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Abstract—Rates of phenotypic evolution vary markedly across the tree of life, from the accelerated evolution apparent in
adaptive radiations to the remarkable evolutionary stasis exhibited by so-called “living fossils.” Such rate variation has
important consequences for large-scale evolutionary dynamics, generating vast disparities in phenotypic diversity across
space, time, and taxa. Despite this, most methods for estimating trait evolution rates assume rates vary deterministically
with respect to some variable of interest or change infrequently during a clade’s history. These assumptions may cause
underfitting of trait evolution models and mislead hypothesis testing. Here, we develop a new trait evolution model that
allows rates to vary gradually and stochastically across a clade. Further, we extend this model to accommodate generally
decreasing or increasing rates over time, allowing for flexible modeling of “early/late bursts” of trait evolution. We
implement a Bayesian method, termed “evolving rates” (evorates for short), to efficiently fit this model to comparative data.
Through simulation, we demonstrate that evorates can reliably infer both how and in which lineages trait evolution rates
varied during a clade’s history. We apply this method to body size evolution in cetaceans, recovering substantial support
for an overall slowdown in body size evolution over time with recent bursts among some oceanic dolphins and relative
stasis among beaked whales of the genus Mesoplodon. These results unify and expand on previous research, demonstrating
the empirical utility of evorates. [cetacea; macroevolution; comparative methods; phenotypic diversity; disparity; early

burst; late burst]

The rates at which traits evolve are markedly hetero-
geneous across the tree of life, as evidenced by the
uneven distribution of phenotypic diversity across
space, time, and taxa (e.g., Simpson, 1944; Brusatte
et al.,, 2012; Reaney et al., 2020; Chartier et al., 2021).
While understanding the drivers of such patterns can
provide critical insights into macroevolutionary pro-
cesses, a general consensus on what factors are most
important in accelerating and decelerating trait evolu-
tion remain elusive (Chira et al., 2018). There is a vast,
interconnected web of factors hypothesized to affect
trait evolution rates, typically divided into extrinsic
and intrinsic components. Extrinsic factors relate to
the environment of an evolving lineage, commonly
including aspects of biogeography like climate or
habitat (e.g., Clavel and Morlon, 2017; Mihalitsis and
Bellwood, 2019), as well as interactions with other spe-
cies (e.g., Slater, 2015; Borstein et al., 2019; Drury et
al., 2021). Intrinsic factors instead involve properties
of the evolving lineage itself, including life-history
attributes such as behavior or developmental traits
(e.g., Mufoz and Bodensteiner, 2019; Fabre et al., 2020)
and genetic features like trait heritability and effective
population size (e.g., Arnold et al., 2008; Villar et al.,
2014). The effects of all these variables are interrelated
and depend on the particular traits being studied, fur-
ther complicating matters (Cooper and Purvis, 2009;
Muioz et al., 2018; see also Donoghue and Sanderson,
2015).

Unfortunately, the evolutionary histories of many
factors hypothesized to affect trait evolution rates are
largely unobserved. Thus, methods testing for asso-
ciations between rates and variables of interest must
first estimate the history of the explanatory variables
themselves (but see Hansen et al., 2022). This limits
researchers to considering only a few, relatively sim-
ple hypotheses (Revell, 2013; Caetano and Harmon,
2019), causing trait evolution models to often underfit
observed data (Pennell et al., 2015; Chira and Thomas,
2016; Chira et al., 2018). This underfitting generally
oversimplifies inferred rate variation patterns and arti-
ficially increases statistical support for complex models
which may imply spurious links between trait evolu-
tion rates and explanatory variables (May and Moore,
2020; see also Rabosky and Goldberg, 2015; Beaulieu
and O’Meara, 2016). Thus, these “hypothesis-driven”
approaches to modeling trait evolution should be inte-
grated with “data-driven” approaches that agnosti-
cally model variation in trait evolution rates based on
observed trait data alone. Such approaches can account
for rate variation unrelated to some focal hypothesis, or
even be used to generate novel hypotheses regarding
what factors may have driven inferred rate variation
patterns (Uyeda et al., 2018; May and Moore, 2020; see
also Beaulieu and O’Meara, 2016).

Several data-driven methods for inferring trait evo-
lution rates are already available and widely used
(Eastman et al., 2011; Thomas and Freckleton, 2012;
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Rabosky et al., 2014; Pagel et al., 2022), but such meth-
ods generally work by splitting phylogenetic trees into
subtrees and assigning a unique rate to each subtree
(sometimes termed “macroevolutionary regimes”).
These models implicitly assume trait evolution rates
stay constant over long periods of time with sudden
shifts in particular lineages. This mode of rate varia-
tion would be expected if rates are primarily influenced
by only a few, discretely varying factors of large effect.
However, this assumption could be problematic given
the sheer number of factors hypothesized to affect trait
evolution rates, as well as the fact that many of these
factors vary continuously (Cooper and Purvis, 2009). If
rates are instead affected by many factors, mostly with
subtle effects, we would expect trait evolution rates to
constantly shift in small increments over time within
a given lineage, resulting in gradually changing rates
over time and phylogenies. In other words, rates them-
selves would “evolve” and be similar, but not identi-
cal, among closely related lineages (i.e., phylogenetic
autocorrelation; see Sakamoto and Venditti, 2018). By
assuming that rates change infrequently, current data-
driven methods likely oversimplify rate variation pat-
terns, collapsing heterogeneous evolutionary processes
into homogeneous regimes (but see May and Moore,
2020; Fisher et al., 2021). To this end, Revell (2021)
recently developed a data-driven method that models
trait evolution as gradually changing, but this method
is limited in requiring a priori specification of how much
trait evolution rates vary across the phylogeny. Further,
the method offers no way to rigorously test whether lin-
eages exhibit different rates (Revell, 2021).

Notably, some hypothesis-driven methods model
trait evolution rates as gradually changing over time.
However, such models most commonly assume that
rates only follow a simple trend of exponential decrease
or increase over time (Blomberg et al., 2003; but see
Clavel and Morlon, 2017; Slater et al., 2017). In this con-
text, declining trait evolution rates, or “early bursts”
(EB), are often invoked as signatures of adaptive radia-
tion (Harmon et al., 2010), while increasing trait evolu-
tion rates, or “late bursts” (LB), are sometimes linked to
processes like character displacement (Weber et al., 2016;
Skeels and Cardillo, 2019). Unfortunately, current meth-
ods lack statistical power to detect decreasing trends in
rates when just a few lineages deviate from an overall
EB pattern (Slater and Pennell, 2014). Essentially, by
assuming a perfect correspondence between time and
rates across all lineages, inference under these methods
is misled by subclades exhibiting anomalously low- or
high-trait evolution rates. New methods that explicitly
model such “residual” rate variation may more accu-
rately detect general trends in trait evolution rates by
accounting for these anomalous lineages/subclades.

Here we develop a new, data-driven method that
models trait evolution rates as gradually changing
over time, ultimately resulting in stochastic, contin-
uously distributed rates that are more similar among
closely related lineages. We take advantage of recent

developments in Bayesian inference and develop new
strategies for efficiently estimating autocorrelated rates
on phylogenetic trees while dealing with uncertain
trait values, resulting in relatively fast, reliable infer-
ence. We call this method (and its corresponding soft-
ware implementation) “evolving rates” or evorates for
short. Evorates is both flexible and intuitive, allowing
researchers to infer both how and where rates vary on
a phylogeny. Through simulation, we demonstrate that
evorates recovers accurate parameter estimates on ultra-
metric phylogenies spanning a range of sizes and that it
is more sensitive and robust in detecting trends in trait
evolution rates than conventional EB/LB models. We
also use evorates to model body size evolution among
extant whales and dolphins (order cetacea) and find
evidence for declining rates of body size evolution and
moderate rate heterogeneity in this clade, unifying and
expanding on previous results (Slater et al., 2010; Slater
and Pennell, 2014; Sander et al., 2021).

MATERIALS AND METHODS

Evorates uses comparative data on a univariate con-
tinuous trait to infer how trait evolution rates change
over time as well as which lineages in a phylogeny
exhibit anomalous rates. Here, comparative data refers
to a fixed, rooted phylogeny with branch lengths pro-
portional to time and trait values associated with its
tips. We generally caution against using evorates with
univariate ordinations of multivariate trait data such
as principal component scores because ordination can
bias rate inference from comparative data (Uyeda et al.,
2015). Evorates is designed to work with raw trait mea-
surements; both missing data and multiple trait values
per tip are allowed (i.e., tips with 0 and >1 observa-
tions, respectively). In the case of averaged trait mea-
surements, estimated mean trait values and standard
errors can be used to specify normal priors on trait val-
ues at particular tips. The current implementation also
allows for assigning raw trait measurements and priors
to internal nodes as well, perhaps reflecting fossil data
and/or strong prior beliefs, though we do not test this
feature here. Conditional on these trait data, evorates
uses Bayesian inference to estimate two key parameters
governing the process of rate change: Rate variance,
controlling how quickly rates diverge among inde-
pendently evolving lineages, and a trend, determining
whether rates tend to decrease or increase over time.
When rate variance is 0, rates do not accumulate random
variation over time and are constant across contempo-
raneous lineages. In this case, trait evolution follows the
same exact process as expected under a conventional
EB/LB model, with negative trends corresponding to
EBs, no trend to Brownian Motion (BM), and positive
trends to LBs. The method also infers branchwise rates,
which are estimates of average trait evolution rates
along each branch in the phylogeny, indicating which
lineages exhibit unusually low or high rates.
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The Model

At its core, evorates works by extending a typical
Brownian Motion (BM) model of univariate trait
evolution to include stochastlc incremental changes
in trait evolution rates, o2. Specifically, o> follows a
process approximating geometrlc BM (GBM) with a
constant rate, meaning that In (¢?) follows a homo-
geneous BM-like process. GBM is a natural process
to describe “rate evolution” because it ensures rates
stay positive and implies rates vary on a multipli-
cative, as opposed to additive, scale (Limpert et al.,
2001; Gingerich, 2009). To render inference under this
model tractable, we treat it as a hierarchical model
with a trait evolution process dependent on the
unknown—but estimable—branchwise rates, which
are themselves dependent on a rate evolution process
controlled by the estimated rate variance and trend
parameters. The overall posterior probability (PP) of
the model can be summarized as

P(2%, 0}, 4) o P(als, P20, O)P(0) (1)

where 1 is a phylogeny with e branches and n
tips, 0?2 is an e-length vector of branchwise rates, x
is an n-length vector of trait values for each tip, and
6 is a vector of parameters governing the rate evolu-
tion process. Cases with missing data and multiple
trait values per tip are covered in a later section.
In our notation, time is 0 at the root of the_phy-
logeny and increases toward the tips. P(x|y),0?) is
the likelihood of x given the trait evolution process,

P(c2[y),6) is the probability of branchwise rates given
the rate evolution process, and P () is the prior
probability of the rate evolution process parameters.
We explicitly estimate and condition likelihood cal-
culations on branchwise rates (a type of “data aug-
mentation”; see May and Moore, 2020) because the
likelihood of the trait data while marginalizing over
branchwise rates (i.e., P(x | ¢,0)) does not follow a
known probability distribution and would require
complex, numerical approximations to compute. On
the other hand, P(I x|t o2 follows a straightforward
multivariate norma den51ty

x ~ MVN (a,C) )

where a is a vector of the trait value at the root of the
phylogeny repeated n times and C is an n x n matrix.
The entries of C are given by

Cij= Z o2t

keanc(i,f) (3)

where t is an e-length vector of branch lengths, i and
j are indices denoting specific tips, k is an index denot-
ing a particular branch, and anc (i,j) is a function that
returns all ancestral branches shared by i and j. Note
that when branchwise rates are constant across the
tree, Cij is proportional to the elapsed time between
the root of the phylogeny and the most recent common
ancestor of i and j. Branchwise rates can be thought of

as “squashing” and “stretching” the branch lengths of
a phylogeny, such that certain lineages have evolved
for effectively shorter or longer amounts of time,
respectively.

Unfortunately, there is no general solution for cal-
culating P(0?|¢,0) under a true GBM process (Lepage
et al., 2007), so we instead use a multivariate log-nor-
mal approximation (e.g., Dufresne, 2004; Welch and
Waxman, 2008) of the distribution of branchwise rates
and calculate probabilities under this approximation.
Briefly, this approximation decomposes branchwise
rates into their expected values, 3, determined solely by
the trend parameter, and a “noise” component, -y, sam-
pled from a multivariate normal distribution controlled
by the rate variance parameter:

In(c2) ~ 3+~ (4)

Here, the noise component is approximate because
it follows the distribution of geometric, rather than
arithmetic, averages of trait evolution rates along each
branch assuming there is no trend (i.e., In(o?) rather
than In(0?); see Online Appendix for further details).
The entries of 3 are given by

o 1 2 0 if Ho2 = 0
#=10000) + | In(lexplugara] — expligari]l) — In(lagel) — In(t) i 12 # 0
)

where In (c3) is the estimated rate at the root of the
phylogeny, 1,2 is the trend parameter, ¢ is an e-length
vector of branch lengths, and 71 and 7 are e-length
vectors of the start and end times of each branch in the
phylogeny (Blomberg et al., 2003). The entries of v are
given by

~ ~MVN (0,0%,D) ©)

where 0 is a vector of Os repeated e times, 02, is the
rate variance parameter, and D is an e x e matrix. The
entries of D are given by

26;/3 ifi=j
ti/2 if i € anc(j,])
Dij = tr — o 1
K kEa%c:(i,j) ¢ t/2 if j € anc(i, i)

0 ifi#j,i fanc(j,j),j Fanc(i,i)

@)

where i, j, and k are all indices denoting branches
and anc (i,j) is a function that returns all ancestral
branches shared by i and j (Devreese et al., 2010,
see Online Appendix for further details). Overall,
this approximation closely matches the distribu-
tion of branchwise rates obtained via fine-grained
simulations of GBM on phylogenies under plau-
sible parameter values and is negligibly different
from other computationally efficient approxima-
tions (e.g., Thorne et al., 1998; Lartillot and Poujol,
2011; Revell, 2021; Figs. S3-516; Tables 52-S4). We
prefer this approximation because it is convenient
to work with and directly focuses on estimating
branchwise rates rather than rates at the nodes
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of the phylogeny, which is what other strategies
focus on.

Under this approximation, the final expression for
the PP is

exp[—3(x—a)'C ! (x—a)]

V@m)"|C|

expl =1 (In(6%) )’ (0%,0) " (In(a%) - )]

P(In(02), a, In(03), 0%, pp2 |2, 1) ox

0,24/ @)D
P(a, 1n(a§),a§2,uaz) (8)

Model Implementation

Evorates estimates the posterior distribution of
parameters given a phylogeny and associated trait data
via Hamiltonian Monte Carlo (HMC) using the proba-
bilistic programming language Stan, interfaced through
R (Carpenter et al., 2017; Stan Development Team, 2020,
2021). Unlike conventional Markov Chain Monte Carlo
algorithms like Metropolis-Hastings samplers, HMC
uses derivatives and physics simulations to efficiently
explore posterior distributions, which is particularly
helpful for complex, high-dimensional posteriors (see
Neal, 2011; Hoffman and Gelman, 2014, for further
information). To optimize sampling efficiency and avoid
numerical issues, evorates estimates branchwise rates
with an uncentered parameterization (Betancourt and
Girolami, 2013) and marginalizes over unobserved trait
values at the root and tips of the tree (Freckleton, 2012;
Hassler et al., 2020). Under an uncentered parameter-
ization, the HMC algorithm does not directly estimate
branchwise rates, but instead estimates the distribution
of e-independent standard normal random variables,
z, which are transformed to follow the distribution of
branchwise rates:

In(02) = 0,2Lz + f8 )

where L is lower triangular Cholesky factorization
of D (ie., D=LL; see Equation (7)). This parame-
terization is particularly efficient because it avoids
havmﬂg to repeatedly manipulate D to calculate

P(In(0?) [, In(07), 072, 12).

Evorates also uses Felsenstein’s pruning algorithm for
quantitative traits to marginalize over the trait value at
the root of the phylogeny and ayoid repeatedly invert-
ing C when calculating P(x[In(0?) (Felsenstein, 1973;
Freckleton, 2012; Caetano and Harmon, 2019). To sim-
plify the pruning algorithm implementation, any multi-
furcations in the phylogeny are converted to a series of
bifurcations by adding additional “pseudo-branches”
of length 0. This procedure does not alter the result-
ing likelihood calculations (Felsenstein, 2008), and our
implementation does not estimate branchwise rates
along pseudo-branches because these rates do not affect
the likelihood of the observed trait data.

Accommodating Missing Data and Multiple Observations

Incorporating uncertainty in observed trait values in
comparative studies is especially important for methods

that model trait evolution rate variation because mea-
surement error can inflate estimates of evolutionary
rates, particularly in young clades (Felsenstein, 2008).
To prevent such biases, evorates generally treats the
mean trait values at the tips, x, as unknown parameters.
We marginalize over x given raw trait measurements,
y (potentlally mcludmg 0 or >1 observations for some
tips), and “tip error” variances for each tip, U . While
we use the term “raw” trait measurement for clarity,
the data provided for certain tips could instead be the
mean of a normal prior on the trait value. Entries of Uy
for such tips may be fixed to an associated variance for
the prior. All other entries of Uy are treated as unfixed,
free parameters. To render the model more tractable, we
assume tip error variance is constant across all tips with
unfixed variance.

To marginalize over the mean trait values at the tips,
we modify the initialization of Felsenstein’s pruning
algorithm (Felsenstein, 1973). Prior to pruning, we
assign each tip the expectation and variance of its mean
trait value given its raw trait measurements. We then
calculate each tip’s partial likelihood from contrasts
between its assoc1ated raw trait measurements given
its error variance, ay Assuming the raw trait mea-
surements are mdependently sampled from a normal
distribution with variance 02, the mean trait value’s
expectation is simply the mean of the raw trait measure-
ments, ¥;, and its variance is given by a ;/mi, where m;
is the number of raw trait measurements (Felsenstein,
2008). Note that if there are no trait measurements for
a particular tip (i.e.,, m; = 0), the expectation of that
tip’s true trait value is undefined with infinite variance
(Hassler et al., 2020).

Because there are no contrasts for tips with one or
fewer raw trait measurements, the partial likelihood
associated with these tips is 1. Otherwise, we can
derive a general formula for the partial likelihood by
considering each tip as a small subtree and applying
Felsenstein’s pruning algorithm. Specifically, each tip is
treated asa star phylogeny consisting of m; “sub-tips” of
length 02, with trait values y; (Felsenstein, 1973, 2008):

v
2
k Yik+1 — Vitk
k + 1) Oy,i

(10)

where i denotes a particular tlg Yi is a vector of m;
raw trait measurements for tip i, o} ; is the tip error vari-
ance for t1p i, and Y;1x is the mean of measurements 1
through k in the vector ;.

Afterinitializing all tipsinthe phylogeny, Felsenstein’s
pruning algorithm can be applied normally, iterating
over the internal nodes from the tips toward the root
(e.g., Felsenstein, 1973; Freckleton, 2012; Caetano and
Harmon, 2019). The presence of missing data, however,
will cause some calculations to involve nodes with
undefined expected trait values and infinite variance.
Note that these “data-deficient” nodes do not contrib-
ute information to the expectation and variance of the
trait value at their ancestral nodes. Thus, if both nodes

Plyiloy,) = H \/m {
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descending from some focal node are data deficient,
the focal node will also be data deficient, with unde-
fined expectation and infinite variance. Otherwise, if
only one descendant node is data deficient, the expec-
tation and variance of the trait value at the focal node
is solely determined by the descendant node that is not
data deficient. Let the descendant, non-data deficient
node have expected trait value and variance ¥; and Ug\

, respectively, and be connected to the focal node by a
branch of length t; with branchwise rate o2 - The focal
node s expected trait value and variance w1ll be X; and
O'A + o2, respectively. Whether one or both descendant
nodes are data deficient, there is no contrast associated
with the focal node and the corresponding partial like-
lihood is 1.

In the case of univariate traits, tips with missing data
have no effect on the likelihood of trait data or parame-
ter inference. However, by including missing data, one
can estimate posterior distributions of the unobserved
trait values at these tips (Goolsby, 2017; Hassler et al.,
2020). Evorates already includes functionality for sam-
pling from the posterior distribution of trait values at
all nodes and tips in a phylogeny given a fitted model.
The inclusion of additional branches could theoretically
affect the inferred rate evolution process because our
GBM approximation improves along shorter branches.
However, inference using evorates is robust to whether
rate evolution is simulated under our GBM approxima-
tion or a true GBM process (Figs. 512 and S16; Tables
S2-54), suggesting such effects are too minor to have
practical consequences.

Priors

Despite their popularity, flat and uninformative pri-
ors tend to result in fat-tailed posteriors that explore
unrealistic regions of parameter space, and Bayesian
statisticians have increasingly advocated for the use
of at least weakly informative priors in recent years
(Lemoine, 2019). We follow this advice, choosing default
priors for evorates that modestly regularize parameter
estimates, promoting conservative inferences (i.e., little
rate heterogeneity) while still allowing for a wide range
of evolutionary dynamics. We also conducted a prior
sensitivity study to document the impact of priors on
inference using evorates (Figs. 522-528; Tables S8-519).
Overall, evorates is fairly robust to alternate prior spec-
ifications, provided that priors are not overly informa-
tive, and the default priors appear adequate under a
variety of conditions.

By default, a normal prior with mean 0 and standard
deviation 10/T is placed on the trend parameter (g2
), while a Half- Cauchy prior with scale 5/T is placed
on rate variance (Uaz) where T is the height of the phy-
logeny. These prlors are quite liberal: a trend of 10/T
corresponds to a e ~ 20,000-fold change in trait evo-
lution rates over the timespan of a phylogeny, and data
simulated with a rate variance of 5/T on random trees
with 50 tips or more (generated using the R package
ape version 5.6-2; Paradis and Schliep, 2019) typically

yield branchwise rates spanning 2—4 orders of magni-
tude. Of course, researchers may increase or decrease
the standard deviation/scale of these priors if a phylog-
eny spans an especially long or short tlmescale respec-
tively. To penalize tip error variance (Uy) estimates that
are large relative to the scale of the observed trait data,
a half-Cauchy prior with scale 0%w/2 is placed on tip
error variance, where 02, is the variance of the trait
data.

It is somewhat more challengmg to pick a default
prior for the rate at the root (¢3) because this parame-
ter depends on both the timescale of the phylogeny and
scale of the observed trait data. By default, a log-normal
prior with location In (Uraw /T) and scale 10 is placed on
the root rate. This prior is designed to regularize root
rate estimation by roughly centering on trait evolu-
tion rates that could give rise to the observed trait data
with little rate heterogeneity. Notably, decreasing and
increasing trends will generally shift the location of this
default prior downward and upwards, respectively, rel-
ative to the true root rate. While more complex schemes
for choosing a root rate prior (perhaps based on phylo-
genetic independent contrasts) could help mitigate this
issue, we wanted to keep default prior settings as sim-
ple and transparent as possible. As a rule of thumb, the
scale of the root rate prior should be roughly equal to
the maximum plausible change in trait evolution rates
over the timespan of a P hylogeny. The default scale of
10, corresponding to a e 0~ 20,000-fold change in rates,
is quite liberal and should suffice for most purposes.
In any case, we encourage researchers to alter the root
rate prior to reflect biologically plausible trait evolution
rates when such information is available.

Hypothesis Testing

We agree with other macroevolutionary biologists
advocating for greater focus on interpreting parameter
estimates and effect sizes inferred by comparative mod-
els (e.g., Beaulieu and O’Meara, 2016). Nonetheless,
assessing statistical support for particular hypotheses
remains important for biologically interpreting fit-
ted models—particularly complex models with many
parameters. In the context of evorates, we focus on two
main hypotheses: 1) that significant rate heterogeneity,
mdependent of any trend, occurred over the history
of a clade (o ( » > 0), and 2) rates generally declined or
increased over time (i.e., pyo2 #0). Both hypotheses
could be tested by fitting additional models with con-
strained rate variance and/or trend parameters and
comparing among unconstrained and constrained
models using Bayes factors. However, Bayes factor esti-
mation requires additional, time-consuming computa-
tion. Thus, we developed alternative approaches that
only require the posterior samples of a fitted, uncon-
strained model.

We use the PP that p,2 > 0 to test for overall trends
in rates. If the PP is 0.025 or less, we can conclude that
there is substantial evidence that rates declined over
time, and vice versa if the PP is 0.975 or above. This
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corresponds to a two-tailed test with a critical value of
0.05. For rate variance, we instead use Savage-Dickey
(SD) ratios because rate variance is bounded at 0 and
the PP that 02, > 0 will always be 1. SD ratios are ratios
of the posterlor to prior probability density at a partic-
ular parameter value corresponding to a null hypothe-
sis. If this ratio is sufficiently less than 1, the data have
“pulled” prior probability mass away from the null
hypothesis, suggesting that the null hypothesis is likely
incorrect. In general, a ratio of 1/3 or less is considered
substantial evidence against the null hypothesis (Kass
and Raftery, 1995). We use log spline density estimation
implemented in the R package logsplme (version 2.1.16)
to estimate the PP density at 02, = 0 (Stone et al., 1997;
Wagenmakers et al., 2010).

Researchers may also wish to identify lineages evolv-
ing at anomalous rates. The most straightforward
method to do so is to calculate the PP that branchwise
rates are greater than some “background rate,” anal-
ogous to the approach for trends. In this paper, we
define the background trait evolution rate as the geo-
metric mean of branchwise rates, weighted by their
relative branch lengths. Rates are generally distributed
with long right tails (Gingerich, 2009), particularly
under our model whereby rate evolution follows a
GBM-like process. Geometric means are less sensitive
than arithmetic means to extremely high, outlier rates
associated with these long tails, and are thus better
suited for rate comparisons. In the presence of a strong
trend, only the oldest and youngest lineages will gen-
erally exhibit anomalous rates, rendering anomalous
rate detection redundant with trend estimation. Thus,
we define a helpful branchwise rate transformation,
called “detrending,” which further facilitates the inter-
pretation of evorates results. Specifically, branchwise
rates are detrended prior to calculating background
rates and posterior probabilities by subtracting /3
from branchwise rates on the natural log scale (see
Equation (5)). These detrended rates yield a new set of
transformed parameters, branchwise rate deviations,
In(03,,), defined as the difference between detrended
branchwise rates and the background detrended rate
on the natural log scale. When the PP In(03,,) > 0 for a
given branch is less than 0.025 or greater than 0.975, we
can conclude that trait evolution is anomalously slow
or fast along that branch, respectively, given the overall
trend in rates through time. While we focus on compar-
ing detrended branchwise and background rates based
on geometric means in the current paper, we note that
evorates can also compare untransformed branchwise
and background rates based on either geometric or
arithmetic means per user specifications.

Additionally, users may also calculate background
trait evolution rates for subsets of branches in a phy-
logeny, such that rates for specific lineages and/or
subclades can be estimated and compared. Some cau-
tion, however, is warranted in first identifying lineages
exhibiting anomalous rates and then testing for signif-
icant differences among them, as this could increase
the risk of spuriously detecting rate differences. This

potential issue is not unique to evorates and applies to
any data-driven phylogenetic comparative method
designed to identify shifts in evolutionary processes. In
practice, we recommend users mainly focus on inter-
preting comparisons between branchwise rates and the
overall background rate, calculating background rates
for branch subsets only to effectively summarize and
communicate model results. Of course, it is also per-
fectly reasonable to compare rates among specific lin-
eages and/or subclades when these comparisons are
planned prior to model fitting and/or have biological
justification (e.g., comparing background rates among
lineages that vary in some factor hypothesized to affect
trait evolution rates).

Notably, relationships among Bayes factors, posterior
probabilities, and frequentist p-values are not necessar-
ily straightforward and depend on sample size, priors,
and posterior distribution shape, among other factors
(Held and Ott, 2018; Wagenmakers et al., 2022). The
hypothesis testing procedures we propose and test here
are essentially useful heuristics developed to guide
researchers in interpreting models fit through evorates,
and these heuristics are not formally equivalent to
conventional significance testing under a frequentist
framework. Nonetheless, we use terms like “hypoth-
esis testing,” “null hypothesis,” and “significance” in
describing and analyzing the performance of these heu-
ristics for ease of communication.

Simulation Study

To test the performance and accuracy of evorates, we
applied it to continuous trait data simulated under
the model of inference. We simulated data under
all combinations of no, low, and high rate variance
(62, =0,3,6) and decreasing, constant, and increasing
trends (u,2 = —4,0,4), for a total of nine trait evolu-
tion scenarios. We picked these values to simulate data
that appeared empirically plausible and represented a
range of different trait evolution dynamics. Note that
when the rate variance is 0, the resulting simulations
evolve under EB, BM, or LB models of trait evolution
depending on the trend parameter. We simulated traits
evolving along ultrametric, pure-birth phylogenies
with 50, 100, and 200 tips generated using the R pack-
age phytools (version 1.0-1; Revell, 2012) to assess the
effect of increasing sample size on model performance.
While evorates can be applied to non-ultrametric trees,
we focus on ultrametric trees here to render the simula-
tion study more manageable. We simulated 10 phylog-
enies and associated trait data for each trait evolution
scenario and phylogeny size for a total of 270 simula-
tions. In all cases, phylogenies were rescaled to a total
height of 1, ensuring the effect of parameters remained
consistent across replicates. All simulations were sim-
ulated with a trait and log rate value of 0 at the root.
Because we focused on the estimation of branchwise
rate, rate variance, and trend parameters, we simulated
trait data with only one observation per tip and no tip
erTor.
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To quantitatively assess the simulation study results,
we calculated the median absolute error (MAE),
breadth, and coverage of marginal posterior distri-
butions for rate variance and trend parameters. Here,
MAE is the median absolute difference between poste-
rior samples and their corresponding true, simulated
value, such that larger MAEs are associated with less
accurate posteriors. We prefer median to mean absolute
error because the former metric is less influenced by
posterior precision and more directly reflects variation
in posterior accuracy. Breadth refers to the width of the
95% equal-tailed interval (i.e., a type of credible inter-
val [CI] that spans from the 2.5% to 97.5% posterior
quantiles, hereafter simply termed Cls) and measures
posterior precision, with smaller breadths correspond-
ing to more precise (though not necessarily accurate)
posteriors. Lastly, coverage is a binary metric equal
to one when the true value falls within the 95% CI
and zero otherwise. For branchwise rate parameters,
we averaged the MAEs, breadths, and coverage of all
branchwise rate marginal posterior distributions (on
the natural log scale) for each model fit. Additionally,
we calculated the statistical power and false positive
error rate (i.e., type I error rate, hereafter error rate)
of evorates for detecting significant rate variance and
decreasing/increasing trends. Due to the continuous
nature of branchwise rates, we assessed power and
error rates for detecting anomalous branchwise rates by
calculating the proportion of times a branch is detected
as exhibiting anomalously slow or rapid trait evolution
rates across different values of true branchwise rate
deviations.

Empirical Example

We applied evorates to model body size evolution
in extant cetaceans using a recently estimated time-
tree of both fossil and extant cetaceans (Lloyd and
Slater, 2021), pruned to consist of 88 extant species (we
excluded 1 extant species, Balaenoptera brydei, due to
its uncertain taxonomic status; see Constantine et al.,
2018), and associated trait data on log-transformed
maximum female body lengths for each species. Most
body length data were compiled in a previous com-
parative study, but we supplemented these data with
published measurements for an additional 15 species
(Table S1). We chose this example because previous
research detected notable signatures of declining body
size evolution rates over time in this clade, despite
conventional model selection failing to yield support
for an EB model of trait evolution. This puzzling result
seems primarily due to a few recently evolved lineages
exhibiting unusually rapid shifts in body size (Slater
et al., 2010; Slater and Pennell, 2014; see also Sander
et al., 2021). While previous work used a mix of sim-
ulation and outlier detection techniques to arrive at
this conclusion, we predicted that our method would
identify these patterns in a more cohesive modeling
framework.

HMC Configuration and Diagnostics

When fitting models to simulated and empirical data,
we ran four HMC chains consisting of 3,000 iterations.
After discarding the first 1,500 iterations as warmup
and checking for convergence, chains were combined
for a total of 6,000 HMC samples for each simulation.
We repeated this procedure while constraining the rate
variance parameter to 0 to see if our method could
detect trends in trait evolution rates with more power
than conventional EB/LB models. We set tip error for
the simulation study to 0 a priori because we do not
focus on the inference of this parameter here, though
we did allow the method to estimate tip error in the
empirical example. For each model fit, chains mixed
well (greatest R ~ 1.013) and achieved effective sample
sizes of at least 3,000 for every parameter. Divergent
transitions, a feature of HMC which can be indicative
of sampling problems, were relatively rare, with only
six simulation model fits exhibiting 1-3 divergent tran-
sitions. Overall, diagnostic tests suggested all HMC
chains converged and sampled posterior distributions
thoroughly.

REsuLTS

Performance of Method

Overall, the method exhibited accurate inference and
appropriate coverage for all parameters, though poste-
rior breadth was often quite large, especially for trees
with 50 tips (Tables 1-3, Fig. 1). Posterior accuracy and
precision were highly dependent on trait evolution sce-
nario and tree size. In general, higher values of trends
and rate variance were associated with larger poste-
rior MAEs and breadth for their respective parame-
ters, such that increasing trends and high rate variance
are estimated with the least accuracy and precision. In
some cases, higher trends seemed to increase the MAEs
and breadth of rate variance posteriors and vice versa,
but this pattern was weak overall. On the other hand,
larger tree sizes resulted in smaller posterior MAEs and
breadth, such that trees with 200 tips yielded the most
accurate, precise posteriors. Coverage for trend and
rate variance parameters across all trait evolution sce-
narios and tree sizes remained consistent at around the
theoretical expectation of 95%.

Both the statistical power and error rates of our
method were appropriate for detecting trends and
significant rate variance. In general, power increased
with larger trees, while error rates remained consis-
tent. The ability of SD ratios to identify significant
rate variance was particularly impressive, erroneously
detecting rate variance only once while exhibiting high
power (Fig. 2). Decreasing trends were notably easier
to detect than increasing trends, particularly on small
trees (Fig. 3). Trend error rates consistently remained
below ~5%, and decreasing trends were never mis-
taken for increasing trends and vice versa. Higher rate
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TaBLE1 Median absolute errors of rate variance, trend, and branchwise rate posteriors (i.e., median absolute difference between posterior
samples and their true, simulated values, a measure of posterior distribution accuracy), averaged across replicates for each simulated trait
evolution scenario and tree size

gi )= Rate variance Trend Branchwise rates
0 3 6 0 3 6 0 3 6
50 species
Ho2 = —4 0.66 1.96 2.55 1.36 1.29 1.83 0.47 0.81 1.00
0 0.57 2.48 3.69 1.49 2.09 2.45 0.48 0.86 1.06
4 0.99 1.75 3.00 2.06 2.79 291 0.60 0.87 1.01
100 species
Ho2 = —4 0.30 1.01 2.03 0.77 1.08 1.31 0.31 0.73 0.90
0 0.37 1.62 2.37 1.12 1.20 1.59 0.37 0.76 0.89
4 0.34 1.56 1.87 1.89 1.63 1.54 0.44 0.83 0.90
200 species
Ho2 = —4 0.13 1.27 1.50 0.77 0.95 1.25 0.24 0.66 0.80
0 0.11 0.75 1.44 0.92 1.13 0.95 0.23 0.71 0.85
4 0.18 0.82 1.69 1.00 1.13 1.35 0.27 0.72 0.84

Note: a02; and p,2 indicate the true, simulated values of rate variance and trend parameters, respectively.

TaBLE2 Breadths of rate variance, trend, and branchwise rate posteriors (i.e., the difference between the 97.5% and 2.5% quantiles of poste-
rior samples, a measure of posterior distribution precision), averaged across replicates for each simulated trait evolution scenario and tree size

Rate variance Trend Branchwise rates
0’5.2 — 0 3 6 0 3 6 0 3 6
50 species
Hg2 = —4 3.85 9.07 15.05 5.03 6.08 6.71 2.33 3.17 3.76
0 3.65 10.07 14.82 5.92 8.26 8.28 2.29 341 3.90
4 4.52 8.66 14.05 10.73 10.75 10.75 3.01 3.49 3.85
100 species
fo2 = —4 1.56 5.60 8.53 3.27 4.65 4.84 1.66 2.92 3.35
0 1.91 6.45 9.01 4.31 5.27 6.01 1.87 3.10 3.42
4 1.69 6.47 8.39 7.61 8.42 7.39 2.06 3.32 3.60
200 species
fo2 = —4 0.69 4.13 6.43 2.80 3.59 4.01 1.23 2.51 3.06
0 0.62 4.23 6.21 3.39 3.99 4.06 1.18 2.72 3.23
4 0.79 3.89 6.14 4.50 5.21 5.65 1.39 2.83 3.22

Note: a02, and 1,2 indicate the true, simulated values of rate variance and trend parameters, respectively.

TaBLE 3. Coverage of rate variance, trend, and branchwise rate posteriors (i.e., proportion of times the true, simulated value is greater than
the 2.5% posterior distribution quantile and less than the 97.5% quantile) for each simulated trait evolution scenario and tree size

Rate Variance Trend Branchwise Rates
ng — 0 3 6 0 3 6 0 3 6
50 species
g2 = —4 — 0.90 1.00 0.80 1.00 1.00 0.98 0.95 0.92
0 — 0.90 0.90 1.00 0.90 0.80 0.99 0.96 0.92
4 — 1.00 0.90 1.00 0.90 0.90 0.99 0.96 0.92
100 species
g2 = —4 — 1.00 0.90 1.00 1.00 1.00 1.00 0.97 0.92
0 — 0.80 1.00 1.00 1.00 1.00 0.99 0.96 0.95
4 — 0.90 1.00 0.90 1.00 1.00 0.97 0.95 0.96
200 species
g2 = —4 — 0.90 1.00 1.00 1.00 0.90 1.00 0.94 0.94
0 — 1.00 1.00 0.90 0.90 1.00 0.99 0.95 0.94
4 — 1.00 0.90 1.00 1.00 0.90 1.00 0.96 0.95

Note: a2, and 1, indicate the true, simulated values of rate variance and trend parameters, respectively.

variance seemed to only slightly decrease the power to
detect trends. Constraining rate variance to 0 resulted
in either worse power or higher error rates for detecting
trends, depending on whether trends were decreasing
or increasing. As rate variance increased, the power of
constrained models to detect decreasing trends dra-
matically diminished. On the other hand, constrained

models detected increasing trends with greater power,
at the cost of greatly inflated error rates. Overall, esti-
mating rate variance allows for more sensitive detection
of declining trait evolution rates while better safeguard-
ing against false detection of increasing rates.
Branchwise rate estimation also generally displayed
appropriate coverage, accuracy, and statistical testing
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from a single fit, while the violins are combined posterior distributions from all fits for a given trait evolution scenario. Vertical lines represent
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FIGURE 2. Power and error rates for the rate variance parameter (62;). Lines depict changes in the proportion of model fits that correctly
showed evidence for rate variance significantly greater than 0 (i.e., power, indicated by darker black lines) and incorrectly showed evidence

(i.e., error, indicated by lighter red lines) as a function of tree size.

properties (Tables 1-3, Fig. 4). However, branchwise
rate estimates were noticeably biased toward their
overall mean (i.e., shrinkage). Linear regressions
of median branchwise rate estimates on simulated
branchwise rates yield an average slope of about 0.8
(Fig. 5). A similar pattern holds for linear regression
of branchwise rate deviations (Fig. S1). Branchwise
rate posteriors for simulations with no rate variance
exhibited especially high accuracy, precision, and
coverage (notably above the theoretical expectation
of 95%), perhaps due to the increased precision of
rate variance posteriors under such trait evolution
scenarios. In contrast to other parameters, increasing
tree size only slightly decreased posterior MAEs and
breadth for branchwise rates. After accounting for

variation in simulated branchwise rate deviations,
trait evolution scenario and tree size had little effect
on statistical power and error rates for detecting
anomalous branchwise rates. Averaging across all fits
to simulations with significant rate variance detected,
error rates for detecting anomalous rates remained
negligible, peaking at around 0.5% for branchwise
rate deviations of around 0. In fact, this peak only
increased to about 5% when we set the significant
PP thresholds to 10% and 90% (Fig. S2). The method
was somewhat more sensitive to positive than neg-
ative deviations, correctly and consistently detecting
anomalous rates with deviations more extreme than
—4 (1/50th of background rate) or 3 (20 times back-
ground rate).
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FIGURE 4. Power and error rates for branchwise rate parameters
(In 02). Lines depict changes in proportions of branchwise rates
considered anomalously slow (darker blue line) or fast (lighter
red line) as a function of simulated rate deviations (In 03, ). These
results combine all fits to simulated data that detected rate variance
(0(272) significantly greater than 0. The proportions are equivalent to
power when the detected rate deviation is of the same sign as the true,
simulated deviation (left of 0 for anomalously slow rates in darker
blue and right for anomalously fast rates in lighter red), and to error
rate when the detected and true rate deviations are of opposite signs.
Here, significant rate deviations for simulated rate deviations that are
exactly 0 are considered errors regardless of sign.

Empirical Example

Overall, our model suggests that rates of body size
evolution among extant cetaceans have generally
slowed down over time, with considerable divergence
in rates of body size evolution among key subclades
(Fig. 6). We found marginally significant support for a
decreasing trend in rates over time, with rates declin-
ing by about 7% every million years (95% CI: 0%-15%

decrease, PP of increasing trend: 2.5%). We also infer a
moderate rate variance of about 0.06 per million years
(CI: 0.01-0.22, SD ratio: 0.14). Combining these two
results, changes in body size evolution rates over a mil-
lion-year time interval are expected to range from a 50%
decrease to 60% increase for any particular lineage (Fig.
7).

We also identify a few regions of the cetacean phy-
logeny where rates of body size evolution seem to be
especially low or high. After detrending, rates of body
size evolution in the beaked whale genus Mesoplodon
are about 34% slower than the background rate (CL
13%~77%, PP of positive rate deviation: <1%). On the
other end of the spectrum, some oceanic dolphin lin-
eages exhibit unusually rapid body size evolution rates.
In particular, pilot whales and allies (subfamily globi-
cephalinae) and the orca (Orcinus orca) lineage exhibit
body size evolution rates about 160% (CI: 10%-900%,
PP: 99%) and 200% (CI: 20-1,300, PP: 99%) higher
than the background rate, respectively. In fact, oceanic
dolphins as a whole exhibit a marginally significant
increase in body size evolution rates, even after exclud-
ing the pilot whale subfamily and orca lineage (CI:
90%-300% background rate, PP: 95%). Similarly, the
blue whale (Balanoptera musculus) lineage also exhibits
a marginally significant increase in body size evolution
rate, about 140% (CIL: =10% to 1,000%, PP: 95%) higher
than the background rate.

Under the model with rate variance constrained to 0,
rates of body size evolution decrease by only about 4%
every million years (95% CI: =1% to 10% decrease, PP of
increasing trend: 7.3%). While only a slight difference,
the trend parameter estimated under the full model
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Ficure 5. Relationship between simulated and estimated
branchwise rate parameters (In 02). For each simulation and posterior
sample, branchwise rates were first centered by subtracting their
mean. We estimated centered branchwise rates by taking the median
of the centered posterior samples. The solid line represents the
position of the true centered branchwise rates, while the shallower,
dashed line represents the observed line of best fit for these data.

yields a marginally significant, two-tailed “p-value” of
~5%, while the constrained model yields a decidedly
insignificant “p-value” of ~15%. This is reflected in a
conventional sample-size corrected Akaike Information
Criterion (AICc) comparison between simple BM and
EB models of trait evolution fitted via maximum like-
lihood (ML) using the R package geiger (version 2.0.7;
Pennell et al., 2014). In this case, a simple BM model
receives nearly twice the AICc weight of an EB model
(65% vs. 35%).

DiscussioN

Here we implemented a novel data-driven method,
evorates, for modeling stochastic, incremental variation
in trait evolution rates. Part of the power of evorates is
its ability to infer trait evolution rate variation indepen-
dent of an a priori hypothesis on what factors influence
rates. This allows for detailed, hypothesis-free explo-
ration of trait evolution rate variation across time and
taxa. Researchers may use such results to generate and
refine hypotheses regarding what factors have influ-
enced trait evolution rates across the tree of life (e.g.,
Uyeda et al., 2018). Overall, evorates performs well on
simulated data, recovering accurate parameter esti-
mates and exhibiting appropriate statistical power and
error rates for hypothesis testing. Further, the method
shows great promise for empirical macroevolutionary
research, offering novel insights into the dynamics of
cetacean body size evolution—a notably well-studied
system (e.g., Slater et al., 2010, Pyenson and Sponberg,
2011, Montgomery et al., 2013, Slater and Pennell, 2014;
Slater et al., 2017; Sander et al., 2021). The results of our
study also build on previous work in demonstrating
that estimating time-independent rate heterogeneity is
critical for accurately quantifying temporal dynamics
in trait evolution rates (Slater and Pennell, 2014). This
finding has consequences for how EBs/LBs of trait

evolution are practically identified and conceptually
defined.

The simulation study results showcase evorate’s abil-
ity to recover accurate parameter estimates across a
range of tree sizes. Despite the high uncertainty of rate
variance estimates under some trait evolution scenar-
ios, rate heterogeneity could still be correctly detected
about 90% of the time with an error rate substantially
lower than 5%. Indeed, our hypothesis testing proce-
dures seem conservative in general, exhibiting rela-
tively low error rates. While it could be beneficial to
relax significance thresholds for SD ratios and/or pos-
terior probabilities for increased statistical power, our
hypothesis testing procedures seem sufficiently pow-
ered and we thus do not explore alternative thresh-
olds in great detail here (but see Fig. S2). In any case,
compared to conventional EB/LB models, evorates can
detect decreasing trends in trait evolution rates with
greater sensitivity and detect increasing trends with
greater robustness. Notably, traits evolving with expo-
nentially increasing rates on an ultrametric phylogeny
(i.e., an LB model) exhibit the same probability distribu-
tion expected under a single-peak Ornstein-Uhlenbeck
(OU) model, where traits evolve toward some optimum
at a constant rate (Blomberg et al., 2003). Therefore, the
frequently observed support for single-peak OU models
from ultrametric comparative data (e.g., Harmon et al.,
2010; see also Cooper et al., 2016; Landis and Schraiber,
2017) may partially result from autocorrelated rate het-
erogeneity, which inflates support for LB/OU models
based on our simulation study. Despite their mathe-
matical similarities, LB, OU, and our new models have
distinct biological interpretations regarding the impor-
tance of rate heterogeneity and selective forces in shap-
ing the patterns of trait diversity within clades.

Interestingly, closer inspection of our simulation
study results suggests that, in the presence of rate
heterogeneity, models with rate variance constrained
to 0 (i.e., conventional EB/LB models) estimate trend
parameters corresponding to changes in average trait
evolution rates over time. On the other hand, uncon-
strained evorates models estimate trend parameters cor-
responding to changes in median trait evolution rates
over time, essentially determining whether most lin-
eages in a clade exhibit rate decreases or increases (Figs.
519-521; Tables S5-57). Counterintuitively, when the
trend parameter is only weakly negative relative to rate
variance (—02,/2 < p,2 < 0), it is possible for a majority
of lineages within a clade to exhibit declining trait evo-
lution rates (i.e., an EB according to evorates) while rates
averaged across the entire clade increase over time (i.e.,
an LB according to conventional methods). This occurs
because rates evolve in a right-skewed manner under
our model—in other words, a few anomalous lineages/
subclades tend to evolve extremely high-trait evolution
rates in spite of declining rates among most other lin-
eages, driving up a clade’s overall average rate (Figs.
S17-518). We note that evorates still returns estimates of
average changes in trait evolution rates per unit time
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via a simple parameter transformation (y,2 + 02,/2).
We choose to focus on the majority-based definition of
EBs/LBs since, by accounting for anomalous lineages/
subclades exhibiting unusual rates, this definition bet-
ter matches many macroevolutionary biologists” intu-
itive definition of EBs (Lloyd et al., 2012; Slater and
Pennell, 2014; Benson et al., 2014; Hopkins and Smith,
2015; Wright, 2017; Puttick, 2018).

Our empirical example with cetacean body size
directly demonstrates the practical importance of these
nuances in defining EB/LB dynamics. We find sub-
stantial evidence that body size evolution has slowed
down in most cetacean lineages, despite the presence

of “outlier” lineages exhibiting relatively rapid rates.
Indeed, we find little evidence for a decline in body size
evolution rates averaged across the clade (95% CI: 12%
decrease — 5% increase in average rate per million years,
PP of increasing average rate: 16%). This broadly agrees
with previous research, but evorates is able to offer novel
insights and contextualize prior results by explicitly esti-
mating branchwise rates in addition to overall trends
(Slater and Pennell, 2014; Sander et al., 2021). For exam-
ple, Slater and Pennell (2014) identified the orca and
pilot whale lineages as outlier lineages exhibiting espe-
cially rapid rates of body size evolution. Our method
recapitulates these findings while suggesting oceanic
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Figure 7. The posterior probability distribution of fold-changes
in cetacean body size evolution rates (0%) per 1 million years. This
distribution is given by exp [y + 0,2X], where X is a random
variable drawn from a standard normal distribution. The gray filled-
in portion represents the 95% equal-tailed interval, while the vertical
line represents the starting rate of 1.

dolphins as a whole represent a relatively recent burst
of body size evolution that has largely masked signals
of an earlier burst toward the base of the clade. Such
findings more generally agree with recent suggestions
that bursts of trait evolution may be common but not
limited to the base of “major” clades. This is likely due,
in part, to major clades being arbitrarily designated
based on taxonomic rank (Puttick, 2018). Alternatively,
some propose that EBs may be hierarchical, with major
clades exhibiting repeated bouts of rapid trait diversi-
fication as competing, closely related lineages partition
niche space more finely over time (Slater and Friscia,
2019). Ultimately, we are optimistic that evorates may be
better able to resolve how frequently bursts of trait evo-
lution—early or not—occur across the tree of life com-
pared to more conventional methods.

The shrinkage of branchwise rates, whereby rate
estimates are biased toward their overall mean, is pre-
sumably due to the assumption that rates are autocor-
related under our model. Because of this, rate estimates
are partially informed by the rates in closely related
lineages, particularly when closely related lineages are
better sampled (i.e., more related to taxa with sampled
trait values and/or consisting of many short branch
lengths). This “diffusion” of rates across the phylogeny
appears to cause under- and overestimation of unusu-
ally high and low rates, respectively. Fortunately, this
renders evorates conservative in terms of identifying
anomalous trait evolution rates, safeguarding against
erroneous conclusions. In general, we view this behav-
ior as a good compromise between model flexibility
and robustness, allowing evorates to infer rate varia-
tion while avoiding ascribing significance to noise in
data. We note that rate variance estimates under our
model are largely unbiased, such that branchwise rates
in a typical posterior sample should be as variable as
the true rates. Thus, taking the joint distribution of
branchwise rates into account by analyzing distribu-
tions of differences between rates, rather than just assess-
ing marginal distributions of rates, appears important

in accurately interpreting results under our model. In
any case, despite this shrinkage phenomenon, the sta-
tistical power to identify overall rate heterogeneity and
anomalous rates with evorates appears comparable to
that of previous data-driven methods (Eastman et al.,
2011).

Evorates is one of several recently developed methods
that also estimate unique trait evolution rates for each
branch in a phylogeny but assume an alternative mode
of rate change (May and Moore, 2020; Fisher et al., 2021).
These other methods assume that branchwise rates are
independently distributed according to a log-normal
distribution. The method we develop here differs from
these “independent rate” (IR) models in assuming that
rates evolve gradually and are thus phylogenetically
autocorrelated (see also Revell, 2021). Theoretically,
trait evolution rates should exhibit some degree of
phylogenetic autocorrelation given that many factors
hypothesized to affect trait evolution rates themselves
exhibit phylogenetic autocorrelation. Indeed, a recent
study found evidence for autocorrelation of trait evo-
lution rates in a few vertebrate clades (Sakamoto and
Venditti, 2018), and autocorrelation has also been found
in lineage diversification (Savolaine et al., 2002; Caron
and Pie, 2020) and molecular substitution rates (Lepage
et al., 2006; Tao et al., 2019). Notably, there is also no
known rate evolution process that would produce inde-
pendent, log-normally distributed branchwise rates
(Lepage et al., 2006, 2007). However, IR models could
outperform “autocorrelated rate” (AR) models in some
instances due to their tremendous flexibility in model-
ing how rates vary over time and phylogenies. In gen-
eral, we expect that IR models will perform best in cases
with many traits and/or non-ultrametric trees, where
the flexibility of the model can be tempered by rich
information content in the data. More work testing for
rate autocorrelation or lack thereof in continuous trait
data is needed as methods for inferring trait evolution
rate variation become more complex.

Revell (2021) independently developed a method,
multirateBM, based on a model similar to the one we
introduce here, though evorates offers several key
advantages. In particular, the ML implementation of
multirateBM renders it impossible to estimate rate vari-
ance. To do so, one would need to analytically margin-
alize over uncertainty in branchwise rates. Here, we
circumvent this issue by using Bayesian inference to
numerically integrate over uncertainty in branchwise
rates. This is analogous to how ML implementations
of mixed effect models analytically marginalize over
uncertainty in random effects, while Bayesian imple-
mentations of the same models sample random effects
(Browne and Draper, 2006). Indeed, ML implementa-
tions of mixed effect models that treat random effects
as parameters would be unable to estimate random
effect variances due to the very same reasons multi-
rateBM cannot estimate rate variance. Additionally, our
model has the added advantage of accommodating
both trends in rates and uncertainty in tip trait values.
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Lastly, we implement procedures to test the significance
of rate heterogeneity, trends, and anomalous trait evo-
lution rates. While multirateBM offers a quick and con-
venient means for comparative data exploration, our
new method allows for more rigorous quantification
and analysis of rate evolutionary processes and pat-
terns from comparative data.

There are a number of ways the evorates might be
improved or expanded. Assuming that trait evolution
rates for different traits are correlated with one another,
using data on multiple traits could improve inference
of both the rate evolution process and branchwise rate
parameters (May and Moore, 2020). Another promising
future direction is integration of evorates with hypoth-
esis-driven methods. This could be done post hoc by
applying phylogenetic linear regression to “tip rates”
estimated under the model (e.g., Rabosky and Huang,
2016) or analyzing distributions of branchwise rates
associated with ancestral states estimated via stochastic
character maps (Revell, 2013; but see May and Moore,
2020). Alternatively, one could explicitly model rates as
the product of both a stochastic rate evolution process
and a deterministic function of some factor of interest.
We have already taken steps toward this model exten-
sion in our current implementation by allowing rates
to change as a deterministic function of time. Lastly,
despite our focus on gradually changing rates, trait
evolution rates might also exhibit sudden shifts of
large magnitude (“jumps”) or short-lived fluctuations
(“pulses”) in response to factors with a particularly
strong influence on rates. It would be ideal—but diffi-
cult—to model rates as evolving gradually, while poten-
tially undergoing sudden jumps or pulses (e.g., Lartillot
etal., 2016). An alternative strategy is developing meth-
ods to compare the fit of a model like ours against more
conventional data-driven models whereby rates jump
or even Lévy models whereby rates pulse (Landis et al.,
2013). Assessing when and whether comparative data
can distinguish between different modes of rate change
will be important for future research on the dynamics
of trait evolution.

CONCLUSION

Here, we introduced evorates, a method that models
gradual change, rather than abrupt shifts, in continu-
ous trait evolution rates from comparative data. Unlike
nearly all other comparative methods for inferring rate
variation, evorates goes beyond identifying lineages
exhibiting anomalous rates by also estimating the pro-
cess by which rates themselves evolve. Although there
are many potential modes of rate variation over time and
phylogenies, our model estimates rate evolution pro-
cesses as the product of two parameters: one controlling
how quickly rates accumulate random variation, and
another determining whether rates tend to decrease or
increase over time. The resulting method returns accu-
rate estimates of evolutionary processes and provides a

flexible and intuitive means of detecting and analyzing
trait evolution rate variation. Looking forward, evorates
has tremendous potential for improvement and elabo-
ration, and we are optimistic that the future of macro-
evolutionary biology will benefit from increased focus
not only on how traits evolve, but how the rates of trait
evolution themselves evolve over time and taxa.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.9ghx3ffkb. The cur-
rent version of the evorates R package is available at the
GitHub repository: https:/ /github.com /bstaggmartin /
evorates.
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