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ABSTRACT

In this paper, we announce the public release of a massively parallel, graphics processing unit (GPU)-accelerated software, which is the first
to combine both coarse-grained particle simulations and field-theoretic simulations in one simulation package. MATILDA.FT (Mesoscale,
Accelerated, Theoretically Informed, Langevin, Dissipative particle dynamics, and Field Theory) was designed from the ground-up to run
on CUDA-enabled GPUs with Thrust library acceleration, enabling it to harness the possibility of massive parallelism to efficiently simulate
systems on a mesoscopic scale. It has been used to model a variety of systems, from polymer solutions and nanoparticle-polymer interfaces
to coarse-grained peptide models and liquid crystals. MATILDA.FT is written in CUDA/C++ and is object oriented, making its source-code
easy to understand and extend. Here, we present an overview of the currently available features, and the logic of parallel algorithms and
methods. We provide the necessary theoretical background and present examples of systems simulated using MATILDA.FT as the simula-
tion engine. The source code, along with the documentation, additional tools, and examples, can be found on the GitHub MATILDA FT
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. INTRODUCTION

Polymers are a ubiquitous type of material that is important
in both biological and industrial settings. Polymers are an umbrella
term, gathering macromolecules composed of smaller, repeating
monomers. In industrial settings, polymers are extensively used in
the tire industry, the production of flexible composite materials, and
as durable adhesives. In addition, they have been exploited in more
precise applications, such as drug delivery' and the design of artifi-
cial catalysis centers.” This is possible due to the propensity of poly-
mers to self-assemble into higher-order structures and their ability
to undergo phase separation in solution. Controlled phase separa-
tion has been exploited to create nano-capsules with well-defined
pore sizes, by first inducing phase separation in the capsule shell
and then flushing-out one of the components.” Similar approaches
using non-solvents to induce phase separation in a polymer solu-
tion are common methods to produce polymer membranes.”” The
design of these materials requires precise knowledge of the thermo-
dynamics and microstructure of polymer materials under a variety

of conditions, where molecular modeling can play an important
role. Similarly, the structure and phase behavior of polymers in
a biological context has recently been shown to be important for
many cellular functions through the formation of membraneless
organelles”” where coarse-grained models can potentially provide
insight.

Various open-source Molecular Dynamics (MD) codes have
been released, which are capable of simulating polymeric species
on an atomistic or coarse-grained level. Some notable examples
include the Large-scale Atomic/Molecular Massively Parallel Sim-
ulator (LAMMPS),® NAMD,’ and GROMACS.!” LAMMPS can
perform all-atom simulations on polymer chains using available
force fields. It is also equipped with biologically oriented force fields,
which enable coarse grained simulations of biomolecules. In addi-
tion, the user can define their own coarse-grained polymer model
and expand it to include the required potentials. On the other
hand, both GROMACS and NAMD have been specifically designed
to model biological molecules, such as proteins and nucleic acids
on a fully atomistic level. Polymer simulations are challenging, in
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general, due to the wide range of length- and time-scales required
for accurate simulation. As a result, highly coarse-grained models
with relatively high particle densities are frequently used to describe
phenomena on larger length scales.

In many soft matter fields, particularly those involving the
design of materials using polymers, polymer field theory and related
techniques have played a crucial role in the design of new mate-
rials and the interpretation of experimental results.'' '° Polymer
field theories are developed by beginning with a description of the
system in terms of coarse-grained potentials, such as chains obey-
ing Gaussian statistics, Flory contact repulsions governed by a y
parameter, and partial charges on the various species. One writes
down the partition function for this particle model using one of a
variety of transformation techniques,'"'”'” decouples the particle
interactions, and transforms the model to one where one molecule
of each type interacts with chemical potential fields generated by
the various interaction potentials. The field-theoretic approach is
attractive because it enables a variety of analytic analyses, such as
the mean-field approximation, which gives rise to self-consistent
field theory (SCFT) or a variety of loop expansions. The particle-
to-field transformation is formally exact, and there are examples in
the literature showing quantitative agreement between the particle
and field versions of the model.'® However, open-source codes that
efficiently perform field-theoretic simulations (FTS) are scarce. The
PSCF code'” and its recent graphics processing unit (GPU) exten-
sion’’ are notable exceptions, but this software is primarily focused
on unit-cell calculations for ordered phases under the mean-field
approximation. While this is a broad and important class of prob-
lems for which FTS is used, phenomena driven by fluctuation effects,
such as complex coacervation and large-cell simulations, are beyond
the scope of the current version of PSCF.

In more recent years, several methods have been developed
to sample the original particle model efficiently,” ** which gener-
ally fall under the umbrella of theoretically informed coarse-grained
(TICG) models. In these methods, the underlying particle coordi-
nates are retained, and the particles are mapped to density fields
to efficiently calculate the non-bonded forces and energies. At this
highly coarse-grained level, the typical coarse-grained bead den-
sity p, can be relatively high (p, € [3,50] dimensionless units), and
calculating the local pair-wise interactions can be costly using tra-
ditional neighbor lists. By mapping to a density field, a significant
speedup can be achieved because converged results can be obtained
with a grid density that is less than the bead density. The need
for multiple density fields makes the TICG class of methods diffi-
cult to implement on top of many particle-based simulation codes,
where the only density field is typically the charge density used in
computing electrostatic forces with particle-to-mesh Ewald tech-
niques.”® While there is an open-source code for performing the
closely related single-chain in mean-field (SCMF) method”” that
has been optimized for parallel architectures such as GPUs, to the
best of our knowledge, it is primarily designed to study uncharged
polymeric species.

In this work, we present the first version of our code for
Mesoscale, Accelerated, Theoretically Informed, Langevin, Dissipa-
tive particle dynamics (DPD), and Field Theory, MATILDA.FT.
MATILDA.FT is written from the ground-up intended to be run on
GPUs, and the bulk of the code is written using the CUDA program-
ming language. MATILDA FT is capable of modeling both systems
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consisting of a few molecules as well as those containing millions
of particles. Its strength lies specifically in being able to efficiently
simulate polymeric and other soft materials (e.g., liquid crystalline
systems) on the mesoscale. On this scale, the coarse-grained inter-
actions are typically “soft” (finite at overlap) and the particle density
high; in this limit, it becomes more efficient to evaluate the non-
bonded interactions using density fields. These large-scale molecular
assemblies of interest can correspond to block polymers of arbitrary
architecture, biomolecular coacervates in explicit solvent, artificially
synthesized ionomers, side-chain liquid crystalline polymers, or
polymer-infiltrated nanoparticle packings.

The outline of this paper is as follows: In Sec. II, we describe
the structure of the models being used in molecular dynamics and
field-theoretical simulations. Next, in Sec. 111, we outline the main
features of the code and available functionalities at a higher level,
before taking a more detailed look at the code structure in Sec. I'V.
Next, in Sec. V, we show results for selected example systems. We
end with the planned developments in Sec. VI and conclude with
Sec. VIIL.

Il. STRUCTURE OF THEORETICALLY INFORMED
COARSE-GRAINED AND FIELD-THEORETIC MODELS

A. Particle-based models

In this section, we provide the necessary theoretical back-
ground to understand the models used in MATILDA.FT and the
logic of the simulation workflow. The starting ingredients for all of
the modeling handled by MATILDA.FT are highly coarse-grained
models for soft-matter systems. For simplicity, we will describe the
basic structure in terms of a simple A-B Gaussian chain diblock
copolymer melt, although the generalization to other systems will
become apparent below. For a polymer melt with n polymer chains
each containing N4 + Np = N monomers, the microscopic polymer
densities are

n

pee) =2 Y 8(r=ry), <1>
] N

where K is either species A or B, and rj, is the position of the sth
bead on the jth chain. The monomers on each chain are typically
connected via harmonic bonds,

n

N-1 3
ﬁUO = Z Z ﬁ‘rj’s - l'j,s+1|2, (2)

] N

where b is the statistical segment size, and we have assumed equal
b for species A and B. The Flory repulsion is written in one of two
equivalent forms,'****’ depending on whether the model is imple-
mented as a field- or particle-based model. In the particle-based
approaches, we make the potential non-local as

BU, pi [ ax [ axpa(uo(e - Dputx'), (3)

2 2
where ug is a unit Gaussian potential, ug(r) = (2m0%) >/ />7,
D is the dimensionality of the system, and ¢ controls the range of
the interactions. The standard Flory-Huggins model is recovered in
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the limit ¢ — 0. The final potential penalizes deviations of the local
density from the average™ p, = nN/V,
K
puz= 5 [ dr [ @ (pu() - poluole —pe(¥) o). (9

With these ingredients in hand, we can write the partition
function as

Z=2z f dr'™Ne U (5)

where z; is a prefactor that contains all of the self-energy terms, fac-
tors accounting for molecular indistinguishability, and the thermal
de Broglie wavelengths. In equilibrium particle-based simulations,
one is primarily interested in calculating averages of quantities that
can be expressed as functions of the particle coordinates, M (™), as

(M) = %/ ™ M(xr™)e Y, (6)

and expressions for the usual thermodynamic quantities of inter-
est, such as the average density, energy, and pressure, can be readily
obtained from expressions commonly used in molecular dynamics
simulations.”!

In a particle-based Theoretically Informed Langevin Dynamics
(TILD) simulation, the total force on a monomer is computed from
the potentials described above. Bonded potentials, such as Eq. (2),
have their forces computed based on particle coordinates, while
non-bonded potentials are computed from density fields. Briefly, a
potential, such as the Flory potential [Eq. (3)], gives rise to a force
on species A of the form

fa(r) :—p%/dr'VuG(r—r')f)B(r'). (7)

After mapping the particles to the density field to define pg(r), this
force, which takes the form of a convolution integral, is then eval-
uated efficiently in Fourier-space and subsequently mapped back to
the particles. The total force is accumulated on the particles, their
positions are updated using one of several numerical integration
schemes for a Langevin equation (detailed below), and the density
fields are regenerated.

B. Field-based models

For field-theoretic approaches, we use a local potential but
render the densities non-local by distributing the point particles
over a Gaussian distribution h(r) = (2na2)_D/2e_'z/2“2, and the
Gaussian-distributed particle density is given by

pe() = [ (e =) = [ el (®)

where the final equality introduces our short-hand notation for
a convolution integral. For the choice o® = 2a>, we can exactly

re-write'****’ the non-bonded potentials in Egs. (3) and (4) a
pui= 2t [ dxpa(e)puo), ©)
and
pU= 5 [ o) ol (10)
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Using known Gaussian functional integrals,’”'’ one can then
exactly transform the particle-partition function in Eq. (5) to a
field-theoretic one of the form,

Z:zl‘/D{w}e*H[{w}], (11)

where z; contains the constants from zo as well as the
normalizing factors from the Gaussian functional integrals,

{w} = {w+,wAB ,wAB)} is the set of chemical potential fields,
and H is the effective Hamiltonian governing the weights of the
microstates. For the diblock copolymer model considered here, H
takes the form,

He [ () 07 G or)

+2KN,/dr[w+(r)] —in drw., (r)
—np log Qp[pa, ], (12)

where the first line contains the potential fields that arise due to
the Flory interaction,'® the second line contains the terms that arise
from the Helfand potential, and the final line contains the excess
chemical potential of the polymers in a given field. The potential
fields 4, and y, experienced by monomers A and B computed using

pac(r) = { i(ws + wA ) wAB }(r)/N,,

(13)
e (r) = {i(ws +wip) +wF () /N,

with the smeared potential fields appearing in Eq. (12) calculated as

pe(x) = [ho gy ] (r).

While the particle implementation can report qualitatively real-
istic dynamic quantities, the FT implementation is strictly inter-
ested in equilibrium quantities. Equilibrium averages are typically
expressed as functionals of the potential fields and calculated as

- % [ Plumiiwye™. (14)

Since H is typically complex-valued, sampling the integral over
the field configurations is non-trivial; this is typically accomplished
through the mean-field approximation, leading to SCFT through
complex Langevin (CL) sampling'"**** or Monte Carlo sampling,**

To update the chemical potential fields in either a CL or
an SCFT calculation, the effective “forces” on the fields must be
obtained as functional derivatives of #. These can be obtained
through explicit differentiation,

OH
Sw(r)’
where w(r) is one of the three fields w, (r), w/(w), or w/(w) InaCL

simulation, the fields are sampled using an overdamped Langevin
equation,

Fu(r) =- (15)

ow
—— = AwFyu (1) + (1, 1), (16)
ot
where #(t) is a stochastic noise term chosen to satisfy the
fluctuation—dissipation theorem.'"”” An algorithm that drives the
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system to an SCFT solution is easily obtained from Eq. (16) by
simply setting the noise term to zero.

I1l. FEATURE OVERVIEW

In this section, we provide a brief overview of the features avail-
able in MATILDA.FT, which are summarized in Fig. 1. They are
later described in more detail in the following Sec. I'V.

A. Particle-based (TILD) features

In the current implementation, particle-based TILD simula-
tions are performed in the NVT ensemble, in a fully-periodic
orthogonal box, either in two or in three dimensions. Although
MATILDA.FT can perform simulations of free particles, it has been
designed specifically to efficiently model systems of polymer melts
and solutions. Polymers are modeled as discrete Gaussian or worm-
like chains with monomers that are connected through harmonic
springs, and the density of each monomer is spread around its cen-
ter through convolution with a unit Gaussian. The strength of the
repulsive interactions between chemically distinct species is medi-
ated through the Flory-Huggins y parameter. Monomers can be
either neutral or charged. If they carry a net charge, then in addition
to the repulsive potential, they also interact through Coulombic elec-
trostatic forces. Regardless of their net charge, the monomers can be
made polarizable through the use of (classical) Drude Oscillators as
detailed in Sec. V C.

The user interacts with the code through input scripts written in
a plain-text format. Before the simulation is started, the entire script
is read, and appropriate variables and data structures are initialized.
The maximum number of time steps and the time step size are para-
meters specified in the input script. Then, the system can undergo
an optional equilibration period before subsequently entering the
production run stage. For a TILD simulation, two files need to be
provided. The first one is the main input file, providing information

MATILDA.FT

Particle-based methods
(TILD)

Polymer models: Discrete
Gaussian and worm-like chains;
arbitrary architecture

Non-bonded potentials:

soft repulsions for polymers
and nanoparticles; Maier-
Saupe liquid-crystal potential
Charged and polarizable models

Reversible bonding for
supramolecular systems

DPD, Langevin thermostats
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about simulation dimensionality, box size, density grid spacing, and
interaction potentials between particle types. It also defines the par-
ticle groups and assigns integrators and forces to act on them during
each time step. The second file contains information about particle
coordinates, types, molecules they belong to, and, optionally, their
charge. Currently, this file can be provided in the format consistent
with the LAMMPS data file, in either angle or charge atom style. To
allow the use of data generated by other codes, the initial config-
uration can also be read from a GSD-format file developed by the
Glotzer Lab.”

B. Field theory features

Currently, FTSs are limited to mean-field calculations as in
self-consistent field theory (SCFT) with linear, discrete Gaussian
chain models. The molecules can be of arbitrary blockiness with an
arbitrary number of components, and the potentials implemented
include the Flory contact repulsion and the Helfand weak compress-
ibility. More details about the interactions between the species are
provided in Sec. II. As detailed below, the key elements of the FTS
implementation are three classes: Potentials, which govern the non-
bonded interactions and act on Species. The Species class stores
the total density of each chemical component and is populated by
individual Molecule classes. For example, an A-homopolymer/B-
homopolymer/AB-diblock copolymer blend would have two species
(A and B) and three molecules. A single text input file is used to
specify the parameters of a FTS.

As the development of the FTS features of the code began
well after the development of the particle-based TILD methods, the
feature set and breadth of capabilities are comparatively limited.
Furthermore, as can be observed by comparing Figs. 2 and 3, the
class structure is also rather distinct. As discussed below, planned
future development will work to merge the two branches to a more
common class structure and the addition of numerous extensions.

Features

Field-based methods
(FTS)

Polymer model: Linear discrete
Gaussian chains of arbitrary
blockiness

Non-bonded potentials:
Flory repulsion, Helfand weak
compressibility

Large-cell, equilibrium field-
theoretic simulations

FIG. 1. Summary of the features of the two styles of simulations capable by MATILDA.FT.
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Input Script

global variables and
functions / potential fields

Neighbor
Lists

Groups

Forces/
Thermostats

FIG. 2. Schematic outline of code structure of the TILD branch.

IV. CODE DETAILS AND CLASS STRUCTURE

The unique feature, which sets MATILDA.FT apart from other
popular MD codes, is that the code is intended for highly coarse-
grained models where the non-bonded forces can be evaluated using
density fields and not summing over neighboring pairs of particles.
It uses a dedicated CUDA/C++ programming language in order to
fully harness parallel capabilities. Its model of parallelization dif-
fers from the conventional central processing unit (CPU) domain
decomposition. In contrast to the CPU, where groups of particles are
assigned to different processors based on their spatial arrangement,
GPU parallelization occurs on the particle or individual grid loca-
tion level, where each thread is responsible for processing instruc-
tions for the selected particle/grid point. It is simply handled by
assigning a separate thread to individual particles and filtering the
thread IDs.

MATILDA.FT also makes extensive use of the Thrust library,
which is an extension of the C++ Standard Template Library (STL)
to work with GPUs.”” The Thrust Library provides dedicated stor-
age containers (equivalent to STL vectors in C++), which enable
easier host-device communication by avoiding the requirement for
explicit cudaMemcpy calls. The Thrust Library also makes available

dedicated parallel algorithms to operate on these containers and
achieve better performance. In addition, by avoiding complicated
host-device memory transfer syntax, the use of thrust makes it easy
for those who do not have much GPU-programming experience to
understand and expand the MATILDA.FT source code.

A. Particle-based (TILD) implementation

The code takes advantage of the C++ object oriented program-
ming approach. It is divided into classes, which interact with each
other and exchange data as needed. Each class is responsible for
handling a particular functionality. The base class serves as an inter-
face used to interact with other parts of the code. Then specialized
sub-classes are derived from the base class to provide specific func-
tionality. This organization makes extending the code to include new
functionalities a relatively easy and straightforward process, with
simple integration of the new components into the existing code.
For example, the neighborList class is responsible for constructing
and storing the neighbor list for the selected group of particles. This
neighbor list is then used by the additional forces (created as a sub-
class of the ExtraForce class) to accelerate the operations performed

FTS Classes in MATILDA.FT

Potentials

Acts on Species class

SH
swt@)' sw—(r)
Computes H[w]| term
Stores linear
coefficient Ay
Calls field
integration schemes

Computes

Species

Stores total density
SH for each species

Computes chemical
potential field wg(r)

Molecule

Computes chain
propagators, densities

Computes molecular

partition function, Qg

Computes —ng log Qg
contribution to H[w]

FIG. 3. Basic actions and roles of the FTS classes in MATILDA.FT.
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on this group. Depending on the nature of the additional force, spe-
cialized neighbor lists can be used in order to further accelerate
the performance. A diagram of class code organization is shown in
Fig. 2. Below, we provide a brief description of selected classes. The
outline of the code structure along with a detailed description of all
class functionalities and options are provided in the documentation.

1. Input script

The first step of the simulation is selecting the method to be
used, either TILD or FT. This is passed as a command line argument
when the program is called. Using ./MATILDA.FT -particles
will run the TILD simulation, whereas the -ft option will initial-
ize an FT run. Additional command line arguments, like the name
of the input script to be used, are described in the documenta-
tion. Two files are required for a TILD simulation. The main input
file is responsible for setting up simulation parameters, such as the
dimensionality of the system, size of the simulation box, grid den-
sity, time step size, and the number of time steps to perform. The
input script also defines the interaction potentials between selected
particle types, along with the parameters that determine the details
of electrostatic interactions. The same file also contains information
about the particle groups, neighbor list, and any additional forces to
be applied.

The second (data) file provides the initial positions of the par-
ticles, their types, and the molecules they belong to. This data file
also initializes the static bonds and angles used in the simulation.
Currently, the initial atom configuration can be read either from the
LAMMPS data file (in angle or charge style) or from a GSD file. Static
bonds are established at the beginning of the simulation and cannot
be broken. Dynamic bonds, on the other hand, can be created and
destroyed over the course of the simulation. Like regular bonds, they
are assigned an equilibrium length and a corresponding constant.
However, they are also assigned formation/breaking energy, which is
responsible for the reaction constant between the bonded and non-
bonded states. Dynamic bonds can be used to simulate the effects of
polymerization, network formation, or supramolecular assembly. To
accelerate performance, dynamic bonds are coupled with a dedicated
neighbor-list.

2. Global variables space

The global variable space holds the main data structures used in
the simulation. It stores the global arrays containing particle types,
positions, forces acting upon them, velocities, and static bonds,
arranged according to the particle ID. Reading of the input script
is also handled at this level. Before the beginning of the simulation,
these arrays are initialized and then periodically updated by other
classes during the time-stepping process. In the future release, these
structures will be placed in a separate Box class to closely resemble
the organization of the FT branch of the code, which is described
below.

3. Group class

The Group base class provides data structures that store indices
of the member particles. It sets device-specific variables (BLOCK and
GRID sizes) that are used in kernel calls dispatch on the group par-
ticles. All forces and neighbor lists, in MATILDA.FT, operate on
specific groups. Pointers to each group object are stored in a glob-
ally accessible vector array. Each group is assigned a unique name,

ARTICLE pubs.aip.org/aipl/jcp

which is used to pass its pointer to their classes. Groups can be
static or dynamic. Static groups are initialized at the beginning of the
simulation, and their content remains unchanged over the simula-
tion course. Dynamic groups, on the other hand, periodically check
and update their members based on the specified membership cri-
terion. A special group, named “all,” is initialized by default at the
beginning of the simulation and contains all particles in the simula-
tion box. Currently, two static group types are available—grouping
by particle type or by its global id. Type-based groups collect all
the particles with the same type (as specified in the input.data). Id-
based groups require the user to provide an external plain text file,
which contains the indices of the particles to be included in the
group. Currently available dynamic group style, “regions,” allows
the user to define a separate region in space (along all or only spe-
cific axis). Particles found within that region get assigned to the

group.
4. Neighbor list class

We have implemented several neighbor list variants for effi-
cient particle-particle operations. In addition to the standard
cell/neighbor list combinations where all particles store all of their
neighbors, specialized subclasses are built upon this base to opti-
mize the performance of the associated operations. Currently, two
sub-classes are available. The “distance” neighbor list is intended to
be used with the DPD force. Its structure is designed such that each
particle only stores the indices of its neighbors, which have lower
indices than its own. In this way, when the pairwise interactions are
calculated, unnecessary “if” statements to perform the calculation for
each pair only once are avoided, thus avoiding wasted threads and
thread divergence.

A more elaborate neighbor list is coupled with dynamic bond-
ing. The main goal of this structure is to again minimize the
amount of atomic operations and thread divergence. An asso-
ciated group partitions its members into donors and acceptors,
whose indices are stored in separate lists. The binning step is per-
formed only for acceptor particles. Subsequently, the grid position
of each donor particle is calculated, and each donor is assigned
a list of neighborhood acceptors. During the binding step, only
donor particles can initialize bond making or breaking and can only
couple with acceptor particles. With the pre-calculated neighbor-
list, superfluous checks of the particle type and wasted threads are
avoided.

5. ExtraForce class

In addition to electrostatic and repulsive interactions, selected
groups of particles can be subject to additional user-defined forces.
These are specified in the input script using the extraforce command.
The ExtraForce base-class is responsible for assigning the force to
the specific group of particles and ensuring that it is applied to this
group at the specified time-steps (whether each step or user-defined
frequency). In addition, some range-limited forces require a neigh-
bor list to restrict the search space only to the particles present within
the specific range. Currently, available forces are

e Wall—which enables the particles to be confined within a
specific region or to simulate surface interactions. The user
can choose from available wall-particle potentials or specify
their own form of interaction, by extending the source code.
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e Langevin—Adds random noise to the selected group of par-
ticles. Can be used with Velocity Verlet (VV) integrator to
simulate Brownian dynamics.

e Midpush—Adds a force to push the selected group of
particles toward the center of the box along a specified axis.

e DPD—Dissipative Particle Dynamics. This subclass of
ExtraForce provides an alternative way to introduce ran-
dom noise into the simulation and should be used along
with the Velocity Verlet integrator. In contrast the Langevin
thermostat, however, it is pair-wise additive and conserves
local momentum. Thus, it is capable of correctly reproduc-
ing the hydrodynamic behavior of the system. Since the
force acts over a limited range, a neighbor list needs to
be constructed for the particles of interest. The particle-
level operations add significantly to the expense of the
simulation.

o Lewis - These additional forces can be used to introduce
dynamic bonds in the simulation. While static bonds are
initialized at the beginning of the simulation and remain
unchanged, dynamic bonds can be formed and broken
according to the specified acceptance criterion. This force
requires a specialized neighbor list (bonding), which has
been designed to optimize the required computations.

More details about the ExtraForce class can be found in the
documentation.

6. Compute class

The Compute class is responsible for performing on-the fly cal-
culations of the properties of the system. This enables the user to
monitor the evolution of the system in real time and also saves time
spent on post-processing.

e Average Structure Factor (S(k))—this compute provides
information about the average static structure factor of the
particle system. The static structure factor, given by

S(k) = 3 {pi-s) a7)

is defined as the correlation function of the system density repre-
sented in the Fourier space. The density is given by p(r) = XX, 8(r
—1i), and in Fourier space, it becomes p = YN, &7 It performs
the calculation and writes the data to an external file according to
user-specified frequency.

7. Integrator class

In order to solve the equations of motion and propagate the
particle coordinates in time, numerical integration is required. In
MATILDA FT, three different numerical algorithms are available
and are briefly described below:

e Velocity-Verlet (VV). Needs to be coupled with an addi-
tional thermostat. Available thermostats include Langevin
noise or Dissipative Particle Dynamics, which are part of the
ExtraForce class.

o Euler-Maruyama (EM). Generates the thermal noise inter-
nally during the update and serves as the simplest stochastic
integration scheme to implement.
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e Gronbech-Jensen and Farago (GJF). Generates thermal
noise internally during the update, and we find that this
algorithm allows time steps up to 10x larger than the EM
algorithm with no loss of accuracy or stability.

B. FTS implementation
1. Class structure

As the FTS branch was begun more recently, many planned
features are still in development. There is also a difference in class
organization between the older (TILD) and the newer (FT) branches.
The classes that comprise an FT simulation are more tightly inte-
grated, and the scope of the object-oriented organization is larger,
as compared to the TILD branch, which still uses global variables.
In the near future, we are planning to refactor the TILD branch to
also be fully class-based. However, due to the inherent differences
between the TILD and FT simulations, it will not be possible for both
of the branches to have exactly the same organization.

A field-theoretic simulation lives in an FTS_Box class, which
contains three key classes: Potentials, Molecules, and Species (see
Fig. 3 for a graphical outline of FT branch organization). The Poten-
tials class performs all of the functions that are related to the
various non-bonded interactions, including updating the potential
fields associated with a particular interaction. The densities that
show up in the effective forces are taken from the Species class,
which serves as a container for these densities. Species generate the
unsmeared chemical potential fields, y; (r), by looping over the
interaction potentials and accumulating the relevant potential fields.
Next, the Molecules class takes these potential fields, applies any
density smearing that may be necessary, and computes both the cen-
ter and smeared density fields. The smeared density fields are then
accumulated into the relevant Species class. The general flow of the
code is summarized in Fig. 4.

2. Field update schemes

Currently, two schemes have been implemented to update
potential fields, in order to evolve in time equations of motion such

FTS Simulation Outline

1. Initialization:
1.1. Read input file - initialize potential fields
1.2. Molecule class - compute density fields
1.3. Accumulate them in the Species class
2. Time Step:
2.1. Forces calculated by Potentials class,

using density fields.
2.2. Update fields using a selected scheme
2.3. Zero densities of all Species
2.4. Each Molecule - compute own density
field, then accumulate in Species density
2.5. |If step < max_steps: go to 2.1, else go to 3.
3. Write final output and exit

FIG. 4. Outline of an FTS simulation as implemented in MATILDA.FT. The termi-
nation condition could be convergence to within a prescribed tolerance in SCFT or
reaching the maximum desired number of time steps in a CL simulation.

J. Chem. Phys. 159, 014108 (2023); doi: 10.1063/5.0145006
Published under an exclusive license by AIP Publishing

159, 014108-7

9z:L1:€1 €202 AInf G0


https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics

as Eq. (16). The straightforward explicit Euler-Maruyama (EM)
integration scheme discretizes the equation in time and uses the
forces at the current time to estimate the field configurations at a
future time as

W (r) = w' + StAwFl, (1) + /20tA 0 (i (1), (18)

where 0t is the size of the time step and (,(r) is purely real Gaus-
sian noise with a unit variance that is uncorrelated in both space and
time. As mentioned above, simply neglecting the noise term converts
this algorithm to one that drives the system to a mean-field solution.

The other algorithm that is implemented is a first-order, semi-
implicit (1S) updating scheme that has been shown to allow for
time steps significantly larger than allowed by the EM scheme.”*">"”
In this approach, one derives an approximate expression for the
force Fi/™ (r) that is linear in the potential field. In real-space, these
expressions take the form of a convolution,

Fﬁbli"(r):/dr'Aw(r—r')w(rl)’ (19)

where Ay, (r) is the linear coefficient. As a result of this convolution,
the 1S updating scheme is most effectively handled in Fourier space
where we have

Fiy" (k) = Aw (K)w(k). (20)

To affect the semi-implicit scheme, Eq. (18) is written in Fourier
space and modified by subtracting the linear term at f+ §t and
adding it at ¢ giving,

W™ (Kk) = 8tk [Fy, (K) + A (K)w' (K)
= Aw (w10 ] + w' (k) + V200G (k). D)

We note that {, (k) is generated as a spatially uncorrelated noise field
in real-space that is explicitly Fourier transformed. Equation (21)
can be readily solved for the field at ¢ + 0t giving

ot W Othy[Fly + Aww' | +/28thw (;
w = >

1+ 0tAwAy (22)

where we have suppressed the wavevector dependence for brevity.

The functional form of the linear coefficients A, generally
contains one or two contributions that have a stabilizing effect on
the time integration.”””” The first arises from the terms that are
quadratic in the fields in #H [e.g., the first two lines in Eq. (12)];
this term is included for every type of interaction potential. During
the initialization of an FT simulation, the Potentials class adds this
relevant term to A,,. The second contributions are the linear approx-
imate of the density operators, which involve convolutions of Debye
functions with the potential fields; these contributions are handled
by the Molecules class during initialization.

3. Molecule types

Currently, the only implemented molecule type is a linear,
discrete Gaussian chain with an arbitrary number of blocks. This
class handles the calculation of the chain propagators, and during
initialization, the code automatically checks whether the molecule
is symmetric to avoid calculating the complimentary propagator
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if possible. The other key step taken in the initialization is to
accumulate the relevant Debye-function-like contributions to the
linear coefficients associated with each potential. From previous
studies,””” not all terms that show up in the precise linear expan-
sion of the force are stabilizing; to that end, we do not include the

Debye terms in the wig) field, but they are included in the w, and
w,§;> fields.

V. INTERACTION POTENTIALS AND EXAMPLE
SYSTEMS

A. Bonded interactions

Bonded interactions are present whenever polymer chains are
modeled. Currently, they represent the harmonic springs connect-
ing adjacent monomers of the same molecule. The calculation of
the resulting forces has been parallelized to be performed on the
GPU, and Newton’s third law is not used to avoid the use of atomic
operations. The contribution of the bonded interactions is calculated
individually for each particle by assigning it to a separate thread.

Two common angle potentials are also implemented in
MATILDA.FT. To enable simulations of discrete worm-like chains,
we have the cosine form,

Uyic(B3) = A[1+ cos (6) ], (23)

where A controls the stiffness of the potential and 6y is the inside
angle between particles i, j, and k. The second potential implements
harmonic angles as

up(O¢) = ko( 0% — 90)2, (24)

with spring constant kg and equilibrium angle . The angle styles
are specified in the input script along with the type (“wlc” or

“harmonic”), followed by the force constant (for both styles) and the
equilibrium angle if harmonic angles are used.

B. Non-bonded interactions

Long-range interactions include repulsive interactions medi-
ated by the Flory-Huggins y parameter and the electrostatic forces
acting between the charged monomers. The distinctive feature of
MATILDAFT is the way in which it handles these interactions.
While bonded interactions use explicit coordinates to calculate
inter-particle distances, long-range interactions use the mass/charge
density field to compute the resulting forces. In this process, a
Particle-to-Mesh (PM) method is used.*’ In this scheme, the box is
divided into a discrete grid, with the number of grid-points in each
direction being a user-defined quantity. At the beginning of the sim-
ulation, a Fourier-space representation of the inter-particle potential
is calculated using the Fast Fourier transform (FFT) and is stored for
the rest of the simulation. We note that no cut-offs are needed for
the potentials. Next, at each time-step, every particle assigns its den-
sity contribution to nearby grid points, using a spline interpolation
scheme with the weights given in the Appendix of Ref. 26. The order
of the interpolating spline can be chosen from 1 to 4, with higher
order interpolation requiring more computation. Regardless of the
form of the pair potential u(r), forces are given in real space by

f(r) = —fdr'Vu(r—r')p(r'). (25)
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The convolution in Eq. (25) is evaluated in Fourier space using FFTs,
where it becomes a simple multiplication. Then, an inverse FFT is
used to transform the forces back into real space where the forces are
interpolated back onto the particle centers. The process is illustrated
schematically in Fig. 5. The current pair potentials implemented in
MATILDA FT includes Gaussian forms as well as the nanoparticle-
nanoparticle and nanoparticle-monomer forms demonstrated in
previous work by some of us.*

The other primary non-bonded potential implemented in the
particle-based methods is electrostatic interactions. The electrostatic
potential ¢(r) is calculated by solving the Poisson equation,

V2 p(r) = —4nlgp.(r), (26)

where Ip is the Bjerrum length and p_(r) is the Gaussian-smeared
charge density. Equation (26) is readily solved in Fourier space for a
given charge density, and the electric field is computed as the gradi-
ent of the electrostatic potential. Since forces from pair potentials as
in Eq. (25) and solving Poisson’s equation both require the Fourier
transform of a density field, an important feature of our particle-
based methods is that including long-range electrostatics is no more
expensive than other interaction potentials.

As an example system that incorporates polymer connectivity,
excluded volume interactions, and electrostatics, a system consisting
of a total of 434 molecules of polymer chains, each with a degree of
polymerization, N = 82, has been simulated. Half of these molecules
carry positively charged monomers, with the other half having each
monomer with negative charges of the same magnitude, and there is
an excluded volume repulsion that penalizes overlaps of the polymer
chains. No explicit solvent is present. This simulation is a parti-
cle model of the system considered in previous work.”' The system
starts in a random, homogeneous phase and, over the course of the
simulation phase, separates into polymer-rich and polymer-depleted
regions as coacervation occurs, and the concentration in the droplets
agrees with the previous field theoretic simulations.”’ The snap-
shots from the beginning (left) and the end (right) are shown in
Fig. 6. On an Nvidia Quadro RTX 5000 GPU, this simulation took
1399 s to perform 2000000 time steps, with the resulting speed of
1429.6 ts/s. This example can be found in the GitHub repository, in
the examples/coacervate directory.
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C. Polarizable monomers

Polarization can play an important role in the phase behavior
of polymer solutions, especially in the biological context. Molecu-
lar polarizability has an influence on polymer solubility, and it can
also modify how polymer chains interact with salt ions present in the
environment. In MATILDA.FT, polarizability effects are introduced
through the use of classical Drude oscillators. In this approach, a
“Drude particle” is attached to the parent particle via a harmonic
spring with stiffness kp and zero equilibrium length. This Drude par-
ticle is assigned a partial charge dq;, and the partner particle —dq,,,
such that the net charge of the two-particle pair remains unchanged.
The magnitude of the spring constant kp can be related to molec-
ular polarizability, with polarizability decreasing with increasing
stiffness. The Drude particle gets assigned a small mass so that it
can be integrated with other particles using standard equations of
motion. This simplification circumvents the issue of treating polar-
izability effects on the quantum-mechanical level, while still being
able to reproduce spatial variations in polarization. Drude particles
do not participate in excluded volume interactions, and thus, the
only forces acting on them are electrostatic in nature. We note that
our implementation is different from those typically used in atom-
istic or more fine-scale coarse-grained models, where the Drude
particle is typically thermostatted independently at a low temper-
ature, enabling the polarizability to be estimated with the classical
expression & = 8qp/kp. Since our charges are distributed over a unit
Gaussian, this expression does not apply, and we have parameter-
ized our effective dielectric constant as a function of the various
parameters of the Drude oscillators (g, kp, and the spread of the
Gaussian, 0), which is shown in Fig. 7. Since the use of Drude oscil-
lators introduces more particles to the simulation box, there is an
associated increase in the computational cost of simulating polariz-
able materials through the increase in the number of particles in the
simulation box.

As an example of a system that incorporates polarization on
a polymer chain, 1330 diblock co-polymer chains with N = 74, and
blocks of equal size, were simulated in explicit solvent. Both the sol-
vent and polymer chains were made polarizable through the use of
classical Drude oscillators. Since, in this system, only the polymer
concentration of the condensate was of interest, all simulations were

S e
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FIG. 5. Schematic illustration of the Particle-to-Mesh (PM) scheme. Specifically, shown here is a first-order spline interpolation, where the particle density is mapped to the
two nearest grid points in each dimension. The same spline weights are used to map the forces back to the particles.
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FIG. 6. Initial (left) and final (right) snapshot from the simulation of coacervat-
ing binary mixture. This simulation is a particle-based implementation of the
model considered previously as a field-theory by one of us*' with a dimen-
sionless excluded volume parameter B = 0.05 and dimensionless Bjerrum length
E =10000.

started with the polymers in a dense “slab” configuration. In this
configuration, all particles are biased to migrate toward the mid-
dle of the simulation box, creating a homogeneous, dense polymer
phase. During the production run, this bias is removed, and the slab
is allowed to expand.

The parameters for the Drude oscillator attached to the solvent
molecules have been chosen to reproduce the dielectric constant of
water. In this way, the Bjerrum length can be set to the value it has
in the vacuum, and dielectric screening is then emergent from the
polarizable solvent. The calculated dielectric constant for the chosen
combination of parameters is shown in Fig. 7. The dielectric con-
stant of water is around 78.4 so the optimal choice of the parameter
corresponds to ap ~ 0.5 and kp »~ 1.0 In Fig. 8, we show the plot of
the reduced concentration ¢* of the dense and dilute phases and the
corresponding value of y between the polymer monomers and the
solvent molecules. We also include corresponding snapshots of the
final structure of the system.
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FIG. 7. Calculated values of dielectric constant for the solvent molecule, as a func-

tion of charge spreading length, ap, and the spring constant of the Drude oscillator,
Kp.
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FIG. 8. Plot of the density obtained in the dilute and dense phases as the value
of y between the monomers and solvent is varied. Included are also renders
of the three-dimensional structure of the system corresponding to the selected
data points. Positively charged monomers are displayed in red, while negatively
charged ones are colored blue.

D. Liquid crystals

We model liquid crystalline interactions through a modified
Maier-Saupe (MS) potential that is a discrete version of the McMil-
lan model.*” In our implementation, the MS interactions involve two
pairs of particles: one of each pair is the “center” of the interaction i
and the other becomes a partner particle j that is used to define the

. . . . ri—r . .
local molecular orientation on particle i, u; = ——2~ (see schematic in
‘rl_rjl

Fig. 9 below). The local orientation vector is used to define an orien-
tation tensor for each particle S; = wyu; — I/D, which is mapped onto
an orientation field similar to the density fields,

S(r) = Z Sid(r—r1;). (27)
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FIG. 9. Liquid crystalline order parameter as a function of the strength of
the Maier-Saupe parameter y calculated during a simulation where u was
continuously ramped throughout.

In Eq. (27), the sum is over the LC centers. The orientation field S(r)
is then used to compute the Maier-Saupe potential energy,*

pus =L [ ar [ s s(yualie - @9)

where u is the Maier-Saupe potential parameter and ug(r) is the
Gaussian potential that renders the interactions non-local. The
forces are derived by explicit differentiation and are presented in
the documentation of the code, and as we show below, this model
captures both nematic and smectic A phases.

Particles that carry an orientation vector u; are specified in an
additional input file that is similar, in nature, to the lists of bonded
partners. When specifying that the MS potential is to be used, the
name of the additional input file is also provided; this file contains
a list of pairs of particles i and j that are used to define the orienta-
tion vector associated with particle i. This implementation allows for
the easy creation of either main-chain liquid crystalline polymers or
side-chain liquid crystalline polymers, a detailed study of which will
be the subject of a forthcoming publication. Furthermore, by mak-
ing one of the end sites within an LC mesogen a different site type,
one can indirectly control anchoring conditions at phase boundaries
by making this other type more or less repulsive with a particular
species in the nearby phase.

A simple model of a pure liquid crystal was simulated where
the mesogen was discretized into three interaction sites with the
Maier-Saupe (MS) interaction taken from the center of the meso-
gen, see the inset in Fig. 9. Bonds between adjacent liquid crystal
sites used a force constant k;, = 100 and equilibrium distance 1, and
the orientation was maintained with a worm-like chain angle poten-
tial with prefactor A = 50. Finally, an additional Helfand potential
was employed to maintain an approximately uniform density with
x = 100, and the total site density was p, = 3. This combination of
the anisotropic molecular shape with a MS interaction taken from its
center makes the model similar to the McMillan mean-field model.**

Figure 9 shows the average liquid-crystalline order parameter
A that is calculated on the fly as the MS y parameter is increased
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from 0 to 120. A is taken as 3/2 times the largest eigenvalue of the
average S tensor. When y ~ 45, a sharp increase in (1) indicates
the isotropic-to-nematic transition. A more subtle feature at high
u ~ 105 is indicative of the nematic to smectic transition.

VI. PLANNED FUTURE DEVELOPMENTS

In this section, we present the changes we plan to implement
in MATILDA in the near-future. The code is still in development,
and we plan to keep extending its capabilities and optimizing the
existing algorithms. The main change we intend to implement in
the particle-based methods (TILD) is to convert it to a fully object-
oriented style, following the design of the newer FT branch. This will
enable us to fully utilize the utilities provided in the Thrust library.
It will also make the two branches operate more seamlessly, mak-
ing future modifications easier and minimizing the learning curve
for researchers wanting to modify the code. As High-Performance
Computing (HPC) clusters are often equipped with multi-GPU
nodes, we are planning to extend our software to be able to take
advantage of multiple GPUs to further extend its parallelism. This
would enable an efficient implementation of enhanced sampling
techniques, such as parallel tempering where multiple simulation
boxes are present at once. By accessing multiple GPUs at once, each
simulation box could execute concurrently on separate devices.

We also plan to implement several key features for the FT sim-
ulation methods that should be available in the near term. While
the time evolution equations of the fields described above are pre-
sented from the perspective of a complex Langevin (CL) simulation,
the CL equations are not yet implemented, and all of the equations
of motion are currently noise free, leading to mean-field solutions.
Finally, the inclusion of electrostatic interactions, including polar
and polarizable polymer monomers,"*" is planned in the near
future.

Having a code base capable of simulating both particles and
field-theoretic methods also has the potential to unlock novel
simulations, especially since the two methods’ strengths are com-
plementary. Particle-based simulations are more efficient with
lower molecular weight polymers and dilute solutions [i.e., at low
C =n/(V/Rg*)], while field-theoretic simulations are more pow-
erful as C increases. One could, thus, envision exploiting both
of these strengths to simulate phase coexistence using the Gibbs
ensemble.” If one of the coexisting phases is polymer-rich and the
other polymer-depleted, such as in complex coacervate-forming sys-
tems, the polymer-rich simulation box could be considered using
field-theoretic approaches while the polymer-depleted box could be
studied with particle methods. While the implementation will surely
have details to resolve, since the particle-to-field transformation pro-
ceeds independently in the two simulation boxes,*” the approach is
expected to be viable.

VII. DISCUSSION AND CONCLUDING REMARKS

In this paper, we have presented MATILDA.FT, an open-
source simulation software for highly coarse-grained soft matter
simulations that is designed to run on GPUs. Both the particle-based
and field-theoretic methods implemented are designed for poten-
tials that are finite at the overlap and where the particle density will
be relatively high. In the particle-based simulations, this leads to
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a gain in overall efficiency by evaluating the non-bonded interac-
tions using density fields rather than neighbor lists, and the finite
potentials eliminate so-called ultraviolet divergences from field-
based simulations.?® As far as we are aware, MATILDA.FT is the first
published open-source software to combine both coarse-grained
Langevin dynamics and field-theoretic simulation frameworks into
a single code base. As an example of the speedup generated by
the GPU code, we performed a brief 2D simulation of a sys-
tem containing 6172 polymer chains of length N =25 each in a
square simulation where the non-bonded forces were evaluated on
a M =63 x 63 grid. Using one of our group’s old serial codes, it
took ~15 min to complete 10000 time steps on an 2.2 GHz Intel
17-10870H laptop processor; MATILDA.FT completed the same
number of time steps in 15 s on a laptop with Nvidia GeForce RTX
3080 GPU.
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