predicted optimal state-to-reach.

6.1 Example 1: angular velocity control

Simulation 1 is conducted on a laptop computer with a 3.7GHz
CPU and a 64GB RAM. This example is adopted and refined
from Li and Xu (2020). A UAV attitude dynamics is governed
by Mahony et al. (2012)

ωti+1 = ωti − TI−1 (
ωti×Iωti

) + TI−1uti (47)

where ωti ∈ S3 is the UAV body frame angular velocity. uti ∈
A3 is the control torque imposed on the centre of mass of the
UAV. Subscripts x, y and z are used to denote the components
of ωti and uti along the directions of roll, pitch, and yaw. I is
the moment of inertia matrix. It is invertible, but not perfectly
known. T is the time step size. We assume the initial guess of I
to be Î = diag{0.07, 0.07, 0.1} kg·m2 and the real values to be

I =
⎡
⎣0.09 0 0.01

0 0.05 0
0.01 0 0.13

⎤
⎦ kg·m2. (48)

The proposed ID-VMC-VI algorithm is tasked to follow the step
angular velocity command. The step cost function is

L(ωti , uti) = (ωd,ti − ωti)
TQ(ωd,ti − ωti) + uti

TRuti (49)

where the weighting matrices Q and R are picked to be
diag{1, 1, 1} and diag{0.01, 0.01, 0.01}. To test the ability of the
proposed method in handling control constraints, the control
limits are assumed to be ±0.8Nm in all three directions.

The time step size is set to be 0.1 s in the simulation. For
the purpose of comparison, the 6-dimensional state and action
spaces of VI, 3-dimensional state space of ID-VI, and the 1-
dimensional PCP space of ID-VMC-VI are discretised into 416
nodes, 413 nodes, and 41 nodes, respectively.

The step signals last 20 s in all three directions. In the roll
and pitch directions, the signal magnitudes are 2 rad/s. In the
yaw direction, the magnitude is 1 rad/s. The simulation results
show that all three methods can stabilise the angular velocities
(shown in Figure 1), without violating the control constraints
(shown in Figure 2). The benefit of ID-VI and VI being able
to search the state space and state/action spaces yields a perfor-
mance boost over ID-VMC-VI at the rising phase of the step
response (shown in the zoomed plots in Figure 1). As the errors
in Î converge to zeros (shown in Figure 3), the steady state errors
in the step responses gradually decrease (shown in Figure 1),
indicating that the control performance is being improved.

Table 1 shows the CPU time, memory usage, and perfor-
mance indices for all three algorithms.On average, ID-VMC-VI
is 654 times and 38,080 times faster than ID-VI and VI, respec-
tively. It also uses 1607 times lessmemorywith respect to ID-VI,
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Figure 1. Comparison of the angular velocity step responses. (Dash-dotted lines: step signals; solid lines: ID-VI resulted step responses; dashed lines: ID-VMC-VI resulted
step responses; and dotted lines: VI resulted step responses.)

Figure 2. Comparison of the control commands in response to the step signals. (Solid lines: ID-VI control commands; dashed lines: ID-VMC-VI control commands; and
dotted lines: VI control commands.)
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Figure 3. Comparison of the errors in estimation. (Solid lines: ID-VI; dashed lines: ID-VMC-VI; and dotted lines: VI)

Table 1. CPU time, memory usage and performance indices in Example 1.

Method VI ID-VI ID-VMC-VI

Average CPU Time 23.8 s 0.409 s 0.625ms
per simulation step (0.1 s)
Memory usage 35.4 GB 3.15MB 1.96 KB
Performance index 2.516 2.447 2.631

which is consistent with the analysis in Section 3.5. The mem-
ory usage of VI is huge, and is the main reason for a computer
with a 64GB RAM to be involved. This type of RAM require-
ment makes the VI algorithm practically infeasible for most
mobile robotic platforms. In terms of performance index, the
lesser the better. The performance index of ID-VMC-VI is 7.5%
higher than that of ID-VI. Theroetically, VI should achieve
the minimum performance index. However, practically more
optimisable parameters may lead to challenges in convergence
and the performance index might be higher. As we argued in
Remark 5.1, it can be implemented in real time. One way to
improve the performance of both ID-VI and ID-VMC-VI is to
increase the number of discretised nodes in the search spaces.
In contrast to the memory usage of ID-VI that grows expo-
nentially with respect to the number of nodes in the search
space, the memory usage of ID-VMC-VI is proportional to that
number, which means that ID-VMC-VI is much more scalable.
Thus, it can be implemented on platforms with limited mem-
ory resources and can be easily scaled up to provide a better
performance.

6.2 Example 2: skid-steer vehicleminimum time-to-reach
problem

Simulation 2 is conducted on a laptop computer (CPU: 2.6GHz;
memory: 16GB). The point mass model of the vehicle is modi-
fied from Laumond et al. (1998) as

xti+1 = xti + TVticos θti ; yti+1 = yti + TVtisin θti ;

θti+1 = θti + T(ωti + bc) (50)

where (xti , yti) is the vehicle location in the x-y plane of an iner-
tial north-east-down frame, of which the origin is on the ground
surface. Vti is the velocity, while θti and ωti are the heading
angle and angular velocity around the z axis. T = 0.1 s is the
time step size.With the vehicle initially facing north, θ0 = 0◦. A
constant control input bias bc = −3◦/s is considered and esti-
mated following the gradient based adaptation rule discussed
in Section 4. The following constraints are used: 0 ≤ V ≤ 2m/s
and |ω| ≤ 30◦/s.

The proposed ID-VMC-VI algorithm is used to control the
vehicle from the starting point (0, 0) to the target point (10, 10),
while avoiding two circular obstacle regions O1 and O2, which
are respectively centred at (7, 7) and (4, 3) with a radius of 2m.
The step cost function isL = T, whereT> 0 is the constant time
step size.

For the purpose of comparison, the 2-dimensional state
space of ID-VI and the 1-dimensional PCP space of ID-VMC-
VI are discretised into 100 × 100 nodes and 100 nodes. The
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2

Figure 4. Comparison of the optimised paths. (Dotted line: obstacle; solid line: ID-
VI optimised path; dashed line: ID-VMC-VI optimised path.)

Figure 5. Comparison of the heading angles of the vehicle. (Solid line: ID-VI
resulted heading angle; dashed line: ID-VMC-VI resulted heading angle.)

point where the upper tangent line of O1 through the target
point intersects y = 0 is used as the reference point.

As shown in Figures 4 and 5, the ID-VI and ID-VMC-VI
methods generate very similar paths that can avoid the obsta-
cles and reach the target location. The ID-VImethod introduces
oscillations in the heading angle control due to the discretiza-
tion of 2-dimensional state space. On the other hand, the ID-
VMC-VImethod generates much smoother heading angle con-
trol commands as the benefit of searching the 1-dimensional
PCP space.

On the other hand, as shown in Figure 6, both methods gen-
erate control signals that satisfy the control constraints. Figure 7
shows that the adopted gradient based adaptation rule can effi-
ciently reduce the estimation error in the input bias following
both methods.

Table 2 shows the comparison of CPU time, memory usage
and performance between ID-VI and ID-VMC-VI. On average,
the ID-VMC-VI algorithm is 194 times faster to compute and
consumes 100 times less memory than ID-VI, while delivering
about the same performance index in this example.

Figure 6. Comparison of the control variables. (Solid lines: ID-VI control com-
mands; dashed lines: ID-VMC-VI control commands.)

Figure 7. Comparison of the errors in the input bias estimation. (Solid lines: ID-
VI resulted estimation error changes; dashed lines: ID-VMC-VI resulted estimation
error changes. The solid line and the dashed line are almost identical.)

Table 2. CPU time, memory usage and performance indices in Example 2.

Method ID-VI ID-VMC-VI

Average CPU Time (s) 5.652 0.029
per simulation step (0.1 s)
Memory usage (kilobyte) 234.375 2.344
Performance index 7.8 7.8

7. Conclusion

In this study, a dynamic programming search space dimen-
sion reduction strategy is proposed for a class of discrete-
time dynamic systems. Two reduction steps are involved in the
proposed value iteration algorithm: (1) eliminating the action
search space using inverse dynamics; and (2) projecting the state
search space into a 1-dimensional parameter space by the virtual
motion camouflage rule. A gradient based uncertain parameter
adaptation rule is developed to improve the inverse dynamics
policy at each time step. Compared with typical dynamic pro-
gramming based optimal controls, the proposed algorithm can
dramatically reduce memory usage and computational time,
and is thus feasible for real-time applications. Stability and opti-
mality of the algorithm are analysed and its performance lower
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bounds are given. Two simulation examples are used to illustrate
the aforementioned salient features of the proposed algorithm.
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