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2. Here, we relate the SAMC to population genetics theory, provide simulations to

an endangered species, the Panama City crayfish Procambarus econfinae, where
directional migration is hypothesized to occur.

3. The use of the SAMC for landscape genetics can be justified based on similar
grounds to using circuit theory, as we show how circuit theory is a special case
of this framework. The SAMC can extend circuit-theoretic connectivity model-
ling by quantifying both directional resistance to migration and acknowledging
the difference between migration mortality and resistance to migration. Our
empirical example highlights that the SAMC better predicts population struc-
ture than circuit theory and least-cost analysis by acknowledging asymmetric
environmental gradients (i.e. slope) and migration mortality in this species.

4. These results provide a foundation for applying the SAMC to landscape genet-

ics. This framework extends isolation-by-resistance modelling to account for
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some common processes that can impact gene flow, which can improve predict-

ing genetic connectivity across complex landscapes.
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1 | INTRODUCTION

Understanding connectivity is essential for ecology, evolution and
conservation (Hanski, 1999; Slatkin, 1993). Over the past two de-
cades, there has been a tremendous interest in interpreting the role
of connectivity in population genetics and genomics. Landscape
genetics has emerged as a key subdiscipline that addresses a wide
range of problems, focusing on how landscapes influence micro-
evolutionary processes and patterns such as gene flow and genetic
structure (Balkenhol et al., 2016; Manel et al., 2003).

Landscape genetics has extended isolation-by-distance (IBD)
relationships (e.g. Wright, 1943) to incorporate how landscape
structure can alter gene flow and genetic connectivity. For instance,
‘isolation-by-environment’ (IBE) relationships capture genetic varia-
tion that may be explained by environmental differences between
sites (Wang & Bradburd, 2014). Similarly, ‘isolation-by-resistance’
(IBR) captures how the landscape can alter migration and genetic
connectivity, which is commonly quantified through the use of cir-
cuit theory (McRae, 2006). The rationale is that aspects of the ma-
trix (e.g. land use, topography) can alter movement routes across
landscapes, what has been termed ‘landscape resistance’ (Zeller
et al, 2012), leading to landscape effects on gene flow (Spear
et al,, 2010). Yet such resistance can emerge from multiple pro-
cesses, such as migration avoidance or preference of landscape fea-
tures leading to asymmetric migration, cumulative costs of transport
over space from mortality risk and related costs or selection against
maladapted dispersers (Wang & Bradburd, 2014).

A recently introduced framework advanced random walk theory
with absorbing Markov chains to better capture different processes
influencing connectivity (Fletcher et al., 2019). This framework,
termed the ‘spatial absorbing Markov chain’ (SAMC), honours theidea
that resistance can influence both movement behaviour and mortal-
ity risk, or more broadly the termination of movement. The SAMC is
an analytical framework like least-cost analysis (Etherington, 2016),
randomized shortest paths (Saerens et al., 2009) and circuit theory
(McRae et al., 2008), all of which assume that variation in landscape
features influences the movement process. Overall, the SAMC
is most similar to circuit theory in that both are rooted in Markov
chain theory and depend on local-scale landscape information (in
contrast to least-cost analysis and randomized shortest paths that
assume that movement involves broad-scale information of the
landscape). While similar, the SAMC moves beyond circuit theory
and other frameworks in ecology by providing short- and long-term

predictions and by providing a means to account for time-specific

movement, directional movement, species distribution and mortal-
ity. Despite the potential value of this framework for connectivity
based on individual movement (Fletcher et al., 2019), it remains un-
clear if and how this framework is relevant to landscape genetics.
We extend the SAMC framework to the problem of genetic
differentiation and gene flow. First, we provide a brief overview of
the SAMC framework. Second, we discuss the relationship of the
SAMC with population genetics theory using a common metric of
genetic differentiation, Fsr. Third, we demonstrate that circuit the-
ory is a special case of the SAMC such that they are identical on
simplified population networks. Yet the SAMC is flexible enough to
provide predictions that potentially account for directed migration
(Lundgren & Ralph, 2019) and migration mortality (Nagylaki, 2015)
in population differentiation. Finally, we illustrate the application
of this framework with genomics data from an endemic and rare
species, the Panama City crayfish Procambarus econfinae, which has
been hypothesized to have undergone directed migration (Duncan
et al., 2020). Not only do these extensions provide a formal link-
age of this framework to landscape genetics but these extensions
also provide a means to potentially capture some key processes
affecting the spatial distribution of genetic variability (Lundgren &
Ralph, 2019; Wang & Bradburd, 2014), which may facilitate predict-

ing genetic connectivity across landscapes.

2 | MATERIALS AND METHODS
2.1 | The spatial absorbing Markov chain

The SAMC models connectivity based on extensions of discrete-
time absorbing Markov chain theory. This framework is applied by
assuming that landscapes are discrete representations of the envi-
ronment, which can be represented using raster maps or in a net-
work context where populations or demes are vertices (or nodes)
on a spatial graph (Acevedo et al., 2015; Fletcher et al., 2019; Sefair
et al., 2017).

We introduce this model in the context of dispersal (Fletcher
et al., 2019) and subsequently illustrate how parameters relate to
genetic differentiation. For each time step during which an organ-
ism disperses across a complex landscape, it can either survive
and stay at the same location (i.e. site fidelity), survive and move
to a nearby site or die. The SAMC framework honours this idea by
considering ‘transient’ states that capture fidelity and movement,

and an ‘absorbing’ state that captures mortality. In the context of
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genetic differentiation, movement and fidelity capture the potential
for migration (or not), whereas absorption can reflect two different
processes, mortality during migration (Nagylaki, 2015) or the prob-
ability of coalescence (Hey, 1991), depending on how the model is
applied. We discuss each in detail below.

The SAMC framework captures transient and absorption states
through the construction of a probability matrix, P (Figure 1; through-
out we use bold capital letters to denote matrices, bold lowercase
letters to denote vectors and non-bold letters to denote scalars). For

a landscape divided into C cells or patches, P can be written as:

Q R
0 1

where Q is a sparse, C x C transition matrix reflecting transitions
between transient states, R is a C x r matrix containing transition
probabilities from the transient states to r absorbing states and O
is a1x C vector of zeros. The elements p; of P describe the proba-
bility of transitioning from state i to j in one time step, such as the
probability of migration between state i and j in one generation.
A variety of connectivity-related metrics can be quantified using P.
Here, we extend this framework to address gene flow and genetic
differentiation.
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2.2 | Relating the SAMC to genetic differentiation

To interpret the relationship of the SAMC to genetic differentiation,
we use a similar approach as in McRae (2006). We first review the re-
lationship of coalescence times to F¢; for stepping stone models and
how coalescence times can be generally captured using absorbing
Markov chain theory based on random-walk times. Based on these
relationships, we then discuss the connection of the SAMC to Fgr

values and coalescence times.

2.21 | Fgp, coalescence times and Markov chains

Slatkin (1991, 1993) derived relationships between coalescence
times, or the amount time in the past that two or more genes first
had a common ancestor, and Fgr under a variety of scenarios. These
derivations were motivated by the need to simplify the analysis of
population genetic models, make inferences on population genetic
parameters and derive general results for gene flow in subdivided
populations (Slatkin, 1991). For a stepping stone model, Slatkin (1991,
1993) determined that Fs; can be calculated using coalescence times

between pairs of genes sampled within and among demes as:

ty +tp
Migration Absorption
0.05 0 0o - 0 01
0 005 O 0 0.1
0 0 005 - 0 0.2
0

0.75 0.05 O 0.1
0 0 0 0 0 1
Absorption due to:

coalescence migration mortality

(0]

o
O @ state attime t migration
B coalescence att-4 mortality

FIGURE 1 The spatial absorbing Markov chain applied to landscape genetics. (a) This framework takes information from a population
network, as described as a spatial graph or raster grid, to create a probability matrix P that includes information on migration and absorption.
(b) Both symmetric (balanced) and directed (anisotropic) migration m between demes can be captured. Note that even in the case of balanced
pairwise migration, actual migration rates in each direction may differ due to variation in the number of links (e.g. the number of adjacent
links for deme i and j is the same but differs with deme k). (c) For population or landscape genetic data, absorption can reflect the probability
of coalescence or migration mortality. For instance, we show the current state of two alleles (blue, orange) in the network and the location
of coalescence occurring four steps (arrows) backward in time. For migration mortality, dashed lines represent a scenario where a barrier is
driven by mortality (i.e. migration is attempted across the barrier but mortality occurs).
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where fo is the average coalescence time of two genes sampled from
the same deme and fl is the average coalescence time when two genes
are sampled from different demes (Table 1; terms in Table 1 are ital-
icized at first mention). Typically, fo = 2N, where N is the effective
population size summed across all demes (Slatkin, 1991). The average
coalescence times of two genes from different demes include the time
to coalescence given the genes are in the same deme (i_.“o) plus the time
for the two genes to first be present in the same deme, f/l, such that
L5,

Absorbing Markov chain theory can be used to calculate co-
alescence times and derive Fg; by applying this theory backward in
time (Hey, 1991; McRae, 2006). Hey (1991) constructed a discrete
absorbing Markov chain that captures the situation where there
are two gene copies (~alleles) for a single locus drawn from the
population and mutation is negligible. Hey populated the Markov

chain using information on m;, or the probability that a randomly

ijv
sampled gene in deme j descended from a gene in deme i in the
previous generation, and N at deme i. Define S(t) as the state at
time t, such that if S(t) = {i,j}, one gene is in deme i and the other
is in deme j. The transitions among states can be described with
a probability matrix Qg based on summaries of m; for each state

transition and by assuming that the probability of coalescence

(absorption) at time t when both genes are in the same deme is
equal to % (Hey, 1991) (see Equations S1-S3). With this structure,
the expected coalescence time (i.e. time to absorption) from any

state is:
t=(1-Q) "1, (3)

where | is an ng x ng identity matrix. Q; is similar to Q in Equation 1 ex-
cept that it has n, states. Using vector t, t, and t, can be calculated (see
Supporting Information), which can then be injected into Equation 2
to calculate Fgy.

2.2.2 | From F¢rto the SAMC

McRae (2006) exploited Slatkin's (1991) propositions regarding EI in
the context of circuit theory and landscape resistance. A well-known
quantity in circuit theory related to landscape resistance is the ex-
pected commute time, EC, which is the sum of hitting (or first passage)
times going from i to j and back again (j to i), on an ergodic chain
network (Chandra et al., 1997). When considering isotropic migra-

tion (i.e. migration pattern is identical between all demes) and demes

TABLE 1 Terms and metrics described

Term Symbol Description . . .
i o and evaluated for interpreting genetic
Coalescence time to The average time for two genes sampled from connectivity
the same deme to coalesce
fi The average time for two genes that are

sampled from different demes to coalesce

The time for the two alleles from different

demes to first be present in the same deme

Circuit theory

Commute time t

The sum of hitting (or first passage) times

going from i to j and back again (j to i)

Current flow I

The flow or charge between k and | when

moving through resistors or nodes

Spatial absorbing Markov chain

Hitting time t,
and arriving to j

Conditional first passage time t

The mean time of arrival when starting from i

The mean first passage time from i conditional

on absorption into j. Generalizes hitting
time to allow for potentially multiple

absorbing states

Conditional commute time the

The sum of conditional first passage times

from i to j and from j to i. Related to

. -
commute time and t,

The mean time to move i to j and absorb into

j. Related to fo and Ei on isotropic graphs

An index of differentiation describing the

proportion of total time prior to absorption
that is driven by between-population

Absorption time t,
Absorption index A

movements
Net visitation rate Vi

Expect net movement probabilities between

k and | when moving through demes.
Analogous to current density or flow
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of equal sizes, McRae (2006) showed that ?1 = %‘. Commute time is
divided by four because it describes the time of moving to a deme
and back again and acknowledges that it takes half the time for alleles
to meet because two alleles are moving (Lundgren & Ralph, 2019).
McRae (2006) then used simulations to illustrate that commute time
could also predict Fg; on non-isotropic deme networks with balanced
migration (m;; = my).

In the context of the SAMC, the commute time between deme i
and j on an isotropic graph as calculated with circuit theory is pre-
cisely twice the hitting time, fh, of a spatial absorbing Markov chain
when starting at i and the only absorbing state is j (Table 1). In this
situation, t) = % 4
mapping based on circuit theory (Table 1; Dickson et al., 2019) can

t P . .
= 5” In a similar way, current flow is often used in

be calculated directly with the SAMC using a metric of visitation
rate that decomposes the time spent at different locations across
a landscape (Fletcher et al., 2019; Table 1). Taken together, circuit
theory is a special case of the SAMC and any result obtained through
circuit theory can be recapitulated with the SAMC (see Supporting
Information S2). Yet circuit theory relies on the idea of ‘resistors’
that do not have directionality (McRae et al., 2008), implying it is
limited to balanced migration scenarios (Hanks, 2017). In contrast,
the SAMC can decompose commute time into movement rates in
each direction, thereby allowing consideration of directed flows
that can arise on non-isotropic graphs, both when migration is bal-
anced (Table S2) and when it is directed or ‘anisotropic’ (m; # m;; see
below).

More generally, the SAMC can explicitly include absorbing
states related to the coalescence process using a similar rationale
as Hey (1991) regarding N altering the probability of coalescence.
The difference lies in that Hey (1991) explicitly tracks two alleles
thereby providing a means to quantify coalescence, whereas the
SAMC implicitly tracks only one allele (similar arguments apply using
circuit theory above). Consequently, the SAMC cannot explicitly
quantify coalescence, but it can partially encapsulate the process via
absorbing states. The benefit is that using the SAMC allows the tran-
sition matrix to be much smaller (and sparser) than that described
in Hey (1991), which eases computation considerably for large
landscapes.

For isotropic migration, we provide a metric to approximate av-
erage coalescence times, fl and fo, by creating an absorbing state in
a similar way as above for relationships with commute time, but here
Ris populated where the only absorbing state is j, defined as:

& 1 o
my\ == ifi=j
Pr(S(t — 1) = {R}| S(t) = {i}) = g; k<2Nk> (@)
0 Otherwise

This formulation uses a similar rationale as Hey (1991) in terms of the
potential for coalescence transitioning from i and j (cf. Equation S3).
For the elements q; of Q, we account for nonabsorption (cf.

Equation S1) as:

Pr(S(t—1)={}}|5(t)={’}):mij<1_2_Nj>' )

We can then calculate absorption time as:

t,=(1-Q 1. (6)

Repeating across all demes creates an absorption-time matrix fa
(we use the term ‘absorption time’ as it acknowledges the time to
both arrive and absorb). The diagonal elements of fa represent the
time it takes to absorb in j when starting in j, and are related to
fo on an isotropic graph. The off-diagonal elements represent the
time it takes to go to j when starting from i plus the time to absorb
once reaching j, such that this time is related to fi. The conditional
mean first passage time (Table 1; De Sanctis & de Koning, 2018) can
be calculated to directly approximate ?1 between transient states
(Equations S7-510). This metric generalizes the hitting time metric
to allow for the potential for more than one possible absorbing
state. We sum this metric in both directions to provide a distance-
based metric analogous to commute time for demes i and j, what
we refer to as the conditional commute time (Table 1; Equation S11).
Finally, we provide an absorption index, A, (Table 1), taken from fa
that is similar in structure to Fs; (Equation 2; see Equation S19). A,
ranges between 0 and 1, where higher values indicate lower ab-
sorption rates. This metric describes the proportion of total time
before absorption driven by between-population movements. See
the Supporting Information for examples of isotropic migration,
which provide exact relationships of T, to t, and t, and illustrate
how the A, provides identical results to Fg; (Table S3). Below, we
use simulations to interpret the generality of these relationships

to non-isotropic graphs.

2.2.3 | Migration mortality and the SAMC

The problem of mortality during migration is often raised in land-
scape genetics (e.g. Spear et al., 2010). Yet in population differentia-
tion models, mortality during migration is frequently neglected (but
see Nagylaki, 2015). Here, we show how the SAMC can account for
this problem.

The SAMC was initially motivated to capture the potential for
movement mortality arising when individuals disperse across land-
scapes (Fletcher et al., 2019). Consider a forward transition matrix
as described in Section 2.1 with n; demes and an absorbing state in-
dicating mortality. Let rTq,j be the probability of attempting migration
from deme i to j forward in time, and a; be the probability of sur-
viving the event. The probability of successful migration from pop-
ulation i in time t to j in time t + 1is thus m; = a;m;, where the cup
symbol depicts successful migration forward in time. We assume
that a; = 1, as we only consider mortality to occur during migra-

tion. When g;; < 1, actual migration rates are smaller than attempted
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migration rates (r?l,-,- > r?n,]-), leading to a reduction in total migration
rate (1 — m;) (Nagylaki, 2015). The probability of dying when begin-

ning in state i is the i-th entry of R:

Pr(S(t+ 1) = (R} S(H) = (i) = Y, (1 —ay), 7)
j=1

which is a weighted average of movement-specific mortality
probabilities.

We now reverse the process, asking about the history of move-
ment in the presence of migration mortality when going from time
t tot — 1into the past. We reverse the chain to create a backward,
stochastic matrix, ® = ”qb,]H ® takes the form:

M 0
®= A (8)
R r

where the Mis an n; x ny matrix with elements

m;; a;m;

i = oy~ g poat]
it Mg Xl aimyg

m (9)

giving the conditional probabilities of moving between demes back-

ward in time,R’is a ny dimensional row vector with jth element

ey (1 —ay)

n e~ ) (10)
1+25 22 mik(l - aik)

describing the transition probabilities of being in deme j one time
step in the past, given the chain is in the absorbing state, and
r=[143% 2, %rﬁ;k(l—a;k)]_i, which is the probability of stay-
ing in the absorbing state one time step into the past. We can then
add an absorption state for coalescence and adjust ® as described in
Equations 4 and 5. Consequently, @ gives the probabilities of prior
states given the observed state under a defined forward process
that includes migration mortality. @ can be compared to similar ma-
trices that assume no migration mortality (@ = 1) to interpret the ef-
fects of migration mortality on genetic connectivity (see Supporting

Information S4).

2.3 | Simulations with variation in migration

We explore the utility of the SAMC for landscape genetics under
three scenarios. First, we compare the SAMC to other common met-
rics in terms of their capacity to predict Fs; calculated from popula-
tion genetics theory for simple finite, non-isotropic networks with
no migration mortality. Second, we evaluate the extent to which the
SAMC can capture directed migration. Third, we interpret the utility
of the SAMC when migration mortality occurs. For each scenario, we
primarily focus on the average absorption times (i.e. the average of
absorption times from i to j and j to i), the absorption index and the

conditional commute time, as these metrics are readily comparable
to Fsr and other distance-based metrics.

To assess the ability of the SAMC relative to other common met-
rics in capturing Fsr, we consider two finite, non-isotropic networks
use in McRae (2006) that have balanced migration (Figure 2). In
these simulations, we compare expected values for Fg; from popula-
tion genetics theory (using Equations 2 and 3, Equation S1-S4; see
also Hey, 1991) to predictions from the SAMC, geographic distance,
least-cost distance and commute time (cf. McRae, 2006). We sim-
ulate migration under different effective population sizes (N = 10,
100, 1000) and backward migration rates (m = 0.001, 0.01, 0.1).

To assess the ability of the SAMC to capture directed migra-
tion, we consider four simple networks that highlight different
types of potential directional migration: directional flow across
a partial barrier, migratory routes, source-sink dynamics and a
dendritic network (Figure 3). Directed migration is clearly more
complex in nature than any of these scenarios, but these simple
networks capture common processes that can lead to directional
flow (Lundgren & Ralph, 2019). We vary migration in different di-
rections in each network, with high migration rates (0.1) and low
rates (0.01). We then contrast changes in Fg; and coalescence times
calculated from population genetics theory (Equations 2 and 3) to
changes in SAMC metrics between each directed network and its
non-directional equivalent (i.e. m; = m; based on the average mi-
gration rate between i and j).

To understand the effect of migration mortality on genetic dif-
ferentiation, we contrast three scenarios based on the network in
Figure 2a. In the baseline scenario, the partial barrier is removed,
population size is constant (N = 10, 100 or 1000) and migration oc-
curs across all demes at equal rates (either 0.01 or 0.001; Figure 4a).
In the second scenario, we alter the baseline such that the partial
barrier is driven by migration mortality, not resistance to movement
(Figure 4b). In the third scenario, we alter the baseline rates to re-
flect that the partial barrier acts as resistance to movement but not
mortality, such that the overall migration rate is equivalent to the
baseline scenario (Figure 4c). We then compare the change in Fg; and
conditional commute time between the baseline scenario and these
two partial boundary scenarios. We also map differences in net vis-
itation rates, which is analogous to mapping current flow in circuit
theory (Table 1). All simulations were performed in R using the samc
package version 1.4 (Marx et al., 2020).

2.4 | Application to genetic connectivity of an
endangered crayfish

One potential application of SAMC is the identification of model pa-
rameters and landscape attributes that are most important for driving
genetic structure, which can provide important information for man-
agement plans aimed at conserving genetic diversity of imperilled spe-
cies. To illustrate this type of application of the SAMC, we focus on
the imperilled Panama City crayfish (Procambarus econfinae; crayfish
hereafter), which currently occupies approximately 28% of its historical
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FIGURE 2 Comparison of relationships between different metrics used in connectivity analyses and Fqr as a function of migration rate
(m=0.001, 0.01, 0.1) for the scenario in which population size is 1000 for each deme. (a) A small network with a partial barrier. (b) A larger network
with more complex properties regarding bottlenecks, corridors and contiguous environments. Overall, commute time and spatial absorbing Markov
chain metrics (conditional commute time, absorption time, absorption index) explain F¢; better than Euclidean distance or least-cost distance. In

these scenarios, commute time (circuit theory), conditional commute time and absorption time are perfectly correlated with each other (r = 1).

range (USFWS, 2017). Suitable habitat for the species is composed
of fragmented patches of flatwoods in the highly urbanized western
portion of the range and managed plantations in the more contiguous
eastern portion of the range (Duncan et al., 2020). Genetic differen-
tiation in this species has been hypothesized to be shaped by habitat
fragmentation, roads, range expansion and coastal dynamics (Duncan
et al., 2020). Other crayfish species have directed dispersal along el-
evational gradients, with greater dispersal tendencies downslope than
upslope (Bernardo et al., 2011). Consequently, we hypothesized that,
along with land cover effects on resistance, both directed migration
from elevational gradients and migration mortality from roads and

urban areas could drive genetic differentiation in this species. To ad-
dress this problem, we used linearized Fs; estimates from 1640 neutral
single nucleotide polymorphisms (SNPs) (Duncan et al., 2020) to evalu-
ate the connectivity of eight crayfish populations across its known dis-
tribution (Table S4, Figure S7). See Duncan et al. (2020) for more details
on the species and genetic data and Figure S8 for the workflow used.
Because there were no prior empirical data on movement and
gene flow in the Panama City crayfish, we undertook an expert as-
sessment to derive potential resistance-based information for con-
nectivity modelling. We used the Florida Cooperative Land Cover
Map (FNAI, 2016), which was reclassified in an effort to delineate
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redirection network has the same overall migration rates as the baseline, but migration is redirected away from the barrier. (b) Fs; and

(c) conditional commute time as a function of migration rate (m) for the scenario in which population size is 1000 for each deme. (d) Net
visitation rates when starting in the dark grey square deme and ending at the light grey square deme for the baseline scenario and migration

mortality. Larger, darker red dots reflect higher visitation rates

land cover types that could potentially affect crayfish movement
(Table S5, Figure S7; see Supporting Information Sé). We converted
this reclassified map based on hypothesized resistance values from
an expert opinion survey to create seven hypothesized resistance
layers (60 m resolution; Figure S9). We also considered slope, derived
from a digital elevation map (Figure $S10a), as a directional resistance
measure, based on the change in elevation between adjacent raster
cells. We contrasted this directional measure to using an equivalent

undirected metric of slope with circuit theory and least-cost dis-
tances (i.e. the average slope per raster cell; Figure S10b) using the
gdistance package (van Etten, 2017). To illustrate the problem of
migration mortality, we hypothesized that developed land uses and
major roadways could lead to migration mortality. For developed
land and roadways, we fit models that altered values of migration
mortality between 0.001 and 0.99, selecting the best-fit models
based on log-likelihoods (see Supporting Information Sé for more).
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Model K Log-likelihood AlCc

Conditional commute time

Slope (asymmetric)+ mortality 4 37.9 -66.1

Slope (asymmetric) 4 37.8 -65.9

Land cover 4 33.5 -57.3

Slope (symmetric) 4 32.0 -54.2
Commute time

Land cover 4 33.5 =578

Slope (symmetric) 4 32.0 -54.2
Least-cost distance

Land cover 4 32.9 -56.1

Slope (symmetric) 4 30.4 -51.1

Slope (asymmetric) 4 28.0 -46.2
Euclidean distance 4 29.8 -52.7
Null 3 241 -41.3

With these resistance values, we calculated least-cost distance,
commute time with circuit theory and conditional commute time from
the SAMC. We focus on the conditional commute time in this empirical
example rather than the absorption time or absorption index because
it only captures between-population processes of relevance to raster
maps (see Section 4). For calculating conditional commute time, we
used Equations 4 and 5 for populating R and Q, where 2—;’ was esti-
mated with SNP data using the LD method (Waples & Do, 2008) imple-
mented in N Estimator ver. 2 (Do et al., 2014). To calculate conditional
commute time, we first calculated conditional first passage times using
the samc package, which led to an asymmetric matrix of pairwise value
of first passage times. We then summed these times in both directions
(Equation S13) to generate a symmetric matrix of conditional commute
times comparable to other distance-based metrics.

We used linear mixed-effects models using the maximum-
likelihood population-effects parameterization (MLPE; Clarke
et al, 2002) implemented with the resistanceGA package
(Peterman, 2018) to separately model the effects of (the log of)
Euclidean distance, least-cost distance, commute time, conditional
commute time and an intercept-only model on linearized Fqr. All
explanatory variables were scaled (mean centered with a standard
deviation of 1) before modelling. We compared models using log-
likelihoods, Akaike's information criterion for small sample sizes
(AlCc) and marginal R? (Nakagawa & Schielzeth, 2013).

3 | RESULTS
3.1 | Simulations with variation in migration

When comparing the ability of the SAMC metrics relative to other
common metrics in predicting F¢r, we found that conditional com-
mute time, absorption time and commute time were perfectly cor-
related with each other on these non-isotropic networks and were

TABLE 2 Model comparison using the

AIC .
,C most supported scenarios for land use and
AAICc weight R . .
land cover, slope and migration mortality
for explaining linearized Fs; in the IUCN
0.0 0.51 endangered Panama City crayfish. Note
that for slope, commute time from circuit
0.2 0.47 . .
theory is based on a symmetric value,
8.8 0.01 whereas conditional commute time
11.9 0.00 and least-cost distance are calculated
using both asymmetric and symmetric
measures. ‘Mortality’ refers to migration
e oL mortality based on developed lands
11.9 0.0
10.0 0.0
15.0 0.0
19.9 0.0
13.4 0.0
24.8 0.0

highly correlated with F¢; (Figure 2). For these metrics, correlations
with Fs; were lower with small population sizes and low migration
rates (Table Sé). In general, these metrics performed better than ei-
ther Euclidean distance (r = 0.62 and 0.73 for the small and large
networks) or least-cost distances (r = 0.95 and 0.78). Overall, the
absorption index best explained Fs; and was nearly perfectly cor-
related with F¢; for all scenarios (r=0.98; Figure 2, Table Sé).

Comparing networks with directed migration relative to identical
networks with balanced migration (where m;; was set to the average
of each direction) emphasized that the SAMC metrics were sensi-
tive to differences in migration asymmetries (Figure S3). However,
commute time, least-cost distance and Euclidean distance did not
change (results not shown). Changes in the absorption index largely
predicted changes in Fg; (r = 0.73 across scenarios), whereas the
conditional commute time varied in its ability to predict changes
in Fsr, depending on the scenario (Figure 3). Changes in condi-
tional commute time were positively correlated with changes in Fgr
for all scenarios (r>0.54) except the dendritic scenario (r = -0.42)
which had the greatest asymmetry. In the Supporting Information,
we show how conditional commute times on these networks were
highly correlated with those obtained by individual-based simula-
tions of movement (r > 0.98; Figure S4), suggesting that deviations
of conditional commute time from Fg; may be largely due to the
within-deme coalescence process rather than migration. Indeed,
for the dendritic network, variation was explained by Eo and absorp-
tion time best explained this metric (r = 0.62). Overall, absorption
time generally predicted fo (r = 0.60), but fl was less well predicted
(r = 0.30). We note that both conditional commute time and Fs; use
directed migration information but summarize it in a non-directed
manner (Equation S11).

When interpreting the effect of migration mortality rela-
tive to resistance to movement, we found that Fs; tended to in-
crease for both scenarios relative to the baseline, but the effect
was slightly larger when migration mortality occurred (Figure 4b,

9SULIIT SUOWIWO)) dANEAL) d[qedrjdde oY) £q pauIdA0T a1k SI[O1IE V() 9N JO S[NI 10J AIeIqIT Sul[uQ AJJIA\ UO (SUOHIPUOD-PUB-SULID)/W00 Ad[ 1M AIRIqI[oul[uo//:sdny) suonipuo)) pue suua |, oY) 998 *[£707/80/4¢] uo Areiqi auruQ LM ‘SL6E1°X01Z-1#0T/1111°01/10p/woo Kojim Areiqioutjuosjeutnolsaq//:sdny woly papeojumod ‘11 ‘2207 X01Z1+0T



FLETCHER JRET AL.

Methods in Ecology and Evolution 2473

Figure S5). This was explained by slightly longer conditional com-
mute times when mortality occurred than when redirection oc-
curred (Figure 4c, Figure Sé). In general, conditional commute
times and absorption times accurately predicted Fs; under all
three scenarios (r>0.91), as could the absorption index (r>0.99).
Incorporation of migration mortality altered the expected net vis-
itation rates across the network (Figure 4d). Thus, incorporating
migration mortality can alter expectations for spatial migration
patterns across landscapes even when the movement component

of migration is undirected.

3.2 | Application with connectivity of an
endangered crayfish

There was support for both asymmetric metrics of resistance and
the effect of mortality during migration for explaining Fs; in the
Panama City crayfish (Table 2). Resistance based on land cover had
slightly more support than Euclidean distance alone (Table 2), yet
the most supported land cover resistance was a simple constant
resistance (Figure S8). However, incorporating directionality using
a slope-based resistance with the SAMC provided a better fit to
linearized Fs; than did the land cover resistance metric (Table 2,
Figure S11). Interestingly, incorporating slope without capturing
the potential for asymmetric flow (i.e. using average slope values)
when using circuit theory, least-cost distance or the SAMC was
less supported than when allowing this covariate to be directional.
There was no support for roads potentially impacting migration
mortality (Figure $12), yet there was some weak evidence that de-
veloped lands affected migration mortality (Table 2, Figure S12).
However, differences in conditional commute times under the as-
sumption of no migration mortality or migration mortality on de-
veloped lands were small (Figure S13). Based on this asymmetric
resistance classification of slope, conditional commute time best
fit the data, capturing nearly all of the model weight (Table 2). This
model explained 2.4x the variation (an = 0.75; Figure 5a) as circuit
theory (ern =0.31) and 1.7x the variation as least-cost distances
(R2 = 0.44; Figure S14). Notably, the conditional first passage
times from this asymmetric model varied considerably with direc-
tion (Figure 5b). We map a directional measure of connectivity
based on conditional first passage time, focusing on expected con-
nectivity along the longitudinal gradient (east-west; Figure 5c,d).
The mapping suggested that expected connectivity is greater from

west to east than vice versa.

4 | DISCUSSION

We provide a framework for predicting genetic connectivity across
landscapes and illustrate its relationships with coalescence times
and population differentiation as interpreted through Fsp. This

framework extends concepts from circuit theory to understand the

movement of genes and the potential for absorption to alter con-
nectivity across landscapes. Our framework is grounded in Markov
chain theory and attempts to capture some key processes relevant

for understanding genetic connectivity.

4.1 | Coalescence and absorbing Markov chains

We demonstrated that when applying the SAMC to population dif-
ferentiation, absorption in the SAMC can be related to the prob-
ability of coalescence. Absorbing Markov chain models have been
previously used address coalescence, where states are the locations
(deme) of two randomly sampled genes (Hey, 1991). This structure
has n, = ny(n,y + 1) / 2 states, such that the probability matrix used
has dimensions n; x n,. In contrast, implementation of the SAMC
formulation has matrix dimensions are n; x n,. This has some practi-
cal computational benefits for problems that span large landscapes:
a scenario with 100 demes would require a matrix of dimensions
4950x4950 for the former and 100x 100 for the SAMC. This com-
putational benefit similarly arises with the use of circuit theory.
Furthermore, as the SAMC captures more of the coalescence pro-
cess of Hey (1991) than circuit theory, on graphs with isotropic
migration, it provides essentially identical results to population ge-
netics theory (Table S3).

4.2 | Migration mortality

Migration mortality can be captured in the SAMC by interpreting
migration mortality forward in time and then reversing the matrix
to analyse population differentiation. Nagylaki (2015) considered
the problem of how migration mortality affects spatial genetic
variation and considered its effects in simple landscapes (e.g.
circular islands). He found that acknowledging mortality did not
change migration patterns in the landscapes he considered, but it
did decrease migration rates, reduce heterozygosity and increase
genetic diversity and differentiation. The SAMC framework allows
for considering mortality in more complex landscapes. Our com-
parison of migration mortality and migration resistance illustrates
that connectivity between demes can vary based on these dif-
ferent mechanisms (Figure 4), with migration mortality leading to
greater genetic isolation than migration resistance and changes in
expected gene flow (Figure 4d). Our framework allows for flexible
implementation to consider scenarios where there is no assumed
mortality or where high mortality risks are expected to occur (e.g.
along highways). Such comparisons could inform potential man-
agement actions for maintaining genetic connectivity in the face
of potential risks. In many practical settings, inferring the relative
contribution of migration mortality and landscape resistance to
movement to observed genetic connectivity may be difficult be-
cause each has a similar functional effect on genetic relatedness. If

data are available on mortality risks (e.g. mortality estimates near
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FIGURE 5 Application of the spatial absorbing Markov chain to landscape genomics of the endemic Panama City crayfish. (a) Estimates
of linearized Fq; as a function of conditional commute time taken from the most supported model (Table 2). (b) Decomposition of conditional
commute time into conditional first passage time, illustrating high directionality in expected flow. (c, d) Estimated directionality captured by
conditional first passage time as a function of an east-west gradient, where darker and wider arrows indicate greater expected connectivity
based on conditional first passage time using a backward transition matrix (background shows elevation; darker colours represent higher

elevation)

roads), then such information could address this issue to better
understand the drivers of genetic connectivity. Finally, we note
that impassable landscape barriers that arise from fidelity rather
than mortality can also be accommodated in the SAMC (and are
implemented in the samc package via a fidelity map; see Marx
et al., 2020).

4.3 | Application to crayfish connectivity

Our application to the endemic crayfish demonstrates the poten-
tial usefulness of the SAMC as a new landscape genetics method.
In the crayfish analyses, the SAMC better explained genetic dis-
tance (Fgr) than did other common connectivity methods used in
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landscape genetics (e.g. circuit theory, least-cost paths) because
it was able to incorporate the potential for migration mortality
and an asymmetric environmental gradient (i.e. slope) of relevance
to movement. We found weak evidence for developed lands im-
pacting migration mortality, yet no evidence for roads impacting
migration mortality. The lack of a road effect on migration mor-
tality was surprising, yet Procambarus are thought to be largely
nocturnal (Gherardi et al., 2000) such that presumably less vehicle
activity across roads at night during nocturnal movements may
help explain this lack of effect. The SAMC additionally allowed
us to decompose the directionality of potential gene flow across
the landscape, which we would not have been able to do with cir-
cuit theory. Because the east portion of the crayfish range is less
developed, we expected that there would be more relatively suc-
cessful movement forward in time from east to west and thus rela-
tively more connectivity going from west to east backward in time.
Mapping connectivity based on SAMC confirmed these expecta-
tions: Conditional first passage time was estimated to be generally
shorter backward in time when moving from west to east than
vice versa (Figure 5c,d). These results are also consistent with
prior analyses that indicate eastern locations with lower genetic
differentiation and higher genetic diversity are experiencing less
fragmentation (Duncan et al., 2020).

We found no strong evidence for land cover explaining genetic
differentiation using resistance values based on expert opinion.
Expert opinion has known limitations (Spear et al., 2010), but we
used it in this example due to the very limited data on this endan-
gered species. Furthermore, in our example, there were relatively
few populations for estimating genetic differentiation, which
limits the power of the analysis for detecting land cover effects.
Resistance optimization techniques (e.g. Peterman, 2018; Peterman
& Pope, 2021) could be extended to optimize resistance surfaces for
the SAMC framework, both for land cover resistance and also for

identifying effects of migration mortality.

4.4 | The niche for the SAMC in landscape genetics

Our framework can be readily applied to problems in landscape
genetics for predicting how landscapes may influence population
genetic differentiation quantified via Fg; or related metrics (see
Balkenhol et al., 2016). It extends isolation-by-resistance from circuit
theory to help elucidate how genetic connectivity may be impeded,
such as through directional barriers that alter movement directions
or anthropogenic mortality that may limit gene flow. Lundgren and
Ralph (2019) also show how coalescence times can be directly mod-
elled as an alternative to circuit theory, finding that coalescent times
may be more reliable than circuit theory under directed migration.
Other key developments on directed migration include advances in
autoregressive and related models that can be applied to genetics
data and can account for directional migration patterns (Hanks, 2017;
Marcus et al., 2021; Peterson et al., 2019). Our model provides com-
plementary insights by illustrating how circuit-theoretic ideas can be

directly extended with Markov chains in a way that can acknowledge
asymmetric resistance and migration mortality.

We provided several metrics for interpreting genetic connectiv-
ity (Table 1). For the empirical example, we focused on conditional
commute time, which emphasizes only between-patch processes,
rather than absorption times, which blend internal population dy-
namics with between-population movement across landscapes.
While it could be valuable to address absorption times to capture
within-patch processes (Pfluger & Balkenhol, 2014), more devel-
opment is needed to scale these dynamics appropriately to raster
grids. Conditional commute time summarizes conditional first pas-
sage time in both directions (from deme i to j and j to i), and it is
more comparable to Fg; and other connectivity metrics that are not
explicitly directional. However, conditional first passage time can
be interpreted separately in each direction, providing flexibility for
interpreting the genetic consequences of directional migration. We
have updated the samc package (Marx et al., 2020) to include the
conditional first passage times described here (v1.4.0 or later). We
also updated the package for analysis of discrete networks such as
those considered here (rather than only raster grids) and allow for
scenarios where some locations in the landscape have zero absorp-
tion probabilities (e.g. to acknowledge that coalescence may occur
only where populations reside).

Landscape genetics increasingly focuses on genetic relationships
among individuals rather than populations to interpret problems of
connectivity (Balkenhol et al., 2016; Cros et al., 2020). Given that
some genetic differentiation concepts among individuals can be
cast similarly to differentiation among populations (Rousset, 2000),
we expect that the results we have provided apply to such cases.
As the SAMC was derived initially at the individual level (Fletcher
et al., 2019), its applications to individual-level relationships may be
more straightforward than to population-level relationships consid-
ered here. For instance, when applying the SAMC at the individual
level, we note that migration probabilities used here have similar
interpretation, such that the primary difference is in the interpreta-
tion of absorption. Some metrics, such as conditional commute time
as implemented here, are not sensitive to absorption values based
on population size as setting absorption to one for individual-level
analyses rather than scaling it to effective population size would re-
sult in similar variation in conditional commute time. However, more
research is needed to explore these relationships fully. For related-
ness, we would alter the expectation of absorption, where related-
ness is expected to vary with the inverse (effective) population size
(Shirk et al., 2017).

5 | CONCLUSIONS

The spatial absorbing Markov chain framework we have presented
extends the analysis of isolation by resistance. Circuit theory has
seen widespread use to interpret isolation by resistance and move-
ment across landscapes in ecology and evolution and can success-
fully predict gene flow in some situations (Dickson et al., 2019;
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Fletcher et al., 2016). Yet circuit theory has known limitations for
capturing key processes that may affect gene flow (Lundgren &
Ralph, 2019; Wang & Bradburd, 2014). Our results provide a foun-
dation for applying spatial absorbing Markov chains to population
genetic data. Future landscape genetic studies considering circuit
theory can extend applications using the SAMC to address directed
migration, migration mortality and the potential effects of within-
patch processes for predicting genetic connectivity across complex

landscapes.
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