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Abstract
1. Genetic connectivity lies at the heart of evolutionary theory, and landscape ge-

netics has rapidly advanced to understand how gene flow can be impacted by
the environment. Isolation by landscape resistance, often inferred through the
use of circuit theory, is increasingly identified as being critical for predicting ge-
netic connectivity across complex landscapes. Yet landscape impediments to
migration can arise from fundamentally different processes, such as landscape
gradients causing directional migration and mortality during migration, which
can be challenging to address. Spatial absorbing Markov chains (SAMC) have
been introduced to understand and predict these (and other) processes affect-
ing connectivity in ecological settings, but the relationship of this framework to
landscape genetics remains unclear.

2. Here, we relate the SAMC to population genetics theory, provide simulations to
interpret the extent to which the SAMC can predict genetic metrics and dem-
onstrate how the SAMC can be applied to genomic data using an example with
an endangered species, the Panama City crayfish Procambarus econfinae, where
directional migration is hypothesized to occur.

3. The use of the SAMC for landscape genetics can be justified based on similar
grounds to using circuit theory, as we show how circuit theory is a special case
of this framework. The SAMC can extend circuit-theoretic connectivity model-
ling by quantifying both directional resistance to migration and acknowledging
the difference between migration mortality and resistance to migration. Our
empirical example highlights that the SAMC better predicts population struc-
ture than circuit theory and least-cost analysis by acknowledging asymmetric
environmental gradients (i.e. slope) and migration mortality in this species.

4. These results provide a foundation for applying the SAMC to landscape genet-
ics. This framework extends isolation-by-resistance modelling to account for

www.wileyonlinelibrary.com/journal/mee3
mailto:﻿
https://orcid.org/0000-0003-1717-5707
https://orcid.org/0000-0002-5887-8938
https://orcid.org/0000-0003-4690-7508
https://orcid.org/0000-0002-2101-5282
https://orcid.org/0000-0002-6685-547X
https://orcid.org/0000-0002-1338-4045
https://orcid.org/0000-0003-4996-4540
https://orcid.org/0000-0002-7456-1631
https://orcid.org/0000-0003-0643-8620
http://creativecommons.org/licenses/by/4.0/
mailto:robert.fletcher@ufl.edu
http://crossmark.crossref.org/dialog/?doi=10.1111%2F2041-210X.13975&domain=pdf&date_stamp=2022-09-03


2464  |   Methods in Ecology and Evolu
on FLETCHER JR et al.

1  |  INTRODUC TION

Understanding connectivity is essential for ecology, evolution and 
conservation (Hanski, 1999; Slatkin, 1993). Over the past two de-
cades, there has been a tremendous interest in interpreting the role 
of connectivity in population genetics and genomics. Landscape 
genetics has emerged as a key subdiscipline that addresses a wide 
range of problems, focusing on how landscapes influence micro-
evolutionary processes and patterns such as gene flow and genetic 
structure (Balkenhol et al., 2016; Manel et al., 2003).

Landscape genetics has extended isolation-by-distance (IBD) 
relationships (e.g. Wright,  1943) to incorporate how landscape 
structure can alter gene flow and genetic connectivity. For instance, 
‘isolation-by-environment’ (IBE) relationships capture genetic varia-
tion that may be explained by environmental differences between 
sites (Wang & Bradburd,  2014). Similarly, ‘isolation-by-resistance’ 
(IBR) captures how the landscape can alter migration and genetic 
connectivity, which is commonly quantified through the use of cir-
cuit theory (McRae, 2006). The rationale is that aspects of the ma-
trix (e.g. land use, topography) can alter movement routes across 
landscapes, what has been termed ‘landscape resistance’ (Zeller 
et al.,  2012), leading to landscape effects on gene flow (Spear 
et al.,  2010). Yet such resistance can emerge from multiple pro-
cesses, such as migration avoidance or preference of landscape fea-
tures leading to asymmetric migration, cumulative costs of transport 
over space from mortality risk and related costs or selection against 
maladapted dispersers (Wang & Bradburd, 2014).

A recently introduced framework advanced random walk theory 
with absorbing Markov chains to better capture different processes 
influencing connectivity (Fletcher et al.,  2019). This framework, 
termed the ‘spatial absorbing Markov chain’ (SAMC), honours the idea 
that resistance can influence both movement behaviour and mortal-
ity risk, or more broadly the termination of movement. The SAMC is 
an analytical framework like least-cost analysis (Etherington, 2016), 
randomized shortest paths (Saerens et al., 2009) and circuit theory 
(McRae et al., 2008), all of which assume that variation in landscape 
features influences the movement process. Overall, the SAMC 
is most similar to circuit theory in that both are rooted in Markov 
chain theory and depend on local-scale landscape information (in 
contrast to least-cost analysis and randomized shortest paths that 
assume that movement involves broad-scale information of the 
landscape). While similar, the SAMC moves beyond circuit theory 
and other frameworks in ecology by providing short- and long-term 
predictions and by providing a means to account for time-specific 

movement, directional movement, species distribution and mortal-
ity. Despite the potential value of this framework for connectivity 
based on individual movement (Fletcher et al., 2019), it remains un-
clear if and how this framework is relevant to landscape genetics.

We extend the SAMC framework to the problem of genetic 
differentiation and gene flow. First, we provide a brief overview of 
the SAMC framework. Second, we discuss the relationship of the 
SAMC with population genetics theory using a common metric of 
genetic differentiation, FST. Third, we demonstrate that circuit the-
ory is a special case of the SAMC such that they are identical on 
simplified population networks. Yet the SAMC is flexible enough to 
provide predictions that potentially account for directed migration 
(Lundgren & Ralph, 2019) and migration mortality (Nagylaki, 2015) 
in population differentiation. Finally, we illustrate the application 
of this framework with genomics data from an endemic and rare 
species, the Panama City crayfish Procambarus econfinae, which has 
been hypothesized to have undergone directed migration (Duncan 
et al.,  2020). Not only do these extensions provide a formal link-
age of this framework to landscape genetics but these extensions 
also provide a means to potentially capture some key processes 
affecting the spatial distribution of genetic variability (Lundgren & 
Ralph, 2019; Wang & Bradburd, 2014), which may facilitate predict-
ing genetic connectivity across landscapes.

2  |  MATERIAL S AND METHODS

2.1  |  The spatial absorbing Markov chain

The SAMC models connectivity based on extensions of discrete-
time absorbing Markov chain theory. This framework is applied by 
assuming that landscapes are discrete representations of the envi-
ronment, which can be represented using raster maps or in a net-
work context where populations or demes are vertices (or nodes) 
on a spatial graph (Acevedo et al., 2015; Fletcher et al., 2019; Sefair 
et al., 2017).

We introduce this model in the context of dispersal (Fletcher 
et al.,  2019) and subsequently illustrate how parameters relate to 
genetic differentiation. For each time step during which an organ-
ism disperses across a complex landscape, it can either survive 
and stay at the same location (i.e. site fidelity), survive and move 
to a nearby site or die. The SAMC framework honours this idea by 
considering ‘transient’ states that capture fidelity and movement, 
and an ‘absorbing’ state that captures mortality. In the context of 

some common processes that can impact gene flow, which can improve predict-
ing genetic connectivity across complex landscapes.

K E Y W O R D S
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genetic differentiation, movement and fidelity capture the potential 
for migration (or not), whereas absorption can reflect two different 
processes, mortality during migration (Nagylaki, 2015) or the prob-
ability of coalescence (Hey, 1991), depending on how the model is 
applied. We discuss each in detail below.

The SAMC framework captures transient and absorption states 
through the construction of a probability matrix, P (Figure 1; through-
out we use bold capital letters to denote matrices, bold lowercase 
letters to denote vectors and non-bold letters to denote scalars). For 
a landscape divided into C cells or patches, P can be written as:

where Q is a sparse, C × C transition matrix reflecting transitions 
between transient states, R is a C × r matrix containing transition 
probabilities from the transient states to r absorbing states and 0 
is a 1 × C vector of zeros. The elements pij of P describe the proba-
bility of transitioning from state i  to j in one time step, such as the 
probability of migration between state i  and j in one generation. 
A variety of connectivity-related metrics can be quantified using P.  
Here, we extend this framework to address gene flow and genetic 
differentiation.

2.2  |  Relating the SAMC to genetic differentiation

To interpret the relationship of the SAMC to genetic differentiation, 
we use a similar approach as in McRae (2006). We first review the re-
lationship of coalescence times to FST for stepping stone models and 
how coalescence times can be generally captured using absorbing 
Markov chain theory based on random-walk times. Based on these 
relationships, we then discuss the connection of the SAMC to FST 
values and coalescence times.

2.2.1  |  FST, coalescence times and Markov chains

Slatkin  (1991, 1993) derived relationships between coalescence 
times, or the amount time in the past that two or more genes first 
had a common ancestor, and FST under a variety of scenarios. These 
derivations were motivated by the need to simplify the analysis of 
population genetic models, make inferences on population genetic 
parameters and derive general results for gene flow in subdivided 
populations (Slatkin, 1991). For a stepping stone model, Slatkin (1991, 
1993) determined that FST can be calculated using coalescence times 
between pairs of genes sampled within and among demes as:

(1)
⎛
⎜⎜⎝

Q R

0 1

⎞
⎟⎟⎠
,

(2)FST =
t1 − t0

t1 + t0
,

F I G U R E  1  The spatial absorbing Markov chain applied to landscape genetics. (a) This framework takes information from a population 
network, as described as a spatial graph or raster grid, to create a probability matrix P that includes information on migration and absorption. 
(b) Both symmetric (balanced) and directed (anisotropic) migration m between demes can be captured. Note that even in the case of balanced 
pairwise migration, actual migration rates in each direction may differ due to variation in the number of links (e.g. the number of adjacent 
links for deme i and j is the same but differs with deme k). (c) For population or landscape genetic data, absorption can reflect the probability 
of coalescence or migration mortality. For instance, we show the current state of two alleles (blue, orange) in the network and the location 
of coalescence occurring four steps (arrows) backward in time. For migration mortality, dashed lines represent a scenario where a barrier is 
driven by mortality (i.e. migration is attempted across the barrier but mortality occurs).
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where t0 is the average coalescence time of two genes sampled from 
the same deme and t1 is the average coalescence time when two genes 
are sampled from different demes (Table 1; terms in Table 1 are ital-
icized at first mention). Typically, t0 = 2N, where N is the effective 
population size summed across all demes (Slatkin, 1991). The average 
coalescence times of two genes from different demes include the time 
to coalescence given the genes are in the same deme (t0) plus the time 
for the two genes to first be present in the same deme, t′

1
, such that 

t1 > t0.
Absorbing Markov chain theory can be used to calculate co-

alescence times and derive FST by applying this theory backward in 
time (Hey, 1991; McRae, 2006). Hey (1991) constructed a discrete 
absorbing Markov chain that captures the situation where there 
are two gene copies (~alleles) for a single locus drawn from the 
population and mutation is negligible. Hey populated the Markov 
chain using information on mij, or the probability that a randomly 
sampled gene in deme j descended from a gene in deme i  in the 
previous generation, and N at deme i . Define S(t) as the state at 
time t , such that if S(t) = {i, j}, one gene is in deme i and the other 
is in deme j  . The transitions among states can be described with 
a probability matrix Qs based on summaries of mij for each state 
transition and by assuming that the probability of coalescence 

(absorption) at time t  when both genes are in the same deme is 
equal to 1

2Ni

 (Hey, 1991) (see Equations S1–S3). With this structure, 
the expected coalescence time (i.e. time to absorption) from any 
state is:

where I is an ns × ns identity matrix. Qs is similar to Q in Equation 1 ex-
cept that it has ns states. Using vector t, t0 and t1 can be calculated (see 
Supporting Information), which can then be injected into Equation 2 
to calculate FST.

2.2.2  |  From FST to the SAMC

McRae (2006) exploited Slatkin's (1991) propositions regarding t1 in 
the context of circuit theory and landscape resistance. A well-known 
quantity in circuit theory related to landscape resistance is the ex-
pected commute time, tc, which is the sum of hitting (or first passage) 
times going from i  to j and back again ( j to i ), on an ergodic chain 
network (Chandra et al., 1997). When considering isotropic migra-
tion (i.e. migration pattern is identical between all demes) and demes 

(3)t =
(
I−Qs

)−1
1,

Term Symbol Description

Coalescence time t0 The average time for two genes sampled from 
the same deme to coalesce

t1 The average time for two genes that are 
sampled from different demes to coalesce

t
′

1
The time for the two alleles from different 

demes to first be present in the same deme

Circuit theory

Commute time tc The sum of hitting (or first passage) times 
going from i  to j and back again ( j to i )

Current flow I The flow or charge between k and l  when 
moving through resistors or nodes

Spatial absorbing Markov chain

Hitting time th The mean time of arrival when starting from i  
and arriving to j

Conditional first passage time tp The mean first passage time from i  conditional 
on absorption into j. Generalizes hitting 
time to allow for potentially multiple 
absorbing states

Conditional commute time tpc The sum of conditional first passage times 
from i  to j and from j to i . Related to 
commute time and t′

1

Absorption time ta The mean time to move i  to j and absorb into 
j. Related to t0 and t1 on isotropic graphs

Absorption index AI An index of differentiation describing the 
proportion of total time prior to absorption 
that is driven by between-population 
movements

Net visitation rate vkl Expect net movement probabilities between 
k and l  when moving through demes. 
Analogous to current density or flow

TA B L E  1  Terms and metrics described 
and evaluated for interpreting genetic 
connectivity
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of equal sizes, McRae (2006) showed that t�
1
=

tc

4
. Commute time is 

divided by four because it describes the time of moving to a deme 
and back again and acknowledges that it takes half the time for alleles 
to meet because two alleles are moving (Lundgren & Ralph, 2019). 
McRae (2006) then used simulations to illustrate that commute time 
could also predict FST on non-isotropic deme networks with balanced 
migration (mij = mji).

In the context of the SAMC, the commute time between deme i  
and j on an isotropic graph as calculated with circuit theory is pre-
cisely twice the hitting time, th, of a spatial absorbing Markov chain 
when starting at i  and the only absorbing state is j (Table 1). In this 
situation, t�

1
=

tc

4
=

th

2
. In a similar way, current flow is often used in 

mapping based on circuit theory (Table 1; Dickson et al., 2019) can 
be calculated directly with the SAMC using a metric of visitation 
rate that decomposes the time spent at different locations across 
a landscape (Fletcher et al., 2019; Table 1). Taken together, circuit 
theory is a special case of the SAMC and any result obtained through 
circuit theory can be recapitulated with the SAMC (see Supporting 
Information  S2). Yet circuit theory relies on the idea of ‘resistors’ 
that do not have directionality (McRae et al.,  2008), implying it is 
limited to balanced migration scenarios (Hanks, 2017). In contrast, 
the SAMC can decompose commute time into movement rates in 
each direction, thereby allowing consideration of directed flows 
that can arise on non-isotropic graphs, both when migration is bal-
anced (Table S2) and when it is directed or ‘anisotropic’ (mij ≠ mji; see 
below).

More generally, the SAMC can explicitly include absorbing 
states related to the coalescence process using a similar rationale 
as Hey  (1991) regarding N altering the probability of coalescence. 
The difference lies in that Hey  (1991) explicitly tracks two alleles 
thereby providing a means to quantify coalescence, whereas the 
SAMC implicitly tracks only one allele (similar arguments apply using 
circuit theory above). Consequently, the SAMC cannot explicitly 
quantify coalescence, but it can partially encapsulate the process via 
absorbing states. The benefit is that using the SAMC allows the tran-
sition matrix to be much smaller (and sparser) than that described 
in Hey  (1991), which eases computation considerably for large 
landscapes.

For isotropic migration, we provide a metric to approximate av-
erage coalescence times, t1 and t0, by creating an absorbing state in 
a similar way as above for relationships with commute time, but here 
R is populated where the only absorbing state is j, defined as:

This formulation uses a similar rationale as Hey (1991) in terms of the 
potential for coalescence transitioning from i  and j (cf. Equation S3). 
For the elements qij of Q, we account for nonabsorption (cf. 
Equation S1) as:

We can then calculate absorption time as:

Repeating across all demes creates an absorption–time matrix Ta 
(we use the term ‘absorption time’ as it acknowledges the time to 
both arrive and absorb). The diagonal elements of Ta represent the 
time it takes to absorb in j when starting in j, and are related to 
t0 on an isotropic graph. The off-diagonal elements represent the 
time it takes to go to j when starting from i  plus the time to absorb 
once reaching j  , such that this time is related to t1. The conditional 
mean first passage time (Table 1; De Sanctis & de Koning, 2018) can 
be calculated to directly approximate t′

1
 between transient states 

(Equations S7–S10). This metric generalizes the hitting time metric 
to allow for the potential for more than one possible absorbing 
state. We sum this metric in both directions to provide a distance-
based metric analogous to commute time for demes i  and j, what 
we refer to as the conditional commute time (Table 1; Equation S11). 
Finally, we provide an absorption index, AI (Table 1), taken from Ta 
that is similar in structure to FST (Equation 2; see Equation S19). AI 
ranges between 0 and 1, where higher values indicate lower ab-
sorption rates. This metric describes the proportion of total time 
before absorption driven by between-population movements. See 
the Supporting Information for examples of isotropic migration, 
which provide exact relationships of Ta to t0 and t1 and illustrate 
how the AI provides identical results to FST (Table S3). Below, we 
use simulations to interpret the generality of these relationships 
to non-isotropic graphs.

2.2.3  |  Migration mortality and the SAMC

The problem of mortality during migration is often raised in land-
scape genetics (e.g. Spear et al., 2010). Yet in population differentia-
tion models, mortality during migration is frequently neglected (but 
see Nagylaki, 2015). Here, we show how the SAMC can account for 
this problem.

The SAMC was initially motivated to capture the potential for 
movement mortality arising when individuals disperse across land-
scapes (Fletcher et al., 2019). Consider a forward transition matrix 
as described in Section 2.1 with nd demes and an absorbing state in-
dicating mortality. Let m̃ij be the probability of attempting migration 
from deme i  to j forward in time, and aij be the probability of sur-
viving the event. The probability of successful migration from pop-
ulation i  in time t to j in time t + 1 is thus m̃ij = aij m̃ij, where the cup 
symbol depicts successful migration forward in time. We assume 
that aii = 1, as we only consider mortality to occur during migra-
tion. When aij < 1, actual migration rates are smaller than attempted 

(4)Pr(S(t − 1) = {R}� S(t) = {i}) =

⎧⎪⎨⎪⎩

nd�
k=1

mik

�
1

2Nk

�
if i= j

0 Otherwise

.

(5)Pr(S(t − 1) = {j}| S(t) = {i}) = mij

(
1 −

1

2Nj

)
.

(6)ta = (I−Q)
−1
1.
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migration rates (�mij > �mij), leading to a reduction in total migration 
rate (1 − m̃ii) (Nagylaki, 2015). The probability of dying when begin-
ning in state i  is the i-th entry of R:

which is a weighted average of movement-specific mortality 
probabilities.

We now reverse the process, asking about the history of move-
ment in the presence of migration mortality when going from time 
t to t − 1 into the past. We reverse the chain to create a backward, 
stochastic matrix, � =

‖‖‖�ij
‖‖‖. � takes the form:

where the M is an nd × nd matrix with elements

giving the conditional probabilities of moving between demes back-
ward in time, R′ is a nd dimensional row vector with jth element

describing the transition probabilities of being in deme j one time 
step in the past, given the chain is in the absorbing state, and 
r =

�
1+

∑nd
i=1

∑nd
k=1

%m̃ik

�
1−aik

��−1, which is the probability of stay-
ing in the absorbing state one time step into the past. We can then 
add an absorption state for coalescence and adjust � as described in 
Equations  4 and 5. Consequently, � gives the probabilities of prior 
states given the observed state under a defined forward process 
that includes migration mortality. � can be compared to similar ma-
trices that assume no migration mortality (a = 1) to interpret the ef-
fects of migration mortality on genetic connectivity (see Supporting 
Information S4).

2.3  |  Simulations with variation in migration

We explore the utility of the SAMC for landscape genetics under 
three scenarios. First, we compare the SAMC to other common met-
rics in terms of their capacity to predict FST calculated from popula-
tion genetics theory for simple finite, non-isotropic networks with 
no migration mortality. Second, we evaluate the extent to which the 
SAMC can capture directed migration. Third, we interpret the utility 
of the SAMC when migration mortality occurs. For each scenario, we 
primarily focus on the average absorption times (i.e. the average of 
absorption times from i  to j and j to i ), the absorption index and the 

conditional commute time, as these metrics are readily comparable 
to FST and other distance-based metrics.

To assess the ability of the SAMC relative to other common met-
rics in capturing FST, we consider two finite, non-isotropic networks 
use in McRae  (2006) that have balanced migration (Figure  2). In 
these simulations, we compare expected values for FST from popula-
tion genetics theory (using Equations 2 and 3, Equation S1–S4; see 
also Hey, 1991) to predictions from the SAMC, geographic distance, 
least-cost distance and commute time (cf. McRae, 2006). We sim-
ulate migration under different effective population sizes (N = 10, 
100, 1000) and backward migration rates (m = 0.001, 0.01, 0.1).

To assess the ability of the SAMC to capture directed migra-
tion, we consider four simple networks that highlight different 
types of potential directional migration: directional flow across 
a partial barrier, migratory routes, source–sink dynamics and a 
dendritic network (Figure  3). Directed migration is clearly more 
complex in nature than any of these scenarios, but these simple 
networks capture common processes that can lead to directional 
flow (Lundgren & Ralph, 2019). We vary migration in different di-
rections in each network, with high migration rates (0.1) and low 
rates (0.01). We then contrast changes in FST and coalescence times 
calculated from population genetics theory (Equations 2 and 3) to 
changes in SAMC metrics between each directed network and its 
non-directional equivalent (i.e. mij = mji based on the average mi-
gration rate between i and j).

To understand the effect of migration mortality on genetic dif-
ferentiation, we contrast three scenarios based on the network in 
Figure  2a. In the baseline scenario, the partial barrier is removed, 
population size is constant (N = 10, 100 or 1000) and migration oc-
curs across all demes at equal rates (either 0.01 or 0.001; Figure 4a). 
In the second scenario, we alter the baseline such that the partial 
barrier is driven by migration mortality, not resistance to movement 
(Figure 4b). In the third scenario, we alter the baseline rates to re-
flect that the partial barrier acts as resistance to movement but not 
mortality, such that the overall migration rate is equivalent to the 
baseline scenario (Figure 4c). We then compare the change in FST and 
conditional commute time between the baseline scenario and these 
two partial boundary scenarios. We also map differences in net vis-
itation rates, which is analogous to mapping current flow in circuit 
theory (Table 1). All simulations were performed in R using the samc 
package version 1.4 (Marx et al., 2020).

2.4  |  Application to genetic connectivity of an 
endangered crayfish

One potential application of SAMC is the identification of model pa-
rameters and landscape attributes that are most important for driving 
genetic structure, which can provide important information for man-
agement plans aimed at conserving genetic diversity of imperilled spe-
cies. To illustrate this type of application of the SAMC, we focus on 
the imperilled Panama City crayfish (Procambarus econfinae; crayfish 
hereafter), which currently occupies approximately 28% of its historical 

(7)Pr(S(t + 1) = {R}| S(t) = {i}) =

nd∑
j=1

m̃ij

(
1 − aij

)
,

(8)� =

⎛
⎜⎜⎝

M 0

R
�

r

⎞
⎟⎟⎠
,

(9)mij =
m̃ji∑nd

k=1
m̃ki

=
aji m̃ji∑nd

k=1
aki m̃ki

,

(10)
∑nd

k=1
m̃jk

�
1 − ajk

�

1 +
∑nd

i=1

∑nd
k=1

m̃ik

�
1 − aik

� ,

 2041210x, 2022, 11, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13975, W
iley O

nline Library on [24/08/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



    |  2469Methods in Ecology and Evolu
onFLETCHER JR et al.

range (USFWS,  2017). Suitable habitat for the species is composed 
of fragmented patches of flatwoods in the highly urbanized western 
portion of the range and managed plantations in the more contiguous 
eastern portion of the range (Duncan et al., 2020). Genetic differen-
tiation in this species has been hypothesized to be shaped by habitat 
fragmentation, roads, range expansion and coastal dynamics (Duncan 
et al., 2020). Other crayfish species have directed dispersal along el-
evational gradients, with greater dispersal tendencies downslope than 
upslope (Bernardo et al., 2011). Consequently, we hypothesized that, 
along with land cover effects on resistance, both directed migration 
from elevational gradients and migration mortality from roads and 

urban areas could drive genetic differentiation in this species. To ad-
dress this problem, we used linearized FST estimates from 1640 neutral 
single nucleotide polymorphisms (SNPs) (Duncan et al., 2020) to evalu-
ate the connectivity of eight crayfish populations across its known dis-
tribution (Table S4, Figure S7). See Duncan et al. (2020) for more details 
on the species and genetic data and Figure S8 for the workflow used.

Because there were no prior empirical data on movement and 
gene flow in the Panama City crayfish, we undertook an expert as-
sessment to derive potential resistance-based information for con-
nectivity modelling. We used the Florida Cooperative Land Cover 
Map (FNAI, 2016), which was reclassified in an effort to delineate 

FI G U R E 2 Comparison of relationships between different metrics used in connectivity analyses and FST as a function of migration rate 
(m = 0.001, 0.01, 0.1) for the scenario in which population size is 1000 for each deme. (a) A small network with a partial barrier. (b) A larger network 
with more complex properties regarding bottlenecks, corridors and contiguous environments. Overall, commute time and spatial absorbing Markov 
chain metrics (conditional commute time, absorption time, absorption index) explain FST better than Euclidean distance or least-cost distance. In 
these scenarios, commute time (circuit theory), conditional commute time and absorption time are perfectly correlated with each other (r = 1).
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F I G U R E  3  Directed migration and the spatial absorbing Markov chain. (a) The directed networks considered. (b) Example ratios of 
conditional first passage times between two target demes (i.e. the conditional passage time from purple to red demes divided by time from 
red to purple demes). (c) Differences between directed and the equivalent symmetric migration for coalescence time and FST as a function 
of spatial absorbing Markov chain metrics. Shown are scenarios where population size for each deme = 100, with dark arrows representing 
m = 0.1 and light arrows m = 0.01.
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land cover types that could potentially affect crayfish movement 
(Table S5, Figure S7; see Supporting Information S6). We converted 
this reclassified map based on hypothesized resistance values from 
an expert opinion survey to create seven hypothesized resistance 
layers (60 m resolution; Figure S9). We also considered slope, derived 
from a digital elevation map (Figure S10a), as a directional resistance 
measure, based on the change in elevation between adjacent raster 
cells. We contrasted this directional measure to using an equivalent 

undirected metric of slope with circuit theory and least-cost dis-
tances (i.e. the average slope per raster cell; Figure S10b) using the 
gdistance package (van Etten, 2017). To illustrate the problem of 
migration mortality, we hypothesized that developed land uses and 
major roadways could lead to migration mortality. For developed 
land and roadways, we fit models that altered values of migration 
mortality between 0.001 and 0.99, selecting the best-fit models 
based on log-likelihoods (see Supporting Information S6 for more).

F I G U R E  4  Migration mortality, resistance and the spatial absorbing Markov chain. (a) Three networks that vary in migration mortality 
and migration resistance near a barrier. Shown is a baseline network with balanced migration rates among demes. The migration mortality 
network has the same migration rates as the baseline, but migration mortality occurs at the partial barrier (cf. Figure 2a). The resistance/
redirection network has the same overall migration rates as the baseline, but migration is redirected away from the barrier. (b) FST and 
(c) conditional commute time as a function of migration rate (m) for the scenario in which population size is 1000 for each deme. (d) Net 
visitation rates when starting in the dark grey square deme and ending at the light grey square deme for the baseline scenario and migration 
mortality. Larger, darker red dots reflect higher visitation rates
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With these resistance values, we calculated least-cost distance, 
commute time with circuit theory and conditional commute time from 
the SAMC. We focus on the conditional commute time in this empirical 
example rather than the absorption time or absorption index because 
it only captures between-population processes of relevance to raster 
maps (see Section  4). For calculating conditional commute time, we 
used Equations 4 and 5 for populating R and Q, where 1

2Ni

 was esti-
mated with SNP data using the LD method (Waples & Do, 2008) imple-
mented in NEEstimator ver. 2 (Do et al., 2014). To calculate conditional 
commute time, we first calculated conditional first passage times using 
the samc package, which led to an asymmetric matrix of pairwise value 
of first passage times. We then summed these times in both directions 
(Equation S13) to generate a symmetric matrix of conditional commute 
times comparable to other distance-based metrics.

We used linear mixed-effects models using the maximum-
likelihood population-effects parameterization (MLPE; Clarke 
et al.,  2002) implemented with the resistanceGA package 
(Peterman,  2018) to separately model the effects of (the log of) 
Euclidean distance, least-cost distance, commute time, conditional 
commute time and an intercept-only model on linearized FST. All 
explanatory variables were scaled (mean centered with a standard 
deviation of 1) before modelling. We compared models using log-
likelihoods, Akaike's information criterion for small sample sizes 
(AICc) and marginal R2 (Nakagawa & Schielzeth, 2013).

3  |  RESULTS

3.1  |  Simulations with variation in migration

When comparing the ability of the SAMC metrics relative to other 
common metrics in predicting FST, we found that conditional com-
mute time, absorption time and commute time were perfectly cor-
related with each other on these non-isotropic networks and were 

highly correlated with FST (Figure 2). For these metrics, correlations 
with FST were lower with small population sizes and low migration 
rates (Table S6). In general, these metrics performed better than ei-
ther Euclidean distance (r = 0.62 and 0.73 for the small and large 
networks) or least-cost distances (r =  0.95 and 0.78). Overall, the 
absorption index best explained FST and was nearly perfectly cor-
related with FST for all scenarios (r ≥ 0.98; Figure 2, Table S6).

Comparing networks with directed migration relative to identical 
networks with balanced migration (where mij was set to the average 
of each direction) emphasized that the SAMC metrics were sensi-
tive to differences in migration asymmetries (Figure S3). However, 
commute time, least-cost distance and Euclidean distance did not 
change (results not shown). Changes in the absorption index largely 
predicted changes in FST (r =  0.73 across scenarios), whereas the 
conditional commute time varied in its ability to predict changes 
in FST  , depending on the scenario (Figure  3). Changes in condi-
tional commute time were positively correlated with changes in FST 
for all scenarios (r > 0.54) except the dendritic scenario (r = −0.42) 
which had the greatest asymmetry. In the Supporting Information, 
we show how conditional commute times on these networks were 
highly correlated with those obtained by individual-based simula-
tions of movement (r ≥ 0.98; Figure S4), suggesting that deviations 
of conditional commute time from FST may be largely due to the 
within-deme coalescence process rather than migration. Indeed, 
for the dendritic network, variation was explained by t0 and absorp-
tion time best explained this metric (r = 0.62). Overall, absorption 
time generally predicted t0 (r = 0.60), but t1 was less well predicted 
(r = 0.30). We note that both conditional commute time and FST use 
directed migration information but summarize it in a non-directed 
manner (Equation S11).

When interpreting the effect of migration mortality rela-
tive to resistance to movement, we found that FST tended to in-
crease for both scenarios relative to the baseline, but the effect 
was slightly larger when migration mortality occurred (Figure 4b, 

Model K Log-likelihood AICc ΔAICc
AICc 
weight

Conditional commute time

Slope (asymmetric) + mortality 4 37.9 −66.1 0.0 0.51

Slope (asymmetric) 4 37.8 −65.9 0.2 0.47

Land cover 4 33.5 −57.3 8.8 0.01

Slope (symmetric) 4 32.0 −54.2 11.9 0.00

Commute time

Land cover 4 33.5 −57.3 8.8 0.0

Slope (symmetric) 4 32.0 −54.2 11.9 0.0

Least-cost distance

Land cover 4 32.9 −56.1 10.0 0.0

Slope (symmetric) 4 30.4 −51.1 15.0 0.0

Slope (asymmetric) 4 28.0 −46.2 19.9 0.0

Euclidean distance 4 29.8 −52.7 13.4 0.0

Null 3 24.1 −41.3 24.8 0.0

TA B L E  2  Model comparison using the 
most supported scenarios for land use and 
land cover, slope and migration mortality 
for explaining linearized FST in the IUCN 
endangered Panama City crayfish. Note 
that for slope, commute time from circuit 
theory is based on a symmetric value, 
whereas conditional commute time 
and least-cost distance are calculated 
using both asymmetric and symmetric 
measures. ‘Mortality’ refers to migration 
mortality based on developed lands
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Figure S5). This was explained by slightly longer conditional com-
mute times when mortality occurred than when redirection oc-
curred (Figure  4c, Figure  S6). In general, conditional commute 
times and absorption times accurately predicted FST under all 
three scenarios (r > 0.91), as could the absorption index (r > 0.99). 
Incorporation of migration mortality altered the expected net vis-
itation rates across the network (Figure 4d). Thus, incorporating 
migration mortality can alter expectations for spatial migration 
patterns across landscapes even when the movement component 
of migration is undirected.

3.2  |  Application with connectivity of an 
endangered crayfish

There was support for both asymmetric metrics of resistance and 
the effect of mortality during migration for explaining FST in the 
Panama City crayfish (Table 2). Resistance based on land cover had 
slightly more support than Euclidean distance alone (Table 2), yet 
the most supported land cover resistance was a simple constant 
resistance (Figure S8). However, incorporating directionality using 
a slope-based resistance with the SAMC provided a better fit to 
linearized FST than did the land cover resistance metric (Table 2, 
Figure  S11). Interestingly, incorporating slope without capturing 
the potential for asymmetric flow (i.e. using average slope values) 
when using circuit theory, least-cost distance or the SAMC was 
less supported than when allowing this covariate to be directional. 
There was no support for roads potentially impacting migration 
mortality (Figure S12), yet there was some weak evidence that de-
veloped lands affected migration mortality (Table 2, Figure S12). 
However, differences in conditional commute times under the as-
sumption of no migration mortality or migration mortality on de-
veloped lands were small (Figure S13). Based on this asymmetric 
resistance classification of slope, conditional commute time best 
fit the data, capturing nearly all of the model weight (Table 2). This 
model explained 2.4× the variation (R2

m
= 0.75; Figure 5a) as circuit 

theory (R2
m
= 0.31) and 1.7× the variation as least-cost distances 

(R2
m
= 0.44; Figure  S14). Notably, the conditional first passage 

times from this asymmetric model varied considerably with direc-
tion (Figure  5b). We map a directional measure of connectivity 
based on conditional first passage time, focusing on expected con-
nectivity along the longitudinal gradient (east–west; Figure 5c,d). 
The mapping suggested that expected connectivity is greater from 
west to east than vice versa.

4  |  DISCUSSION

We provide a framework for predicting genetic connectivity across 
landscapes and illustrate its relationships with coalescence times 
and population differentiation as interpreted through FST. This 
framework extends concepts from circuit theory to understand the 

movement of genes and the potential for absorption to alter con-
nectivity across landscapes. Our framework is grounded in Markov 
chain theory and attempts to capture some key processes relevant 
for understanding genetic connectivity.

4.1  |  Coalescence and absorbing Markov chains

We demonstrated that when applying the SAMC to population dif-
ferentiation, absorption in the SAMC can be related to the prob-
ability of coalescence. Absorbing Markov chain models have been 
previously used address coalescence, where states are the locations 
(deme) of two randomly sampled genes (Hey, 1991). This structure 
has ns = nd

(
nd + 1

)
∕2 states, such that the probability matrix used 

has dimensions ns × ns. In contrast, implementation of the SAMC 
formulation has matrix dimensions are nd × nd. This has some practi-
cal computational benefits for problems that span large landscapes: 
a scenario with 100 demes would require a matrix of dimensions 
4950 × 4950 for the former and 100 × 100 for the SAMC. This com-
putational benefit similarly arises with the use of circuit theory. 
Furthermore, as the SAMC captures more of the coalescence pro-
cess of Hey  (1991) than circuit theory, on graphs with isotropic 
migration, it provides essentially identical results to population ge-
netics theory (Table S3).

4.2  |  Migration mortality

Migration mortality can be captured in the SAMC by interpreting 
migration mortality forward in time and then reversing the matrix 
to analyse population differentiation. Nagylaki (2015) considered 
the problem of how migration mortality affects spatial genetic 
variation and considered its effects in simple landscapes (e.g. 
circular islands). He found that acknowledging mortality did not 
change migration patterns in the landscapes he considered, but it 
did decrease migration rates, reduce heterozygosity and increase 
genetic diversity and differentiation. The SAMC framework allows 
for considering mortality in more complex landscapes. Our com-
parison of migration mortality and migration resistance illustrates 
that connectivity between demes can vary based on these dif-
ferent mechanisms (Figure 4), with migration mortality leading to 
greater genetic isolation than migration resistance and changes in 
expected gene flow (Figure 4d). Our framework allows for flexible 
implementation to consider scenarios where there is no assumed 
mortality or where high mortality risks are expected to occur (e.g. 
along highways). Such comparisons could inform potential man-
agement actions for maintaining genetic connectivity in the face 
of potential risks. In many practical settings, inferring the relative 
contribution of migration mortality and landscape resistance to 
movement to observed genetic connectivity may be difficult be-
cause each has a similar functional effect on genetic relatedness. If 
data are available on mortality risks (e.g. mortality estimates near 
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roads), then such information could address this issue to better 
understand the drivers of genetic connectivity. Finally, we note 
that impassable landscape barriers that arise from fidelity rather 
than mortality can also be accommodated in the SAMC (and are 
implemented in the samc package via a fidelity map; see Marx 
et al., 2020).

4.3  |  Application to crayfish connectivity

Our application to the endemic crayfish demonstrates the poten-
tial usefulness of the SAMC as a new landscape genetics method. 
In the crayfish analyses, the SAMC better explained genetic dis-
tance (FST  ) than did other common connectivity methods used in 

F I G U R E  5  Application of the spatial absorbing Markov chain to landscape genomics of the endemic Panama City crayfish. (a) Estimates 
of linearized FST as a function of conditional commute time taken from the most supported model (Table 2). (b) Decomposition of conditional 
commute time into conditional first passage time, illustrating high directionality in expected flow. (c, d) Estimated directionality captured by 
conditional first passage time as a function of an east–west gradient, where darker and wider arrows indicate greater expected connectivity 
based on conditional first passage time using a backward transition matrix (background shows elevation; darker colours represent higher 
elevation)
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landscape genetics (e.g. circuit theory, least-cost paths) because 
it was able to incorporate the potential for migration mortality 
and an asymmetric environmental gradient (i.e. slope) of relevance 
to movement. We found weak evidence for developed lands im-
pacting migration mortality, yet no evidence for roads impacting 
migration mortality. The lack of a road effect on migration mor-
tality was surprising, yet Procambarus are thought to be largely 
nocturnal (Gherardi et al., 2000) such that presumably less vehicle 
activity across roads at night during nocturnal movements may 
help explain this lack of effect. The SAMC additionally allowed 
us to decompose the directionality of potential gene flow across 
the landscape, which we would not have been able to do with cir-
cuit theory. Because the east portion of the crayfish range is less 
developed, we expected that there would be more relatively suc-
cessful movement forward in time from east to west and thus rela-
tively more connectivity going from west to east backward in time. 
Mapping connectivity based on SAMC confirmed these expecta-
tions: Conditional first passage time was estimated to be generally 
shorter backward in time when moving from west to east than 
vice versa (Figure  5c,d). These results are also consistent with 
prior analyses that indicate eastern locations with lower genetic 
differentiation and higher genetic diversity are experiencing less 
fragmentation (Duncan et al., 2020).

We found no strong evidence for land cover explaining genetic 
differentiation using resistance values based on expert opinion. 
Expert opinion has known limitations (Spear et al.,  2010), but we 
used it in this example due to the very limited data on this endan-
gered species. Furthermore, in our example, there were relatively 
few populations for estimating genetic differentiation, which 
limits the power of the analysis for detecting land cover effects. 
Resistance optimization techniques (e.g. Peterman, 2018; Peterman 
& Pope, 2021) could be extended to optimize resistance surfaces for 
the SAMC framework, both for land cover resistance and also for 
identifying effects of migration mortality.

4.4  |  The niche for the SAMC in landscape genetics

Our framework can be readily applied to problems in landscape 
genetics for predicting how landscapes may influence population 
genetic differentiation quantified via FST or related metrics (see 
Balkenhol et al., 2016). It extends isolation-by-resistance from circuit 
theory to help elucidate how genetic connectivity may be impeded, 
such as through directional barriers that alter movement directions 
or anthropogenic mortality that may limit gene flow. Lundgren and 
Ralph (2019) also show how coalescence times can be directly mod-
elled as an alternative to circuit theory, finding that coalescent times 
may be more reliable than circuit theory under directed migration. 
Other key developments on directed migration include advances in 
autoregressive and related models that can be applied to genetics 
data and can account for directional migration patterns (Hanks, 2017; 
Marcus et al., 2021; Peterson et al., 2019). Our model provides com-
plementary insights by illustrating how circuit-theoretic ideas can be 

directly extended with Markov chains in a way that can acknowledge 
asymmetric resistance and migration mortality.

We provided several metrics for interpreting genetic connectiv-
ity (Table 1). For the empirical example, we focused on conditional 
commute time, which emphasizes only between-patch processes, 
rather than absorption times, which blend internal population dy-
namics with between-population movement across landscapes. 
While it could be valuable to address absorption times to capture 
within-patch processes (Pfluger & Balkenhol,  2014), more devel-
opment is needed to scale these dynamics appropriately to raster 
grids. Conditional commute time summarizes conditional first pas-
sage time in both directions (from deme i to j and j to i), and it is 
more comparable to FST and other connectivity metrics that are not 
explicitly directional. However, conditional first passage time can 
be interpreted separately in each direction, providing flexibility for 
interpreting the genetic consequences of directional migration. We 
have updated the samc package (Marx et al., 2020) to include the 
conditional first passage times described here (v1.4.0 or later). We 
also updated the package for analysis of discrete networks such as 
those considered here (rather than only raster grids) and allow for 
scenarios where some locations in the landscape have zero absorp-
tion probabilities (e.g. to acknowledge that coalescence may occur 
only where populations reside).

Landscape genetics increasingly focuses on genetic relationships 
among individuals rather than populations to interpret problems of 
connectivity (Balkenhol et al., 2016; Cros et al., 2020). Given that 
some genetic differentiation concepts among individuals can be 
cast similarly to differentiation among populations (Rousset, 2000), 
we expect that the results we have provided apply to such cases. 
As the SAMC was derived initially at the individual level (Fletcher 
et al., 2019), its applications to individual-level relationships may be 
more straightforward than to population-level relationships consid-
ered here. For instance, when applying the SAMC at the individual 
level, we note that migration probabilities used here have similar 
interpretation, such that the primary difference is in the interpreta-
tion of absorption. Some metrics, such as conditional commute time 
as implemented here, are not sensitive to absorption values based 
on population size as setting absorption to one for individual-level 
analyses rather than scaling it to effective population size would re-
sult in similar variation in conditional commute time. However, more 
research is needed to explore these relationships fully. For related-
ness, we would alter the expectation of absorption, where related-
ness is expected to vary with the inverse (effective) population size 
(Shirk et al., 2017).

5  |  CONCLUSIONS

The spatial absorbing Markov chain framework we have presented 
extends the analysis of isolation by resistance. Circuit theory has 
seen widespread use to interpret isolation by resistance and move-
ment across landscapes in ecology and evolution and can success-
fully predict gene flow in some situations (Dickson et al.,  2019; 
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Fletcher et al.,  2016). Yet circuit theory has known limitations for 
capturing key processes that may affect gene flow (Lundgren & 
Ralph, 2019; Wang & Bradburd, 2014). Our results provide a foun-
dation for applying spatial absorbing Markov chains to population 
genetic data. Future landscape genetic studies considering circuit 
theory can extend applications using the SAMC to address directed 
migration, migration mortality and the potential effects of within-
patch processes for predicting genetic connectivity across complex 
landscapes.
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